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ABSTRACT

This paper presents empirical evidence of a satisfiability threshold in random
3CNF formulas. The paper also expands on and supports the conjecture of Mitchell,
Selman, and Levesque [13] that hard randomly generated CNF formulas will be hard
for any reasonable satisfiability algorithm. We report statistics for a much larger
set of variables than have been previously reported; in particular, we show that for
each clause to variable ratio less than 4.2, the percentage of satisfiable formulas
increases, and for each clause to variable ratio greater than 4.2, the percentage of
satisfiable formulas decreases as a function of number of variables. We found that
several algorithms behaved qualitatively in the same fashion. We report on the
relative performance of each algorithm.
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1. Introduction 1
1 Introduction

Boolean formula satisfiability is a fundamental problem in computer science. In addition
to its role in computational complexity as the mother of all NP-complete problems, it is of
tremendous practical interest. Applications of satisfiability include program and machine
verification, and many aspects of VLSI design and test.

In comparing satisfiability algorithms, it is important to agree on what family of instance
distributions to consider and how to parameterize the varying degree of difficulty across the
distributions. Mitchell, Selman, and Levesque [13], among others, have pointed out that the
ratio of the number of clauses to the number of variables could be used as a parameter to
characterize difficulty levels for the random k-CNF problems. In particular, their empirical
study on the random 3CNF formulas revealed an “easy-hard-easy” pattern for their Davis-
Putnam style algorithm, where the hard peak occurs when the ratio is at about 4.3. They
further conjectured that all reasonable satisfiability algorithms would achieve the same
qualitative pattern. Their graphs showed that these same difficult ratios were those where
the probability of satisfiability of randomly generated formulas is switching from 100% to
0%.

After visiting a few crucial definitions and mentioning previous important results, we
will present our results, which support their conjecture using very different satisfiability
algorithms. We will report on the satisfiability percentage of randomly generated formulas
for varying ratios for formulas of up to 170 variables. We will then describe our algorithms.
Finally, we will question the ability of metrics aimed at randomly generated formulas to
accurately model the difficulty of satisfiability problems arising from practical problems.

2 Definitions

A CNF formulais a Boolean expression in a conjunctive normal form, i.e., each conjunct
in the formula is a clause, which is itself the disjunction of literals. Each literal is either a
variable, or the complement of a variable. For each variable z, define the complement T of
xbhyz=1-=.

A truth assignment is a mapping that assigns 0 or 1 to each variable in its domain. A
truth assignment satisfies a specific clause if and only if at least one literal in the clause
is mapped to 1; the assignment satisfies a formula if and only if it satisfies every clause in
that formula. A formula is satisfiable if there exists at least one assignment that will satisfy
the formula; if no such assignments exist, the formula is unsatisfiable. A clause is trivial if
it contains a variable and the variable’s complement, and a clause is empty if it contains no
literals.

Given positive integers n, m, and k, a random k-CNF formula of n variables and m
clauses consists of m clauses each containing k literals. FEach clause is chosen independently
at random according to the uniform distribution over all (7)2* non-trivial clauses of size k.
For most of this paper we will be concerned with random formulas containing clauses of
size 3: random 3CNF formulas.

It has long been conjectured that random formulas exhibit a threshold phenomenon,
much like the threshold behavior of certain well-studied properties of random graphs (cf.
Bollobas [2]). The precise formulation of this conjecture is that for every integer k£ > 1,
there is a constant ¢; such that a random k-CNF formula with the clause-to-variable ratio
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less than ¢y is satisfiable with probability approaching 1, and one with the ratio greater
than ¢ is unsatisfiable with probability approaching 1, as n increases.

Threshold properties for random structures are inherently interesting. For the case
of random formulas, there is additional motivation for wanting to know the value of the
threshold parameter cg: it is commonly believed that the difficult instances of satisfiability
should occur when formulas in n variables have roughly ¢gn clauses.

Goerdt as well as Chvatal and Reed have proved this conjecture for the case & = 2 by
establishing that ¢; = 1 [11, 5]. Franco with Chao, Ho and Paull have published several
papers over the last decade that have shown that ¢z must be at least 1 and ¢3 must be
no more than 5.2 [10, 4, 9, 5]. Broder, Frieze, and Upfal have recently tightened the lower
bound on ¢3 to 1.63 [3]. Several researchers have conjectured that ¢z is somewhere around 4.

We use mean CPU time rather than median recursive calls as measure of performance
because use of means allows us to draw on the considerable body of knowledge about
expected behavior, and use of CPU time on the same machine allows us to compare disparate
algorithms that do not necessarily have a metric such as “number of recursive calls” in
common.

3 Empirical Evidence

Using two separate programs implementing two separate satisfiability algorithms, we
have obtained empirical results about c3 that are more conclusive than previous empirical
results implying the existence of a threshold. Other incomplete algorithms have been
presented that can find an assignment for satisfiable formulas of larger size than reported
here, but our algorithms are complete (that is, they detect unsatisfiability as well as
satisfiability) and thus we can report on the percentage of satisfiable formulas for given
n, m, and k.

There are two interesting outcomes of our experiments:

e The value of ¢3 is very close to 4.2. As the number of variables is increased (up to

n = 170), the threshold behavior at formulas with 4.2n clauses becomes more and
more sharply pronounced. Mitchell, Selman, and Levesque have recently reported
similar empirical results for much smaller values of n (n = 50) [13].

e All of the curves (showing the percentage of random formulas satisfiable as the number
of clauses is increased from 3.6n to 5.2n) go through the point (4.2,68% + 3%).

In Figure 3.1, each data point represents the percentage of 500 randomly generated
formulas that were shown satisfiable by our second algorithm, which will be described in
Section 5. The five curves give the results for 50, 80, 110, 140, and 170 variables. As
the number of variables in the randomly generated formulas increase, the transition from
100% satisfiability to 0% satisfiability becomes more abrupt. The curves almost give the
appearance of rotating around m/n equal to 4.2.

Figure 3.2 presents the same data, but includes the percent satisfiability for 500 randomly
generated formulas for those m/n values surrounding 4.2. Results are given for n equal to
60, 70, 80, etc. up through 170. The error-bars represent the 95% confidence interval.
This graph makes it easy to see that while the percentage of satisfiable formulas remains
relatively constant at m/n equal to 4.2, the percentage falls for m/n greater than 4.2, and
it climbs for m/n less than 4.2. We see this as experimental evidence that the value of ¢3
is very close to 4.2.



4. The First Algorithm 3

100 e =

— "sat. 170" “o—
90 ENC “Sat o a

SR "sat. 110" 5
T "sat.i80" -x
" \‘ sat. 50" -
70
60 )
R
50 \\ \
A
40 X
kN
30
A
20
i} =
\\\J' ., \\Z;\
. e : KNSy
N “\;‘E]»,_\ - I §
S N U - e

0 & ]
3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4 4.5 46 4.7 48 49 5 5152
clauses/var ratio

Figure 3.1: Percent satisfiable of 500 formulas for each ratio

110
"3.8ici" =
100 g ,/{"A 0ici" =
S P : 77/{/::,_{\:: "4.1ici" A
90 I N S e i P Fud-2.C10 b
il T B /%x: e A ovel
7 ——h K 4 Lk iig "4.4;ci"
T - égr,,»«—g}”—f%" I "4.5.ci" =
80 [ oA Lo 4.6, Ci R
m-- T’L R ag "3.8{ci" -
" [ i | L S
I S B I T
A B 1 I S T L "4.2ici" -
60 - L i "4.3.ci"
T "4.4;ci" -~
A "4. 5 Cl "
50 I T T y T T n 4 6 Li Mo
I t Toodot 1ot I
40 . T L 1 E:S A
L '\’|j’*— .. 7 l T
L [N P
30 N o S
o bl T
10 I I ;;\gf-»;/‘/&*;’ I
T Ty e e
0 P
60 80 100 120 140 160 180 200

Figure 3.2: Percent satisfiable at each ratio as a function of number of variables

4 The First Algorithm

Our first algorithm will be referred to herein as V(G as it was developed by A. Van Gelder
[14]; it will be presented in three different forms, which will be called VG-normal, VG-dp,
and VG-mis. They all include the basic Davis-Putnam rules (unit clause and pure literal)
as originally described [7] and the implementation of the backtracking techniques described
by Davis, Logemann, and Loveland [6]. The major difference among the three forms is in
the strategy for selecting branch variables when the splitting rule is applied resulting in
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effectively three different algorithms.
¢ VG-normal: The full algorithm described by Van Gelder [14]. In summary, VG-
normal as applied to clausal formulas employs unit-clause and pure-literal rules. It
also selects branch variables dynamically according to its own scoring scheme, which
weights the variables.

e VG-dp: VG-normal degraded to simulate the Davis-Putnam like procedure used by
Mitchell, Selman, and Levesque [13].

¢ VG-mis: VG-normal with a new branch-variable selection criterion; it transforms
the input formula guided by a scheme using an algorithm which finds maximal inde-
pendent set among the variables with certain properties.

As the only variation that has not be fully detailed before, we describe VG-mis below.

This strategy is essentially a divide-and-conquer approach based on the following fact:
If a formula is a conjunction of subformulas that are independent of other subformulas, in
the sense that no two subformulas share a common variable, then this formula is satisfiable
if and only if all of its subformulas are independently satisfiable.

Let us view a formula F' in a predicate calculus style, (3z)F where  represents the set of
free variables appearing in F'. We wish to rewrite it as (32¢)((Jz1 F1)A (T o)A, . (Fapt}))
where all the variables in z are partitioned into the subsets %y, #1,..., £x. This process, to
be repeatedly applied to the resulting subformulas maybe visualized as that of pushing the
existential quantifiers down as deep as possible.

We perform bottom-up processing to establish our variable partition. Let G be a graph
where the nodes are the free variables in F' and the edges represent the relation that
two variables appear together in some clause. Let M = {xy,29,...2;} be a maximal
independent set for G. Then for each i, 1 < ¢ < k, we combine the clauses in F' containing
x; together to form a subformula F; and will express it as dz; F; where &; represents the set
of all free variables in F; that do not appear outside F;. This process is repeated on the
resultant formulas. The larger the set of variables, the finer our partition, but finding an
independent set of maximum size is another NP-hard problem, so we aim only to find some
maximal independent set in a polynomial time. Below is the VG-mis formula transformation
algorithm, in which MazIndSet represents a partition algorithm having the properties just
discussed.

Input: Boolean formula
Output: Equivalent Boolean Formula
Method:
set F to the input formula.
simplify F via unit clause and pure literal rules.
set G to be the set of all the variables in the input formula.
while (G is not empty)
set M to MaxIndSet(a graph of F restricted to the free variables).
regroup subformulas in F according to M.
push down the existential quantifiers for any local variables.
set G to the set of free variables for the subformulas of I.

For example, if the above transformation is applied to the formula F' = f(a,b)Ag(b, ¢, 2)A
h(a,b,c,y)ap(d)Nqla,d, z1, 22, z3), we find {z,y, 21} to be a maximal independent set. After
regrouping, the second application of the VG-mis algorithm will yield {b,d}, and finally
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Figure 4.1: Mean CPU time for each ratio for the first algorithm

{a}. In this way, (a,b,c,d,z,y, 21, 22, z3)F becomes (Ja){(3b, c){f(a,b) A (Fz)g(b,c,z) A
(Fy)h(a,b,c,y)}y N(Id){p(d) A (321, 22, z3)q(a,d, z1, 22, 23) } }.

There are two aspects of the VG-normal algorithm that need to be modified in order
to take advantage of the the transformed formula and its associated information. First we
must modify the choice of branch variable, and second we must modify our handling of the
conjunction of independent subformulas.

At branch time, the free variables with the highest estimated likelihood of producing a
conjunction of independent subformulas will be chosen. When there are no free variables,
we are already in the position to independently process each subformula of the current
formula.

Figure 4.1 shows the running time on a Sparcstation 14 for VG-normal, a version of
our first satisfiability algorithm. Each data point shows the average running time for 500
randomly generated formulas of 20, 30, 40, 50, 60 and 70 variables. The y-axis shows
running time in seconds and the x-axis shows m/n. We have also made parallel runs using
the other two versions, VG-mis and VG-dp, with the similar qualitative result; VG-normal
performed, on the average, two times faster than VG-mis, while VG-mis performed, on the
average, ten times faster than VG-dp.

5 The Second Algorithm

Our second satisfiability algorithm is part of Nemesis, a successful Automatic Test
Pattern Generation system [12]. Nemesis generates a Boolean formula that includes all
the constraints that must be satisfied in order to generate a test pattern for a particular
fault in a circuit, and then it satisfies the resultant formula. The design of the satisfier
was originally motivated by the preponderance of width-2 clauses in the formulas generated
in order to detect circuit faults: at least 2/3 of the clauses in every formula had only two
literals, and more commonly 80-90% of the clauses were width-2 clauses.
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Accordingly, we decided to use the 2SAT satisfier proposed by Aspvall, Tarjan, and
Plass [1] in order to generate a satisfying assignment for a 3CNF expression. To summarize
the method: if necessary we assign values to a few variables until we have a portion of
the formula that is purely 2CNF. We then iterate through the 2SAT satisfying assignments
until we either find one that is consistent with the non-2CNF portion of the formula or until
we prove that there is no such assignment. When we completed the satisfier we discovered
that it worked well on 3CNF formulas that were not primarily composed of width-2 clauses.

The main loop of our satisfiability algorithm follows:

Satisfy (formula)
loop
if not backtracking
select one of the narrowest clauses to satisfy
if there were no clauses, you are done: formula satisfied
else if you selected a binary clause
iterate through 25AT bindings
until no falsified clauses or no more 2sat bindings
if exhausted all 2sat bindings, start backtracking
otherwise
select a clause to satisfy
satisfy the first unbound literal and falsify all others
if there are any unsatisfied clauses, start backtracking
otherwise, if you are backtracking
if your stack is empty, you are done: formula unsatisfiable
otherwise
look at the most recently satisfied clause
unbind the variable bound in order to satisfy that clause
if there are any other mutable literals in the clause
unbind the mutable literal from its old value
bind the mutable literal in order to satisfy the clause
if there are no unsatisfied clauses, stop backtracking
otherwise
unbind all the variables bound because of this clause
consider the next most recently bound clause
endloop
end Satisfy.

Figure 5.1 shows the running time on a Sparcstation 1+ for the Nemesis satisfiability
algorithm using the formulas of 170, 160, 150 and 140 variables. The graph shows the
similarity to the result obtained using the VG-algorithm for smaller number of variables
in the location of the peak ratio point. There is a pronounced difference between the two
algorithms in the slope of the lines to the right of the peak. This is explained by the nature
of the VG algorithm, which works more efficiently for the satisfiable formulas than for the
unsatisfiable formulas, whereas the Nemesis satisfiability algorithm doesn’t have such skew.

The time varies from less than 10 seconds at either end of the graph to almost 45
minutes at the “hard-spot”, which is centered around 4.3. This result is consistent with
that reported by Mitchell, et al. [13], which reported number of recursive calls instead of
CPU time. The graphs for each size n that we have investigated has the same basic shape,
though the extreme in cpu time for formulas with a given number of variables has occurred
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Figure 5.1: Mean CPU time for each ratio for the second algorithm

from 4.2 to 4.5. In general, we also observed that the Nemesis algorithm, the largest average
time for a given n is twice the time of n — 10.

For further details, see the description of the Nemesis ATPG system [12].

6 Random Versus Non-random Formulas

We have also applied these algorithms to a certain set of structured non-clausal for-
mulas derived from cycle-covering problems ! provided us by Dan Pehoushek of Stanford
University. VG-mis has outperformed VG-normal in the range of 1.5 times for a formula
of 40 variables to 40 times for a formula of 84 variables. The Nemesis satisfiability algo-
rithm’s performance on a CNF version of the some problem was very similar to the VG-mis
algorithm on the non-clausal problem.

It is striking to us that, although the maximal independent sets strategy is more efficient
on this non-random formula, the VG-normal algorithm outperformed VG-mis on the average
for the randomly generated 3CNF formulas (the Nemesis satisfiability algorithm is faster
on average than either of the VG algorithms when processing random formulas).

Having observed this phenomenon, we tried all of our algorithms on four very difficult,
very large (2500 variables and 8000 clauses) CNF formulas representing the legal test sets
for detecting bridge faults in CMOS ICs [8]. The four formulas each caused the test pattern
generation system to “time out” when attempting to generate a test (or prove that no test
existed). When the four formulas were submitted to the Nemesis satisfier with no time-out,
two of them finished in about a minute of CPU time, but the other two were not successfully
completed after a weekend’s worth of processing time on a Decstation 5000/240. After about
a day of Decstation CPU time, the Davis-Putnam and VG implementations were not able
to terminate when working on these four formulas.

YA cycle covering of undirected graph G is a subgraph that contains all nodes of G such that each node
has degree 2. The question is NP-complete in general.
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These observations raises question as to what distribution space is really meaningful in
terms of practical use. Many formulas of interest do not come in 3CNF form. The four
formulas mentioned were about evenly divided between 2-clauses and 3-clauses, with a few
unit clauses and about 5% longer clauses. It is not clear to which distribution space such
formulas would belong. As future work, we would like to investigate different metrics of
Boolean formula difficulty.

7 Conclusions

Our empirical results strongly suggest that there is a satisfiability threshold for 3CNF
formulas and that the threshold is quite near to 4.2. We found further evidence to sup-
port the conjecture of Mitchell, Selman and Levesque that hard randomly generated CNF
formulas will be hard for any reasonable satisfiability algorithm, and we report statistics
for a larger set of variables than have been previously reported. We have reported on two
new algorithms and compared their performance via CPU time to each other and to the
Davis-Putnam algorithm. We have raised the question of the suitability of random 3CNF
formulas in modeling algorithm efficiency on real-world satisfiability problems.
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