Some Future Directions in Fault Modeling and Test
Pattern Generation Research

F. Joel Ferguson and Tracy Larrabee
Computer Engineering Department
University of California, Santa Cruz

Santa Cruz, CA. 95064

Abstract

This document presents the current state of fault modeling research and lists re-
search options that leverage the Carafe-Nemesis software packages and the knowledge
gained from their use.

1 Current State of Fault Modeling Research

The most widely accepted fault model is the single stuck-at (SSA) fault model. It is easy
to use and it models many defects that occur in digital circuits, especially TTL circuits
[TBG*83]. If all SSA faults are covered by a test set!, each signal line in the circuit has its
value observed through sensitized paths at least twice — once as a logic 0 and once as a logic
1. Due to this nice property, many non-SSA faults are fortuitously detected by SSA test
sets. However, as quality level requirements become more stringent the non-SSA faults that
remain undetected may cause an unacceptable number of faulty ICs to pass manufacturing
test.

We now introduce some terminology for which no standards have been set. A defect
or spot defect is a local (less than 10 microns long) perturbation during manufacture that
changes the circuit to one whose behavior differs unacceptably from the ideal circuit?. A
circuit-fault is a deviation in the connectivity of conducting and semiconducting regions
and is caused by a defect. A fault is the resulting change in behavior that results due to
the circuit-fault. The fault, or change in behavior, is what is exploited during the testing
procedure to detect manufacturing defects. There are three important classes of faults:

'We define a SSA test set as a test set that was generated by targeting SSA faults. A complete SSA test
set is defined as a test set that detects all SSA faults in the circuit.

?We choose not to consider spots of material that don’t affect the circuit’s behavior as defects. This
makes the term defect coverage more intuitive.

changes in the logic function, which we call logic faults; increased propagation delay, which
we call delay faulls; and increased quiescent power supply current, which we call Ippg faults.

Consider as an example an opaque spot on an area of the metal fabrication mask that is
normally transparent, causing an undesirable spot of metal to exist on the physical circuit.
If this metal spot intersects other metalized areas in the circuit representing different circuit
nodes, it is a defect. The resulting circuit-fault is that the two affected circuit nodes are
joined to form a single node. The resulting fault is classified by its behavior. For instance,
if one of the nodes was a node to Vyq and the other was the output of a gate then the fault
would be a logic fault, more specifically, a stuck-at 1 fault. If the quiescent power supply
current of the circuit is low enough and the output node static, then it is also an Ippq fault.
In either case the detection of the defect involves applying the correct stimulus (inputs) and
observing the result (either output value or power supply current, respectively).

Defect simulation experiments show that most spot defects cause shorts between nodes or
breaks in a node. We call the resulting circuit-faults bridges and breaks, respectively. Breaks
within a CMOS circuit may cause sequential behavior. These are equivalent to transistor
stuck-off faults. Empirical evidence shows that bridges are more prevalent than breaks or
transistor stuck-off faults[TLPM85, MTCC87, WNS8T7].

If the circuit’s state and inputs have specific values, many bridges and breaks can cause
the circuit to use an abnormally large power supply current after the transients in the circuit
have died down. In that case the defect can be modeled as an Ippg fault and be detected
by measuring the power supply current[Ack83, HS86, MNN8S8, FLI91a].

Many bridges and breaks that do not cause an incorrect logic function increase the
propagation delay of the circuit. An excellent description of the problems of delay fault
testing and categories of delay fault tests is given by Pramanick and Reddy[PR88] and are
not be discussed here.

Traditionally bridge faults have been modeled as a wired-AND or a wired-OR function
on the two bridged nodes, that is, the logic 0 is always stronger than the logic 1 or vice-
versa. This is often an incorrect assumption in CMOS circuits, where a bridge may result
in a voltage on the affected nodes that may be interpreted as a logic 0 by some cell inputs
and a logic 1 by other cell inputs (these are called indeterminate values). Recent research in
test pattern generation for bridge faults has focussed on obtaining a more accurate model
of the logic value resulting from the bridge. For CMOS non-feedback bridge faults Acken’s
voting model is used[Ack88]. The voting model states that when there is a bridge between
nodes and each node is being driven to a different value, the resulting voltage is determined
by a “vote” between the pullup path(s) and the pulldown path(s), where not all paths have
the same strength. An example of the voting model is shown in Figure 1. The figure shows
that two PMOS transistors in parallel are stronger than the NMOS transistors in series for
the NAND gates in the CMOS3 standard cell library [Hei88], but a single PMOS transistor
is not. The transistor strength model used in switch-level simulators, such as COSMOS,
cannot model this fault correctly by assigning any combination of strengths to the eight
transistors.

Another issue is that different cells (or gates) and different inputs to the same cell (or gate)

Truth Table entries for E # F
B _
ABCDEF Wired-And Wired-OrSpice
A 0111 10 0 1 0
1011 10 0 1 0
0011 10 0 1 1
1101 01 0 1 0
¢ I P 1110 01 0 | 0
1100 01 0 1 1

b
i

Figure 1: Logic Function of Bridge Fault in CMOS3 NANDs using Spice.

tend to have different logic thresholds due to different gate-to-source voltages for conducting
transistors in series. Our circuit simulations of the CMOSn cell library show a difference of
almost a volt for different inputs of a 3-input NAND gate.

Bridge faults may also cause sequential behavior when occurring between two signal
lines[Mei74]. Using circuit simulations we have shown this to be true within a single CMOSn
standard cell.

Lastly there are bridge faults that occur within cells or gates that cause errors to occur
at the inputs of the gate. An example of this class of bridge faults is illustrated in Figure 2.
There is a bridge fault between the gate of the upper nMOS transistor and its source (this
fault type has been described by Hong and McCluskey). If the value of {A,B} is {1,1} and
the nMOS transistor being controlled by A is stronger than the pMOS transistor in the
inverter being driven by B, the logic 1 on the input to inverter C will be forced to a logic 0.
This causes the C output to be a function of A. Hong calls this a “pattern-dependent fault”.

The next most common circuit-fault type is breaks. Breaks within a primitive or complex
gate that do not involve the input and output nodes can be placed into one of two categories:
Those that break all paths from the output node to either Vdd or ground (see A in Figure 3),
and those that break one but not all paths between the output node to either Vdd or ground
(see B in Figure 3). The former behaves as a stuck-at fault after the input acquires the
appropriate charge, and the latter transforms the combinational circuit to a sequential circuit
due to trapped charge[Wad78].

It is more difficult to predict the behavior of the circuit when a break is in the node
serving as a signal line. This is because such breaks cause the gates of transistors to float

3

Figure 2: Bridge Fault Affecting other Inputs.

B/

_

Figure 3: Non-gate-node bridge faults.

to a difficult-to-predict voltage making it difficult to ascertain the resulting behavior®. In
experiments with MOSIS supplied chips with fabricated opens, the transistors with floating
gates tended to be “weakly on”[MNNS88]. More recent studies by Rodrfguez—Montaﬁés, et
al. show that accurately modeling breaks in the input nodes requires knowledge of the
capacitances to other nodes in the circuit[RMSC*91].

In order to determine which bridges, breaks, and delay faults are the most likely requires
that the layout of the circuit and the known fabrication defects be taken into account. Since
circuits are generally irregular and large, this should be done automatically in software. The
Carafe fault extractor was developed for this purpose[Jee91]. The next section describes
Carafe and possible future enhancements. Once Carafe has determined the likely bridge and
break faults, a test pattern generation system needs to produce tests that detect the presence
or absence of each fault. Section 3 describes the Nemesis ATPG system along with some of
its possible future enhancements. Section 4 shows how Carafe, Nemesis, and other software
are combined for ATPG of realistic faults. Section 5 describes how the physical design of
the circuit can be changed to make it more testable.

2 The Carafe Fault Extractor

Carafe takes as input the layout of a CMOS circuit (in Magic or GDS II format) and a
statistical description of the defects that occur during manufacture. The description of
defect statistics consists of the relative defect density of each layer of the circuit (polysilicon,
metal 1, field oxide, etc.) and the distribution of defect sizes for each layer.

Carafe performs a circuit extraction and presents a list of possible bridge and break
faults*. The relative likelihood of each circuit-level fault is given based on the circuit’s
layout and defect statistics. For instance, assume that the size distribution of defects on the
metal 1 and polysilicon layers are the same and that the metal 1 bridge defect density is
5 times greater than the polysilicon defect density. If nodes A and B are adjacent to each
other in the polysilicon layer for 20 microns, and nodes A and C are adjacent to each other
on the metal layer for 40 microns and the distance between A and C is the same as that
between A and B, then a bridge or short between nodes A and C is 10 times as likely than
one between nodes A and B (405 vs. 20%1). The significance of this is that a test that
detects only the bridge between nodes A and C detects 10 times as many bad chips as a
test that detects only the bridge between nodes A and B. Hence the defect coverage and the
fault coverage of a circuit can be quite different even if all realistic faults are considered and
defect coverage is a better indicator of the quality level of the product than fault coverage.

Carafe can either be run in batch mode or interactively. Batch mode allows Carafe to
extract and record the fault list for large circuits, extract the fault list from several circuits, or
perform multiple analyses on the same circuit with different defect statistics. The interactive

3We are assuming that all cells are complex gates or are composed of complex gates. Hence all inputs to
a cell are applied to at least one nMOS and one pMOS transistor.
*Break faults will be incorporated into Carafe in the near future.

mode uses X-windows to display the circuit and any of the faults of interest. This allows the
designer to view the more troublesome faults and perhaps redesign the circuit to eliminate
them.

Several researchers have suggested enhancing Carafe to support faults that are not cur-
rently considered. Below we consider two enhancements: the extraction of resistive bridges
and breaks, and the extraction of reliability faults. We then present the difficulties of making
these enhancements.

2.1 Non-critical Faults

We define a non-critical fault as a circuit-fault that does not result in a complete short
or open. Carafe currently determines the relative likelihood of faults that can be modeled
either as a zero resistance short between two nodes or as a break that completely severs an
electrical node into two subnodes. Many spot defects cause non-critical circuit-faults that
cannot be modeled this way. The non-critical faults that we are aware of in CMOS circuits
fall into one of four categories: resistive shorts, resistive opens, shorts in the gate oxide, and
transistors that do not switch on or off completely.

Examples of resistive breaks are losses of conducting material in contacts or polysilicon
regions that do not completely break the node, or oxide that was not completely removed
from a via. Similarly there can be additional conductive spot defects that cause resistive
shorts between nodes. Gate oxide shorts are caused by pinholes in the gate oxide region
and result in non-linear resistance between the gate and the source, drain, or channel. The
fourth category — transistors that do not switch on or off completely — can be caused by
many types of defects. A transistor that is partially on when it should be off can be caused
by missing polysilicon over the transistor channel region causing the channel to be too short
over part of the gate; this results in off-current as shown in figure 4. Other circuit faults
may also be manifested as a partially-on transistor. For example, a break in a node that
leaves a single transistor gate floating has been shown to sometimes cause the transistor to
be partially-on[MNNS8S], as can gate oxide pinholes[Syr87]. There may be spot defects that
affect the diffusion doping or field oxide that may reduce the effective transistor channel
width and thus cause reduce the strength of the transistor. An example of this is shown in
Figure 5.

For non-critical faults to fit into the Carafe framework requires that there be some method
of estimating the relative likelihood of the non-critical circuit faults. Studies of pinholes in
the gate oxide have provided some information on how to estimate their relative likelihood.
It appears that in most processes, the probability of a gate oxide pinhole occurring is pro-
portional to the area of the transistor channel. For other processes there is evidence of a
dependence on the length of the perimeter of the transistor channel region. It is reasonable
to expect that the probability of a resistive short in a specific layer is primarily determined
by how far apart the two nodes are and the extent that they are adjacent to each other;
the probability of a resistive open is related to the length, thickness and layer of the con-
ducting node. This is what is currently done with the critical faults modeled by Carafe, so

Source l/
Poly \)L:-'\/
7 VY
Drain
.................................. Diffusion oo

Figure 4: Missing Polysilicon Causing Transistor Never-off Circuit-Fault.

No Diffusion
Implant Spot Defect

Source

Poly

Drain

.................................. Diffusion ...
Figure 5: Missing Diffusion Causing Weak-Transistor Circuit-Fault.

the sensitive area approach used by Carafe should work for most occurrences of non-critical
faults.

For the purposes of this report fault strength can be understood to be a measure of how
close to critical the fault is. A resistive short that has high resistance has low fault strength
and one that has very little resistance has high fault strength. Little is known of the relative
probability of different values of fault strengths and how they are affected by the layout of
the circuit.

Incorporating non-critical faults into Carafe and determining the resulting faulty behavior
will require more sophisticated defect models, knowledge of the distribution of fault strengths,
and more sophisticated circuit-fault to behavior-fault translation to reduce simulation time.
Finally many non-critical faults do not result in changes in logic function and are detectable
only as delay faults.

2.2 Relibility Fault Extraction

The Department of Defense has contracted with Sandia National Laboratories and the Uni-
versity of California at Santa Cruz to improve their “reliability fault modeling” procedure
for digital sub-circuits. The purpose of reliability fault modeling is to accurately model the
logic behavior of circuits if and when they fail in the field. The current procedures are very
expensive and use an ad hoc fault model.

We expect Sandia and researchers at the University of New Mexico to provide us with
the descriptions of defects that affect the long-term reliability of ICs. We can then modify
Carafe to report likely reliability faults so that they can be extracted automatically just as
manufacturing defects are now.

Many reliability faults start as a non-critical fault as discussed earlier. Examples include
changes in the threshold of transistors due to trapped charge in a transistor’s 5i — 5i0q
interface, decreased resistance over time from gate oxide pinholes, and increased resistance
in metal lines due to metal migration. These first become delay faults. If and when the short
or break becomes critical the logic function of the IC changes to the value that Carafe now
predicts for bridges and breaks. Before the circuit’s function reaches it critical fault value,
it may exhibit faulty logic functions other than its critical function.

If we decide to extract the reliability faults, we must determine whether to extract and
determine the final critical-fault function, to extract and simulate the intermediate non-
critical fault functions, to extract the delay faults, or do all of these. If we choose to do
anything other than determine the final critical-fault function, then Carafe must extract the
non-critical faults and we must develop more efficient procedures for determining their faulty
behavior.

2.3 Problems

There are few challenges to enhancing Carafe to extract non-critical and reliability faults.
However there are two problems relating to the accuracy and use of the resulting realistic

fault list:

1. A lack of knowledge of causes of reliability and non-critical faults. To accu-
rately predict which faults may occur, one must know what defects cause these faults
and what conditions must exist in the physical design to make the circuit susceptible
to the faults. To accurately predict the relative likelihoods of the resulting faults, one
must know the defect density, size, and strength distribution of the defects. Much
of this is technology-specific and Carafe’s technology file can be expanded to include
these defect and fault types. The limitation of the accuracy of the resulting fault list
depends heavily on the accuracy of the defect models and distribution.

2. An inability to efficiently fault simulate the resulting fault list. Even with
critical bridges and breaks the resulting fault list is large and, as we discuss in Sec-
tion 4, the resulting faults may be difficult to translate to changes in Boolean behavior.
A continuous range of fault strengths for each bridge, break, and transistor fault com-
plicates matters much more. Finally, since many non-critical and reliability faults may
be more easily detected as delays, it may be necessary to simulate these in such a way
as to automatically detect changes in delay and find all delay faults.

3 The Nemesis Automatic Test Pattern Generator

Nemesis takes as input a description of the circuit, a list of faults for which it must generate
tests, a list of fault types, and a list of primitive bridge functions describing the logic change
in function for each type of fault. Carafe has been modified to provide all of the input except
the primative bridge functions, which are provided by the Bridger program. We discuss the
Bridger program in greater depth in later sections.

Nemesis differs from most existing ATPG systems. In the past three decades, prac-
tical automatic test pattern generation (ATPG) systems, beginning with the Roth’s D-
algorithm, have pursued the problem using essentially the same structural-search paradigm
[F'S83, Goe81, Rot66, STS88]. Progress has been steady, but slow: the best systems of today
do not work well on large circuits, sequential circuits, or models of failure other than the
single stuck-at fault. These restrictions are unworkable in the long term as the size of in-
tegrated circuits increase, design methodologies fail to transform all sequential circuits into
circuits that can be tested using combinational techniques, and evidence mounts that many
IC manufacturing defects are not detectable as single stuck-at faults.

Nemesis is a successful ATPG system that uses a completely new approach called the
Boolean satisfiability method [Lar92]. The new method generates a test pattern for a given
fault in two steps: First, it constructs a formula representing all possible tests for the fault.
Second, it applies a Boolean satisfiability algorithm to the resulting formula. This method
is general and effective; it allows for the addition of any heuristic used by structural search
methods, and it produces excellent results on the ISCAS-85 set of testing benchmarks col-
lected by Brglez and Fujiwara[BF85].

Nemesis’s separation of the formula extraction from the formula satisfaction provides
great flexibility because the same satisfier can be used with many different extractors. Neme-
sis generates tests for defects that cause an increase in the quiescent power supply current
because of bridges or stuck-on transistors, and it generates tests for bridge defects (feedback
and non-feedback). In the process of modifying Nemesis to handle these additional faults,
we have improved both our algorithmic test pattern generation and our fault simulation
routines. For the larger benchmark circuits, our bridge fault simulation techniques offer a
significant advancement over existing methods [AMS85].

As we work on the integrated Carafe-Nemesis system, there are some improvements we
are considering that affect only Nemesis (and not Nemesis’s interface with other software in
our system). Below we consider two enhancements to the Nemesis system: Improvements
to the Satisfier (the back-end of Nemesis), and the use of Boolean satisfiability in sequential
ATPG.

3.1 Improvements to the Satisfier

The first improvement to the Satisfier we are interested in is the addition of testability mea-
sures. Testability measures are estimates of the relative difficulties of controlling or observing
0’s or 1’s on given wires. Structural search test pattern generators have had much success
with testability, and although we anticipate a less dramatic effect in a Boolean Satisfiability
system (because of the existing propagation heuristics), we would like to investigate the
benefit of adding testability measures to our system.

Having calculated testability measures for each wire, the obvious use of these measures
in the Boolean satisfier is to use them to influence variable ordering. We hypothesize that
testability measures will give us the largest payoff in the area of controllability (line justi-
fication), since Nemesis already has excellent heuristics with respect to observability (fault
propagation).

The second improvement to the Satisfier that we are interested in is parallelization. We
will have the option of using existing techniques for parallel satisfiability or developing a
more specialized version that exploits our unique approach to satisfiability. We will also
have the option of simultaneously starting orthogonal problems on different processors and
devoting additional processors to the solution showing more progress.

3.2 Sequential ATPG

We have developed a preliminary ATPG system for sequential circuits with a reset state.
Many test generators for synchronous circuits use a technique called time frame expansion,
which unrolls the sequential behavior of the circuit. That is, if a test sequence takes N
clock cycles, unrolling the circuit N times produces N copies of the combinational part of the
circuit, cascaded by connecting the next state lines of the combinational circuit in time frame
t-1 to the present state lines of the combinational circuit in time frame t. After time-frame
expansion, a combinational ATPG system can be used to search for a test vector.

10

When a faulty sequential circuit is time frame expanded, each copy of the combinational
part of the circuit contains the same fault. Thus, a combinational ATPG system that works
on single-stuck-at faults can not be directly used, since the unrolled circuit is a multi-fault
combinational circuit. The underlying combinational ATPG system needs to handle multiple
faults. Since Nemesis has no difficulties dealing with multiple faults, we were able to quickly
build a sequential version of Nemesis for preliminary investigation. Our preliminary results
are promising, and we will now proceed with extraction of the state transition graph so we
can do more sophisticated analysis (including identification of sequentially untestable faults).

4 Accurate Fault Grading and ATPG

A major goal of our research on accurate fault modeling was to provide a more accurate
measure of the quality level for a test set. A test set’s fault coverage is the percentage
of logic changes (within the fault model) that the test set detects. A weakness of the fault
coverage metric is that many faults in an IC may not be represented by the fault model. This
can be corrected by using the fault extraction techniques of Carafe coupled with finding the
logic behavior of each extracted circuit fault. The second weakness of using fault coverage
is that all faults are implicitly considered equally important since they are given the same
weight in the fault coverage figure. In reality the probability of occurrence for different faults
was as high as 14 to 1 in a relatively small circuit|MFS84].

With a list of realistic faults and their relative likelihoods of occurrence, a much more
accurate estimate of the quality of a test set can be made. This metric gives the percentage
of defects that the test set detects, allowing the designer to be able to directly relate this
realistic defect coverage to the probability that any chip passing the test set has no Boolean
faults. McCluskey and Buelow’s formula, shown as equation 1 relating test transparency,
yield, and quality level can then be used to estimate the resulting quality level[McC85]. In
equation 1, QL is the fraction of the parts that pass the test that is good, Y is the fraction of
the manufactured parts that has no defects, and T'T, the test transparency, is the fraction of
all defects that is not detected by the test. This formula makes the assumption that defects
are independent and hence does not take into account defect clustering but it can serve as a
basis for comparison until there is a demand for even more accuracy.

QL =V (1)

For more accurate estimates of quality we use defect coverage, instead of fault coverage. A
test set’s defect coverage is the percentage of fault causing defects (within the defect model)
that the test set detects. Within the accuracy of the defect statistics used for the defect
model, the test set’s defect coverage is the percentage of faulty chips that is detected by the
test set. Hence the defect coverage is 1-TT. The defect coverage can be obtained by first
assigning each fault a weight based on its relative likelihood. A fault simulation is then run
on each fault. The defect coverage, as a percentage, contributed by each fault is its weight

11

divided by the sum of the weights of all defects. The defect coverage is shown in equation 2
where £y is equal to 1 if the fault is detected by the test set and 0 if it is not detected.

DC(t) = Z;%:flaults kf([/fault])
() - # faults I
Zj:l fault;

Since many of the faults that are extracted using the fault extraction procedure are not
SSA faults, we have developed software to accurately model the logic-level behavior of the
most commonly extracted faults (bridge faults), and have enhanced our fault simulator so
that they can be simulated. Our next major goal is to accurately model the logic-level
behavior of break faults and enhance the fault simulator accordingly.

(2)

4.1 Our System for Defect Grading and ATPG

Another major goal of our research is to develop procedures that generate tests that target
the likely faults in the circuit. We modified the Nemesis ATPG system to generate tests for
the extracted bridge faults and hope to incorporate breaks into it in the near future.

The testing procedure that we advocate consists of partitioning the circuit into two
categories: interconnect and logic. The discussion in this report is restricted to the domain of
fault modeling and ATPG for circuits designed using standard cells. The approach presented
here can be extended to apply to gate arrays and other ASIC technologies, but is more easily
implemented for standard cell designs.

Our strategy is to use circuit simulation for as small a part of the circuit as possible,
translate this to a change in local logic function, then after it is in the Boolean domain,
fault simulate and generate tests for the circuit using techniques that have been developed
for SSA ATPG.

We first consider bridge faults in the interconnect. The voltage of the two nodes being
bridged together is a function of the logic values on the inputs of the two gates whose outputs
are bridged together. Figure 1 shows the resulting logic values for such a bridge between
two NAND gates. In general only the gates whose outputs are bridged and the gates whose
inputs are driven by the outputs require circuit simulation to determine the logic behavior
of the fault®. The remainder of the circuit can be simulated in the Boolean domain. There
is a maximum of n? bridge faults where n is the number of standard cells. For bridges
within the logic, only a single cell needs to be simulated and this can be done as part of the
cell characterization procedure. Each fault that is circuit simulated is likely to have several
instances in the circuit — all bridge faults between the 2-input NAND cell and the 3-input
NOR cell would result in the same voltages, thus reducing total simulation time considerably.

Alternative strategies often involve test pattern generation at the transistor level only,
which will probably remain impractical. What we advocate exploits two levels of hierarchy
for test pattern generation: We determine the logic behavior of realistic circuit-level faults

°If the threshold voltages of the gates whose inputs are the bridged nodes have been determined before
the fault simulation, then only the two gates whose outputs were bridged need to be simulated.

12

Layout Circuit Description
- Test

Carafe Nemesis
Defects — Faults Patterns

Fault Types

Fault Formulas

Cell Descriptions

Bridger

Transconductance
Figure 6: Existing Fault-Extraction/Test-Generation System.

extracted by Carafe by simulation at the circuit level, and we propagate errors and justify
line values at the Boolean algebra level.

We have modified the Carafe fault extractor and the Nemesis automatic test pattern
generation system so that the hierarchal nature of standard cell designs can be exploited as
previously described. The modified Carafe recognizes the standard cells and extracts faults
only in the interconnect. The faults within a standard cell have been pre-processed with
Carafe beforehand and simulated. A new piece of software, Bridger, provides the circuit-
fault (from the fault list generated by Carafe) to logic-fault translation that is necessary
to translate Carafe’s output to a local change in logic function. An example of this is the
truth-table for the bridge in Figure 1. Carafe then sends the fault lists and circuit, and
Bridger sends the truth tables, to Nemesis. Nemesis can then generate tests for the realistic
faults. The Carafe-Bridger-Nemesis system is shown in Figure 6[FL91b].

The Bridger program is necessary for interconnect bridge faults because their behavior
cannot be modeled as a simple wired—or or wired—and. More generally, the resultant voltage
for a bridge between the outputs of two cells can be modeled by replacing the two cells with
a single bridge-cell implementing the logic function of the bridged node (the logic function
of the new cell is known as a primitive bridge function). Figure 7 illustrates this general
approach. Nemesis can generate tests for any bridge with any primitive bridge function
presented to it by Bridger.

4.2 Ippqg Testing

Many defects do not cause a change in the logic function of the circuit. They are often
detectable as either a delay fault or as an increase in the quiescent power supply current.
We call the latter an Ippg fault. Only defects in circuits with little quiescent power supply
current, such as static CMOS gates, can be detected using this technique.

It can be shown that for complex and primitive static gates, all source-drain, gate-drain,
gate-source, and gate channel bridges are detected as Ippqg faults by any test set that applies

13

€1

T2

Ln

5]

Y2

Ym

A
S Cell A
O
_ Z1 -
2 8 Bridge-Cell
o)
—] Zn4m
B
S Cell B
O

Figure 7: Modeling of Interconnect Bridge Faults.

a S5A test set to the appropriate gate-level description of the circuit as if the gate’s output
was a primary output. There is no need to propagate a logic error value to a primary output
of the circuit. Only the inputs to the gate must be justified to the primary inputs by the
ATPG software.

Theorem: Any short between the source, drain, and gate in any MOS transistor within a
static CMOS gate produces excess quiescent current during at least one of the tests in any
test set that sensitizes all the SSA faults of the appropriate logic level representation of the
gate as described by Reddy, et al[RRK83].

Proof: Consider an arbitrary NMOS transistor T being driven by input signal s.

A stuck-at 0 test for signal s requires that there be a path of on-transistors from the
source of T to ground and from the drain of T to the output, and the value of s is 1 (which
turns on T)[RRKS83]. Since the source and drain of T are connected to ground and the gate
is at logic 1, excess current results for any short between the gate and either the source or
drain.

A Stuck-at-1 test for signal s requires that there be a path of on transistors from the
source of T to ground and from the drain of T to the output which is at logic 1. The value
of s 1s 0 during this test. Since the source of T is connected to ground and the drain is
connected to the output, which is connected to Vdd, excess current results if there is a short
between the source and drain.

The case for PMOS transistors is analogous. O

It is well known that any SSA test set also excites all gate oxide pinhole shorts in full
CMOS gates as Ippq faults.

14

Note that since propagation of errors are not necessary for Ippqg testing, only the inputs
to the gate must be justified to the primary inputs. A simple modification of existing ATPG
SSA fault software to fault simulate and generate tests for all transistor shorts (between gate,
source, or drain; and also gate oxide pinhole shorts) is to treat all gate outputs as primary
outputs of the circuit[FL91a].

The Carafe-Nemesis software for standard cell designs has been modified for Ippq testing
so that it fault simulates and generate tests for all transistor shorts and likely bridge faults
between signal lines. Since the standard cells in the library are static gates it is unnecessary
for Carafe to present a transistor stuck-on fault list — Nemesis uses the above Theorem to
generate its tests. Carafe presents Nemesis with a list of bridges between signal lines and
Nemesis generates tests for them by forcing different values on the two potentially bridged
nodes.

4.3 Future Work in Fault Grading and ATPG

One area of improvement in our system is the accuracy of the circuit-fault to logic-fault
translation. There are two requirements for accurate translation: the output voltage of the
faulted nodes must be correct, and the logic thresholds of the inputs must be known. The
Bridger software for realistic CMOS bridge faults is being made more accurate by using a
circuit level simulator for the cases that require more accuracy.

Even with accurate voltages, an indeterminate range of voltages exists if one uses the
same logic threshold for all CMOS gates. This is because each input to a standard cell is
likely to have different logic thresholds due to the different gate-to-source voltages of two
transistors in series when the gate voltage is the same. If logic values are computed from the
voltages of bridged nodes without considering which inputs are being driven by the node,
then the voltage range for indeterminate logic values must encompass the lowest and highest
threshold values in the cell library. The alternative is to translate the faulty voltage to a
logic value for each cell input. This is possible since each input is parameterized to within a
few tenths of a volt®.

The second most likely circuit-level fault after bridges is breaks. Breaks are expected
to be finished in Carafe in November. The most difficult problem with breaks is modeling
their behavior correctly. A relatively naive model would be to treat all nodes that cannot be
initialized to a logic value as either one logic value or the other. Then all signal line breaks
that separate the output of a gate from all inputs and signal line breaks that separate only
one input from an output would be modeled as single stuck-at faults. Signal line breaks that
separate the output of gate from multiple, but not all, inputs that it fans-out to would be
treated as a multiple stuck-at fault. In this way Carafe can present a list of multiple stuck-at
faults that are realizable by a single defect.

We are integrating each of these fault types into the Carafe-Nemesis ATPG package.

5This idea came to me from my SRC mentor, John Acken.

15

5 Physical Design for Testability

In general the design of the circuit (at the RTL, logic, or physical levels) can be changed to
enhance testability in at least four ways.

1. Design the circuit to have fewer faults. If the circuit has fewer faults, fault
simulation time, test pattern generation time, and the number of vectors to detect the
faults are likely to be reduced.

2. Make difficult to detect faults easier to detect. Adding control and observation
points to nodes that are difficult to control and observe respectively is a traditional
DFT technique that makes difficult to test faults easier to test. Scan design makes
faults that are inherently difficult to detect because of state in the circuit, less difficult
to detect by removing that state.

3. Make difficult-to-detect faults unlikely. This technique is meaningful only if
one is considering defect coverage instead of fault coverage. An example of this is
shown in Figure 8. A break in one of the paths from the gate’s output to ground is a
difficult-to-detect fault for this circuit. This would cause the gate to have sequential
behavior[Wad78]. The most likely cause of this happening is if a via (represented in
Figure 8 as an “x”) between the metal and diffusion regions is missing. One way
to make this fault less likely is to provide a redundant connection between the two
vias with diffusion. This can usually be run under the metal with no overhead or
performance penalty. However it is still possible that the sequential fault will occur by
an open in the diffusion path between the via and the transistor’s source node, but this
is much less likely than a missing via. Similar changes in layout have been discussed

by Koeppe[Koe87] and Levitt and Abraham[LA90].

This list of DFT objectives is probably not exhaustive and some existing DFT techniques
fall into multiple categories, but it serves to classify the P-DFT techniques that we outline
later. We further divide potential improvements to the layout into those involving the
physical design of the logic and those involving the interconnection between the logic.

P-DFT for logic is accomplished by laying out the logic blocks to enhance testability.
Since the Carafe-Nemesis system extracts faults from and generates tests for circuits com-
posed of standard cells, we will use examples from that technology. P-DFT for interconnect
will be accomplished by placement, routing, design rules for routing, and selection between
logic blocks with the same function. We do not assume a specific fault model in our analysis.
Instead we base our evaluation on the testability of the circuit’s realistic faults, those that
are realizable due to a single defect|MFS84].

5.1 P-DFT for Logic

We first consider P-DFT of the logic blocks. It is more beneficial to modify the layout of a
specific logic component to make it more testable for design environments where the same

16

—qr

Out

—iL_ —l

=— diff —=

— vias —

Figure 8: A CMOS NOR gate showing the metal-diff vias from the nMOS transistors to

ground.

metal

logic components are reusable, than it is in design environments where there is less logic
reuse. Design environments with high logic reuse include standard cell, gate array, and some
high-level synthesis environments.

The three objectives for P-DFT are to reduce the number of faults, make the difficult
to detect faults easier to detect, and reduce the probability of difficult to detect faults. To
work on improving any of these objectives requires that we have a measure for number of
faults or difficulty to detect. Since a fault is a change in the behavior of the cell, the number
of faults is the number of behaviors. It we consider only logic faults, then this would be the
number of faulty truth tables. As an example consider the CMOSn standard cell whose logic
diagram is shown in Figure 9. It has 43 bridge circuit-faults involving metal2, metall, or
poly, including shorts between these layers which result in 26 unique faulty functions. The
maximum defect diameter used to find these bridge faults was 2.5 times the minimum line
width of that layer. If there were fewer faulty functions the circuit would likely be easier to
test.

Even greater savings in the number of faults are possible by considering delay faults
since there are more potential delay faults than logic faults. A four-input complex gate has
potentially (2% x 21) — 2% sequences of two vectors (excluding the same vector twice) to test
all possible delay faults”. Reducing the number of potential delay faults could potentially
reduce testing costs or defect levels considerably.

Equation 3 gives a simple metric for how difficult-to-detect a specific fault, f, in a one-
output cell is. In the case of logical faults in combinational circuits “all possible tests” is 2"
where n is the number of inputs. “All possible tests” for delay faults may mean all possible

7If the circuit is glitch-free one need only consider the sequences in which the two vectors produce different
output values. So a more reasonable estimate of the number of two pattern sequences would be (2% * 2%) — 24

divided by 2.

17

I - : ' Out

Figure 9: A bridge fault which can cause sequential behavior in a CMOS standard cell.

sequences of length two. Using Equation refdtd Dy for a input stuck-at 1 fault for a 3-input
NAND gate is eight, whereas Dy for a input stuck-at 0 fault for a 3-input NAND gate is
two.

Df _ Zall possible tests (3)
Zall tests that detect f

One might rate fault types on a scale of difficulty to detect. For example, delay faults are
generally more difficult to detect than logic faults and hence one might want to reduce the
likelihood of a defect causing a delay fault even if it increases the likelihood of a logic fault
by the same or greater amount. For the CMOSn standard cell that corresponds to the logic
diagram of Figure 9 there are two bridge faults that cannot be detected as a logic fault and
must be detected as a delay fault or Ippg fault. It may be possible to make these bridge
faults to be expressed as a logic fault, thus making them easier to test. Lastly we can make
the difficult to test faults less likely by routing the nodes away from each other so that they
are less likely to happen, or by increasing the spacing of nodes that, if bridged, would be
difficult to detect.

5.2 P-DFT for Placement and Routing

P-DFT can also be practiced for bridge faults involving the interconnect between cells. The
design aspects that can be changed to affect these bridges are placement, routing, standard
cell selection, and standard cell design. The first step for our research will be experimentation
to determine what makes an interconnect bridge fault difficult to detect. Then we can add
placement, routing, and logic choice rules to make the circuit more easily testable.

We first consider feedback bridge faults to show how changes in placement, routing, and

18

wle)

F r\
G—A_/
Figure 10: A potentially undetectable bridge fault.

cell selection may improve the testability of these circuits. Consider the subcircuit, which is
assumed to be embedded in a much larger circuit, in Figure 10. If the drive of the AND gate
is greater than the drive of the inverter, and there is no fanout in the path between these
two gates then there is no test that guarantees the bridge fault shown will be detected. In
this case the logic discrepancy can only occur on the output line of the inverter and the only
propagation path available for the discrepancy is through the AND gate. However that will
change the value of the AND’s output which will propagate back to the inverter output, and
back to the AND gate. This causes a logic value oscillating between 0 and 1 on the AND
gate.

In the CMOSn library the AND gate is implemented as a NAND gate followed by a
inverter. The inverter embedded in the AND gate is stronger than the standard inverter so
the faulty circuit shown above implemented in this standard cell library would be considered
untestable. We now consider the four ways that we can make this difficult to test fault less
likely to occur.

1. Placement: You can make feedback bridge faults less likely by adding placement rules
that place gates at the same depth in the circuit close together. Then the signal lines
from gates towards the input of the circuit are less likely to be adjacent and hence less
likely to bridge.

2. Routing: The routing of the circuit can be constrained to prevent potential feedback
bridges by not routing them adjacent to one other. This is probably too restrictive so it
can be relaxed to not allowing potential feedback bridges between nodes in which both
(1) the node closer to the output has stronger drive and (2) there is no fanout in the
nodes between the two potentially bridged nodes. This would prevent this undetectable
fault from occurring.

3. Logic Selection: If the inverter has more drive than the AND gate then not only
would there be no oscillation but the feedback bridge fault shown in Figure 10 is likely

19

to be fairly easily detectable. This is because the inverter, being nearer the inputs, is
probably easy to control, and the AND gate, being nearer the output, is probably easier
to observe. Physical design tools can be modified to select a cell with the appropriate
drive strength based on the proximity of a difficult to detect fault.

We have presented three ways to change placement, routing, and logic selection to show
how to make a specific fault type more easily testable. Other types of difficult to detect
faults may be eliminated in similar ways. The first step is to use the Carafe-Nemesis system
to determine which faults are difficult to generate tests for and see what set of characteristics
they have in common. Then we can devise a set of possible P-DFT techniques that may be
effective. Lastly we will implement these techniques and see how effective they are and how
they affect the delay and cost of the circuit.

6 Summary

This report has presented the current state in fault modeling with emphasis placed on bridg-
ing faults. We then showed how the Carafe-Nemesis fault extraction and test pattern gen-
eration software will be used in future testing research.

References

[Ack83] J.M. Acken. Testing for bridging faults (shorts) in CMOS circuits. Proceedings
of Design Automation Conference, pages T17-718, 1983.

[Ack88] John M. Acken. Deriving Accurate Fault Models. PhD thesis, Stanford Univer-
sity, Department of Electrical Engineering, September 1988.

[AMS5] M. Abramovici and P.R. Menon. A practical approach to fault simulation
and test generation for bridging faults. IFEE Transactions on Computers, C-
34(7):658-663, July 1985.

[BF85] F. Brglez and H. Fujiwara. A neutral netlist of 10 combinational benchmark
circuits and a target translator in fortran. In Proceedings of the IEEE Interna-
tional Symposium on Clircuits and Systems, 1985.

[FL91a] F. Joel Ferguson and Tracy Larrabee. Test pattern generation for current
testable faults in static CMOS circuits. In Proceedings of the 1991 VLSI Test
Symposium, pages 297-302. IEEE, 1991.

[FLI1b] F. Joel Ferguson and Tracy Larrabee. Test pattern generation for realistic
bridge faults in CMOS ICs. In Proceedings of International Test Conference,
pages 492-499. IEEE, 1991.

20

[FS83]

[Goe81]

[HeiSs]

[HSS6]

[Jee91]

[Koe87]

[LA90]

[Lar92]

[McC85]

[Mei74]

[MFS84]

[MNNSS]

[MTCCST]

H. Fujiwara and T. Shimono. On the acceleration of test-generation algorithms.

IEEE Transactions on Computers, C-32(12):1137-1144, December 1983.

P. Goel. An implicit enumeration algorithm to generate tests for combinational
logic circuits. IEEE Transactions on Computers, C-30:215-222, March 1981.

Dennis V. Heinbuch. CMOS3 Cell Library. Addison-Wesley Publishing Com-
pany, 1988.

C.F. Hawkins and J.M. Soden. Reliability and electrical properties of gate oxide
shorts in CMOS ICs. In Proceedings of International Test Conference, pages
443-451. IEEE, 1986.

Alvin Jee. Carafe: An inductive fault analysis tool for CMOS VLSI circuits.
Technical Report UCSC-CRL-91-24, University of California at Santa Cruz,
Computer Engineering Department, February 1991.

Siegmar Koeppe. Optimal layout to avoid CMOS stuck-open faults. In Pro-
ceedings of Design Automation Conference, pages 829-835. IEEE, 1987.

Marc E. Levitt and Jacob A. Abraham. Physical design of testable VLSI:
Techniques and experiments. [EEE Journal of Solid-State Clircuits, 25(2):474—
481, April 1990.

Tracy Larrabee. Test pattern generation using boolean satisfiability. [FEFE
Transactions on Computer-Aided Design, pages 4-15, January 1992.

E.J. McCluskey. Built-in self-test techniques. IEEFE Design and Test of Com-
puters, pages 21-28, April 1985.

K.C.Y. Mei. Bridging and stuck-at faults. IEEE Transactions on Computers,
C-23(7):720-727, July 1974.

W. Maly, F.J. Ferguson, and J. P. Shen. Systematic characterization of physical
defects for fault analysis of MOS IC cells. In Proceedings of International Test
Conference, pages 390-399. IEEE, 1984.

W. Maly, P.K. Nag, and P. Nigh. Testing oriented analysis of CMOS ICs with
opens. In Proceedings of International Conference on Computer-Aided Design,

pages 344-347. IEEE, 1988.
W. Maly, M.E. Thomas, J.D. Chinn, and D.M. Campbell. Double-bridge test

structure for the evaluation of type, size and density of spot defects. Techni-
cal Report CMUCAD-87-2, Carnegie Mellon University, SRC-CMU Center for
Computer-Aided Design, Dept. of ECE, February 1987.

21

[PRSS]

[RMSC+91]

[Rot66]

[RRKS3]

[STSSS]

[Syr87]

[TBG*83]

[TLPMS5]

[WadT78]

[WNS87]

A.K. Pramanick and 5.M. Reddy. On the detection of delay faults. In Proceed-
ings of International Test Conference, pages 845-856. IEEE, 1988.

R. Rodrfguez—Montanés, J.A. Segura, V.H. Champac, J. Figueras, and J.A.
Rubio. Current vs. logic testing of gate oxide short, floating gate, and bridging

failures in CMOS. In Proceedings of International Test Conference, pages 510
519. IEEE, 1991.

J. P. Roth. Diagnosis of automata failures: A calculus and a method. IBM
Journal of Research and Development, 10:278-291, 1966.

S.M. Reddy, M.K. Reddy, and J.G. Kuhl. On testable design for CMOS logic
circuits. In Proceedings of International Test Conference, pages 435-445. IEEE,
1983.

M.H. Schulz, E. Trischler, and T.M. Sarfert. SOCRATES: a highly efficient
ATPG system. IEEE Transactions on Computer-Aided Design, CAD-7(1):126—-
137, January 1988.

Marek Syrzycki. Modelling of spot defects in MOS transistors. In Proceedings
of International Test Conference, pages 148-157. IEEE, September 1987.

C. Timoc, M. Buehler, T. Griswold, C. Pina, F. Stott, and L. Hess. Logical
models of physical failures. In Proceedings of International Test Conference,

pages 546-553. TEEE, October 1983.

M.E. Turner, D.G. Leet, R.J. Prilik, and D.J. McLean. Testing CMOS VLSI:
Concepts, and experimental results. In Proceedings of International Test Con-

ference, pages 322-328. IEEE, 1985.

R.L. Wadsack. Fault modeling and logic simulation of CMOS and MOS in-
tegrated circuits. Bell System Technical Journal, 57(5):1449-1474, May-June
1978.

B.W. Woodhall, B.D. Newman, and A.G. Sammuli. Empirical results on unde-
tected CMOS stuck-open failures. In Proceedings of International Test Confer-
ence, pages 166—-170. IEEE, 1987.

22

