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1. Introduction 11 IntroductionBoolean formula satis�ability is a fundamental problem in computer science. In additionto its role in computational complexity as the mother of all NP-complete problems, it is oftremendous practical interest. Applications of satis�ability include program and machineveri�cation, and many aspects of VLSI design and test.In comparing satis�ability algorithms, it is important to agree on what family of instancedistributions to consider and how to parameterize the varying degree of di�culty across thedistributions. Mitchell, Selman, and Levesque [13], among others, have pointed out that theratio of the number of clauses to the number of variables could be used as a parameter tocharacterize di�culty levels for the random k-CNF problems. In particular, their empiricalstudy on the random 3CNF formulas revealed an \easy-hard-easy" pattern for their Davis-Putnam style algorithm, where the hard peak occurs when the ratio is at about 4.3. Theyfurther conjectured that all reasonable satis�ability algorithms would achieve the samequalitative pattern. Their graphs showed that these same di�cult ratios were those wherethe probability of satis�ability of randomly generated formulas is switching from 100% to0%.After visiting a few crucial de�nitions and mentioning previous important results, wewill present our results, which support their conjecture using very di�erent satis�abilityalgorithms. We will report on the satis�ability percentage of randomly generated formulasfor varying ratios for formulas of up to 170 variables. We will then describe our algorithms.Finally, we will question the ability of metrics aimed at randomly generated formulas toaccurately model the di�culty of satis�ability problems arising from practical problems.2 De�nitionsA CNF formula is a Boolean expression in a conjunctive normal form, i.e., each conjunctin the formula is a clause, which is itself the disjunction of literals. Each literal is either avariable, or the complement of a variable. For each variable x, de�ne the complement x ofx by x = 1� x.A truth assignment is a mapping that assigns 0 or 1 to each variable in its domain. Atruth assignment satis�es a speci�c clause if and only if at least one literal in the clauseis mapped to 1; the assignment satis�es a formula if and only if it satis�es every clause inthat formula. A formula is satis�able if there exists at least one assignment that will satisfythe formula; if no such assignments exist, the formula is unsatis�able. A clause is trivial ifit contains a variable and the variable's complement, and a clause is empty if it contains noliterals.Given positive integers n, m, and k, a random k-CNF formula of n variables and mclauses consists ofm clauses each containing k literals. Each clause is chosen independentlyat random according to the uniform distribution over all �nk�2k non-trivial clauses of size k.For most of this paper we will be concerned with random formulas containing clauses ofsize 3: random 3CNF formulas.It has long been conjectured that random formulas exhibit a threshold phenomenon,much like the threshold behavior of certain well-studied properties of random graphs (cf.Bollobas [2]). The precise formulation of this conjecture is that for every integer k > 1,there is a constant ck such that a random k-CNF formula with the clause-to-variable ratio



2 3. Empirical Evidenceless than ck is satis�able with probability approaching 1, and one with the ratio greaterthan ck is unsatis�able with probability approaching 1, as n increases.Threshold properties for random structures are inherently interesting. For the caseof random formulas, there is additional motivation for wanting to know the value of thethreshold parameter ck: it is commonly believed that the di�cult instances of satis�abilityshould occur when formulas in n variables have roughly ckn clauses.Goerdt as well as Chvatal and Reed have proved this conjecture for the case k = 2 byestablishing that c2 = 1 [11, 5]. Franco with Chao, Ho and Paull have published severalpapers over the last decade that have shown that c3 must be at least 1 and c3 must beno more than 5.2 [10, 4, 9, 5]. Broder, Frieze, and Upfal have recently tightened the lowerbound on c3 to 1.63 [3]. Several researchers have conjectured that c3 is somewhere around 4.We use mean CPU time rather than median recursive calls as measure of performancebecause use of means allows us to draw on the considerable body of knowledge aboutexpected behavior, and use of CPU time on the same machine allows us to compare disparatealgorithms that do not necessarily have a metric such as \number of recursive calls" incommon.3 Empirical EvidenceUsing two separate programs implementing two separate satis�ability algorithms, wehave obtained empirical results about c3 that are more conclusive than previous empiricalresults implying the existence of a threshold. Other incomplete algorithms have beenpresented that can �nd an assignment for satis�able formulas of larger size than reportedhere, but our algorithms are complete (that is, they detect unsatis�ability as well assatis�ability) and thus we can report on the percentage of satis�able formulas for givenn, m, and k.There are two interesting outcomes of our experiments:� The value of c3 is very close to 4.2. As the number of variables is increased (up ton = 170), the threshold behavior at formulas with 4:2n clauses becomes more andmore sharply pronounced. Mitchell, Selman, and Levesque have recently reportedsimilar empirical results for much smaller values of n (n = 50) [13].� All of the curves (showing the percentage of random formulas satis�able as the numberof clauses is increased from 3:6n to 5:2n) go through the point (4:2; 68%� 3%).In Figure 3.1, each data point represents the percentage of 500 randomly generatedformulas that were shown satis�able by our second algorithm, which will be described inSection 5. The �ve curves give the results for 50, 80, 110, 140, and 170 variables. Asthe number of variables in the randomly generated formulas increase, the transition from100% satis�ability to 0% satis�ability becomes more abrupt. The curves almost give theappearance of rotating around m=n equal to 4.2.Figure 3.2 presents the same data, but includes the percent satis�ability for 500 randomlygenerated formulas for those m=n values surrounding 4.2. Results are given for n equal to60, 70, 80, etc. up through 170. The error-bars represent the 95% con�dence interval.This graph makes it easy to see that while the percentage of satis�able formulas remainsrelatively constant at m=n equal to 4.2, the percentage falls for m=n greater than 4.2, andit climbs for m=n less than 4.2. We see this as experimental evidence that the value of c3is very close to 4.2.
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Figure 3.1: Percent satis�able of 500 formulas for each ratio
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Figure 3.2: Percent satis�able at each ratio as a function of number of variables4 The First AlgorithmOur �rst algorithm will be referred to herein as VG as it was developed by A. Van Gelder[14]; it will be presented in three di�erent forms, which will be called VG-normal, VG-dp,and VG-mis. They all include the basic Davis-Putnam rules (unit clause and pure literal)as originally described [7] and the implementation of the backtracking techniques describedby Davis, Logemann, and Loveland [6]. The major di�erence among the three forms is inthe strategy for selecting branch variables when the splitting rule is applied resulting in



4 4. The First Algorithme�ectively three di�erent algorithms.� VG-normal: The full algorithm described by Van Gelder [14]. In summary, VG-normal as applied to clausal formulas employs unit-clause and pure-literal rules. Italso selects branch variables dynamically according to its own scoring scheme, whichweights the variables.� VG-dp: VG-normal degraded to simulate the Davis-Putnam like procedure used byMitchell, Selman, and Levesque [13].� VG-mis: VG-normal with a new branch-variable selection criterion; it transformsthe input formula guided by a scheme using an algorithm which �nds maximal inde-pendent set among the variables with certain properties.As the only variation that has not be fully detailed before, we describe VG-mis below.This strategy is essentially a divide-and-conquer approach based on the following fact:If a formula is a conjunction of subformulas that are independent of other subformulas, inthe sense that no two subformulas share a common variable, then this formula is satis�ableif and only if all of its subformulas are independently satis�able.Let us view a formula F in a predicate calculus style, (9�x)F where �x represents the set offree variables appearing in F . We wish to rewrite it as (9 �x0)((9 �x1F1)^(9 �x2F2)^: : : (9 �xkFk))where all the variables in �x are partitioned into the subsets �x0, �x1,: : : , �xk. This process, tobe repeatedly applied to the resulting subformulas maybe visualized as that of pushing theexistential quanti�ers down as deep as possible.We perform bottom-up processing to establish our variable partition. Let G be a graphwhere the nodes are the free variables in F and the edges represent the relation thattwo variables appear together in some clause. Let M = fx1; x2; : : :xkg be a maximalindependent set for G. Then for each i, 1 � i � k, we combine the clauses in F containingxi together to form a subformula Fi and will express it as 9 �xiFi where �xi represents the setof all free variables in Fi that do not appear outside Fi. This process is repeated on theresultant formulas. The larger the set of variables, the �ner our partition, but �nding anindependent set of maximum size is another NP-hard problem, so we aim only to �nd somemaximal independent set in a polynomial time. Below is the VG-mis formula transformationalgorithm, in which MaxIndSet represents a partition algorithm having the properties justdiscussed.Input: Boolean formulaOutput: Equivalent Boolean FormulaMethod:set F to the input formula.simplify F via unit clause and pure literal rules.set G to be the set of all the variables in the input formula.while (G is not empty)set M to MaxIndSet(a graph of F restricted to the free variables).regroup subformulas in F according to M.push down the existential quanti�ers for any local variables.set G to the set of free variables for the subformulas of F.For example, if the above transformation is applied to the formula F = f(a; b)^g(b; c; x)^h(a; b; c; y)^p(d)^q(a; d; z1; z2; z3), we �nd fx; y; z1g to be a maximal independent set. Afterregrouping, the second application of the VG-mis algorithm will yield fb; dg, and �nally
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Figure 4.1: Mean CPU time for each ratio for the �rst algorithmfag. In this way, (9a; b; c; d; x; y; z1; z2; z3)F becomes (9a)f(9b; c)ff(a; b)^ (9x)g(b; c; x)^(9y)h(a; b; c; y)g ^(9d)fp(d)^ (9z1; z2; z3)q(a; d; z1; z2; z3)gg.There are two aspects of the VG-normal algorithm that need to be modi�ed in orderto take advantage of the the transformed formula and its associated information. First wemust modify the choice of branch variable, and second we must modify our handling of theconjunction of independent subformulas.At branch time, the free variables with the highest estimated likelihood of producing aconjunction of independent subformulas will be chosen. When there are no free variables,we are already in the position to independently process each subformula of the currentformula.Figure 4.1 shows the running time on a Sparcstation 1+ for VG-normal, a version ofour �rst satis�ability algorithm. Each data point shows the average running time for 500randomly generated formulas of 20, 30, 40, 50, 60 and 70 variables. The y-axis showsrunning time in seconds and the x-axis shows m=n. We have also made parallel runs usingthe other two versions, VG-mis and VG-dp, with the similar qualitative result; VG-normalperformed, on the average, two times faster than VG-mis, while VG-mis performed, on theaverage, ten times faster than VG-dp.5 The Second AlgorithmOur second satis�ability algorithm is part of Nemesis, a successful Automatic TestPattern Generation system [12]. Nemesis generates a Boolean formula that includes allthe constraints that must be satis�ed in order to generate a test pattern for a particularfault in a circuit, and then it satis�es the resultant formula. The design of the satis�erwas originally motivated by the preponderance of width-2 clauses in the formulas generatedin order to detect circuit faults: at least 2=3 of the clauses in every formula had only twoliterals, and more commonly 80{90% of the clauses were width-2 clauses.



6 5. The Second AlgorithmAccordingly, we decided to use the 2SAT satis�er proposed by Aspvall, Tarjan, andPlass [1] in order to generate a satisfying assignment for a 3CNF expression. To summarizethe method: if necessary we assign values to a few variables until we have a portion ofthe formula that is purely 2CNF. We then iterate through the 2SAT satisfying assignmentsuntil we either �nd one that is consistent with the non-2CNF portion of the formula or untilwe prove that there is no such assignment. When we completed the satis�er we discoveredthat it worked well on 3CNF formulas that were not primarily composed of width-2 clauses.The main loop of our satis�ability algorithm follows:Satisfy (formula)loopif not backtrackingselect one of the narrowest clauses to satisfyif there were no clauses, you are done: formula satis�edelse if you selected a binary clauseiterate through 2SAT bindingsuntil no falsi�ed clauses or no more 2sat bindingsif exhausted all 2sat bindings, start backtrackingotherwiseselect a clause to satisfysatisfy the �rst unbound literal and falsify all othersif there are any unsatis�ed clauses, start backtrackingotherwise, if you are backtrackingif your stack is empty, you are done: formula unsatis�ableotherwiselook at the most recently satis�ed clauseunbind the variable bound in order to satisfy that clauseif there are any other mutable literals in the clauseunbind the mutable literal from its old valuebind the mutable literal in order to satisfy the clauseif there are no unsatis�ed clauses, stop backtrackingotherwiseunbind all the variables bound because of this clauseconsider the next most recently bound clauseendloopend Satisfy.Figure 5.1 shows the running time on a Sparcstation 1+ for the Nemesis satis�abilityalgorithm using the formulas of 170, 160, 150 and 140 variables. The graph shows thesimilarity to the result obtained using the VG-algorithm for smaller number of variablesin the location of the peak ratio point. There is a pronounced di�erence between the twoalgorithms in the slope of the lines to the right of the peak. This is explained by the natureof the VG algorithm, which works more e�ciently for the satis�able formulas than for theunsatis�able formulas, whereas the Nemesis satis�ability algorithm doesn't have such skew.The time varies from less than 10 seconds at either end of the graph to almost 45minutes at the \hard-spot", which is centered around 4.3. This result is consistent withthat reported by Mitchell, et al. [13], which reported number of recursive calls instead ofCPU time. The graphs for each size n that we have investigated has the same basic shape,though the extreme in cpu time for formulas with a given number of variables has occurred
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Figure 5.1: Mean CPU time for each ratio for the second algorithmfrom 4.2 to 4.5. In general, we also observed that the Nemesis algorithm, the largest averagetime for a given n is twice the time of n � 10.For further details, see the description of the Nemesis ATPG system [12].6 Random Versus Non-random FormulasWe have also applied these algorithms to a certain set of structured non-clausal for-mulas derived from cycle-covering problems 1 provided us by Dan Pehoushek of StanfordUniversity. VG-mis has outperformed VG-normal in the range of 1.5 times for a formulaof 40 variables to 40 times for a formula of 84 variables. The Nemesis satis�ability algo-rithm's performance on a CNF version of the some problem was very similar to the VG-misalgorithm on the non-clausal problem.It is striking to us that, although the maximal independent sets strategy is more e�cienton this non-random formula, the VG-normal algorithm outperformed VG-mis on the averagefor the randomly generated 3CNF formulas (the Nemesis satis�ability algorithm is fasteron average than either of the VG algorithms when processing random formulas).Having observed this phenomenon, we tried all of our algorithms on four very di�cult,very large (2500 variables and 8000 clauses) CNF formulas representing the legal test setsfor detecting bridge faults in CMOS ICs [8]. The four formulas each caused the test patterngeneration system to \time out" when attempting to generate a test (or prove that no testexisted). When the four formulas were submitted to the Nemesis satis�er with no time-out,two of them �nished in about a minute of CPU time, but the other two were not successfullycompleted after a weekend's worth of processing time on a Decstation 5000/240. After abouta day of Decstation CPU time, the Davis-Putnam and VG implementations were not ableto terminate when working on these four formulas.1A cycle covering of undirected graph G is a subgraph that contains all nodes of G such that each nodehas degree 2. The question is NP-complete in general.
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