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Abstract

We look at sequential classification and regression problems in which {£1}-labeled in-
stances are given on-line, one at a time, and for each new instance, before seeing the label,
the learning system must either predict the label, or estimate the probability that the label
is +1. We look at the performance of Bayes method for this task, as measured by the total
number of mistakes for the classification problem, and by the total log loss (or information
gain) for the regression problem. Our results are given by comparing the performance of
Bayes method to the performance of a hypothetical “omniscient scientist” who is able to use
extra information about the labeling process that would not be available in the standard
learning protocol. The results show that Bayes methods perform only slightly worse than
the omniscient scientist in many cases. These results generalize previous results of Haussler,
Kearns and Schapire, and Opper and Haussler.



1 Introduction

Several recent papers in the area of computational learning theory have studied sequential
classification problems in which {£1}-labeled instances (examples) are given on-line, one
at a time, and for each new instance, the learning system must predict the label before it
sees it [HLWO90, Lit89, LW89, Vov90b, HKS91, OH91a, SST92, MF92]. Such systems adapt
on-line, learning to make better predictions as they see more examples. If n is the total
number of examples, then the performance of these on-line learning systems, as a function
of n, has been measured both by the total number of mistakes (incorrect predictions) they
make during learning, and by the probability of a mistake on the nth example alone. The
latter function is often called a learning curve (see also [HKLW91]).

Sequential regression problems have also been studied [Daw84, Dawa, Dawb, Vov90a,
Vov92, Yam91, Yam92, Ama92, AFS92, SST92, MF92]. In this case, instead of predicting
either +1 or —1, the learning system outputs a probability distribution, predicting that
the label will be +1 with a certain probability, and —1 with one minus that probability.
When there is some noise or uncertainty in the labeling process, an output of this type is
more informative than a simple prediction of either 41 or —1. The notion that the purpose
of statistical inference is to make sequential probability forecasts for future observations,
rather than to extract information about parameters, is known as the prequential approach
in statistics [Daw84]. To measure the performance of a sequential regression system of this
type, it is common to use the log loss function. If you predict that the label will be +1 with
probability p and —1 with probability 1 — p, then your log loss is — log p if the label is +1
and —log(1 — p) if the label is —1, i.e. whatever happens, your loss is the negative logarithm
of the probability you assigned to that event. As in sequential classification, performance
has been measured both in terms of total log loss over all examples, and in terms of expected
loss on the nth example (and in several other ways as well).

In this paper we look at the performance of Bayes methods for both classification and
regression, analyzing only the total loss over all examples. Our viewpoint is decision theo-
retic, so both classification and regression are treated in a common framework. When the
examples are generated randomly, the average total loss of a method will be called the risk.
Bayes methods are optimal in that they have the smallest possible risk, at least when the
examples are generated randomly by the same process implicit in the prior distribution used
by the method. When the examples are not generated at random by this process, then the
performance of Bayes methods degrade. However, we show that they still perform well in
many cases.

We do this by introducing the idea of an “omniscient scientist” who is privy to extra
information about the nature of the process that generates the examples, and comparing the
performance of Bayes method to that of the omniscient scientist. For example, if each label
is generated by applying a fixed function to the instance and then adding noise to the result
(i.e. flipping the sign of the value with some probability), then the omniscient scientist will
already know the fixed “target function” and will only have to deal with the noise, whereas



the Bayes method will have to try to learn the target function and also deal with the noise.
We show that Bayes method does not perform much worse than the omniscient scientist in
many cases of this type. In particular, the total loss of the omniscient scientist is usually
linear in n, whereas the additional loss of Bayes method is only logarithmic in n. We obtain
upper bounds on this additional loss that generalize related bounds obtained in [HKS91]
and [OH91a] (see also [Ama92, AFS92, SST92]). We also look at the performance of the
Bayes method on an arbitrary sequence of examples, as compared with the performance of
an omniscient scientist who already knows the best target function to use in predicting the
labels of that particular sequence of examples. Again, in many cases Bayes methods do not
do much worse. These results extend work in [Vov90b, LW89], and also ties in with the
coding/information theory approach in [MF92, FMG92, FM92] (see also [Yu]). Throughout
the paper, our emphasis is on obtaining performance bounds that hold for all sample sizes
n, rather than asymptotic bounds that hold only for large n.

2 Formal Framework

Here we outline the general decision theoretic framework we use. Let X, YV and A be sets,
called the instance, outcome, and decision spaces, respectively, and let L : ¥ x A — R
be a loss function. In this paper we assume that Y = {£1}, although the basic formal
framework, definition of Bayes method, and the results for log loss hold for more general Y.
When Y = {£1}, elements of Y may be thought of as classification labels. However, because
we sometimes consider more general Y, we will use the more general term “outcomes”. The
particular kinds of loss functions we consider are the following.

1. 0-1 loss (used for the classification problem): A =Y = {£1}, action § € A is inter-
preted as a prediction of the outcome y € Y, and L(y,y) = 1if g # vy, L(y,3) = 0 if

y=1y.

2. log loss (used for the regression problem): Here instead of predicting a single outcome,
an action specifies a probability for each possible outcome 3 € Y. The decision space
A is the family of all probability distributions on Y, and for y € Y and distribution
Pe A, Ly, P) = —log P(y). The base of the logarithm can be arbitrarily chosen. If
we need to be specific, we use the notation In and log, to denote the natural logarithm
and the logarithm base two, respectively.

A pair (z,y), with z € X and y € YV is called an example. We assume that we receive a se-
quence S = (x1,Y1), ..., (Tn,yn) of examples on line, one at a time. The number n of exam-
ples is called the sample size. For each time ¢, 1 <t < n, given only (x1,y1), ..., (2t—1, Yt—1)
and x;, we must choose an action a; € A. After taking this action, we observe the outcome
yt, and suffer loss L(ys, at). Our goal is to choose actions aq,...,a, so as to minimize our
total loss Y7 L(ye, ay).



Throughout most of this paper we focus on the case when the sequence zq,...,x, of
instances is fixed arbitrarily and only the outcomes v, ..., ¥y, vary. If one wants to use these
results for the case when both the instances and the outcomes vary, one can either average
over possible sequences xy,...,x,, or take the worst case over such sequences, depending
on what type of result one desires. For now let us fix the sequence of instances xq,...,x,.
To simplify the notation in what follows, we will no longer mention the z;s in our formulae,
focusing only on the sequence yy,...,y, of outcomes. For a particular sequence ¥, ..., y,,
for further brevity, we define y* = (y1,...,y) for every 0 < ¢ < n. Thus y° denotes the
emply sequence.

Finally, for a random variable X, we denote by E(X) the expectation of X. We use
P, Py, etc. to denote probability distributions. For random variables X and Y, we denote
a conditional distribution on Y given that X = z by Py ,. If the distribution is not clear
from the context when we take an expectation, then we make it explicit by subscripting, as

in Ep,(Y) or EleI(Y). The latter is abbreviated E(Y |x).

2.1 Priors

In this paper we concentrate on Bayes methods for choosing the actions aq,...,a, to try to
minimize the total loss on the outcomes yq,...,y,. Bayes methods utilize prior information
on which sequences of outcomes are more likely than others in order to choose appropriate
actions. For fixed instance sequence wq,...,x, this prior information consists of a prior
distribution P over an (arbitrary) index set ©, and a class {F; : § € O} of probability
distributions over the set Y of possible outcome sequences. (When O is continuous, P is
a density.) Each distribution Py actually represents a conditional distribution on possible
outcome sequences i, ...Y,, given that the instance sequence is x4,...,x,. However, since
this instance sequence is fixed for now, to avoid cluttering our notation, we omit this implicit
conditioning on the w;s.

The prior information used by a Bayes method can be interpreted as the belief that the
sequence of outcomes is generated at random in the following manner. First an index 6 is
selected at random from O according to the prior distribution P. The index # is viewed as an
unknown underlying “state of Nature” that determines the probabilities of various sequences
of outcomes via the corresponding distribution Fy. After 6 is chosen, the actual outcome
sequence y" = yy,..., Y, is chosen at random from Y according to P;. Thus the outcome y;
can be considered to be a realization of the random variable Y;, 1 <t <n, where Y7,...,Y,
are (not usually independent) random variables with joint distribution defined by the above
two step process. Note that implicit in this model is the assumption that the action taken at
the current time ¢ does not affect the outcome at time ¢, nor do past actions influence future
instances or outcomes. Thus the model studied in this paper is much more appropriate for
problems like predicting the weather than for learning to fly an airplane.

Even though they implicitly make very specific assumptions about how outcomes are
generated, Bayes methods can be applied whether or not outcome sequences are really gen-



erated in the assumed manner or an equivalent manner. We evaluate the performance of
Bayes methods both under the optimistic assumption that outcome sequences are gener-
ated in the manner described above, and under certain more pessimistic assumptions. In
the extreme case, even though the Bayes method uses a prior distribution, we analyze the
performance of the method assuming nothing about the way the actual outcome sequence is
generated [Daw84, Vov90h, LW89].

We are often interested in certain special types of prior information that may be available
to help choose an appropriate action. The type of prior information available determines
the kind of learning problem one has. Three special cases of interest are described below, in
order of increasing generality. We present results for some of these special cases later.

Case 1: Noise-free functions. In this case, for each state of nature § € © there is
a function fy : X — Y. Let F = {fy : 0 € O}. By assuming that initially a state of
nature € O is chosen at random according to the prior P, we are in effect assuming that a
target function fy is chosen at random from F according to the induced prior on F. After the
target function is chosen, for any instance @ € X, the outcome y is fs(x), independent of any
previous instances, outcomes and actions, i.e. a state of nature is deterministic and noise-
free. Thus for any # and any fixed sequence of instances xq,...,x,, the outcome sequence
Y1, .-, Yn 18 completely determined: the distribution P, assigns probability 1 to the event
(Y1s- - ¥n) = (fo(x1),..., fo(x,)). The performance of Bayes methods for this case was
studied in [HKS91, OH91b].

Case 2: Functions corrupted by i.i.d. noise. Here a state of nature is represented
by a function, but the the observations are altered by an independent noise process. Thus,
as in Case 1, for each § € O there is a possible target function f; : X — Y, and some fy is
chosen at random according to the prior P. However, for the instance sequence x1,..., z,,
instead of observing the outcome sequence (y1,...,yn) = (fo(x1),..., fo(x,)), we observe
(Y1s--stn) = (mfo(x1), ... nafo(x,)), where the (unobserved) noise events nq,...1n, are
independent and identically distributed, with n; = —1 with probability A and n; = +1 with
probability 1 — A, the noise rate A being known. Since for a given # and instance sequence
x1,...,T,, many different outcome sequences are possible, here P; is not a trivial distribution
on Y like it was in Case 1. The performance of Bayes method for this case was studied in
[OH91a] for a particular class of functions.

Case 3: Conditionally independent Y;s. In this case, the random variables Y7,...,Y,
are conditionally independent given § and x4,...,2, (and completely independent of the
actions taken). This includes the previous case, as well as the more general cases in which
either the noise rate is not known but we have a prior distribution over possible noise rates, or
the noise events are independent but not identically distributed. This latter case occurs, for
example, if the distribution for the noise event 1; depends on the instance x4, i.e. observations
of the outcome are less reliable for some instances than they are for others. One way to
capture this is with the statistical regression setup in which for each § € O there is a
distribution Dy on X X Y, and after 4 is chosen, examples (z1,y1),..., (L, yn) are chosen
independently according to Dy. Thus for a given 6§ and zq,...,z,, the random variables



Yy, ..., Y, are independent, and the distribution of Y; is the marginal of Dy for X = z;. For
this case Py is the joint distribution of these Y;s.

2.2 Definition of Bayes Method

We now return to the most general case where O indexes an arbitrary set {FP; : € O} of
distributions on Y™, i.e. arbitrary joint distributions on the random variables Yi,...,Y,.
In this section we derive the general form of Bayes method for this case. To simplify our
formulae, we use the following notation.

e P(0) denotes the prior probability of state § € O, or the density at 8 if the prior is
given as a density function.

o Forallt,0<¢<n,and § € O,

P(y"10) = Po(y") = Pol (41, - -, ) 9 = yi, 1 <0 <t}

For any y € Y,
P(Yi=yly'™"0) = P(Yi=yly'™)
= Pﬁ{(?jlv73)7%)gz:ylvlSlét_lvﬁt:y}/Pe(yt_l)

(assuming that Pp(y'~') # 0, else it is undefined.).

P(y') = Ypco P(y'10)P(0) it O is countable, otherwise P(y") = [ycq P(y'|0)P(0)d0.

(")
For any y € Y, P(Y; = yly'™") = Yoo P(Y: = yly™1, 0)P(A|y'~t) if O is countable,
otherwise P(Y, = yly'™") = fyeo PV = yly'™", 0)P(0ly'~")d0.

Note that P(0]y"), used above, is calculated by Bayes rule:
P(O)P(y']0)
P(y")

Given the above notation, Bayes method of choosing actions can be stated quite simply:

Ply") =

At each time ¢, choose the action a € A that minimizes Y P(Y; = y|y"™")L(y, a).
yey

The logic of this is simple. If your belief that outcome sequences are generated at random in
the two step process described above is correct, then P(Y; = y|y‘*~') is the probability that
the 1" outcome will be y, given that the previous ¢ — 1 outcomes were yq,...,y,_1. This is
called the posterior probability of y (having seen y*~'). Hence 3_,cy P(Y; = y|y"™")L(y, a) is
the expected loss you will suffer if you take action @ at time ¢ (the posterior expected loss).
Bayes method is simply to choose the action that minimizes the (posterior) expected loss.
Bayes method leads to familiar strategies for both the 0-1 and log losses. Here we describe
the action a; taken by Bayes method in each of these cases for a general outcome space Y.

6



1. 0-1 loss:

ap =19y, = argminggy Z P(Y; = yly"™")

yeY,y#£y
y ) (1)

= argmaxycy P(Y: =
Hence in this case Bayes method predicts the outcome that has the highest posterior

probability.
2. log loss:
r : t—1 1
a; =P, = argminp,, Y P(Y,=yly" ") log =
yey P(y)
= Py (whenever this distribution is in A) (2)

The latter equality follows from the fact that the relative entropy! is minimal between
a distribution and itself (see e.g. [CT91]). Hence in this case Bayes method simply
produces the posterior distribution on Y; as its action.

Since Bayes method always chooses the action that minimizes the posterior expected loss,
it is clear that when the actual outcome sequence is in fact generated by the two step random
process implicit in the Bayes prior, then the expected loss at each time ¢ is minimized by
this strategy, among all possible prediction strategies. Hence the expected total loss is also
minimized by the Bayes method. The expected (total) loss is known as Bayes risk, and
denoted

BP) = BipgesP) = 3 PO") Ly 07 )
yne n
where L%ayes,P(yn) is the total loss on the outcome sequence yy,...,y, when the actions

taken are those of the Bayes method using prior P.

2.3 Evaluating Bayes Performance: Omniscient Scientists

Because the Bayes method is optimal in terms of the risk when outcome sequences are drawn
according to the given prior, the Bayes risk is a lower bound on the risk of any strategy for
choosing actions in this case. In the following sections we give some estimates of the Bayes
risk, as a function of the sample size n, in some common cases. However, before proceeding
with this, we define a few more pessimistic types of risks we want to look at.

First, let us still assume that the true underlying “state of Nature” is some 6* € O,
and that the outcome sequence y" is chosen at random according to the distribution Fys.

1See section 3.2 for a definition of relative entropy.



However, let us not assume that 6* itself is actually chosen at random. Rather, for each
possible § € O, we define the risk when 8 is true by

r(0) = Phages(®) = 3 P10 L gy 0™, (1)

Thus r(8) is the average total loss of Bayes method using an (implicit) prior P over possible
states of Nature, when the outcome sequences are in fact generated randomly according to
the particular state of nature §. Of course, Bayes method does not minimize the risk in this
case (i.e. for a particular § = 6*). To minimize the risk for a particular §*, we would require
an omniscient scientist (OS) who somehow knew at the outset, before any examples were
given, that §* was the true state of nature. To obtain optimal risk for this particular 6*,
the omniscient scientist would then use a Bayes method in which the prior distribution P
over the index set O assigns probability 1 to #* and probability 0 to everything else. Hence
the omniscient scientist is also a Bayesian, but a better informed one. We denote the total
loss on the outcome sequence 4, ...,%, when the actions taken are those of the omniscient
scientist using true state 6* by Lgsﬁ*(y”). Similarly, we denote the risk of the omniscient
scientist when 6* is true by

Tos(e*) = Z P(ynw*)[fgs,e*(yn)- (5)

Note that for noise-free functions, the risk rog(6*) of the omniscient scientist is zero for any
reasonable loss function, since in this case knowledge of the true state of nature §* allows one
to predict the outcomes perfectly. In the case that © indexes a set of functions corrupted
by i.i.d. noise, the risk ros(8*) is simply n times the average loss of predicting one noisy
outcome, knowing the distribution of that outcome. Surprisingly, we show below that in
many cases the risk of the original Bayes method, which does not know #*, is not much
worse than that of the omniscient scientist, no matter what 6* is the true state of Nature.
Finally, we might be much more pessimistic, and assume nothing whatsoever about the

actual outcome sequence y". We can simply look directly at the total loss L%ayes,P(yn)

of the Bayes method (using prior P) for each fixed outcome sequence y™. Of course, it is
usually the case that for any outcome sequence y™ there is a strategy for choosing actions
that does extremely well on that particular sequence. So it is uninteresting (and perhaps
unfair) to compare the performance of Bayes algorithm on each particular sequence to the
performance of the best strategy for that sequence. However, if we again restrict ourselves
to the type of omniscient scientist introduced above, then we do get some interesting results.
In this case the omniscient scientist is not as omniscient as she could be, i.e. she doesn’t
know beforehand what the outcome sequence y”™ will be; rather, she knows which state of
nature # € O is the best one to assume true for the particular sequence of outcomes y" that
is about to happen, i.e. she knows 0 = é(y”) = argmingegljgsﬁ(y”). The risk for the OS in
this case is

Losa(y") = min Lo o(y")-



Again surprisingly, we show below that in many cases the risk of the original Bayes method
is not much worse than that of the omniscient scientist, no matter what the actual outcome
sequence y" is.

One final note: In defining r(8), R(P), etc. in this and the previous section, we have
assumed that the particular loss function being used is clear from the context. If this is not
the case, then a subscript will be used to denote the loss function, as in Ry, or Rg_q. Other
subscripts may be dropped if they are clear from the context.

3 Results for Log Loss

Throughout this section the loss function is assumed to be the log loss. All of the results in
this section, except for the specific applications mentioned in the last subsection, hold when
Y is an arbitrary countable set. By changing to densities in appropriate places, they hold
also for continuous Y.

3.1 Performance on Arbitrary Outcome Sequences

We begin with the most pessimistic case, assuming nothing about the outcome sequence y".
As we have noted above, for the log loss scenario, Bayes method simply returns the posterior
distribution as its action. Thus the action taken at time ¢ is

ay = PYt|yt—1.

Hence the total loss of Bayes method is

n

L%ayes,p(yn) = ; Ly, ar)

= —> log P(yly"™)

t=1

= —log [T P(wly'™")

t=1

— —log P(y"). (6)

Hence the total loss is the information gained by seeing the outcome sequence y". This
simple information theoretic interpretation of the total loss is what makes the log loss so
useful.

We want to compare the total loss of Bayes method to that of an omniscient scientist
who already knows the best state of nature 0 € © to assume for predicting the outcome
sequence 3", even before the outcomes are observed.

For each time ¢, the omniscient scientist returns the distribution

ay = Pt - PYt|yt—17é-

9



Hence the total loss of the omniscient scientist is

n

Losi(y") = D0 Ly, ar)
=1

= - Zlogp(yt|yt—17é)
t=1
= —log H P(?Jt|yt_laé)
t=1
= —log P(y"10) ")
The state § used by the omniscient scientist is the best possible for the sequence y”", i.e.
0= e(yn) = al"gmiﬂee@{Lgs,e(yn)} = argmineee{—logP(y”W)} = argmaX%@P(y”W).

Hence in the case of the log loss, 0 is the mazimum likelihood estimate (MLE) of the
“true” state of nature, based on the (as yet unseen) outcome sequence y". (Even though in
this section we do not assume there really is a “true” state of nature.)

We focus now on the difference between the Bayes loss and the loss of the omniscient
scientist. This difference is given by

L") = Liayes p(U") = Log (y")

P(y"[0)
log ————. 8
5P )
Let us first assume that © is countable. Then from the above, we have
P(y"10)
LAy") = lo
W=
P(y"|d
log (y"10)
>seo0 P(y"|0)P(0)
< P(y"l0)
P(y"|0)P(0)
1
= lo < 9
550 (9)

Thus the additional loss suffered by the Bayes method is at most the extra information
provided to the omniscient scientist, namely the number of bits needed to describe the MLE
0 with respect to the prior P. This observation was made in [DMW88]. However, it may be
something of a “folk theorem” in the statistics/information theory community.

The above argument cannot be applied if O is uncountable and P is a distribution on
O unless P puts positive mass at the point de o (and hence cannot be represented as a

10



density), or P assigns positive probability to the set of all # that are MLEs, in the case
that the MLE 0 is not unique. Furthermore, for both countable and uncountable @, even if
the prior distribution does put positive mass on the MLE é, the above estimate ignores the
beneficial effect of other # € © that may also give the outcome sequence y" relatively high
probability, and thereby help the Bayes method to perform better on y". We now derive
some better upper bounds that overcome these shortcomings. These upper bounds can also
be applied in the case of countable O, although we state them only in the continuous form
here. We begin with the following observation.

L(y") = log L;?;Li)
b P(y"|9)
= BT B0y P(0)d6

(
1 P(y"19)
= g/ee@ Pl

_ 1 PO oy

— g/o PO Pl vd (10)
- o1 Pyrd)  —Inz

— —log/o P{H.glnp(ynw} < =5

= —log /OOO P{o: %1 PEzn:Z; < z}ne "dx (11)

Step (10) follows from the fact that E(Z) = [ P{Z > z}dz for any random variable Z
taking values in the interval [0, M], and the last step follows by a simple change of variable.
Let .
P(y™|0
P(y*10)

./\/T(é,y”) ={0: lhq
n

and )

g(r) = PN.(0,y"))
for each r > 0. Intuitively, for small r we may think of ./\/T(é, y") as a kind of “neighborhood”
around the MLE 6 in which other 8 € © live who assign similar probabilities to the outcome
sequence y". When this neighborhood has large enough prior probability ¢(r) for small
enough “radius” r, then Bayes method will work well for that y". For larger r, the negative
exponential term in the integral (11) dominates, and the contribution is negligible. What

radius is small enough depends on the rate at which ¢(r) grows. Since ¢(r) is nondecreasing,
we can use the estimate

/Oo g(x)ne™™dx > sup{g(r) /Oo ne "dzr}
0 r

r>0

11



= sup{g(r)e™""} (12)

r>0

to obtain (from (11) above)

LA(y") < —logsup{g(r)e™"}

= inf{—log (g(r)e™")}
= Inf{nr —log(g(r))}
_ igg{nr—logp(/\/r(é,yn))} (13)

Note that when ¢(0) > 0, i.e. when the prior puts positive mass on the set No(é, y") of
all # that are MLEs for y”, then we can use the estimate

LA(y") < —log P(No(0,y™)) (14)

This gives a slightly more general version of the “folk theorem” (9).

Another interesting case is when ¢(0) = 0 but the prior probability ¢(r) = P(./\/T(é, y"))
grows with the radius r at least as fast as a volume of radius r in k-dimensional space for
some k. This can happen when Y is continuous and the index set © gives a smooth enough
finite dimensional real vector-valued parameterization of the class {Fy : § € O} (see e.g.
[Ris86, CB90, Dawa, Yam92]). In particular, let us assume that ¢(0) = 0 but there exist
¢, k, o > 0 such that g(r) > er® for all 0 < r < ¢y In this case from (13) we have

LAy™) < inf {nr —klogr —logc} (15)

0<r<eg
Differentiating with respect to r, we find that the infimum is obtained for r = k/n. When
k/n < ¢, this gives

LA(y") < k+klog%—10gc= (1+o(1))klogn, (16)

where o(1) is a quantity that goes to zero as the sample size n — oo.

3.2 Performance on Random Sequences Assuming True State of
Nature

We now look at the risk (i.e. average total loss) of Bayes method when the outcome sequence
is generated at random according to an unknown true state of nature §* € O, as compared

12



to the risk for an omniscient scientist who knows the true state 8*. By the same argument
used in the previous section, the difference in these two risks is

rA07) = Thayes(07) = ros(07)
= Y PO Ly p(v") = D Py"107) Los e (y7)

yreYyn yney "
= Z P(yn|0*)(LZ:1yes,P(yn) - LgSﬁ* (yn))
ymeyn
P(y"|07)
= P(y"0")log ————
s Par)
= ](Pynlg* PYn), (17)

where I(P || Q) = Ep logg(% denotes the relative entropy or Kullback-Leibler divergence

between distribution P and distribution @ [Kul59].
Continuing the analogy with the previous section, for each r > 0 let

NL(07) = {0+ I(Pynig-

Pynw) S rn}.

Hence now we define a neighborhood N, (8*) around 6* instead of a neighborhood around
é(y”), and this neighborhood includes all § € © that assign probabilities to outcomes y”
that are similar to the probabilities assigned by 8%, at least on y" that are likely under 6.
Now for countable @ and any r > 0

P(y"|67)
Pyn) = P(y"07) log ———
Y ) yn%;/n ( | ) P(yn)

= e S P TIPD)
& P os zm;f ﬁ'i?w)m)
P(y™|0*
— y%;n P(y"167)log S %@%P(gnw)
X PO S i o g~ s PO (9

yneyn OEN(6%)
) P(o)
= B

HEN(6%)
< rn —log P(N,(07)), (19)

IA

- 10g P(NT(G*))

IA

Pynw) — log P(NT(G*))

where (18) follows from Jensen’s inequality, using the convexity of log X, and (19) follows from
the definition of NV,.(6*). The same result follows similarly for continuous © (see [Bar87]).
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From (17) and (19), in analogy with (13), we have

P07) < nf{rn — log PINL(07))). (20)

3.3 Bayes Risk

Finally we look at the Bayes risk. This is the expected cumulative loss of Bayes method
when the outcome sequence is generated in the manner specified by the prior P, namely,
a true state of nature §* € O is selected at random according to the prior P, and then a
sequence y" of observations is generated at random according to F;. In keeping with the
philosophy of the previous sections, we compare the Bayes risk with the risk of an omniscient
scientist who knows 6* before seeing y". Thus we define

Ros(P) = e*zep(e*)ros(e*) (21)
and
RA(P) = Rpayeq(P) — Ros(P)
= 9*Z:@)P(0*)(rbay68(0*) - TOS(Q*))

= 3 P(0")I(Pyug-
0* €@

= Z(0;Y"), (22)

where Z(X;Y) = 3 cx Px(2)I( Py || Pyv) denotes the mutual information between the
random variables X and Y. Here we view the state of nature § € © and the outcome sequence
y" € Y as dependent random variables with the joint distribution defined (implicitly) by
the prior P and the set {FP;: 0 € O}.

Let II be any partition of @ into a countable sequence ©1,0,, ... of pairwise disjoint
subsets of @ with (J,0; = 0. Fach 0, is called an equivalence class. For each § € O, let
I1(#) denote the equivalence class containing 6.

The entropy of Il is given by

H(I1) = —Eplog P(II(0)) = — 3 P(0;)log P(6,).

=1

(The entropy can be infinite.) The average diameter of 11 is defined by

D(II) = ZP(G)i) sup 1(Pyngr
i=1 0*,0€0;

Pynw)

Using tricks like those used in the previous section, for any countable @ and any partition
IT we get

14



YY) = Y P Y Pyl log L)

9% €O yneyn P(yn)
= X B P s
< e*ZE:@ P(07) n%;/n P(y"|67)log Zeen(z(%zf;)ﬁp(e)
\ \ P(y"07) \
= P(o P(y™0) 1o — log P(11(8
H*ZE:@ ( ) (y%):/n (y | ) g Zeen(e*) P(};[((?*))P(ynw) g ( ( )))
< X e (Z() Py 5, s gy s P<H<0*>>)
_ . P(9)
B (6’*26:@ P(e ) 96%(:6’*) WI(PYHW* PY”W)) * H(H)
< D(II) + H(II).
(23)
The same result also holds for continuous ©.
From (22) and (23) we have
RA(P) < {DI) + H(I)}. (24)

_inf
partitions I of ©

3.4 Applications

To upper bound the total risk of Bayes method under the log loss, we can simply calculate
the risk of the omniscient scientist, and add to it the upper bounds on the difference between
the risk of the Bayes method and that of the omniscient scientist. This method is usually
easy to use, because the risk for the omniscient scientist is usually easy to calculate. In
particular, whenever the Y;s are conditionally independent given 6, then the risk of the
omniscient scientist in each of the cases treated in the previous three subsections is:

e for arbitrary y™: Lgs é(y”) =—> i log P(?Jt|é)a
e for particular true state of nature 6*: rog(0*) = >0 H(Y:|6%), and

e for random state of nature drawn by P: Ros(P) = > gxco P(07) X7 H(Y:|67),

15



where H(Y;|0*) = — > ey P(Y; = y|07)log P(Y; = y|0*). Thus, for example, for learning

{#£1}-valued functions with i.i.d. sign noise with rate A,
Ros(P) = Tos(e*) = h/\n, (25)

where hy = —Alog A — (1 — A)log(1 — A), and

1 1
Lgs,é(yn) = Nlog Y +(n — N)log T\ (26)

where N is the minimum number of noisy outcomes in any interpretation of 3", i.e. N =
mingeo [{t : y1 # fo(w4)}-
3.4.1 Finite O

Let us illustrate this method with a simple application of the “folk theorem” (9). Suppose
that © is finite and the prior distribution P is uniform over ©. Then by (9), for any outcome
sequence y”,

1
A n < _ — .
Layes(¥") < log P0) log [0 (27)

Hence for O indexing a class of {£1}-valued functions with i.i.d. sign noise with rate A,

1
Lt (y"™) §N10gx—|—(n—N)log + log |©]. (28)

bayes 1\
For large enough n, the additional loss log |©] of the Bayes method over and above that of
the omniscient scientist will be negligible. By averaging over y", we obtain the related upper
bound of hyn +log|O] for the risk of Bayes method when the outcome sequence is generated

at random, either according to a fixed state of nature 8* or a random 6*.

3.4.2 Infinite O, noisy {+1}-valued functions

For infinite (possibly uncountable) © indexing a class of {£1}-valued functions with i.i.d.
sign noise with rate A, an only slightly more sophisticated method gives useful bounds in
many cases. These are the cases when the class F = {fs : § € O} has finite VC dimension.
This notion can be defined briefly as follows:

For any class F of functions from X — {41} and sequence S = (x1,...,2,,) of points
in X, we say that S is shattered by F if for any sequence (y1,...,yn) of values in {£1},
there is a function f € F with y; = f(x;) for all ¢, 1 <7 < m. The VC Dimension of F,
denoted dim(F), is defined as the length m of the longest such shattered sequence, over all
possible finite sequences of points in X. Further discussion and examples of this concept can

be found in [Vap82, BEHWS9].
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Now let us consider the case where F = {f; : § € O} and z4,...,z, is a fixed instance
sequence. Let us define the partition II of © by letting
I(0) = 11(07) < fo(w:) = f5(2),1 <t <m.

By the most basic theorem connected with the VC dimension, known as the Sauer/VC
lemma [VCT1, Sau72], the number |II| of distinct equivalence classes in II is bounded by

1 < z () < (4, (29)

where d = dim(F) and e is the base of the natural logarithm. (The latter inequality holds
for n > d.) It follows that for any prior P on 0,

H(II) < dlog %, (30)

since the entropy is maximized for the uniform distribution on I, and takes the value log |1
in this case. Furthermore, by our definition of II it is clear that if 11(#) = I1(#*), then # and
¢0* induce the same conditional distribution on Y. Hence I(FPynpg» || Pynjg) = 0. If follows
that D(II) = 0. Putting this all together, and applying (24), we get the following bound for
the Bayes risk:

For all n > d = dim(F), all instance sequences 1, ..., 2, and all priors P on ©,
RA(P) < D(I) + H(IT) < dlog% = (1 + o(1))dlogn (31)
and hence
R(P) < hyn + dlog %, (32)

when the noise rate is A, where hy = —Xlog A — (1 — A)log(1 — A).

Using the other bounds given in the previous sections, upper bounds can also be obtained
for the risk of Bayes method when the outcome sequence y” is arbitrary, and when it is
generated at random from a particular 8*. However, the bounds in these cases depend on
the probability P(H(é)) (resp. P(I1(8%))) of the relevant equivalence class in the partition
II. If all equivalence classes have roughly the same prior probability, then the result is much
the same as given above for the Bayes risk. Otherwise more careful analysis is required.

Sometimes we can also obtain interesting bounds even in the case that the VC dimension
of F is infinite. Here we also average over random choices of the instances ™ = (z1,...,2,),
and instead of using the VC dimension, we use the VC entropy [VCT1] (see also [HKS91]). Let
() be a distribution on the instance space X, and assume that each x; is chosen independently
at random according to ). For each ™ define the partition II,» of @ as above by letting

on(0) = Lan(07) < fo(ze) = f3(xe), 1 <1 < n.

The VC entropy of F (for sample size n) is Egn(log |1»]). It is clear that the above derivation
of (32) can be generalized to obtain

Eqn(R(P)) < han + Egn(log [Izn). (33)
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4 0-1 Loss

We now derive upper bounds on the risk of Bayes method for the 0-1 loss. As shown in
(1), for this loss function Bayes method predicts the outcome with the highest posterior
probability. Thus for outcome sequence y" = (y1,...,y,) € Y", where Y = {1}, and
1 <t < n, the action a; of Bayes method at time ¢ is the prediction

ag = §jz = argmaxye{ﬂ}P(ylyt_l)- (34)

The total 0-1 loss for an outcome sequence y" € {£1}" is the total number of times this
prediction is incorrect, i.e.

Lgayes,P,oq(yn) =Nty # G, 1 <t <nfl. (35)

This is often called the number of mistakes.

4.1 Performance on Arbitrary Outcome Sequences

Littlestone and Warmuth [LW89, Lit89] and Vovk [Vov90b] have obtained bounds on the
number of mistakes made by Bayes method for arbitrary {#£1}-valued outcome sequences
for the case that © is a countable class {fs : ¢ € O} of functions and the prior information
assumes that outcomes are generated by applying sign noise with known rate A (even though
the actual outcome sequence is arbitrary). The bound from [LW89] is particularly easy to
derive, and generalizes to continuous © easily as well. We give a variant of this derivation
now.

First, let us define the Heavyside function @ by letting @(z) =1 if + > 0 and O(x) =0
if © < 0. We use the fact that for any b and x, where 0 < b,z < 1,

log L
Ob—1x)< z 36
o) < 30
which is easily verified (assuming 0/0 = 1). We note also that since 0 < A < 1/2,
! <1
2(1 = A) —

and

Py') = 2. Py10)P()

= > P(yl0)P(y'~"10)P(0)
< > (1=XNP(y" o) P(0)

= (1 - )‘)P(yt_l)v
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thus .
Ply’)
(1 =X)P(y=t) —
(Of course the same result holds for continuous ©.)
It is clear that Bayes method makes a mistake only when the posterior probability of the

outcome ¥, given the previous outcomes y'~!, is less than or equal to one half. Hence the
total number of mistakes is bounded by

I aveson ") < {2 Pluly'™) < 1/2,1 <t < n)

_ - P(y") .
= Wt gy <121 << )]
= 200 i)
Ll 1 P(y")
= LG T T hEe)
v log, 0P
52 PG

t=1 10%2(2(1 - )‘))
n10g2(1 — )‘) — log, P(?Jn)
1 +log,(1 —A)

T i3
_ n10g2(1 - )‘) + LbayeS,P,logz(y ) (37)
1 +log,(1 — A) |

where the last equality follows from (6).

It is very useful to have a bound for the risk of Bayes method under the 0-1 loss in terms
of the risk under the log loss, because this allows us to apply the results of the previous
section. In particular, from (26), we have

T n _ T n A n
Lbayes,P,log(y ) = Los,é,log(y )+Lbayes,log(y )

1 1 n
= Nlog X + (n— N)log 1\ T Lﬁayes,P,log(y ): (38)

where N = mingee [{t : v+ # fo(x¢)}| is the minimum number of noisy outcomes in any
interpretation on y™. Note that this is the same as the 0-1 loss of the omniscient scientist,

ie. N = Lg&RO_l(y”). Hence, combining (37) and (38),

n

LT . - (10g2 %) LgS,P,O—l(yn) + LlA)ayeS,P,logz(y )
bayes,P,O—l(y ) < 1+ logy(1 — A)

(39)
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In particular, if © is finite and the prior P is uniform on © then from (27) we have

T n (10g2 )LgSPo 1(y") + log, |O]
Lbayes,P,O—l(y ) = 1+ logy(1 — A) '

Other bounds on L%ayes7p7log(y”) can be plugged in in other circumstances.

4.2 Performance for Random Sequences Assuming True State of
Nature

Using the same prior as in the previous section, we now assume that the outcome sequence is
actually generated at random according to the distribution Py« for some true state of nature
6*. In the case of {£1}-valued functions with independent sign noise, which we examine
here, this means that y; = fp«(2;) with probability 1 — A and y; = — fe«(2;) with probability
A. The risk of Bayes method under 0-1 loss for this case is the average total number of
mistakes made by Bayes method.

We can obtain bounds on the average total number of mistakes by averaging the formulae
from the previous section (e.g. (39)), using the fact that mingee [{t : v+ # fo(ae)}| < {t: v #
fa(x)}], and hence the average performance of the omniscient scientist who uses knowledge
of the MLE for each individual outcome sequence is at least as good as the risk (= average
performance) of the omniscient scientist that uses knowledge of §*. Since the expectation of

{t:y: # fi(x)}] is An, from (39), this gives

log, 132 " Bayes,Piogs (07
0* < A A aYyes,i/,t0go .
rbayes,P,o—l( ) < 1+ log, (1 — ) n 1 +logy(1 —A)

1-A
Unfortunately, this bound is not tight. We show how to get rid of the extra % factor

T+1
in front of the An. This is especially important, since in most cases the remaining term is

O(log n).

The main idea is to bound the difference in 0-1 loss at time ¢ between the Bayes method
and the omniscient scientist in terms of the difference at time ¢ of the corresponding log
loss. Fix the outcome sequence y™. The loss of Bayes method at time ¢ is —log P(y,|y'™!),
and the loss at time ¢t of the omniscient scientist who knows the true state of nature 6~
is —log P(y¢|y"~",0%) = —log P(y0*), since Y; is conditionally independent of Y;,...,Y,_;
given §* in the case of {£1}-functions with independent sign noise. Thus the difference in

. P(?th*)
A ny -
Litegly") = 1o Plyyt=1)

Let Ky(z) = Aog 2 + (1 — M) log 1=2 for A < o <1 — X. We can rewrite the difference
between the risk of Bayes method and the risk of the omniscient scientist under the log loss

these losses is

(41)
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as follows.

n

riog(07) = 3 Pyt107) >0 L, (v")

yneyn t=1
- Py 07)
= P(y"07) ) _log o————~
y%n ; Plydy=)
- P(Y: = y|07)
= (y"107) (Y; = y|07) log - (42)
y%n Z:: Z;:/ t P(Y; = yly™=)
= Y PW0T) Y] Kalpo), (43)
yneyn t=1

where p; = P(Y; = — fo+(2,)|y"™"). Equation (42) looks a bit strange at first, but all that is
really being introduced here is superfluous averaging over possibilities that we are already
averaging over in the outermost sum. Thus the overall expectation is unchanged. This
method is analogous to that used in [HKS91]. The last equation, (43), follows directly from
the definition of the noise model. It is easily verified that we always have A < p, <1 — A.

We now derive analogous equations for the 0-1 loss. Let h be the modified Heavyside
function defined by h(x) =1 if @ > 0, h(z) = 0 if < 0 and ~(0) = 1/2. We assume that
for the 0-1 loss, Bayes method tosses a fair coin to make its prediction when the posterior
probabilities of —1 and +1 are each 1/2. This will make our analysis easier, and does not
affect previous results.

Under these assumptions, for fixed y™ the 0-1 loss of Bayes method at time ¢ (averaging
over coin tosses when necessary) is f(3 — P(y;|y"™")). The 0-1 loss of the omniscient scientist
at time ¢ is h(3 — P(y;|0*)). Thus the difference in these losses is

Lioa(y") = h(5 = Plyly'™") — h(5 — P(yl07)). (44)

In analogy with the function K, let us define Jy(z) = (1 — 2A\)h(z — 3). We can then
express the difference between the risk of Bayes method and the risk of the omniscient
scientist under the 0-1 loss as follows.

B0 = % PGS L)
= P IR Plody ™)~ b~ Plrlo))
= & PR T PO =0l PG = oly) A~ PO =0l0))
= PGS ) =)+ (1= N(hip = 5 0= )
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< Z P(y”|(9*)ijx(pt)a

yn EY"

(45)

where p, = P(Y; = — fo«(2;)|y'™") as above. The last inequality is readily verified by case
analysis.

Note that K increases monotonically as x goes from A to 1 — X, and J)\(z) is a step
function that is 0 for « < 1/2 and 1 — 2A for # > 1/2. Hence it is clear that

1 —2\ C

N Ka(z) (46)

for all A <a <1 — X, where

(1— 212
Mog(2X) + (1 — A\ log(2(1 — V)

It can be shown that if log is the natural log, then —= gz = Cy < 2for 0 < X< 1/2. The

lower bound is tight as A — 0, and the upper bound is tlght as A — 1/2.
Hence it follows from (43), (45) and (46) that

Cy =

C :
1_A2)\ ln(e )

ro(07) < (47)

where ﬁ <O, <2.

4.3 Bayes Risk For 0-1 Loss

In this final section we look at the 0-1 Bayes risk, that is the risk of Bayes procedure for
0-1 loss under the assumption that the outcome sequence y" is generated by choosing 6~
according to the prior distribution and then generating y" according to P;. As above, we
compare the risk of the Bayes method to the risk of an omniscient scientist who knows 6*.
Again, we can simply average the results of the previous section to obtain bounds on the
excess risk of the Bayes method. However, a direct analysis yields a bound that is better by a
factor of 2. As above we consider only the case of {+1}-valued functions times independent
sign noise with rate A\. Our analysis is similar to that given in [HKS91] for the noise-free
case, and generalizes the corresponding results given there. It also parallels the analysis of
the previous section.
The Bayes risk for the log loss is

Rlog(P) = Z Zlog

yrevn P(y; Iy 1)
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yneyn t=1yey t=yly'")
= ) Ply") 2 HMy' (48)
yneyn t=1

The corresponding risk for the omniscient scientist under the log loss is hyn, where
hy = Alog 4 (1 — A)log %, since the omniscient scientist knows everything except which
values are changed by the noise. Hence

n

Ripy(P) = 3 Py") X [H(Yily'™") — )] (49)

yneyn t=1

Now turning to the 0-1 loss, the Bayes risk is

Roa(P) = % P(y”)zn:h(%—P(ytlyt‘l))

= Y Py HMY, (50)
ymEY ™ i=1
where H(Y,|y'™") = min(P(Y; = +1[y'"), P(Y = ~ 1]y ).
The corresponding risk for the omniscient scientist under the 0-1 loss is An. Hence

n

R (P)= > Ply") D[H(Yily'™") = Al (51)

yEyn t=1

Both H(Y;|y*~') — hy and 7:((Yt|yt_1) — X are functions of = P(Y; = +1|y'™!) that are
symmetric about © = 1/2, equal 0 for = A and © = 1 — A, increasing as @ goes from A to
1/2 and (by symmetry) decreasing as = goes from 1/2 to 1 — A. In fact, H(z) — A is linear

for A <2 < 1/2 and H(x) — hy is concave. It follows that 7:((:1;) - A< %(H(m) —hy)
for all A < 2 <1 — A, using symmetry again to verify the inequality for the second half of

the range. Furthermore,

H(1/2) — A —2)) _ G

5(1
H(1/2) — by Mog(2A) + (1 — A)log(2(1 — A)) _ 2(1 —2A)

where (' is as defined in the previous section, and we assume natural logs. Since = always

lies between A and 1 — X\ when # = P(Y, = +1|y*™'), it follows from (49) and (51) that

C
RS (P) < — __R®

_ =~ 2(1 _ 2)\) ln(P)7 (52)
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where ﬁ <O, <2.

For A = 0, Cy = 5 and from (52) we get R5,(P) < 575 R (P) = %Rﬁ% (P), which
was the result from [HHKS91]. As A approaches 1/2, C approaches 2, and we get RS | (P) <
—<R{}(P). Combining this with (31) from section 3.4.2, if the class of functions has VC

dimension d then this gives
d en

R?_I(P) S mlﬂ ?

Hence
en

d
< —In —.

This holds for any class F of VC dimension d, any sample size n > d, and any prior P.

5 Conclusion

We have derived a number of upper bounds on the risk of Bayes method for sequential clas-
sification and regression problems on the outcome space Y = {£1}. Many of our techniques
should generalize easily to other kinds of outcome spaces, as well as other decision spaces
and loss functions. Some of these techniques may also help in analyzing other learning
methods, such as the “Gibbs” method [GT90, HKS91, OH91b, OH91a, SST92]. However,
a major problem remaining is to develop equally simple and general techniques to obtain
lower bounds on the risk, so that we can see how tight these upper bounds are.

Very tight upper and lower bounds on the risk of Bayes methods under log loss are
available for the case when © is a compact subset of R? and the relative entropy I( P || Pp+)
is twice continuously differentiable at § = 0* for almost all §* € O, so that the Fisher
information is well-defined[Sch78, Efr79, Ris86, CB90, Dawa, Yam91, Yam92]. This is very
often not the case for a discrete outcome space such as {£1}, so we have concentrated on
more general bounds here, which involve much weaker assumptions, such as finiteness of the
VC dimension or bounds on the VC entropy. It remains to see exactly how the results given
here relate to the more standard statistical approaches using Fisher information.

It should also be noted that whereas the bounds obtained for the log loss are quite
general, those we have obtained for the 0-1 loss are restricted to the case of noisy functions
with known noise rate. It would be nice to have more general bounds for 0-1 loss. There also
many cases of interest in which the class of functions indexed by © can be decomposed into
classes Fp,Fs, ... of increasing VC dimension [Vap82], including the case where © consists of
a sequence of smooth real parameterizations as above of increasing dimension [Yam92]. Some
general results on the performance of Bayes methods in this case for noise-free outcomes are
reported in [HKS]. These results should be (and can be) extended to the noisy case.

Finally, it would be nice to have good bounds on the average loss for the nth example, in
addition to bounds on the average total loss for the first n examples. Yamanishi gives bounds
of this type for some special cases [Yam91, Yam92] (see also [Ama92, AFS92]). The former
quantity is what is usually displayed as a “learning curve”. Of course, if we had matching
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upper and lower bounds on the average total loss for the first n examples for each n, then
we could obtain a learning curve by simply subtracting the average loss on the first n — 1
examples from the average loss on the first n. When the average loss grows logarithmically,
as it appears to in many of the cases we study here (after subtracting off the loss of the
omniscient scientist), and as it provably does in some other cases, then this gives a learning
curve of the form ¢/n for some constant ¢ that we can estimate. However, this subtraction
is not valid without extremely tight upper and lower bounds on the average total loss. Thus
our current results are merely suggestive regarding the shape of the learning curve for Bayes
method.
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