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1 IntroductionConsider the following problem: Given a random sample x1; : : : ; xm drawn independently froma distribution P with density p, �nd the maximum likelihood estimate in a family of regularexponential densities. This problem of density estimation is also known as minimization ofrelative entropy (Kullback-Leibler divergence) subject to empirical constraints (see e.g. [Kul59,Csi75]). In this work we describe an approximate steepest descent strategy1 converging to theMLE in exponential families of densities whose log-densities are linear combinations of a setof bounded basis functions. We show tight lower and upper bounds on the increase of thelog-likelihood function (or, equivalently, decrease of the relative entropy) at each iteration, as afunction of the norm of the gradient.Let (X;B) be a measurable space. In the following, all densities on (X;B) are understoodwith respect to a �nite dominating measure �. We recall the de�nition of the relative entropy(Kullback-Leibler divergence) D(pkp0) between two densities p and p0 on (X;B):D(pkp0) = ZX p ln pp0 :Choose a positive integer d and let � = f�1; �2; : : : ; �dg be a se of bounded basis functions�k : X ! IR. Fix also a reference density q0 on (X;B).We will use the notation � � �(x) for the inner product Pk �k�k(x).We now de�ne the regular exponential family E(�) = nq� : � 2 IRdo of densities q�(x) =q0(x) exp(� � �(x)�  (�)), where the function  from IRd to IR is de�ned by (�) = ln ZX e���q0: (1)For any density p and for any � 2 IRd, de�ne �(p) = (�1(p); : : : ; �d(p)) by�k(p) = Ep [�k] for k = 1; : : : ; dand �(�) = (�1(�); : : : ; �d(�)) by�k(�) = Eq� [�k] for k = 1; : : : ; d:If � is a set of linearly independent functions2, it is known that  is strictly convex (see e.g.[Bro86]). As a consequence, also D(pkq�) is strictly convex in �, which is seen fromD(pkq�) = Ep �ln 1q� ��H(p)= �Ep [� � ��  (�)]� Ep hln q0i�H(p)=  (�)� �(p) � � +D(pkq0)�H(p) (2)where H(p) is the entropy Ep [� ln p]. Hence, if � is linearly independent and there exists a�� 2 IRd minimizing D(pkq�), then �� is unique. Moreover, rD(pkq�0) = 0 if and only if �0 = ��.1The strategy was originally introduced in [LLW91] as an iterative method for the solution of sparse systemsof linear equations.2By linear independence of the set of functions we mean that if (�� �0) � �(x) is constant almost everywhere,then � = �0. 1



Finally, observe that for any density p and any vector � 2 IRdrD(pkq�) = �(�)� �(p) (3)as it can be derived from (1) and (2).2 Description of the strategyWe now introduce the iterative likelihood maximization strategy. Let k � k be the Euclideannorm. We assume that the strategy is parametrized with respect to the choice of the set of basisfunctions �. In order to simplify the analysis, we also restrict the range of each basis function�k (k = 1; : : : ; d) in the interval [�p1=4d;p1=4d ]. This ensures that for any density p and forany x 2 X , k�(x)� �(p)k 2 [0; 1].On each run, the strategy is given as input a reference density q0 and a random samplex1; : : : ; xm independently drawn from a distribution P with density p(x). The output consistsin a in�nite sequence q1; q2; : : : of densities in E(�).Let �t = (�t1; : : : ; �td) such that�tk = Eqt [�k] for k = 1; : : : ; dand ~� = (~�1; : : : ; ~�d) such that~�k = 1m mXi=1 �k(xi) for k = 1; : : : ; d:The sequence of densities qt is such that for each t � 1 and for each x 2 Xqt+1(x) = q0(x)e(�t+��t)��(x)� (�t+��t) (4)where �t is the parameter vector after the t-th iteration (assuming �0 = 0), and ��t = �t+1� �tis de�ned by ��t = tanh�1(k~�� �tk)k~�� �tk (~�� �t): (5)It is easily seen that for all t � 1, qt is in the exponential family E(�).In the next section we show that the increment (5) corresponds to exact steepest descentwith respect to an approximation of the Kullback-Leibler divergence along the direction of thegradient.3 AnalysisIn this section we prove bounds of the increase of the log-likelihood at each iteration. Thelog-likelihood function for the family E(�) is`(�) = � ln mYi=1 q�(xi)= m (� � ~��  (�)) : (6)2



Hence, for a set � of linearly independent basis functions, the maximum likelihood estimate q�̂in the family E(�) is characterized by the unique �̂ 2 IRd satisfying the equation�(�̂) = ~�: (7)Conditions guaranteeing the existence of the MLE in exponential families can be found in [BS90,Cra76].Using equations (2), (6) and (7), we can rewrite the Kullback-Leibler divergence asD(q�̂kq�) =�̂ � ~�� (�̂)� `(�)=m. Therefore, the problem of maximizing the log-likelihood function is equiv-alent to the problem of minimizing D(q�̂kq�).Note also that equation (3) yields rD(q�̂kq�) = �(�)� ~�.We will make use of the following two inequalities.For all k 2 IR and x 2 [�1; 1] ekx � cosh(k) + x sinh(k): (8)For all x 2 [�1; 1] x tanh�1(x) � ln 11� x2 : (9)The �rst inequality can be proven by applying Jensen's inequality. The second inequality isproven in the Appendix.We now prove that the increase of the log-likelihood D(q�̂kqt)�D(q�̂kqt+1) at each iterationis upper and lower bounded within a small constant factor by a monotone increasing functionof krD(q�̂kq�)k.Theorem 1 For all t 2 IN,12krD(q�̂kqt)k2 � 12 ln 11� krD(q�̂kqt)k2 (10)� D(q�̂kqt)�D(q�̂kqt+1) (11)� krD(q�̂kqt)k tanh�1(krD(q�̂kqt)k) (12)� ln 11� krD(q�̂kqt)k2 : (13)Proof. Inequality (10) is easily derived from Taylor's Theorem. For proving inequality (11) wefollow [LLW91]: Let S � X be the �nite support of the empirical measure on X induced by thesample x1; : : : ; xm. Observe that because of the normalization of the �k 's, both k�(x)� ~�k andk�(�)� ~�k lie in [0; 1] for all x 2 X and � 2 IRd. Rewrite equation (4) asqt+1(x) = qt(x)e��t��(x)Zt+1 (14)where Zt+1 = ZX e��t��qt: (15)Using equations (5), (14), (15) and inequality (8) we can showD(q�̂kqt)�D(q�̂kqt+1) = Xx2S(��t � �(x))~p(x)� lnZt+13



= ��t � ~� � ln ZX exp h��t � �i qt= � ln ZX exp h��t � (�� ~�)i qt (16)� � ln "cosh(k��tk) + sinh(k��tk) ��tk��tk � (�t � ~�)# : (17)Let G = krD(q�̂kqt)k = �t � ~�. Replacing ��t with the right-hand side of equation (5) andusing the standard formula tanh�1(x) = lns1 + x1� x (18)after some algebra we obtainD(q�̂kqt)�D(q�̂kqt+1) � � ln2412 0@s1 +G1�G +s1�G1 +G 1A� G2 0@s1 +G1�G �s1�G1 +G 1A35= 12 ln 11� G2 :This proves inequality (11).Inequality (12) is proven using equation (16), Jensen's inequality and equation (5):D(q�̂kqt)�D(q�̂kqt+1) = � ln ZX exp h��t � (�� ~�)iqt� � ZX ��t � (�� ~�)qt= ��t � (~�� �t)= G tanh�1(G):Finally, inequality (13) is obtained by applying inequality (9). 2The choice of ��t exactly maximizes (17). To see this, note that this term is maximized when��t = ��(�t � ~�) = ��rD(q�̂kqt) for some choice of � > 0. To �nd �, we di�erentiate@@� h cosh(�G)�G sinh(�G)i= G sinh(�G)�G2 cosh(�G):Setting the derivative equal to 0 and solving with respect to � yields� = tanh�1(G)Gfrom which the optimal increment (5) is derived.We conclude the section by showing a couple of applications of Theorem 1 for obtaining lowerbounds on the speed of convergence of the strategy.4



Corollary 1 D(q�̂kq�t)�D(q�̂kq�t+1) � D(q�̂kq�t)22k�̂k :for t = 1; 2; : : :.Proof. From inequalities 10 of Theorem 1 we obtainq2(D(q�̂kqt)�D(q�̂kqt+1)) � krD(q�̂kq�t)kwhich holds for any t = 1; 2; : : :. Also, because of the convexity of D(q�̂kq�),kD(q�̂kq�t)k � krD(q�̂kq�t)kk�̂ � �tk (19)� krD(q�̂kq�t)kk�̂k:A simple combination of the above inequalites then yields the corollary. 2For the second result we need a preliminary lemma.Lemma 1 ([BS90]) Assume � is an orthonormal basis with respect to a density q whose log-density ln q is bounded. Let A be such that for all � 2 IRdk ln q�k1 � Ak ln q�kL2(q): (20)Choose �; �0 2 IRd. If k� � �0k � r, thenD(q�kq�0) � 12k� � �0k2 exp��k ln qq� k1 � 2Ak� � �0k� 2We are now ready to prove a second recurrence which holds in a region close to the optimum.Theorem 2 Let � be orthogonal with respect a log-bounded density q and such that inequality(20) is satis�ed for some constant A <1. Then there are positive constants a and b such thatfor all �t 2 IRd, if k�t � �̂k � r, then the following recurrence holds for all t = 1; 2; : : :D(q�̂kq�t)�D(q�̂kq�t+1) � D(q�̂kq�t)2aebr :Proof. The theorem is proven by considering the following chain of inequalities.q2(D(q�̂kq�t)�D(q�̂kq�t+1)) � krD(q�̂kqt)k� D(q�̂kqt)k�̂ � �tk� D(q�̂kqt)qD(q�̂kqt)aebr :The �rst inequality is again a consequence of Theorem 1, the second is an application of in-equality 19 in Corollary 1, and the third is derived from Lemma 1. This concludes the proof.2 5



4 ConclusionsIn this paper we have described a strategy for likelihood maximization (relative entropy mini-mization) in families of exponential densities, assuming that the log-densities are spanned by aset of bounded basis functions. Our strategy is shown to perform steepest descent on an approx-imation of the relative entropy function. Upper and lower bounds on the decrease of the relativeentropy at each iteration have bee proven. Our bounds are expressed in terms of a function ofthe norm of the gradient and are tight within a constant factor of 12 . Bounds on the speed ofconvergence of our strategy have been also shown.References[Bro86] L.D. Brown. Fundamentals of Statistical Exponential Families, volume 9 of LectureNotes - Monograph Series. Institute of Math. Stat., 1986.[BS90] A.R. Barron and C. Sheu. Approximation of density functions by sequences of ex-ponential families. Technical Report 8, University of Illinois at Urbana-Champaign,Department of Statistics, 1990. To appear in the Annals of Statistics.[Cra76] B.R. Crain. Exponential models, maximum likelihood estimation, and the Haar con-dition. Journal of the American Statistical Association, 71:737{740, 1976.[Csi75] I. Csisz�ar. I-divergence geometry of probability distributions and minimization prob-lems. Ann. Probab., 3:146{158, 1975.[Kul59] S. Kullback. Information Theory and Statistics. John Wiley, 1959.[LLW91] N. Littlestone, P.M. Long, and M.K. Warmuth. On-line learning of linear functions.Technical Report UCSC-CRL-91-29, UC Santa Cruz, 1991. An extended abstractappeared in: Proceedings of the 23rd ACM Symposium on the Theory of Computation.
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AppendixProof of inequality (9). Using the equivalence (18) we show that the functionf(x) = x2 ln�1 + x1� x�+ ln(1� x2)is non-positive in the interval [�1; 1]. Observe thatf 0(x) = 12 ln�1 + x1� x�� x1� x2= tanh�1(x)� x1� x2 ;A root of f 0 is 0. Also note that f(0) = 0. Since the second derivativef 00(x) = � 2x2(1� x2)2is 0 at x = 0 and negative elsewhere, x = 0 is the only extremum of f 0 and it is a maximum.This completes the proof of the lemma. 2
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