
Some Future Directions in Fault Modeling and TestPattern Generation ResearchF. Joel Ferguson and Tracy LarrabeeComputer Engineering DepartmentUniversity of California, Santa CruzSanta Cruz, CA. 95064AbstractThis document presents the current state of fault modeling research and lists re-search options that leverage the Carafe{Nemesis software packages and the knowledgegained from their use.1 Current State of Fault Modeling ResearchThe most widely accepted fault model is the single stuck-at (SSA) fault model. It is easyto use and it models many defects that occur in digital circuits, especially TTL circuits[TBG+83]. If all SSA faults are covered by a test set1, each signal line in the circuit has itsvalue observed through sensitized paths at least twice | once as a logic 0 and once as a logic1. Due to this nice property, many non-SSA faults are fortuitously detected by SSA testsets. However, as quality level requirements become more stringent the non-SSA faults thatremain undetected may cause an unacceptable number of faulty ICs to pass manufacturingtest.We now introduce some terminology for which no standards have been set. A defector spot defect is a local (less than 10 microns long) perturbation during manufacture thatchanges the circuit to one whose behavior di�ers unacceptably from the ideal circuit2. Acircuit-fault is a deviation in the connectivity of conducting and semiconducting regionsand is caused by a defect. A fault is the resulting change in behavior that results due tothe circuit-fault. The fault, or change in behavior, is what is exploited during the testingprocedure to detect manufacturing defects. There are three important classes of faults:1We de�ne a SSA test set as a test set that was generated by targeting SSA faults. A complete SSA testset is de�ned as a test set that detects all SSA faults in the circuit.2We choose not to consider spots of material that don't a�ect the circuit's behavior as defects. Thismakes the term defect coverage more intuitive. 1

changes in the logic function, which we call logic faults; increased propagation delay, whichwe call delay faults; and increased quiescent power supply current, which we call IDDQ faults.Consider as an example an opaque spot on an area of the metal fabrication mask that isnormally transparent, causing an undesirable spot of metal to exist on the physical circuit.If this metal spot intersects other metalized areas in the circuit representing di�erent circuitnodes, it is a defect. The resulting circuit-fault is that the two a�ected circuit nodes arejoined to form a single node. The resulting fault is classi�ed by its behavior. For instance,if one of the nodes was a node to Vdd and the other was the output of a gate then the faultwould be a logic fault, more speci�cally, a stuck-at 1 fault. If the quiescent power supplycurrent of the circuit is low enough and the output node static, then it is also an IDDQ fault.In either case the detection of the defect involves applying the correct stimulus (inputs) andobserving the result (either output value or power supply current, respectively).Defect simulation experiments show that most spot defects cause shorts between nodes orbreaks in a node. We call the resulting circuit-faults bridges and breaks, respectively. Breakswithin a CMOS circuit may cause sequential behavior. These are equivalent to transistorstuck-o� faults. Empirical evidence shows that bridges are more prevalent than breaks ortransistor stuck-o� faults[TLPM85, MTCC87, WNS87].If the circuit's state and inputs have speci�c values, many bridges and breaks can causethe circuit to use an abnormally large power supply current after the transients in the circuithave died down. In that case the defect can be modeled as an IDDQ fault and be detectedby measuring the power supply current[Ack83, HS86, MNN88, FL91a].Many bridges and breaks that do not cause an incorrect logic function increase thepropagation delay of the circuit. An excellent description of the problems of delay faulttesting and categories of delay fault tests is given by Pramanick and Reddy[PR88] and arenot be discussed here.Traditionally bridge faults have been modeled as a wired-AND or a wired-OR functionon the two bridged nodes, that is, the logic 0 is always stronger than the logic 1 or vice-versa. This is often an incorrect assumption in CMOS circuits, where a bridge may resultin a voltage on the a�ected nodes that may be interpreted as a logic 0 by some cell inputsand a logic 1 by other cell inputs (these are called indeterminate values). Recent research intest pattern generation for bridge faults has focussed on obtaining a more accurate modelof the logic value resulting from the bridge. For CMOS non-feedback bridge faults Acken'svoting model is used[Ack88]. The voting model states that when there is a bridge betweennodes and each node is being driven to a di�erent value, the resulting voltage is determinedby a \vote" between the pullup path(s) and the pulldown path(s), where not all paths havethe same strength. An example of the voting model is shown in Figure 1. The �gure showsthat two PMOS transistors in parallel are stronger than the NMOS transistors in series forthe NAND gates in the CMOS3 standard cell library [Hei88], but a single PMOS transistoris not. The transistor strength model used in switch-level simulators, such as COSMOS,cannot model this fault correctly by assigning any combination of strengths to the eighttransistors.Another issue is that di�erent cells (or gates) and di�erent inputs to the same cell (or gate)2

Truth Table entries for E 6= FABCDEF Wired-AndWired-OrSpice011110110011110111101100 101010010101 0 100000 11111 110000
A BAC DC

E
FFigure 1: Logic Function of Bridge Fault in CMOS3 NANDs using Spice.tend to have di�erent logic thresholds due to di�erent gate-to-source voltages for conductingtransistors in series. Our circuit simulations of the CMOSn cell library show a di�erence ofalmost a volt for di�erent inputs of a 3-input NAND gate.Bridge faults may also cause sequential behavior when occurring between two signallines[Mei74]. Using circuit simulations we have shown this to be true within a single CMOSnstandard cell.Lastly there are bridge faults that occur within cells or gates that cause errors to occurat the inputs of the gate. An example of this class of bridge faults is illustrated in Figure 2.There is a bridge fault between the gate of the upper nMOS transistor and its source (thisfault type has been described by Hong and McCluskey). If the value of fA,Bg is f1,1g andthe nMOS transistor being controlled by A is stronger than the pMOS transistor in theinverter being driven by B, the logic 1 on the input to inverter C will be forced to a logic 0.This causes the C output to be a function of A. Hong calls this a \pattern-dependent fault".The next most common circuit-fault type is breaks. Breaks within a primitive or complexgate that do not involve the input and output nodes can be placed into one of two categories:Those that break all paths from the output node to either Vdd or ground (see A in Figure 3),and those that break one but not all paths between the output node to either Vdd or ground(see B in Figure 3). The former behaves as a stuck-at fault after the input acquires theappropriate charge, and the latter transforms the combinational circuit to a sequential circuitdue to trapped charge[Wad78].It is more di�cult to predict the behavior of the circuit when a break is in the nodeserving as a signal line. This is because such breaks cause the gates of transistors to oat3

A DC
B Figure 2: Bridge Fault A�ecting other Inputs.

AB
Figure 3: Non-gate-node bridge faults.4

to a di�cult-to-predict voltage making it di�cult to ascertain the resulting behavior3. Inexperiments with MOSIS supplied chips with fabricated opens, the transistors with oatinggates tended to be \weakly on"[MNN88]. More recent studies by Rodr�iguez-Monta~n�es, etal. show that accurately modeling breaks in the input nodes requires knowledge of thecapacitances to other nodes in the circuit[RMSC+91].In order to determine which bridges, breaks, and delay faults are the most likely requiresthat the layout of the circuit and the known fabrication defects be taken into account. Sincecircuits are generally irregular and large, this should be done automatically in software. TheCarafe fault extractor was developed for this purpose[Jee91]. The next section describesCarafe and possible future enhancements. Once Carafe has determined the likely bridge andbreak faults, a test pattern generation system needs to produce tests that detect the presenceor absence of each fault. Section 3 describes the Nemesis ATPG system along with some ofits possible future enhancements. Section 4 shows how Carafe, Nemesis, and other softwareare combined for ATPG of realistic faults. Section 5 describes how the physical design ofthe circuit can be changed to make it more testable.2 The Carafe Fault ExtractorCarafe takes as input the layout of a CMOS circuit (in Magic or GDS II format) and astatistical description of the defects that occur during manufacture. The description ofdefect statistics consists of the relative defect density of each layer of the circuit (polysilicon,metal 1, �eld oxide, etc.) and the distribution of defect sizes for each layer.Carafe performs a circuit extraction and presents a list of possible bridge and breakfaults4. The relative likelihood of each circuit-level fault is given based on the circuit'slayout and defect statistics. For instance, assume that the size distribution of defects on themetal 1 and polysilicon layers are the same and that the metal 1 bridge defect density is5 times greater than the polysilicon defect density. If nodes A and B are adjacent to eachother in the polysilicon layer for 20 microns, and nodes A and C are adjacent to each otheron the metal layer for 40 microns and the distance between A and C is the same as thatbetween A and B, then a bridge or short between nodes A and C is 10 times as likely thanone between nodes A and B (40*5 vs. 20*1). The signi�cance of this is that a test thatdetects only the bridge between nodes A and C detects 10 times as many bad chips as atest that detects only the bridge between nodes A and B. Hence the defect coverage and thefault coverage of a circuit can be quite di�erent even if all realistic faults are considered anddefect coverage is a better indicator of the quality level of the product than fault coverage.Carafe can either be run in batch mode or interactively. Batch mode allows Carafe toextract and record the fault list for large circuits, extract the fault list from several circuits, orperform multiple analyses on the same circuit with di�erent defect statistics. The interactive3We are assuming that all cells are complex gates or are composed of complex gates. Hence all inputs toa cell are applied to at least one nMOS and one pMOS transistor.4Break faults will be incorporated into Carafe in the near future.5

mode uses X-windows to display the circuit and any of the faults of interest. This allows thedesigner to view the more troublesome faults and perhaps redesign the circuit to eliminatethem.Several researchers have suggested enhancing Carafe to support faults that are not cur-rently considered. Below we consider two enhancements: the extraction of resistive bridgesand breaks, and the extraction of reliability faults. We then present the di�culties of makingthese enhancements.2.1 Non-critical FaultsWe de�ne a non-critical fault as a circuit-fault that does not result in a complete shortor open. Carafe currently determines the relative likelihood of faults that can be modeledeither as a zero resistance short between two nodes or as a break that completely severs anelectrical node into two subnodes. Many spot defects cause non-critical circuit-faults thatcannot be modeled this way. The non-critical faults that we are aware of in CMOS circuitsfall into one of four categories: resistive shorts, resistive opens, shorts in the gate oxide, andtransistors that do not switch on or o� completely.Examples of resistive breaks are losses of conducting material in contacts or polysiliconregions that do not completely break the node, or oxide that was not completely removedfrom a via. Similarly there can be additional conductive spot defects that cause resistiveshorts between nodes. Gate oxide shorts are caused by pinholes in the gate oxide regionand result in non-linear resistance between the gate and the source, drain, or channel. Thefourth category | transistors that do not switch on or o� completely | can be caused bymany types of defects. A transistor that is partially on when it should be o� can be causedby missing polysilicon over the transistor channel region causing the channel to be too shortover part of the gate; this results in o�-current as shown in �gure 4. Other circuit faultsmay also be manifested as a partially-on transistor. For example, a break in a node thatleaves a single transistor gate oating has been shown to sometimes cause the transistor tobe partially-on[MNN88], as can gate oxide pinholes[Syr87]. There may be spot defects thata�ect the di�usion doping or �eld oxide that may reduce the e�ective transistor channelwidth and thus cause reduce the strength of the transistor. An example of this is shown inFigure 5.For non-critical faults to �t into the Carafe framework requires that there be some methodof estimating the relative likelihood of the non-critical circuit faults. Studies of pinholes inthe gate oxide have provided some information on how to estimate their relative likelihood.It appears that in most processes, the probability of a gate oxide pinhole occurring is pro-portional to the area of the transistor channel. For other processes there is evidence of adependence on the length of the perimeter of the transistor channel region. It is reasonableto expect that the probability of a resistive short in a speci�c layer is primarily determinedby how far apart the two nodes are and the extent that they are adjacent to each other;the probability of a resistive open is related to the length, thickness and layer of the con-ducting node. This is what is currently done with the critical faults modeled by Carafe, so6

DrainSource Di�usion
Di�usionPolyFigure 4: Missing Polysilicon Causing Transistor Never-o� Circuit-Fault.

Implant Spot DefectNo Di�usionPoly
Di�usion
Di�usion

SourceDrainFigure 5: Missing Di�usion Causing Weak-Transistor Circuit-Fault.7

the sensitive area approach used by Carafe should work for most occurrences of non-criticalfaults.For the purposes of this report fault strength can be understood to be a measure of howclose to critical the fault is. A resistive short that has high resistance has low fault strengthand one that has very little resistance has high fault strength. Little is known of the relativeprobability of di�erent values of fault strengths and how they are a�ected by the layout ofthe circuit.Incorporating non-critical faults into Carafe and determining the resulting faulty behaviorwill require more sophisticated defect models, knowledge of the distribution of fault strengths,and more sophisticated circuit-fault to behavior-fault translation to reduce simulation time.Finally many non-critical faults do not result in changes in logic function and are detectableonly as delay faults.2.2 Relibility Fault ExtractionThe Department of Defense has contracted with Sandia National Laboratories and the Uni-versity of California at Santa Cruz to improve their \reliability fault modeling" procedurefor digital sub-circuits. The purpose of reliability fault modeling is to accurately model thelogic behavior of circuits if and when they fail in the �eld. The current procedures are veryexpensive and use an ad hoc fault model.We expect Sandia and researchers at the University of New Mexico to provide us withthe descriptions of defects that a�ect the long-term reliability of ICs. We can then modifyCarafe to report likely reliability faults so that they can be extracted automatically just asmanufacturing defects are now.Many reliability faults start as a non-critical fault as discussed earlier. Examples includechanges in the threshold of transistors due to trapped charge in a transistor's Si� Si02interface, decreased resistance over time from gate oxide pinholes, and increased resistancein metal lines due to metal migration. These �rst become delay faults. If and when the shortor break becomes critical the logic function of the IC changes to the value that Carafe nowpredicts for bridges and breaks. Before the circuit's function reaches it critical fault value,it may exhibit faulty logic functions other than its critical function.If we decide to extract the reliability faults, we must determine whether to extract anddetermine the �nal critical-fault function, to extract and simulate the intermediate non-critical fault functions, to extract the delay faults, or do all of these. If we choose to doanything other than determine the �nal critical-fault function, then Carafe must extract thenon-critical faults and we must develop more e�cient procedures for determining their faultybehavior.2.3 ProblemsThere are few challenges to enhancing Carafe to extract non-critical and reliability faults.However there are two problems relating to the accuracy and use of the resulting realistic8

fault list:1. A lack of knowledge of causes of reliability and non-critical faults. To accu-rately predict which faults may occur, one must know what defects cause these faultsand what conditions must exist in the physical design to make the circuit susceptibleto the faults. To accurately predict the relative likelihoods of the resulting faults, onemust know the defect density, size, and strength distribution of the defects. Muchof this is technology-speci�c and Carafe's technology �le can be expanded to includethese defect and fault types. The limitation of the accuracy of the resulting fault listdepends heavily on the accuracy of the defect models and distribution.2. An inability to e�ciently fault simulate the resulting fault list. Even withcritical bridges and breaks the resulting fault list is large and, as we discuss in Sec-tion 4, the resulting faults may be di�cult to translate to changes in Boolean behavior.A continuous range of fault strengths for each bridge, break, and transistor fault com-plicates matters much more. Finally, since many non-critical and reliability faults maybe more easily detected as delays, it may be necessary to simulate these in such a wayas to automatically detect changes in delay and �nd all delay faults.3 The Nemesis Automatic Test Pattern GeneratorNemesis takes as input a description of the circuit, a list of faults for which it must generatetests, a list of fault types, and a list of primitive bridge functions describing the logic changein function for each type of fault. Carafe has been modi�ed to provide all of the input exceptthe primative bridge functions, which are provided by the Bridger program. We discuss theBridger program in greater depth in later sections.Nemesis di�ers from most existing ATPG systems. In the past three decades, prac-tical automatic test pattern generation (ATPG) systems, beginning with the Roth's D-algorithm, have pursued the problem using essentially the same structural-search paradigm[FS83, Goe81, Rot66, STS88]. Progress has been steady, but slow: the best systems of todaydo not work well on large circuits, sequential circuits, or models of failure other than thesingle stuck-at fault. These restrictions are unworkable in the long term as the size of in-tegrated circuits increase, design methodologies fail to transform all sequential circuits intocircuits that can be tested using combinational techniques, and evidence mounts that manyIC manufacturing defects are not detectable as single stuck-at faults.Nemesis is a successful ATPG system that uses a completely new approach called theBoolean satis�ability method [Lar92]. The new method generates a test pattern for a givenfault in two steps: First, it constructs a formula representing all possible tests for the fault.Second, it applies a Boolean satis�ability algorithm to the resulting formula. This methodis general and e�ective; it allows for the addition of any heuristic used by structural searchmethods, and it produces excellent results on the ISCAS-85 set of testing benchmarks col-lected by Brglez and Fujiwara[BF85]. 9

Nemesis's separation of the formula extraction from the formula satisfaction providesgreat exibility because the same satis�er can be used with many di�erent extractors. Neme-sis generates tests for defects that cause an increase in the quiescent power supply currentbecause of bridges or stuck-on transistors, and it generates tests for bridge defects (feedbackand non-feedback). In the process of modifying Nemesis to handle these additional faults,we have improved both our algorithmic test pattern generation and our fault simulationroutines. For the larger benchmark circuits, our bridge fault simulation techniques o�er asigni�cant advancement over existing methods [AM85].As we work on the integrated Carafe-Nemesis system, there are some improvements weare considering that a�ect only Nemesis (and not Nemesis's interface with other software inour system). Below we consider two enhancements to the Nemesis system: Improvementsto the Satis�er (the back-end of Nemesis), and the use of Boolean satis�ability in sequentialATPG.3.1 Improvements to the Satis�erThe �rst improvement to the Satis�er we are interested in is the addition of testability mea-sures. Testability measures are estimates of the relative di�culties of controlling or observing0's or 1's on given wires. Structural search test pattern generators have had much successwith testability, and although we anticipate a less dramatic e�ect in a Boolean Satis�abilitysystem (because of the existing propagation heuristics), we would like to investigate thebene�t of adding testability measures to our system.Having calculated testability measures for each wire, the obvious use of these measuresin the Boolean satis�er is to use them to inuence variable ordering. We hypothesize thattestability measures will give us the largest payo� in the area of controllability (line justi-�cation), since Nemesis already has excellent heuristics with respect to observability (faultpropagation).The second improvement to the Satis�er that we are interested in is parallelization. Wewill have the option of using existing techniques for parallel satis�ability or developing amore specialized version that exploits our unique approach to satis�ability. We will alsohave the option of simultaneously starting orthogonal problems on di�erent processors anddevoting additional processors to the solution showing more progress.3.2 Sequential ATPGWe have developed a preliminary ATPG system for sequential circuits with a reset state.Many test generators for synchronous circuits use a technique called time frame expansion,which unrolls the sequential behavior of the circuit. That is, if a test sequence takes Nclock cycles, unrolling the circuit N times produces N copies of the combinational part of thecircuit, cascaded by connecting the next state lines of the combinational circuit in time framet-1 to the present state lines of the combinational circuit in time frame t. After time-frameexpansion, a combinational ATPG system can be used to search for a test vector.10

When a faulty sequential circuit is time frame expanded, each copy of the combinationalpart of the circuit contains the same fault. Thus, a combinational ATPG system that workson single-stuck-at faults can not be directly used, since the unrolled circuit is a multi-faultcombinational circuit. The underlying combinational ATPG system needs to handle multiplefaults. Since Nemesis has no di�culties dealing with multiple faults, we were able to quicklybuild a sequential version of Nemesis for preliminary investigation. Our preliminary resultsare promising, and we will now proceed with extraction of the state transition graph so wecan do more sophisticated analysis (including identi�cation of sequentially untestable faults).4 Accurate Fault Grading and ATPGA major goal of our research on accurate fault modeling was to provide a more accuratemeasure of the quality level for a test set. A test set's fault coverage is the percentageof logic changes (within the fault model) that the test set detects. A weakness of the faultcoverage metric is that many faults in an IC may not be represented by the fault model. Thiscan be corrected by using the fault extraction techniques of Carafe coupled with �nding thelogic behavior of each extracted circuit fault. The second weakness of using fault coverageis that all faults are implicitly considered equally important since they are given the sameweight in the fault coverage �gure. In reality the probability of occurrence for di�erent faultswas as high as 14 to 1 in a relatively small circuit[MFS84].With a list of realistic faults and their relative likelihoods of occurrence, a much moreaccurate estimate of the quality of a test set can be made. This metric gives the percentageof defects that the test set detects, allowing the designer to be able to directly relate thisrealistic defect coverage to the probability that any chip passing the test set has no Booleanfaults. McCluskey and Buelow's formula, shown as equation 1 relating test transparency,yield, and quality level can then be used to estimate the resulting quality level[McC85]. Inequation 1, QL is the fraction of the parts that pass the test that is good, Y is the fraction ofthe manufactured parts that has no defects, and TT, the test transparency, is the fraction ofall defects that is not detected by the test. This formula makes the assumption that defectsare independent and hence does not take into account defect clustering but it can serve as abasis for comparison until there is a demand for even more accuracy.QL = Y TT (1)For more accurate estimates of quality we use defect coverage, instead of fault coverage. Atest set's defect coverage is the percentage of fault causing defects (within the defect model)that the test set detects. Within the accuracy of the defect statistics used for the defectmodel, the test set's defect coverage is the percentage of faulty chips that is detected by thetest set. Hence the defect coverage is 1-TT. The defect coverage can be obtained by �rstassigning each fault a weight based on its relative likelihood. A fault simulation is then runon each fault. The defect coverage, as a percentage, contributed by each fault is its weight11

divided by the sum of the weights of all defects. The defect coverage is shown in equation 2where kf is equal to 1 if the fault is detected by the test set and 0 if it is not detected.DC(t) = P#faultsj=1 kf (Lfaultj)P#faultsj=1 Lfaultj (2)Since many of the faults that are extracted using the fault extraction procedure are notSSA faults, we have developed software to accurately model the logic-level behavior of themost commonly extracted faults (bridge faults), and have enhanced our fault simulator sothat they can be simulated. Our next major goal is to accurately model the logic-levelbehavior of break faults and enhance the fault simulator accordingly.4.1 Our System for Defect Grading and ATPGAnother major goal of our research is to develop procedures that generate tests that targetthe likely faults in the circuit. We modi�ed the Nemesis ATPG system to generate tests forthe extracted bridge faults and hope to incorporate breaks into it in the near future.The testing procedure that we advocate consists of partitioning the circuit into twocategories: interconnect and logic. The discussion in this report is restricted to the domain offault modeling and ATPG for circuits designed using standard cells. The approach presentedhere can be extended to apply to gate arrays and other ASIC technologies, but is more easilyimplemented for standard cell designs.Our strategy is to use circuit simulation for as small a part of the circuit as possible,translate this to a change in local logic function, then after it is in the Boolean domain,fault simulate and generate tests for the circuit using techniques that have been developedfor SSA ATPG.We �rst consider bridge faults in the interconnect. The voltage of the two nodes beingbridged together is a function of the logic values on the inputs of the two gates whose outputsare bridged together. Figure 1 shows the resulting logic values for such a bridge betweentwo NAND gates. In general only the gates whose outputs are bridged and the gates whoseinputs are driven by the outputs require circuit simulation to determine the logic behaviorof the fault5. The remainder of the circuit can be simulated in the Boolean domain. Thereis a maximum of n2 bridge faults where n is the number of standard cells. For bridgeswithin the logic, only a single cell needs to be simulated and this can be done as part of thecell characterization procedure. Each fault that is circuit simulated is likely to have severalinstances in the circuit | all bridge faults between the 2-input NAND cell and the 3-inputNOR cell would result in the same voltages, thus reducing total simulation time considerably.Alternative strategies often involve test pattern generation at the transistor level only,which will probably remain impractical. What we advocate exploits two levels of hierarchyfor test pattern generation: We determine the logic behavior of realistic circuit-level faults5If the threshold voltages of the gates whose inputs are the bridged nodes have been determined beforethe fault simulation, then only the two gates whose outputs were bridged need to be simulated.12

Bridger PatternsTest
TransconductanceCell Descriptions Fault FormulasFault TypesFaultsCircuit DescriptionDefectsLayout NemesisCarafe
Figure 6: Existing Fault-Extraction/Test-Generation System.extracted by Carafe by simulation at the circuit level, and we propagate errors and justifyline values at the Boolean algebra level.We have modi�ed the Carafe fault extractor and the Nemesis automatic test patterngeneration system so that the hierarchal nature of standard cell designs can be exploited aspreviously described. The modi�ed Carafe recognizes the standard cells and extracts faultsonly in the interconnect. The faults within a standard cell have been pre-processed withCarafe beforehand and simulated. A new piece of software, Bridger, provides the circuit-fault (from the fault list generated by Carafe) to logic-fault translation that is necessaryto translate Carafe's output to a local change in logic function. An example of this is thetruth-table for the bridge in Figure 1. Carafe then sends the fault lists and circuit, andBridger sends the truth tables, to Nemesis. Nemesis can then generate tests for the realisticfaults. The Carafe-Bridger-Nemesis system is shown in Figure 6[FL91b].The Bridger program is necessary for interconnect bridge faults because their behaviorcannot be modeled as a simple wired{or or wired{and. More generally, the resultant voltagefor a bridge between the outputs of two cells can be modeled by replacing the two cells witha single bridge-cell implementing the logic function of the bridged node (the logic functionof the new cell is known as a primitive bridge function). Figure 7 illustrates this generalapproach. Nemesis can generate tests for any bridge with any primitive bridge functionpresented to it by Bridger.4.2 IDDQ TestingMany defects do not cause a change in the logic function of the circuit. They are oftendetectable as either a delay fault or as an increase in the quiescent power supply current.We call the latter an IDDQ fault. Only defects in circuits with little quiescent power supplycurrent, such as static CMOS gates, can be detected using this technique.It can be shown that for complex and primitive static gates, all source-drain, gate-drain,gate-source, and gate channel bridges are detected as IDDQ faults by any test set that applies13

BAymy2y1
x1x2xn Cell ACell B z1z2zn+m ABBridge-CellFigure 7: Modeling of Interconnect Bridge Faults.a SSA test set to the appropriate gate-level description of the circuit as if the gate's outputwas a primary output. There is no need to propagate a logic error value to a primary outputof the circuit. Only the inputs to the gate must be justi�ed to the primary inputs by theATPG software.Theorem: Any short between the source, drain, and gate in any MOS transistor within astatic CMOS gate produces excess quiescent current during at least one of the tests in anytest set that sensitizes all the SSA faults of the appropriate logic level representation of thegate as described by Reddy, et al[RRK83].Proof: Consider an arbitrary NMOS transistor T being driven by input signal s.A stuck-at 0 test for signal s requires that there be a path of on-transistors from thesource of T to ground and from the drain of T to the output, and the value of s is 1 (whichturns on T)[RRK83]. Since the source and drain of T are connected to ground and the gateis at logic 1, excess current results for any short between the gate and either the source ordrain.A Stuck-at-1 test for signal s requires that there be a path of on transistors from thesource of T to ground and from the drain of T to the output which is at logic 1. The valueof s is 0 during this test. Since the source of T is connected to ground and the drain isconnected to the output, which is connected to Vdd, excess current results if there is a shortbetween the source and drain.The case for PMOS transistors is analogous. 2It is well known that any SSA test set also excites all gate oxide pinhole shorts in fullCMOS gates as IDDQ faults. 14

Note that since propagation of errors are not necessary for IDDQ testing, only the inputsto the gate must be justi�ed to the primary inputs. A simple modi�cation of existing ATPGSSA fault software to fault simulate and generate tests for all transistor shorts (between gate,source, or drain; and also gate oxide pinhole shorts) is to treat all gate outputs as primaryoutputs of the circuit[FL91a].The Carafe-Nemesis software for standard cell designs has been modi�ed for IDDQ testingso that it fault simulates and generate tests for all transistor shorts and likely bridge faultsbetween signal lines. Since the standard cells in the library are static gates it is unnecessaryfor Carafe to present a transistor stuck-on fault list | Nemesis uses the above Theorem togenerate its tests. Carafe presents Nemesis with a list of bridges between signal lines andNemesis generates tests for them by forcing di�erent values on the two potentially bridgednodes.4.3 Future Work in Fault Grading and ATPGOne area of improvement in our system is the accuracy of the circuit-fault to logic-faulttranslation. There are two requirements for accurate translation: the output voltage of thefaulted nodes must be correct, and the logic thresholds of the inputs must be known. TheBridger software for realistic CMOS bridge faults is being made more accurate by using acircuit level simulator for the cases that require more accuracy.Even with accurate voltages, an indeterminate range of voltages exists if one uses thesame logic threshold for all CMOS gates. This is because each input to a standard cell islikely to have di�erent logic thresholds due to the di�erent gate-to-source voltages of twotransistors in series when the gate voltage is the same. If logic values are computed from thevoltages of bridged nodes without considering which inputs are being driven by the node,then the voltage range for indeterminate logic values must encompass the lowest and highestthreshold values in the cell library. The alternative is to translate the faulty voltage to alogic value for each cell input. This is possible since each input is parameterized to within afew tenths of a volt6.The second most likely circuit-level fault after bridges is breaks. Breaks are expectedto be �nished in Carafe in November. The most di�cult problem with breaks is modelingtheir behavior correctly. A relatively naive model would be to treat all nodes that cannot beinitialized to a logic value as either one logic value or the other. Then all signal line breaksthat separate the output of a gate from all inputs and signal line breaks that separate onlyone input from an output would be modeled as single stuck-at faults. Signal line breaks thatseparate the output of gate from multiple, but not all, inputs that it fans-out to would betreated as a multiple stuck-at fault. In this way Carafe can present a list of multiple stuck-atfaults that are realizable by a single defect.We are integrating each of these fault types into the Carafe-Nemesis ATPG package.6This idea came to me from my SRC mentor, John Acken.15

5 Physical Design for TestabilityIn general the design of the circuit (at the RTL, logic, or physical levels) can be changed toenhance testability in at least four ways.1. Design the circuit to have fewer faults. If the circuit has fewer faults, faultsimulation time, test pattern generation time, and the number of vectors to detect thefaults are likely to be reduced.2. Make di�cult to detect faults easier to detect. Adding control and observationpoints to nodes that are di�cult to control and observe respectively is a traditionalDFT technique that makes di�cult to test faults easier to test. Scan design makesfaults that are inherently di�cult to detect because of state in the circuit, less di�cultto detect by removing that state.3. Make di�cult-to-detect faults unlikely. This technique is meaningful only ifone is considering defect coverage instead of fault coverage. An example of this isshown in Figure 8. A break in one of the paths from the gate's output to ground is adi�cult-to-detect fault for this circuit. This would cause the gate to have sequentialbehavior[Wad78]. The most likely cause of this happening is if a via (represented inFigure 8 as an \x") between the metal and di�usion regions is missing. One wayto make this fault less likely is to provide a redundant connection between the twovias with di�usion. This can usually be run under the metal with no overhead orperformance penalty. However it is still possible that the sequential fault will occur byan open in the di�usion path between the via and the transistor's source node, but thisis much less likely than a missing via. Similar changes in layout have been discussedby Koeppe[Koe87] and Levitt and Abraham[LA90].This list of DFT objectives is probably not exhaustive and some existing DFT techniquesfall into multiple categories, but it serves to classify the P-DFT techniques that we outlinelater. We further divide potential improvements to the layout into those involving thephysical design of the logic and those involving the interconnection between the logic.P-DFT for logic is accomplished by laying out the logic blocks to enhance testability.Since the Carafe-Nemesis system extracts faults from and generates tests for circuits com-posed of standard cells, we will use examples from that technology. P-DFT for interconnectwill be accomplished by placement, routing, design rules for routing, and selection betweenlogic blocks with the same function. We do not assume a speci�c fault model in our analysis.Instead we base our evaluation on the testability of the circuit's realistic faults, those thatare realizable due to a single defect[MFS84].5.1 P-DFT for LogicWe �rst consider P-DFT of the logic blocks. It is more bene�cial to modify the layout of aspeci�c logic component to make it more testable for design environments where the same16

viasBA Outdi�metalFigure 8: A CMOS NOR gate showing the metal-di� vias from the nMOS transistors toground.logic components are reusable, than it is in design environments where there is less logicreuse. Design environments with high logic reuse include standard cell, gate array, and somehigh-level synthesis environments.The three objectives for P-DFT are to reduce the number of faults, make the di�cultto detect faults easier to detect, and reduce the probability of di�cult to detect faults. Towork on improving any of these objectives requires that we have a measure for number offaults or di�culty to detect. Since a fault is a change in the behavior of the cell, the numberof faults is the number of behaviors. If we consider only logic faults, then this would be thenumber of faulty truth tables. As an example consider the CMOSn standard cell whose logicdiagram is shown in Figure 9. It has 43 bridge circuit-faults involving metal2, metal1, orpoly, including shorts between these layers which result in 26 unique faulty functions. Themaximum defect diameter used to �nd these bridge faults was 2.5 times the minimum linewidth of that layer. If there were fewer faulty functions the circuit would likely be easier totest.Even greater savings in the number of faults are possible by considering delay faultssince there are more potential delay faults than logic faults. A four-input complex gate haspotentially (24 � 24) � 24 sequences of two vectors (excluding the same vector twice) to testall possible delay faults7. Reducing the number of potential delay faults could potentiallyreduce testing costs or defect levels considerably.Equation 3 gives a simple metric for how di�cult-to-detect a speci�c fault, f, in a one-output cell is. In the case of logical faults in combinational circuits \all possible tests" is 2nwhere n is the number of inputs. \All possible tests" for delay faults may mean all possible7If the circuit is glitch-free one need only consider the sequences in which the two vectors produce di�erentoutput values. So a more reasonable estimate of the number of two pattern sequences would be (24 � 24) � 24divided by 2. 17

OutDCBAFigure 9: A bridge fault which can cause sequential behavior in a CMOS standard cell.sequences of length two. Using Equation refdtd Df for a input stuck-at 1 fault for a 3-inputNAND gate is eight, whereas Df for a input stuck-at 0 fault for a 3-input NAND gate istwo. Df = Pall possible testsPall tests that detect f (3)One might rate fault types on a scale of di�culty to detect. For example, delay faults aregenerally more di�cult to detect than logic faults and hence one might want to reduce thelikelihood of a defect causing a delay fault even if it increases the likelihood of a logic faultby the same or greater amount. For the CMOSn standard cell that corresponds to the logicdiagram of Figure 9 there are two bridge faults that cannot be detected as a logic fault andmust be detected as a delay fault or IDDQ fault. It may be possible to make these bridgefaults to be expressed as a logic fault, thus making them easier to test. Lastly we can makethe di�cult to test faults less likely by routing the nodes away from each other so that theyare less likely to happen, or by increasing the spacing of nodes that, if bridged, would bedi�cult to detect.5.2 P-DFT for Placement and RoutingP-DFT can also be practiced for bridge faults involving the interconnect between cells. Thedesign aspects that can be changed to a�ect these bridges are placement, routing, standardcell selection, and standard cell design. The �rst step for our research will be experimentationto determine what makes an interconnect bridge fault di�cult to detect. Then we can addplacement, routing, and logic choice rules to make the circuit more easily testable.We �rst consider feedback bridge faults to show how changes in placement, routing, and18

GFEDCBA
Figure 10: A potentially undetectable bridge fault.cell selection may improve the testability of these circuits. Consider the subcircuit, which isassumed to be embedded in a much larger circuit, in Figure 10. If the drive of the AND gateis greater than the drive of the inverter, and there is no fanout in the path between thesetwo gates then there is no test that guarantees the bridge fault shown will be detected. Inthis case the logic discrepancy can only occur on the output line of the inverter and the onlypropagation path available for the discrepancy is through the AND gate. However that willchange the value of the AND's output which will propagate back to the inverter output, andback to the AND gate. This causes a logic value oscillating between 0 and 1 on the ANDgate.In the CMOSn library the AND gate is implemented as a NAND gate followed by ainverter. The inverter embedded in the AND gate is stronger than the standard inverter sothe faulty circuit shown above implemented in this standard cell library would be considereduntestable. We now consider the four ways that we can make this di�cult to test fault lesslikely to occur.1. Placement: You can make feedback bridge faults less likely by adding placement rulesthat place gates at the same depth in the circuit close together. Then the signal linesfrom gates towards the input of the circuit are less likely to be adjacent and hence lesslikely to bridge.2. Routing: The routing of the circuit can be constrained to prevent potential feedbackbridges by not routing them adjacent to one other. This is probably too restrictive so itcan be relaxed to not allowing potential feedback bridges between nodes in which both(1) the node closer to the output has stronger drive and (2) there is no fanout in thenodes between the two potentially bridged nodes. This would prevent this undetectablefault from occurring.3. Logic Selection: If the inverter has more drive than the AND gate then not onlywould there be no oscillation but the feedback bridge fault shown in Figure 10 is likely19

to be fairly easily detectable. This is because the inverter, being nearer the inputs, isprobably easy to control, and the AND gate, being nearer the output, is probably easierto observe. Physical design tools can be modi�ed to select a cell with the appropriatedrive strength based on the proximity of a di�cult to detect fault.We have presented three ways to change placement, routing, and logic selection to showhow to make a speci�c fault type more easily testable. Other types of di�cult to detectfaults may be eliminated in similar ways. The �rst step is to use the Carafe-Nemesis systemto determine which faults are di�cult to generate tests for and see what set of characteristicsthey have in common. Then we can devise a set of possible P-DFT techniques that may bee�ective. Lastly we will implement these techniques and see how e�ective they are and howthey a�ect the delay and cost of the circuit.6 SummaryThis report has presented the current state in fault modeling with emphasis placed on bridg-ing faults. We then showed how the Carafe-Nemesis fault extraction and test pattern gen-eration software will be used in future testing research.References[Ack83] J.M. Acken. Testing for bridging faults (shorts) in CMOS circuits. Proceedingsof Design Automation Conference, pages 717{718, 1983.[Ack88] John M. Acken. Deriving Accurate Fault Models. PhD thesis, Stanford Univer-sity, Department of Electrical Engineering, September 1988.[AM85] M. Abramovici and P.R. Menon. A practical approach to fault simulationand test generation for bridging faults. IEEE Transactions on Computers, C-34(7):658{663, July 1985.[BF85] F. Brglez and H. Fujiwara. A neutral netlist of 10 combinational benchmarkcircuits and a target translator in fortran. In Proceedings of the IEEE Interna-tional Symposium on Circuits and Systems, 1985.[FL91a] F. Joel Ferguson and Tracy Larrabee. Test pattern generation for currenttestable faults in static CMOS circuits. In Proceedings of the 1991 VLSI TestSymposium, pages 297{302. IEEE, 1991.[FL91b] F. Joel Ferguson and Tracy Larrabee. Test pattern generation for realisticbridge faults in CMOS ICs. In Proceedings of International Test Conference,pages 492{499. IEEE, 1991. 20

[FS83] H. Fujiwara and T. Shimono. On the acceleration of test-generation algorithms.IEEE Transactions on Computers, C-32(12):1137{1144, December 1983.[Goe81] P. Goel. An implicit enumeration algorithm to generate tests for combinationallogic circuits. IEEE Transactions on Computers, C-30:215{222, March 1981.[Hei88] Dennis V. Heinbuch. CMOS3 Cell Library. Addison-Wesley Publishing Com-pany, 1988.[HS86] C.F. Hawkins and J.M. Soden. Reliability and electrical properties of gate oxideshorts in CMOS ICs. In Proceedings of International Test Conference, pages443{451. IEEE, 1986.[Jee91] Alvin Jee. Carafe: An inductive fault analysis tool for CMOS VLSI circuits.Technical Report UCSC-CRL-91-24, University of California at Santa Cruz,Computer Engineering Department, February 1991.[Koe87] Siegmar Koeppe. Optimal layout to avoid CMOS stuck-open faults. In Pro-ceedings of Design Automation Conference, pages 829{835. IEEE, 1987.[LA90] Marc E. Levitt and Jacob A. Abraham. Physical design of testable VLSI:Techniques and experiments. IEEE Journal of Solid-State Circuits, 25(2):474{481, April 1990.[Lar92] Tracy Larrabee. Test pattern generation using boolean satis�ability. IEEETransactions on Computer-Aided Design, pages 4{15, January 1992.[McC85] E.J. McCluskey. Built-in self-test techniques. IEEE Design and Test of Com-puters, pages 21{28, April 1985.[Mei74] K.C.Y. Mei. Bridging and stuck-at faults. IEEE Transactions on Computers,C-23(7):720{727, July 1974.[MFS84] W. Maly, F.J. Ferguson, and J. P. Shen. Systematic characterization of physicaldefects for fault analysis of MOS IC cells. In Proceedings of International TestConference, pages 390{399. IEEE, 1984.[MNN88] W. Maly, P.K. Nag, and P. Nigh. Testing oriented analysis of CMOS ICs withopens. In Proceedings of International Conference on Computer-Aided Design,pages 344{347. IEEE, 1988.[MTCC87] W. Maly, M.E. Thomas, J.D. Chinn, and D.M. Campbell. Double-bridge teststructure for the evaluation of type, size and density of spot defects. Techni-cal Report CMUCAD-87-2, Carnegie Mellon University, SRC-CMU Center forComputer-Aided Design, Dept. of ECE, February 1987.21

[PR88] A.K. Pramanick and S.M. Reddy. On the detection of delay faults. In Proceed-ings of International Test Conference, pages 845{856. IEEE, 1988.[RMSC+91] R. Rodr�iguez-Montan�es, J.A. Segura, V.H. Champac, J. Figueras, and J.A.Rubio. Current vs. logic testing of gate oxide short, oating gate, and bridgingfailures in CMOS. In Proceedings of International Test Conference, pages 510{519. IEEE, 1991.[Rot66] J. P. Roth. Diagnosis of automata failures: A calculus and a method. IBMJournal of Research and Development, 10:278{291, 1966.[RRK83] S.M. Reddy, M.K. Reddy, and J.G. Kuhl. On testable design for CMOS logiccircuits. In Proceedings of International Test Conference, pages 435{445. IEEE,1983.[STS88] M.H. Schulz, E. Trischler, and T.M. Sarfert. SOCRATES: a highly e�cientATPG system. IEEE Transactions on Computer-Aided Design, CAD-7(1):126{137, January 1988.[Syr87] Marek Syrzycki. Modelling of spot defects in MOS transistors. In Proceedingsof International Test Conference, pages 148{157. IEEE, September 1987.[TBG+83] C. Timoc, M. Buehler, T. Griswold, C. Pina, F. Stott, and L. Hess. Logicalmodels of physical failures. In Proceedings of International Test Conference,pages 546{553. IEEE, October 1983.[TLPM85] M.E. Turner, D.G. Leet, R.J. Prilik, and D.J. McLean. Testing CMOS VLSI:Concepts, and experimental results. In Proceedings of International Test Con-ference, pages 322{328. IEEE, 1985.[Wad78] R.L. Wadsack. Fault modeling and logic simulation of CMOS and MOS in-tegrated circuits. Bell System Technical Journal, 57(5):1449{1474, May-June1978.[WNS87] B.W. Woodhall, B.D. Newman, and A.G. Sammuli. Empirical results on unde-tected CMOS stuck-open failures. In Proceedings of International Test Confer-ence, pages 166{170. IEEE, 1987.
22

