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Geometric Transformations for a Rubber-band SketchDavid Joseph StaepelaereabstractThe 
exible rubber-band sketch is a useful representation for routing interconnect.In addition to supporting an incremental design style, rubber-bands provide a 
exibleframework for generating layout under performance constraints. However, due to reasonsof compatibility between CAD tools, it may be necessary at times to convert a rubber-bandsketch to a more restricted geometry such as rectilinear or octilinear wiring. This paperpresents an e�cient method, based on the enhanced plane sweep, for converting a rubber-band sketch to a topologically equivalent rectilinear or octilinear wiring with minimum wirelength. A sketch with n rubber-band segments can be converted to a restricted geometrywith m segments in O(n logn+m) time. In addition to guanateeing minimum wire length,the technique uses heuristic methods to reducing the total number of jogs.
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11. IntroductionThe Santa Cruz ULSI Routing Framework CAD tool (Surf) is an area router designedprimarily for routing multi-chip module (MCM) substrates. MCMs are a high densitypackaging technology in which multiple devices are mounted and interconnected on a singlemulti-layer substrate. These devices usually consist of unpackaged integrated circuit chips(dice) and discrete components. In addition to signal routing layers, the substrate typicallyprovides power and ground planes. The substrate routing problem consists of determiningthe con�guration of the signal layers so as to provide the interconnect for the devices. Sincethe area under the devices is generally available for wiring, the problem is one of arearouting.1.1 Overview of the Surf SystemThe Surf routing system transforms a netlist description of an interconnect pattern toa �nal precise layout by a series of successive re�nements. These re�nements are performedin four phases: global routing, local routing, spoke creation, and geometric wiring. The�nal phase, geometric wiring, will be the subject of this thesis.1.1.1 Topological RoutingThe �rst two phases of the Surf routing process transform a netlist into a rough form ofmulti-layer routing called topological routing [CS84, LM85, DDS91]. In topological routing,wires are represented as zero-width 
exible curves with �xed endpoints. These wires maybe continuously moved and stretched as long as they do not cross other wires or objects.For this reason, topological routing is useful for specifying the paths that wires take relativeto one another without giving the exact positions of the wires. Two topological routingsare said to be topologically equivalent if one may be transformed to the other by a process ofcontinuous deformation. In order to represent wirings uniquely, Surf uses a canonical formof topological wiring called a rubber-band sketch to represent each layer of the interconnect



2[CS84, LM85]. In rubber-band routing, individual wires are treated as elastic rubber-bands.Rubber-bands naturally contract to the shortest possible length that still maintains thesame topology. Figure 1.1 (a) shows a planar wiring pattern and Figure 1.1 (b) shows thetopologically equivalent rubber-band form.Representing interconnect as rubber-bands instead of precise rectilinear or octilinearwiring (hereafter referred to collectively as geometric wiring) has many advantages. Sincerubber-band routing has, in general, fewer wire segments than geometric wiring, it containsless unnecessary information. The 
exible nature of rubber-bands allows designs to bemodi�ed incrementally supporting an iterative design process [DKJS90]. This 
exibilityalso permits designs using variable-width traces or traces whose width is a function oflength|this is especially important for low-power high-speed designs where line resistancecan be used to damp re
ections in place of terminating resistors [Dai91]. In addition, therubber-band representation provides an easier and more intuitive wiring model for manuallayout editing than does geometric wiring.1.1.2 Spoke CreationOnce the global and local routing is complete, the topological wiring is transformed to a�nal geometric wiring in two steps: spoke creation and transformation to geometric wiring[LM85, DKS91, Kon92]. The goal of the spoke creation step is to transform the topologicalwiring represented by the rubber-band sketch into an equivalent topology in which all ofthe width and spacing constraints are met. Such a sketch is referred to as an extendedrubber-band sketch. The spoke step does this by radiating spokes from the endpoints ofwires in the rubber-band sketch. A spoke is an open-ended line segment used to \prop-up"the rubber-band routing in the neighborhood of these endpoints. See Figure 1.1(c) andFigure 1.2. These spokes push wiring away from the endpoints to allow proper spacing.Before proceeding further, it is helpful to present some concepts used to determine theroutability of a rubber-band sketch. A cut is a line segment between two points in thesketch that intersects with no other points or objects [CS84]. The capacity of a cut is the



3
(a) Topological Wiring (b) Rubber-band Equivalent

(c) Extended Rubber-band Sketch (d) Geometrical WiringFigure 1.1: Four Views of a SketchThis �gure shows various wiring patterns that are topologically equivalent. These patternscorrespond to di�erent stages of the transformation from rubber-band sketch to precisegeometric wiring. Figure (a) shows arbitrarily positioned paths, (b) shows the rubber-bandequivalent, (c) shows the extended rubber-band sketch and (d) shows a rectilinear wiring.
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(a)  Rectilinear Spokes (b)  Octilinear Spokes

spokes

protected
regions

forbidden
regions

Figure 1.2: Potential Spokes of a Pointnumber of wires that may safely cross the cut without violating the spacing constraints.The capacity of a cut depends on the positions of its endpoints and the wiring pattern used.For a cut pq with enpoints p = (x1; y1) and q = (x2; y2) the rectilinear capacity is given inEquation 1.1 and the octilinear capacity is given in Equation 1.2. For simplicity, in theseexpressions wires are assumed to have zero width and require unit separation.cap(pq) = maxfjx1 � x2j; jy1� y2jg � 1 (1:1)cap(pq) = 8>>>>><>>>>>: jx1 � x2j � 1 if (p2� 1)jx1 � x2j � jy1 � y2jjy1 � y2j � 1 if (p2� 1)jy1 � y2j � jx1 � x2jjx1�x2j+jy1�y2 jp2 � 1 otherwise (1:2)The 
ow of a cut is the number of wires crossing the cut. The routability of a sketch can beexpressed in terms of the 
ow and capacity of its cuts: a sketch is routable if and only if nocut has a 
ow that exceeds its capacity [CS84]. Generating an extended rubber-band sketchis su�cient to determine the routability of a sketch. That is, a sketch is routable if and onlyif it can be transformed into the corresponding extended rubber-band sketch [DKS91, Kon92].If the rubber-band sketch represents a routable topology, the result of the spoke creation



5step will be a fully extended rubber-band sketch. Otherwise, if the sketch is not routable,the spoke creation step will locate all of the endpoints that participate in over
owing cuts.If the spoke creation step succeeds, the resulting extended rubber-band sketch is alegal routing of the topology|all of the spatial constraints have been met. In general,the extended rubber-band sketch will have shorter wire lengths and fewer jogs than thecorresponding geometric wiring. However, for reasons of compatibility between tools, it isoften necessary to produce a �nal wiring in rectilinear or octilinear geometry.1.1.3 Geometric WiringThe �nal transformation to geometric wiring is the subject of this thesis. The geometricwiring problem is de�ned as follows. Given a sketch in which all of the spatial constraintshave been met (extended rubber-band sketch) and a geometric wiring pattern (rectilinearor octilinear), produce a routing that:� conforms to the speci�ed geometry,� is topologically equivalent to the input routing,� meets the width and spacing constraints, and� has minimum wire length.Because the positions of the wire endpoints in the extended rubber-band sketch are �xed,the minimum wire length of the sketch is merely the sum of the individual rubber-bandsegment lengths. Let S be the set of straight-line rubber-band segments in the extendedrubber-band sketch. For wiring pattern m, the total wire length of sketch S is given byLm(S) =Xs2S jjsjjm (1:3)where jjsjjm is the length of segment s in the proper distance metric (Manhattan or octilineardistance).In addition to the above constraints, it is also desirable to reduce the number of jogs inthe �nal sketch. The reasons for reducing the number of jogs include:� improving the yield,



6� decreasing noise due to re
ections,� reducing the size of the output, and� making the result simpler and easier to understand.1.2 OrganizationThe rest of this thesis is organized as follows: A top level overview of the geometricwiring transformation process is given in Chapter 2. Chapters 3, 4, and 5 discuss thesegment ordering, initial transformation, and jog removal phases of the algorithm in detail.Some results are presented in Chapter 6. Possible future extensions to the algorithm aredescribed in Chapter 7. Chapter 8 presents some previous and related work. Finally asummary is given in Chapter 9.



72. Overview of ApproachThe general approach used to transform an extended rubber-band sketch to a precisegeometric wiring is to transform each rubber-band segment to a wire that conforms to therequired geometry, has the minimum length, and maintains the necessary spacing to otherwires in the design.2.1 Basic MethodThe wiring transformation described in this paper relies on an algorithmic techniqueknown as the enhanced plane sweep [SO86]. The enhanced plane sweep is an extension ofthe traditional plane sweep. In addition to the normal scan-line used in the plane sweep, theenhanced plane sweep maintains a second scan-line known as the previous boundary. Theprevious boundary is composed of a set of line segments. It follows the �rst scan-line andrecords the boundaries of polygons visible from the �rst scan-line. This allows the algorithmto maintain a limited history about objects that the primary scan-line has passed.The top-level algorithm for transforming an extended rubber-band sketch to geometricwiring is presented in Figure 2.1. Each layer of a multi-layer extended rubber-band sketchis transformed separately. Within each layer there are three steps. The �rst step, Order-Segments, determines the proper plane sweep order for the rubber-band segments of thelayer. The next step, TransformLayer, produces an initial geometric wiring (see Fig-ure 2.2 (b)). Finally, StraightenLayer improves the initial transformation by performingjog-removal (see Figure 2.2 (c)).The approach used by TransformLayer to produce the initial geometric wiring is tosweep the extended rubber-band sketch from bottom to top, transforming the rubber-bandsegments (the individual straight-line segments that make up a rubber-band) as they arereached by the scan-line. The previous boundary maintains the portion of the previouslytransformed wiring that is visible from (below) the scan-line. Segments are transformedby pushing them down \on top" of the previously transformed segments. When segments



8GeometricWiring(E : ERBS, w : Wiring type) fW : Geometric WiringS : Ordered List of SegmentsT : Initial Transformationfor each layer Ei fS  OrderSegments(Ei)T  TransformLayer(S;w)Wi  StraightenLayer(T; w)greturn Wg Figure 2.1: Pseudo-code for GeometricWiringare pushed down, they are maintained within the lower triangle of a parallelogram de�nedby the positions of their endpoints and the current transformation method (rectilinear oroctilinear). Figure 2.3 shows an example of a rubber-band segment being transformedwithin its lower triangle. The fact that the wiring may be completed within these trianglesis guaranteed by the spoke creation step.Once the initial bottom-up sweep is �nished, StraightenLayer uses a second planesweep to reduce the total number of jogs. The second sweep is very similar to the �rst.It sweeps the plane in the opposite direction (from top to bottom). At each step, thegeometric sections corresponding to a single rubber-band segment are compared with theprevious boundary. If a section can be slid upwards and aligned with a higher sectionwithout con
icting with the previous boundary, this operation is performed. Each suchoperation removes two jogs from the transformation.2.2 Why does it work?In order for a geometric wiring to be correct, it must satisfy the criteria presented inChapter 1. That is, it must:� be topologically equivalent to the input sketch
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(a) Extended Rubber−band Sketch (b) Initial Geometrical Wiring

(c) Straightened Geometrical WiringFigure 2.2: Simple Example of Geometric Wiring Process
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segment

lower triangle

transformed segment

previous boundaryFigure 2.3: Segment Transformed within Lower Triangle� conform to the proper geometry (rectilinear, octilinear)� meet the width and spacing constraints, and� have minimum wire length.The �rst requirement (proper geometry) is maintained by the details of the speci�c algo-rithms that produce and straighten the transformation.The reason that the �nal wiring is topologically equivalent to the initial extended rubber-band sketch is that each wiring transformation can be viewed as a continous deformation(homotopic transformation). When a segment is transformed, it is pushed down on top ofthe current previous boundary. Because the segment ordering guarantees that a segmentwill not be pushed down before the segments below it have been transformed, the push-down operation will not change the topology of the sketch. Similar reasoning applies to thejog-removal phase.When a rubber-band segment is pushed down during the initial transformation, it alwaysmaintains minimum design rules from the segments below it in the previous boundary.If the wires in the input sketch were too tightly spaced, the result would be that duringtransformation, one or more segments would not be able to connect to their endpoints whilemaintaining the proper spacing from the previous boundary. However, the spoke creationphase guarantees that there is always enough space for such a transformation. Kong showsthat all wires in an extended rubber-band sketch can be transformed to geometric wiringby replacing them with their S-Route's [Kon92]. The S-Route of a rubber-band segment
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Figure 2.4: Rectilinear S-Route for a Rubber-band Segmentis the transformation that stays \closest" to the original segment without going above it(See Figure 2.4). Since the segments are transformed in bottom-up order, the portion of theprevious boundary below the current segment will only contain transformations of segmentsthat are below the current segment. Since all of these segments were transformed withoutexceeding their S-Routes, the current segment can be transformed without exceeding itsown S-Route.Since the straightening phase always has a design rule correct wiring and only repositionssections when the spacing allows, there is no danger of producing a spacing violation duringthis step.In order to ensure that the minimum wire length for the segment is achieved, restrictionsare placed on the types of wire segments used in the transformation. The �rst restrictionis that the transformation will be monotonic. Speci�cally, if the transformation of an indi-vidual rubber-band segment is traced from its lower endpoint towards its upper endpoint,the path will be non-decreasing in y.The second restriction used to ensure minimum wire length is to restrict the choice ofslopes for the individual wire segments. There are three di�erent cases|one for rectilinearand two for octilinear. Consider transforming a rubber-band segment with positive slope



12(the left endpoint is the lower endpoint). The three cases are described below:R. The rectilinear case uses horizontal and vertical wire segments. See Figure 2.5(a). In thiscase, the transformation of the segment will lie entirely within the rectangle de�nedby its endpoints.O1. The second case is for the octilinear transformation of a rubber-band segment whoseslope is greater than or equal to one. In this case, vertical and diagonal (slope = 1)segments are used as in Figure 2.5(b). The geometric transformation of such a segmentwill lie entirely within the octagonal parallelogram de�ned by its endpoints.O2. The third case is used to transform a rubber-band segment with slope less than one tooctagonal geometry. This case uses horizontal and diagonal wire segments. The �nalwiring will be contained within the octagonal parallelogram as shown in Figure 2.5(c).In all the cases mentioned above, the �nal wiring will be monotonic and restricted tothe slopes of two adjacent sides of the proper \routing parallelogram". Clearly, the lengthof the transformation of a segment will be equal to the sum of the lengths of these twosides. Since this length is equal to the distance between the endpoints of the segment inthe proper distance metric, the transformation is obviously of minimum length as de�nedabove.
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(a) Rectilinear

(b) Octilinear Case 1

(c) Octilinear Case 2Figure 2.5: Segment Routing Parallelograms



143. Segment Transformation OrderIn order for the transformation technique to succeed, the segments must be visited in\bottom-up" order. That is, the segments must be ordered so that when a given segmentis transformed, all the segments \below" it have already been transformed. It is easy to seethat merely sorting the segments by y-value is not su�cient. For example, in Figure 3.1the y-projections of segments s1 and s3 are the same and the projections of s2 and s4 arealso the same. However, s1 must be after s2, but s3 must be before s4. We will de�ne theproper ordering of segments in terms of a relation called precedes.De�nition: Given two elements, a and b, from a set of non-intersecting, open-ended linesegments S, we say a precedes b (a � b) if there exists a vertical line l that intersectssegments a and b at points pa and pb and that pa is below pb (pa:y < pb:y). See Figure 3.2.It is helpful to make a few observations about the precedes relationship:� Precedes is anti-re
exive (a 6� a).� Precedes is anti-symmetric (a � b) b 6� a). This can be seen by noting that for botha � b and b � a to hold, it would be necessary for the two segments to intersect. SeeFigure 3.3 (a).� Transitivity does not hold for precedes. That is a � b and b � c do not imply thata � c. See Figure 3.3 (b).If the precedes relationship is going to be used to order the segments of S, it must beshown that there are no \cycles" in the relation.
s1 s4 s3s2Figure 3.1: Sorting by y is not a su�cient ordering
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(a) no preceeds relationship

b

a

b

a

(b) segment a preceeds bFigure 3.2: Precedes Relationship
a

b

b

a a

b

c

(b)  transitivity may not hold(a)  precedes is anti−symetricFigure 3.3: Properties of the precedes relationLemma 1: There are no cycles in the precedes relation.ProofCase I: cycles of length 2There are no cycles of length 2 because precedes is anti-symmetric.Case II: cycles of length > 2The proof will be by contradiction. Let C = fx0; x1; � � � ; xng be the smallest subset of Sthat forms a cycle under the precedes relation. Assume that x0 � x1 � : : : � xn � x0. Thevertical line li will be a line that intersects segments xi and xi+1 (ln intersects xn and x0).Assume, without loss of generality, that l0 (crossing x0 and x1) is the leftmost vertical line(has the lowest x coordinate). The segments x0 and x1 each cross at least one more verticalline (ln and l1). If l1 is left of ln, then segment x0 must also cross this line on its way to ln.
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x 1

x2x 1

x0
x0

xn

0l l 1 l nFigure 3.4: Precedes has no cyclesSee Figure 3.4. Since x0 and x1 cannot intersect, x0 must cross l1 below x1. This meansthat x0 is also below x2 on l1. So x0 � x2. This contradicts the assumption that C is thesmallest subset of S containing a cycle. The case for ln left of l1 is similar using x1 abovexn at ln (xn � x1). 2For an ordering to be legal, it must satisfy all of the precedes relationships. The sequence(s1; s2; : : : ; sn) is a legal ordering of the segments of S, if whenever si precedes sj then i < j.Between n line segments there are O(n2) precedes relationships. However, for thepurposes of ordering, some of these relationships are redundant. For example, assumethat three segments a, b, and c from S have the following precedes relationships: a � b,a � c, and b � c. Ordering a before b and b before c will ensure that a is before c. So, inthis case, a � c is redundant and does not need to be explicitly considered.Our strategy will be to build a directed acyclic graph G whose vertices are the segmentsof S. An edge (u; v) 2 E(G) will mean that u precedes v. This graph will be constructedwith a su�cient number of edges to ensure that for a; b 2 S if a precedes b, then a will bebefore b in a topological ordering of G.In order to de�ne G, it is helpful to de�ne two functions that map points to segments.The function above(p) will map to the segment immediately above the point p. If no suchsegment exists, above(p) will map to an imaginary sink segment sn+1. Similarly, below(p)
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(a) (b)Figure 3.5: The set of precedes relationships and the graph Gmap to the segment immediately below the point p (or, if none exists, an imaginary sourcesegment s0). Note that for segment s 2 S containing the point p, s � above(p) andbelow(p) � s.The graph G will be constructed to capture the precedes relationships around the leftendpoints of the segments. Each segment will have an edge from the segment below its leftendpoint; and an edge to the segment above its left endpoint. That is for all s 2 S with leftendpoint (x; y), (below(x+ �; y); s) 2 E(G)and (s; above(x+ �; y)) 2 E(G)for �! 0+. The reason for the �'s is to ensure that the segments are treated as open-ended.In practice it is su�cient for � to be smaller than the length of the smallest x-projection ofall the segments in S. Figure 3.5(a) shows all of precedes relations for a set of segments.Figure 3.5(b) shows the relationships captured by the graph G.Lemma 2: The graph G is acyclic.Proof
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aFigure 3.6: Simple Cases of Left-endpoint RuleThis can be seen directly from Lemma 1. Each edge in G expresses some precedesrelationship in S. Since G represents a subset of these relationships and there are no cyclesin precedes, there are no cycles in G. 2Lemma 3: For two segments a; b 2 S, if a � b then there will exist a path a ; b in thegraph G.ProofThe proof will be by induction on the size of the set S.Base: jSj = 2Since a � b, either the left endpoint of a is below b or the left endpoint of b is abovea. See Figure 3.6. In each of these cases, the \left endpoint rule" will capture the precedesrelationship as an arc from a to b in G.Inductive Step: jSj > 2In this case we will assume that b is above the left endpoint of a. (The case of a belowthe left endpoint of b is similar).Case I: There are no segments between the left endpoint of a and segment b.In this case there is an explicit edge (a; b) 2 E(G).Case II: Some segments are between the left endpoint of a and segment b.Let x be the segment immediately above the left endpoint of a. See Figure 3.7. Thede�nition of G guarantees that (a; x) 2 E(G). Since the vertical line drawn through theleft endpoint of a intersects segment x below segment b it is clear that x � b.Let S 0 = S � a and let G0 be the graph built from the segments of S 0. Since jS 0j < jSjand x � b, the inductive hypothesis guarantees that there exists a path x ; b in G0. We
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b

x

aFigure 3.7: Illustration for inductive case II of Lemma 3will now show that a similar path must also exist in G. The graph G0 may be di�erent fromG in two ways:1. edges incident on a in G will be absent from G0, and2. G0 may contain additional edges that were \blocked" by the segment a in G.The edges missing from G0 do not prevent the path x ; b from existing in G. However,suppose the path x; b in G0 contains an edge (u; v) that was added as a result of removinga. The path x; u in G0 represents a sequence of precedes relationships x � � � � � u. Since(u; v) was not in G, it was blocked by a and so u � a. Since a � x, we have a cycle ofprecedes relationships x � � � � � u � a � x. This contradicts Lemma 1. So we know thatthe path x; b must also exist in G.So there is a path a! x; b in G. 2Lemmas 2 and 3 ensure that a topological ordering of the graph G is a legal transfor-mation order for the set of segments S.3.1 Producing the graph GA left-to-right plane sweep may be used to generate the graph G for an extended rubber-band sketch. The pseudo-code for this function is shown in Figure 3.8. First, the endpointsof the line segments are sorted into scan-lines by increasing x-order. This list is thentraversed and an active edge list (AEL) is maintained in the following fashion: if the endpointis a left endpoint, its segment is placed on an insert list, if the endpoint is a right endpoint,



20BuildArcs(S) fG = (S; ;)AEL ; /* active edge list */sort endpoints of S by x into scan-linesfor each scan-line fdelete  segments with right endpoint on scan-lineinsert  segments with left endpoint on scan-lineremove segments of delete from AELadd segments of insert to AELfor each segment s of insert fadd (pred(s); s) to E(G)add (s; succ(s)) to E(G)ggreturn Gg Figure 3.8: Algorithm for building graph Gits associated segment placed on a delete list. At each scan-line, the segments on the deletelist are removed from the AEL, the segments on the insert list are added to the AEL, andthen precedes arcs are generated for each segment in the insert list. By �rst deleting, theninserting, and then building the arcs, we ensure that: (a) no arcs are built between segmentsfor which a vertical line can intersect only at the endpoints, and (b) the case of multipleinsertions at the same scan-line position is handled correctly.The active edge list may be implemented as a balanced binary search tree sorted byy-position. Since the y-position of the intersection between each segment and the scan-linechanges as it moves along the x-axis, a \comparison function" can be used to insert into thetree. This function would compare segments by comparing their y-positions at the currentscan line x-position. Since there are no intersecting segments in an extended rubber-bandsketch, segments will never have to be reordered once they are inserted in the tree.



213.2 Time complexityThe total time required to run BuildArcs on n segments is O(n logn). Sorting theendpoints takes O(n logn) time. For each of the n segments, the following operations areperformed: inserting into the active segment list (O(logn)), deleting from the list (O(logn)),and building up to two arcs (O(1)). So the total time is O(n logn).Once G is constructed, a topological sort can be used to produce a total order for thesegments. The running time of the topological sort on a directed acyclic graph G(V;E) isO(jV j+ jEj). Since the total number of edges in G is bounded by 2n, the running time ofthe topological sort is O(n). So, the total time to produce a legal transformation order isO(n logn).3.3 Implementation DetailsUntil now, we have assumed that the input to the segment ordering problem was aset of segments that represent the centerlines of rubber-band segments in an extendedrubber-band sketch. This is a slight simpli�cation. Since width and spacing informationis considered at later stages of the geometric wiring process (TransformLayer andStraightenLayer), it cannot be ignored here. For example, consider the two centerlinesegments in Figure 3.9 (a). Since they do not overlap at all in the x-dimension, there wouldbe no ordering dependency between these two segments. However, if we consider the widthsof the wires (Figure 3.9 (b)) it is clear that segment a must be pushed down before segmentb. The solution to this problem will be to use a modi�ed version of the extended rubber-band sketch for the vertices of the graph G. Two types of transformations will be used tocreate the modi�ed sketch:1. reposition one-sided endpoints, and2. create extra overlap segments in the area of two-sided endpoints.
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a

b

a
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(a) (b)Figure 3.9: E�ect of Width and Spacing on OrderingIf all of the segments incident on an endpoint are to one side of the vertical line throughthe endpoint, it will be called \one-sided". Endpoints with segments on both sides are\two-sided".One-sided endpoints will be repositioned to account for the actual width and spacingrequirements. Speci�cally, the endpoint will be slid either left or right by a distance ofr = width+spacing2 . The direction of the slide will depend upon which side of the endpointthe segments are on|left-sided endpoints will be slid to the right and right-sided endpointswill be slid left. See Figure 3.10. Note that there is no danger of crossing segments as aresult of this sliding operation because the spoke phase guarantees the necessary spacing.Since a two-sided endpoint cannot be slid in both directions, the solution in this casewill be to create a dummy segment that represents the overlap area common to all thesegments incident on the endpoint. Any arc to or from this overlap segment will representan ordering dependency with all of the common segments. For example, in Figure 3.11,since segment c is above the overlap area of segments a and b, an arc will be built from botha and b to c. Note that some care must be taken with constructing the overlap segmentsbecause they may overlap with one another. When two overlap segments overlap, a newsegment will be created for this region. It will represent the union of segments from theoriginal two segments. See Figure 3.12.
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rFigure 3.10: Sliding one-sided endpoints
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(a)  Initial Rubber−band Segments (b) Modified Sketch
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a & b overlapFigure 3.11: Overlap segment for two-sided endpoint
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(a)  Initial Rubber−band Segments (b)  Modified Sketch
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Figure 3.12: Overlapping overlap segments



254. Producing an Initial TransformationThis section describes the process used to produce a valid initial geometric wiring fora multi-layer topological routing. The input consists of a wiring type and an extendedrubber-band sketch. The output will be a legal geometric routing, conforming to the wiringtype, that is topologically equivalent to the input sketch and has minimum wire length. Thegeometric transformation outlined in this section is described as \initial" because it maycontain extra unnecessary jogs. Some of these extra jogs may be removed in the subsequentstraightening phase.The basic strategy will be to transform each layer of the input sketch independently. Thepseudo-code for the transformation of a single layer is given in Figure 4.1. Transform-Layer makes use of a \previous boundary" to maintain a limited history about previouslytransformed segments. It initially consists of a single section of in�nite length positionedat y = �1. The body of the for-loop transforms each of the rubber-band segments inorder. The �rst step is to produce a minimum length geometric transformation, ti, of thesegment si that maintains the proper spacing from the sections of the previous boundary.This step is performed in TransformSegment. The transformation ti is then added tothe current transformation T . The last step of the loop is a call to UpdateBoundarywhich incorporates the transformation ti into the previous boundary.4.1 Transforming a SegmentThe main step in TransformLayer is to transform a single rubber-band segment togeometric wiring. A segment is transformed by pushing it down within the lower triangle ofthe proper routing parallelogram (Figure 2.5). The shape of the routing parallelogram andthe possible slopes for transformed segments depend on the geometry and the slope of therubber-band segment. There are three such cases: R, O1, and O2 as outlined in Chapter 2.These cases are summarized in Table 4.1. Each case uses two types of line segments tocomplete the routing.



26TransformLayer(S : Ordered List of Segments, w : Wiring type) fB : List of previous boundary sectionsT : Ordered list of transformed segmentsB  initial boundary segment at y = �1T  ;for each segment si 2 S in order fti  TransformSegment(si,w,B)Append(T; ti)UpdateBoundary(ti,B)greturn Tg Figure 4.1: Pseudocode for Transforming a LayerCase Condition Geometry UsedR : Rectilinear any slope horizontal, verticalO1 : Steep Octilinear jslopej � 1 diagonal, verticalO2 : Shallow Octilinear jslopej < 1 horizontal, diagonalTable 4.1: Summary of Transformation CasesThe easiest case is transforming a rubber-band segment to rectilinear wiring (R). Thepseudo-code for this transformation is presented in Figure 4.2. The basic approach is tostart at the lower endpoint and extend a horizontal wire section until the x-position ofthe upper endpoint is reached or an obstruction in the previous boundary is encountered.Vertical jogs are introduced to clear any obstructions and to reach the proper y-position atthe end of the transformation. Figure 4.3 shows an example of this process. The algorithmworks by iterating through the sections of the previous boundary below the segment beingtransformed (s). The position of the last jog point is maintained in p. At any step, ifa horizontal line from p (H(p)) will not clear the current section, b, of the boundary, ahorizontal wire extending from p until just before b is added to the transformation and avertical jog is introduced. When all of the previous boundary sections have been examined,



27TransformSegmentR(s : Rubber-band segment, B : Previous boundary) fP : Point listp; j : Pointb : Boundary sectiond : Spacingd width(s)2 + interwirep sl, P  (p)b segment of B below slwhile bl < srx + d f /* while b is under s */j  (blx � d; by + d) /* determine jog point j */if jy > py f /* if H(p) won't clear b */Append( P; (jx; py) ) /* extend horizontally and jog up */Append( P; (jx; jy) )p jgb next(b)gif px < srx f /* extend horizontally to sr */px  srxAppend( P , p )gif py < sry f /* jog vertically to sr */Append( P , sr )gg Figure 4.2: Pseudocode for TransformSegmentR�nal horizontal and vertical wire segments are added to the transformation as needed.The steep-slope octilinear case, O1, is very similar to the rectilinear case. The pseudo-code for this case is presented in Figure 4.4. The main di�erence between these two casesis that diagonal wire segments are used in TransformSegmentO1 instead of horizontalones. An example of this transformation is shown in Figure 4.5. At each step, the diagonalline D(p) extended from the last jog point p is compared to the current boundary sectionb. If it will not clear b, a diagonal wire segment extending as far as possible is added to thetransformation and a vertical jog is introduced. As in the previous case, the �nal step is toadd �nal diagonal and vertical wire segments as required to complete the transformation.
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rubber-band segment rectilinear transformation

previous boundary previous boundaryFigure 4.3: Rectilinear wire transformation for a segmentTransformSegmentO1(s : Rubber-band segment, B : Previous boundary) fP : Point listp; j : Pointb : Boundary sectiond : Spacingd width(s)2 + interwirep sl, P  (p)b segment of B below slwhile bl < srx + d f /* while b is under s */� bl � pxif py + � < bly + dp2 f /* if D(p) cannot clear b */p (px +�� d; py + �� d)Append( P , p ) /* route diagonally as far as possible */py  bly + dp2Append( P , p ) /* jog vertically to avoid obstruction */gb next(b)gif px < srx f /* if a �nal diagonal is needed */� srx � pxp (px +�; py + �)Append( P , p )gif py < sry f /* if a �nal vertical is needed */Append( P , sr )gg Figure 4.4: Pseudocode for TransformSegmentO1
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Figure 4.5: Transforming a steep segment to steep octilinearThe �nal case for transforming a shallow (jslopej < 1) segments to octilinear wiring ismore complex than the previous two cases. Since this case does not use vertical wire seg-ments, it is not possible to jog upwards \at the last minute" to clear obstructions presentedby the previous boundary. To remedy this, some limited backtracking may be required.Figure 4.6 presents an example where a tall section of the previous boundary requires thatan earlier decision regarding the position of a jog point be changed. The pseudo-code for theO2 case is presented in Figure 4.7. As in the previous two cases, TransformSegmentO2iterates through sections of the previous boundary in the direction from low endpoint tohigh endpoint. In contrast to the previous cases, TransformSegmentO2 maintains amode to determine whether the segment extended from the last jog point p is meant to behorizontal or vertical. In both cases, if a segment routed from p will not clear the currentboundary section b, wire segments are removed from the transformation P until a suitablejog point is determined. Once all of the previous boundary sections have been examined,the transformation is completed. It may require one �nal backtrack if it is not possible toreach the upper endpoint from the last jog position.
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backtrackFigure 4.6: Transforming a shallow segment to octilinear4.2 Updating the Previous BoundaryOnce the rubber-band segment currently under consideration has been transformed togeometric wiring, the next step in the TransformLayer algorithm is to incorporate it intothe previous boundary. This is done with the function UpdateBoundary. Pseudo-codefor this function is presented in Figure 4.8. UpdateBoundary takes two parameters. The�rst, t, is the transformation of the current rubber-band segment s. The transformationrepresents the centerline of the geometric transformation of s. The second parameter, B, isthe current previous boundary. The �rst step in UpdateBoundary is to determine t0, thetop contour of t. This can be accomplished by scanning each of the segments of t. Oncethis is done, the portion of B covered by t0 is replaced with t0.4.3 Time Complexity4.3.1 Previous BoundaryBefore discussing the running times of the individual portions of the TransformLayeralgorithm, it is useful to make some observations about the previous boundary. The �rstobservation is that the size of the boundary during the execution of TransformLayer isO(n). This can be seen by noting that each of the n segments can add only a constantnumber of sections to the boundary. This fact also provides us with the worst-case output



31TransformSegmentO2(s : Rubber-band segment, B : Previous boundary) fP : Point listp; j : Pointb : Boundary sectionmode : fdiagonal; horizontalgp sl, P  (p)b segment of B below slwhile b is below s fif mode = diagonal fif D(p) won't clear b f(p; P ) = Backtrack(p, P , b)g else if D(p) clear b with excess space or b does not slope up fj  point of D(p) s.t. H(j) will just clear bAppend(P , j)p jmode horizontalggif mode = horizontal fif H(p) won't clear b fj  point of H(p) s.t. D(j) will just clear bif j is before p f(p; P ) Backtrack(p, P , b)g else if j is after p fAppend(P , j)p jgif b slopes up fmode diagonalg else fj  point of D(p) s.t. H(j) will just clear bAppend(P , j)p jgggb next(b)gif sr above D(p) f(p; P ) = Backtrack(p, P , sr)g else if sr below D(p) fj  point of H(p) s.t. D(j) contains srAppend(P , j)gAppend(P , sr)g Figure 4.7: Pseudocode for TransformSegmentO2



32UpdateBoundary(t : Transformation, B : Previous Boundary) ft0  top contour of tB0  B with portion covered by t0 replaced by t0return B0g Figure 4.8: Pseudocode for UpdateBoundary
(a) Rubber−Band Segments (b) Initial TransformationFigure 4.9: Worst-case relationship between input and output sizecomplexity. Since the transformation of a given segment can be no more complex than theboundary below it, the worst-case complexity is �(n2). See Figure 4.9.The previous boundary must be maintained in such a way as to e�ciently support thefollowing operations:1. locate the �rst section of the boundary that lies below the segment being processed,2. traverse the previous boundary in the proper direction until the segment has beencompletely transformed, and3. replace the portion of the boundary below the segment with the updated boundary.The solution used in my implementation is a hybrid balanced binary search tree. In thistree, the leaf nodes are linked together to form a linked list (see Figure 4.10). This allowsthe �rst query to be performed in O(logn) time and the second and third operations inO(k) time where k is the number of segments below the segment being transformed.



33
1 2 3 4 5 6 7

1
2

3
4

5

6
7

(a) Previous Boundary

(b) Hybrid BST RepresentationFigure 4.10: Hybrid List-Binary Search Tree Representation of Previous Boundary4.3.2 Time Analysis of TransformSegmentThe following lemma presents the time complexity of transforming a single segment togeometric wiring.Lemma 4: A rubber-band segment s covering k out of n sections of a previous boundarycan be transformed to geometric wiring in O(logn + k) time.ProofCase R (TransformSegmentR):The �rst step in TransformSegmentR is to locate the section of the previous bound-ary under the lower endpoint of segment s. Since the previous boundary contains n sectionsand is stored in a balanced binary search structure, this obviously requires O(logn) time.Once the initial section is located, the segment is transformed to rectilinear wiring by visit-ing all of the sections it covers. In this step, each of the k sections is visited exactly once and



34adds at most two wire sections to the transformation of s. Since each of these operationstakes constant time, the total time complexity of TransformSegmentR is O(logn + k).Case O1 (TransformSegmentO1):The proof for this case is essentially the same as for Case R.Case O2 (TransformSegmentO2):As in the previous two algorithms, the �rst step of TransformSegmentO2 requiresO(logn) time to locate the initial section of the previous boundary. Since TransformSeg-mentO2 employs backtracking during the transformation phase (while-loop), the segmentsvisited during backtracking must also be counted as operations in the complexity analysis.Since each of the k sections may cause a backtrack to occur, there are potentially O(k)backtrack operations. When a section of s is visited in a backtrack, it is either \passedover" and removed from the transformation or it is the last in the backtrack sequence. So, asegment may be passed over and deleted only once by a backtrack during the transformationof s. So, the following costs may be assigned to each of the covered k sections from theprevious boundary:� O(1) for visiting the section in the previous boundary� O(1) for the new section added to the transformation of s� O(1) for passing over and removing the segment during backtrackingAn amortized analysis yields a total time complexity of O(k) for the transformationphase and O(logn + k) for the entire TransformSegmentO2 algorithm. 24.3.3 Time Analysis of UpdateBoundarySuppose that the top contour t0 consists of j sections and spans k sections of theprevious boundary B. The naive approach of �rst removing the sections spanned by t0from B and then inserting t0 would require O(j + k) inserts and deletes. If the boundaryis stored in a balanced structure, each of these operations will require O(logn) time. IfUpdateBoundary rewrote key values where possible instead of always performing inserts



35and deletes, updating the previous boundary could by done in O(� logn + k) time where� is the amount the previous boundary changes size (� = jj � kj).4.3.4 Time Analysis of TransformLayerIn this section we will examine the time complexity of transforming an extended rubber-band sketch to geometric wiring using the TransformLayer algorithm described above.The time complexity will be expressed in terms of both the input and output size of theproblem, speci�cally the number of rubber-band segments, n, in the extended rubber-bandsketch and the number of geometric wire segments, m, in the resulting transformation. Aswe have seen, in the worst case, m is �(n2).The for-loop that transforms each segment is executed n times. From Lemma 4 weknow that each TransformSegment takes O(logn + k) time where k is the number ofprevious boundary sections covered by the segment si. Since each section in the previousboundary corresponds to a wire section in the �nal output, the total time contribution ofTransformSegment is O(n logn+m).As shown in Section 4.3.3, the total time complexity contributed by UpdateBoundarywhen updating the boundary after transforming segment si is O(� logn+k) where � is thechange in the boundary's size due to the update, and k is the number of sections spannedby the newly transformed segment. So, in order to determine the total time complexity ofthe UpdateBoundary operation, we have to know how much the boundary's size changesduring the entire process. At each step, UpdateBoundary can only increase the size ofthe previous boundary be a small constant. So, by charging for a section's removal at thetime of insertion, we get a total contribution of O(n logn +m) for UpdateBoundary.This gives a total time complexity of O(n logn+m) for the TransformLayer opera-tion.
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(a) (b) (c)

T

x yFigure 4.11: Problem with simple previous boundary4.4 Implementation DetailsThis section addresses some details regarding the implementation of the previous bound-ary. Until now, it has been tacitly assumed that the previous boundary is represented as aseries of zero-width horizontal and diagonal line segments. As we shall see, such a previousboundary is not su�cient when dealing with segments that meet at a point. Two or moresegments may be connected at a point where a wire bends around an object or with termi-nals that are incident on more than one segment. Consider the case of terminal T shown inFigure 4.11(a). This terminal is incident on two segments, x and y. In this case, there is noprecedes relationship between the two segments so they may be transformed in either order.Suppose x is transformed �rst. This transformation and the updated previous boundaryare shown in Figure 4.11(b). If segment y is transformed normally, it will not be able toconnect with T while maintaining proper spacing from the boundary. Since x and y belongto the same net, they should not be required to remain separated. It is not feasible for y toignore the obstruction in the neighborhood of T because it has no knowledge of what otherobstacles may be hiding below the previous boundary (e.g. the vertical segment shown inthe �gure). One solution to this problem is to incorporate some additional information intothe previous boundary so that wire sections belonging to the same net may be transformedindependently of one another.At any point, each section of the previous boundary is the result of some past rubber-band segment transformation. Suppose that a previous boundary section for segment scontains the following �elds:
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existing boundary

rubber−band segment

top boundaries

bottom boundaries

(a) before transformation (b) after transformation

transformed segment

Figure 4.12: The double-width previous boundary.� the net associated with segment s� the x-interval that the section covers� the boundary before s was transformed (lower boundary)� the boundary after s is transformed (upper boundary)The bottom boundary re
ects the state of the previous boundary prior to the transformationof segment s|a previous previous boundary in some sense. Figure 4.12 shows an exampleof this previous boundary. With this scheme, when a segment is transformed, it can usethe boundary that is appropriate. If the segment belongs to the same net as a previousboundary section, it would use the lower boundary. If the segment is part of a di�erent net,if would use the top boundary. Figure 4.13 demonstrates the use of this previous boundaryscheme in the transformation of the segments presented in Figure 4.11.
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(a) (b)

(c)

top boundary

bottom boundary

Figure 4.13: Example of the double-width previous boundary.Figure (a) shows two untransformed segments incident on the same terminal. Figure (b)shows how the double-width previous boundary is updated after the segment on the left istransformed. Figure (c) shows the result after transforming the right-hand segment.



395. Straightening the Initial Geometric TransformationThe initial geometric transformation produced by TransformLayer may contain someunnecessary jogs (see Figure 5.1 (b)). The reason for this is that it takes the conservativeapproach of pushing each segment down as far as possible. Although the initial transfor-mation has minimum wire length and satis�es the necessary width and spacing rules, it isalso important to try to reduce the number of jogs. Some reasons for reducing the numberof jogs are:� Better yield: Bends are more likely than straight wires to be produce defects whenthe design is fabricated.� Better noise margin: Each jog represents an electrical discontinuity in the wire.These discontinuities produce re
ections as signals propagate along the traces. Re-ducing the number of jogs results in less re
ection noise and a better noise margin.� Simpler designs: Designs with a lot of jogs are confusing and harder to understandvisually. This confusion may result in longer design times and increased chance oferror.� Less data: Each jog in a wire has to be stored in the database. More jogs result inhigher memory and disk requirements as well as slower data access times.
(a) Rubber-Band Segments (b) Initial Transformation (c) Straightened TransformationFigure 5.1: Jog RemovalThe initial geometric transformation (b) may contain unnecessary jogs. A second planesweep in the opposite direction to the �rst can be used to clean up some of these jogs (c).



40StraightenLayer(T : Ordered list of transformed segments, w : Wiring type) fB : List of previous boundary sectionsT 0 : List of straightened segmentsB  initial boundary segmentT 0  ;for each transformed segment ti 2 T in (reverse) order ft0i  StraightenSegment(ti,w,B)Append(T 0; t0i)UpdateBoundary(t0i,B)greturn T 0g Figure 5.2: Pseudocode for Straightening a LayerA second plane sweep can be used to reduce the total number of jogs in the layout. Thisplane sweep is very similar to the sweep used to produce the initial transformation. Themain di�erences are that it sweeps in the opposite direction (top to bottom) and instead oftransforming segments, it tries to reduce the number of jogs by sliding sections together. Thepseudo-code for this step is presented in Figure 5.2. As mentioned above, the plane sweepin StraightenLayer processes segments in the opposite direction as TransformLayer.At this stage, it is not necessary to recompute the ordering. The straighten ordering canbe obtained by reversing the transform ordering.5.1 Straightening a SegmentStraightening a segment is quite similar to transforming a segment. The basic strategyis to work from the upper endpoint towards the lower endpoint and examine each of thesections of the current transformation. If there is enough room to slide a section upwards andalign it with the previous section, up to two jogs can be removed from the transformation.If however, there is not enough room to align the current section with the previous one thereare at least two obvious choices: leave it where it is, or slide it up as far as possible. Theformer heuristic increases the chance that the next section in the current transformation



41
previous boundary

(a) (b)Figure 5.3: Straightening a rectilinear segment
(a) (b) (c)Figure 5.4: Sliding sections during straightening (3 cases)will be able to merge with the current one. The latter gives more room for straighteningfuture segments below the current one. An example of the straightening process is shownin Figure 5.3.Each of the three di�erent cases (R, O1, and O2) experience a slightly di�erent type ofsliding during the straightening process. Examples of these cases are shown in Figure 5.4.The pseudo-code for straightening rectilinear segments whose left endpoints are higherthan their right endpoints (negative slopes) is presented in Figure 5.5. The basic strategyis to work from left to right examining the horizontal sections of the initial transformationand produce the straightened transformation, t0, on the 
y. At any point in the process,the point c is the left endpoint of the next horizontal section to be added to t0. At eachstep, the algorithm tries to merge a horizontal section h by sliding it upwards to the samelevel as the one extending from c. The validity of this merge is determined by comparing h



42StraightenSegmentR(t : transformed segment, B : Previous boundary) ft0 : Straightened segment(cx; cy) : Current pointb : Boundary sectionh : Horizontal section (x1; x2; y)(cx; cy) �rst point of sfor each horizontal segment h = (x1; x2; y) in t from high to low ffor each section b of B above h fif b prevents sliding h vertically to cy fadd horizontal section (cx; x1; cy) to t0(cx; cy) (x1; y)gggif cx < x2 fadd horizontal section (cx; x2; cy) to t0gif cy < y fadd point (x2; y) to t0gg Figure 5.5: Pseudo-code for StraightenSegmentRagainst the previous boundary. When a section is found that cannot be merged, the sectionfrom c is added to t0 and c is advanced to the left endpoint of section h.The approach used to straighten steep octilinear transformations (case O1) is essentiallythe same as that for the rectilinear case. The main di�erence is that it slides and mergesdiagonal (slope �1) sections instead of horizontal ones.As in the case of producing the initial transformation, the shallow-slope octilinearcase (O2) presents some di�culties for straightening. The main di�culty is that a naiveimplementation may revisit portions of the previous boundary in a way that increases thetime complexity of the algorithm.Consider the case of straightening the initial transformation (p1; p2; p3; p4; p5) given inFigure 5.6. For this example, we will assume that the previous boundary does not con
ictwith any of the sections in the initial transformation (they all can be merged). If we
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5Figure 5.6: Straightening a shallow octilinear segmentwork from top to bottom, sliding the �rst horizontal section p2p3 upwards to p1p02 requireschecking that the previous boundary is entirely above the contour (p1; p02; p3). Straighteningthe next section p4p5, will require checking the previous boundary against the contour(p02; p03; p5). Since the two contours that were checked in this example overlap in the xdimension (in the range (p02:x; p3:x)), and do not have the same y limit in the overlap area,a naive approach would require that the overlap region be visited twice. In general, a givenregion may be have to be visited O(k) times for an initial transformation with k sections.This multiple visiting would increase the time complexity of the overall algorithm.The di�culty with multiple visiting only occurs in cases where sections are merged. So,in order to �nd a solution to this problem, we will examine the criteria for sliding a singlesection and see how information can be maintained in a way that does not require revisitingwhile merging sections.Consider the �rst portion of the transformation shown in Figure 5.6, (p1; p2; p3). Inthe x-range (p1:x; p02:x), the previous boundary must be above the horizontal line p1p02. Inthe range (p02:x; p3:x), the boundary must be above the diagonal line p02p3. Determining ifa point (x0; y0) is above or below the diagonal line (with slope -1) through another point(x1; y1) can be done by comparing x0 + y0 to x1 + y1.



44So, to check whether p2p3 can be slid to p1p02, we can scan the boundary in the x-range(p1:x; p3:x) and �nd the boundary point (x; y) with minimum x+ y such that y < p1:y. Ifthis section is slid, the next task will be to perform a similar calculation for sliding p4p5to p02p03. But since p1:y = p02:y, the minimum x+ y value computed for the overlap regionwill be the same for both sections. So, there is no neeed to recompute it, we can merelycontinue examining the previous boundary from p3:x onwards.Pseudo-code for case O2 straightening is presented in Figure 5.7. This algorithm explic-itly visits only the \upper corner points" of the initial transformation (p1; p3, and p5 in theexample in Figure 5.6). The lower corners (c's) and the re
ected lower corners (c0's) areimplied from the upper corners. For examplep2 = c(p1; p3) = (p1:x+ p3:y � p1:y; p3:y)and p02 = c0(p1; p3) = (p3:x� p3:y + p1:y; p1:y)5.2 Running TimeThe time complexity analysis for StraightenLayer is essentially the same as that forTransformLayer. From this we can see that StraightenLayer runs in O(n logn+m)time where n is the number of segments in the extended rubber-band sketch and m is thenumber of jogs in the initial transformation.



45StraightenSegmentO2(t : transformed segment, B : Previous boundary) ft0 : Straightened segmentP : List of pointsp1; p2 : current jogb : Obstruction point from Bm : Minimum x+ y valueP  upper corners of tp1  DelHead(P )b point of B covering p1add p1 to t0m 1while P is not empty fp2  DelHead(P )while b is before p2:x f/* scan boundary for min x+ y */if b:y < p1:y and b:x+ b:y < m fm b:x+ b:ygb next(b)gif m � p2:x+ p2:y f /* merge */p1  c0(p1; p3)g else f /* don't merge */add p1 to t0add c(p1; p3) to t0p1  p2m 1ggif �rst two points in t0 are the same fremove the �rst point from t0gadd p1 to t0if p1 6= p2 fadd p2 to t0greturn t0g Figure 5.7: Pseudo-code for StraightenSegmentO2



466. ResultsThe algorithms described in this thesis were implemented in C and integrated into theSurf layout system [KR78]. This section presents some sample results taken from both realand arti�cial examples. These results are summarized in Table 6.1. The results are dividedinto three sections: Euclidean, Rectilinear, and Octilinear. The column labeled \Euclidean"gives the total wire length of the input sketch before geometric wiring. The results of thetransformation are shown in the columns labeled \Rectilinear" and \Octilinear". Each ofthese columns is divided into two subcolumns. The �rst gives the total wire length aftertransformation. The second reports �gures on intra-segment jogs. 1 The �rst number is the�nal number of jogs. The second number (in parenthesis) is the jog count after the initialtransformation.The entry labeled test5 is an arti�cial hand-prepared example that was devised to testthe geometric wiring algorithms before the \spokes" module was completely debugged. Itcontains 28 simple multi-terminal nets. Even though it is fairly small, it contains enoughinteresting cases to be useful for debugging.1Intra-segment jogs re
ect only those jogs that occur between the two endpoints of some segment in theinitial input|jogs at segment endpoints are ignored. The number of intra-segment jogs is the di�erencebetween the total number of jogs in the transformed layout and the number of jogs in the input sketch.Example Euclidean Rectilinear Octilinearlength length jogs length jogstest5 10,763 14,120 81 (137) 11,349 61 (82)layer0 39,820 51,635 391 (698) 41,841 322 (357)layer1 29,187 35,864 243 (402) 30,734 207 (239)phone0 236,458 297,341 687 (928) 249,255 645 (742)phone1 224,804 279,077 605 (803) 236,613 591 (659)Table 6.1: Sample results



47The examples labeled layer0 and layer1 represent the two layers taken from a portionof a digital design. These examples contain only two-terminal nets. They were generatedthrough the normal Surf design 
ow (global routing, local routing, spoke creation). Itshould be noted that both the rectilinear and octilinear results were generated from thesame (rectilinear) extended rubber-band sketch.The entries labeled phone0 and phone1 are two layers from an analog MCM design.This example contains multi-terminal nets.Window dumps from the geometric wiring process for the layer0 example can be seenin Figures 6.1{6.5. Figure 6.1 shows the input extended rubber-band sketch. The initialrectilinear transformation is presented in Figure 6.2 and Figure 6.3 shows the results afterthe jog removal phase. Figures 6.4 and 6.5 show the initial and straightened octilineartransformations.
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Figure 6.1: Initial input for geometric wiring
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Figure 6.2: Initial rectilinear transformation with 698 jogs.
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Figure 6.3: Straightened rectilinear transformation with 391 jogs.
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Figure 6.4: Initial octilinear transformation with 357 jogs.
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Figure 6.5: Straightened octilinear transformation with 322 jogs.



537. Future WorkThere are a number of possible extensions to the work described in this thesis. A fewof them are described in this section.7.1 Endpoint SizesBoth the algorithm described here and the corresponding implementation assume thatthe width of a rubber-band segment is uniform along its entire length. However, in manytechnologies this is not necessarily true|especially at the ends of the segment. The endsof wires may represent chip IO pins, vias, connections to integrated resistors or capacitors,etc. It is quite common for these objects to be larger than the wires that connect them.Although it may complicate the implementation slightly, extending the current approachto allow for variable width endpoints would provide no conceptual di�culty. The segmentordering phase would have to be modi�ed to take this into account when generating themodi�ed sketch. Also, the UpdateBoundary routine used by TransformLayer andStraightenLayer would have to be modi�ed to incorporate the larger endpoints intothe previous boundary. It is interesting that neither the TransformSegment nor theStraightenSegment routines would have to be modi�ed. This is because these routineshave \no choice" as to the locations of the segment endpoints|so modifying endpoint sizesshould not a�ect these algorithms.7.2 Reducing JogsMore work could also be done on the jog removal phase that follows the initial transfor-mation. The current approach uses a simple heuristic for deciding when to slide a section:a section is slid only if it can be completely aligned with the previous section of the currentsegment. Other techniques may be useful here.Another drawback of the current straightening approach is that it never repositions theendpoints of segments. In some cases, these endpoints should be �xed (pins, vias, etc.).



54However, in some cases segment endpoints represent places that a wire bends around spokeobstacles. There is no reason that the endpoints should be �xed in these cases. Considerthe rubber-band branch shown in Figure 7.1 (a). The initial transformation of this branchmay look something like Figure 7.1 (b). Assuming that there is plenty of room above thisbranch, the best possible straightening is shown in Figure 7.1 (c). Because this solution wasconstrained to pass through the two spoke locations, it must contain at least �ve jogs. Asolution not constrained in this way could be realized with only a single jog (Figure 7.1 (d)).Several examples of these unnecessary jogs can be seen in Figures 6.3 and 6.5. A possiblesolution to this problem would be to group segments into chains and straighten all thesections of an entire chain at once. In the rectilinear case, it is probably su�cient thata chain be monotone in y. However, because of the two di�erent octilinear cases, all thesegments of an octilinear chain may also have to be of similar (steep or shallow) slope.7.3 Variable Interwire SpacingThe approach described in this thesis uses a metal-to-metal spacing that is constantfor all wires on a given layer. There may be some advantage to supporting a variablespacing. For example, it may be necessary in order to generate evenly distributed wiring.One possible solution is to make spacing a function of the segments being separated. TheTransformLayer and StraightenLayer routines could be modi�ed fairly easily tosupport this extension. However, some additional thought will have to be given to theOrderSegments routine.Currently, OrderSegments works by building \precedes" relationships on a modi�edversion of the input sketch. The sketch is modi�ed by sliding endpoints or creating \overlapsegments" to account for the width and spacing requirements of the sketch. This approachrequires that the amount of resources consumed by a given rubber-band segment be afunction solely of that segment. A variable segment-to-segment spacing would violate thisassumption.
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(a)  Rubber−band Branch (b)  Initial Transformation

(c)  Straightened Transformation (d)  Desired Result Figure 7.1: Further Jog Removal7.4 Localized UpdateOne of the main advantages of using the rubber-band wiring model is the ability tosupport an incremental design style. That is, a small modi�cation to the problem shouldresult in a small modi�cation of the �nal result; it should not be necessary to recalculatethe entire solution \from scratch". Using the technique described in this paper, the entiregeometric wiring would have to be recomputed for even a small change to the sketch. If theinternal rubber-band representation were to be hidden from the user, this recomputationmay be too slow to support interactive editing in the geometry domain.To support these types of small changes, it may be useful to develop a localized version



56of the geometric wiring algorithm. Such an algorithm would take an initial sketch, itstransformation, and some localized changes as input. The output would be the updatedtransformation. Hopefully, the updated transformation could be calculated with less workthan transforming the entire sketch.



578. Previous and Related Work8.1 Rubber-band RoutingThe concept of representing wires without specifying their precise geometry has receiveda fair amount of attention in the �eld of VLSI layout. There are many terms used to describethis type of model. Some of these include: rough routing, homotopic routing, and rubber-band routing. This section describes some of the work done in this area.8.1.1 Routability CheckingCole and Siegel address the problem of �nding a detailed routing given a homotopy(DRH) [CS84]. That is, given a placement of modules, terminals along module boundaries,and a rough routing for each net, determine if there is a single layer detailed routingconforming to the homotopy. They showed how to solve the DRH problem in polynomialtime and proved that a DRH problem was routable if and only if it is safe.Leiserson and Maley formalized many of the concepts and ideas used by the Surf system[LM85]. These include the rubber-band equivalent, the rubber-band sketch, and spokes.They also proved, independently of Cole and Seigel, a number of theorems relating theroutability of a sketch to the 
ow and capacity of its cuts. They presented a polynomial timealgorithm for testing the routability of a sketch by transforming it to a legal routing. Thisalgorithm provided the starting point for the Surf spokes algorithms presented [DKS91,Kon92].8.1.2 CompactionMaley presented an algorithm for performing one-dimensional VLSI layout compactionwith automatic jog insertion [Mal86]. This algorithm compacts rigid circuit elements(modules) by treating wires as 
exible objects which indicate the topology of the layout.Maley's work in this area is extended by others [VKLS90, LdDSW91, dDWLS91].



588.2 Enhanced Plane SweepSato and Ohtsuki present the enhanced plane sweep [SO86]. In addition to formalizingthis technique, they apply it to several layout problems including: geometrical design rulechecking, mask generation, and layout pattern spacing.8.3 Channel CompactionThe process described in this thesis of producing a geometric wiring in two steps issimilar to the approaches used by many channel compactors. Channel compactors oftenuse an initial sweep to determine minimum channel height and then a second sweep toembed the wiring. However, the channel compaction problem is slightly di�erent than thegeometric wiring problem in that channel compactors treat terminals as movable objects.Xiong and Kuh present an algorithm for a one-dimensional channel spacer [XK87]. Thealgorithm uses two plane sweeps to transform an initial channel layout to one with minimalchannel height and minimal wire length. The �rst sweep pushes the channel down as far aspossible and creates \all possible jogs". The second sweep works in the opposite directionand generates the actual embedding of the channel. In this sweep, objects are allowed to\slide up" to reduce the wire length and number of jogs, if doing so does not increase thechannel height.A one-dimensional geometrical channel compactor is presented by [RPV+87] by Royle,et al. [RPV+87]. This compactor starts with a symbolic channel routing and uses a two-sweep process to determine the �nal layout for the horizontal routing trunks. The �rstsweep works from bottom to top and determines the minimum channel height. At eachstep, the current trunk is compacted to follow the contour of those below it. Su�cientspacing is provided to allow for wire width and interwire spacing. In the second step, astraightening sweep processes the trunks in the reverse order. The purpose of this step isto reduce the wire length without increasing the channel height. Each trunk is straightenedbetween an upper and lower contour by removing U-turns and by \corner-
ipping".



59Van Ginneken and Jess describe a channel compactor as part of a gridless system forcustom building block layout [vGJ87]. First, the channel is compacted. In this step, theminimum contour of the current trunk is incorporated into the contour of the already-compacted trunks by using a recursive algorithm similar to mergesort. The second wirestraightening phase processes trunks in the reverse order of compaction. It uses a left toright sweep between an upper and lower contour to realize the current trunk using thefewest number of jogs.Hughes studies a number of topological routing problems including unconstrainedvia minimization, and one-dimensional channel compaction with automatic jog insertion[Hug92]. He solves the channel compaction problem in two phases: determining the mini-mum channel height and then producing a routing that minimizes jogs and wire length. Bybasing compaction constraints on topological routability and careful use of balanced searchtrees, he is able to improve on previous results.8.4 Jog ReductionLiao, Sarrafzadeh, and Wong present a solution for the single-layer global routing prob-lem [LSW91]. After constructing an initial geometric routing, homotopic post-processingsteps are applied to minimize wire length and remove jogs. A topologically equivalent layoutwith minimum wire length is �rst constructed by a process of removing empty-U's. Oncethis is done, a Greedy-Slide algorithm is applied to reduce the total number of jogs. TheGreedy-Slide algorithm produces a minimum bend routing for a single monotone chain ata time by treating all other wiring as hard constraints (obstacles). The Greedy-Slide algo-rithm makes no mention of straightening order for the chains. Since it treats other wiresas obstacles, the �nal result may be far from a global (or even local) optimum in terms ofjogs.Tuan and Teo present a solution to river routing with minimum number of jogs [TT91].This solution requires that the number of horizontal tracks be known in advance. It uses



60dynamic programming to compute the minimum jog river routing in O(n � s) time wheren is the number of nets and s is the number of horizontal tracks.



619. SummaryThe contribution of this thesis was to present a method for the �nal transformation stageof the Surf topological routing process. Algorithms have been presented that can be usedto transform an arbitrary-angle routing in which all of the width and spacing requirementshave been met (extended rubber-band sketch) to a topologically equivalent form satisfyingthe requirements of a more restricted geometry such as rectilinear or octilinear wiring.This process is divided into three major steps: ordering the segments, producing aninitial transformation, and straightening the transformation. Combining the individualcomponents yields a total algorithm that runs in O(n logn+m) time where n is the numberof rubber-band segments and m is the number of wire sections in the initial transformation.The algorithm has been implemented in C and incorporated into the Surf system. It hasbeen applied to several examples. Finally, several future modi�cations and extensions havebeen suggested.
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