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1 IntroductionSeveral recent papers in the area of computational learning theory have studied sequentialclassi�cation problems in which f�1g-labeled instances (examples) are given on-line, oneat a time, and for each new instance, the learning system must predict the label before itsees it [HLW90, Lit89, LW89, Vov90b, HKS91, OH91a, SST92, MF92]. Such systems adapton-line, learning to make better predictions as they see more examples. If n is the totalnumber of examples, then the performance of these on-line learning systems, as a functionof n, has been measured both by the total number of mistakes (incorrect predictions) theymake during learning, and by the probability of a mistake on the nth example alone. Thelatter function is often called a learning curve (see also [HKLW91]).Sequential regression problems have also been studied [Daw84, Dawa, Dawb, Vov90a,Vov92, Yam91, Yam92, Ama92, AFS92, SST92, MF92]. In this case, instead of predictingeither +1 or �1, the learning system outputs a probability distribution, predicting thatthe label will be +1 with a certain probability, and �1 with one minus that probability.When there is some noise or uncertainty in the labeling process, an output of this type ismore informative than a simple prediction of either +1 or �1. The notion that the purposeof statistical inference is to make sequential probability forecasts for future observations,rather than to extract information about parameters, is known as the prequential approachin statistics [Daw84]. To measure the performance of a sequential regression system of thistype, it is common to use the log loss function. If you predict that the label will be +1 withprobability p and �1 with probability 1 � p, then your log loss is � log p if the label is +1and � log(1�p) if the label is �1, i.e. whatever happens, your loss is the negative logarithmof the probability you assigned to that event. As in sequential classi�cation, performancehas been measured both in terms of total log loss over all examples, and in terms of expectedloss on the nth example (and in several other ways as well).In this paper we look at the performance of Bayes methods for both classi�cation andregression, analyzing only the total loss over all examples. Our viewpoint is decision theo-retic, so both classi�cation and regression are treated in a common framework. When theexamples are generated randomly, the average total loss of a method will be called the risk.Bayes methods are optimal in that they have the smallest possible risk, at least when theexamples are generated randomly by the same process implicit in the prior distribution usedby the method. When the examples are not generated at random by this process, then theperformance of Bayes methods degrade. However, we show that they still perform well inmany cases.We do this by introducing the idea of an \omniscient scientist" who is privy to extrainformation about the nature of the process that generates the examples, and comparing theperformance of Bayes method to that of the omniscient scientist. For example, if each labelis generated by applying a �xed function to the instance and then adding noise to the result(i.e. ipping the sign of the value with some probability), then the omniscient scientist willalready know the �xed \target function" and will only have to deal with the noise, whereas2



the Bayes method will have to try to learn the target function and also deal with the noise.We show that Bayes method does not perform much worse than the omniscient scientist inmany cases of this type. In particular, the total loss of the omniscient scientist is usuallylinear in n, whereas the additional loss of Bayes method is only logarithmic in n. We obtainupper bounds on this additional loss that generalize related bounds obtained in [HKS91]and [OH91a] (see also [Ama92, AFS92, SST92]). We also look at the performance of theBayes method on an arbitrary sequence of examples, as compared with the performance ofan omniscient scientist who already knows the best target function to use in predicting thelabels of that particular sequence of examples. Again, in many cases Bayes methods do notdo much worse. These results extend work in [Vov90b, LW89], and also ties in with thecoding/information theory approach in [MF92, FMG92, FM92] (see also [Yu]). Throughoutthe paper, our emphasis is on obtaining performance bounds that hold for all sample sizesn, rather than asymptotic bounds that hold only for large n.2 Formal FrameworkHere we outline the general decision theoretic framework we use. Let X, Y and A be sets,called the instance, outcome, and decision spaces, respectively, and let L : Y � A ! <be a loss function. In this paper we assume that Y = f�1g, although the basic formalframework, de�nition of Bayes method, and the results for log loss hold for more general Y .When Y = f�1g, elements of Y may be thought of as classi�cation labels. However, becausewe sometimes consider more general Y , we will use the more general term \outcomes". Theparticular kinds of loss functions we consider are the following.1. 0-1 loss (used for the classi�cation problem): A = Y = f�1g, action ŷ 2 A is inter-preted as a prediction of the outcome y 2 Y , and L(y; ŷ) = 1 if ŷ 6= y, L(y; ŷ) = 0 ifŷ = y.2. log loss (used for the regression problem): Here instead of predicting a single outcome,an action speci�es a probability for each possible outcome y 2 Y . The decision spaceA is the family of all probability distributions on Y , and for y 2 Y and distributionP 2 A, L(y; P ) = � logP (y). The base of the logarithm can be arbitrarily chosen. Ifwe need to be speci�c, we use the notation ln and log2 to denote the natural logarithmand the logarithm base two, respectively.A pair (x; y), with x 2 X and y 2 Y is called an example. We assume that we receive a se-quence Sn = (x1; y1); : : : ; (xn; yn) of examples on line, one at a time. The number n of exam-ples is called the sample size. For each time t, 1 � t � n, given only (x1; y1); : : : ; (xt�1; yt�1)and xt, we must choose an action at 2 A. After taking this action, we observe the outcomeyt, and su�er loss L(yt; at). Our goal is to choose actions a1; : : : ; an so as to minimize ourtotal loss Pnt=1 L(yt; at): 3



Throughout most of this paper we focus on the case when the sequence x1; : : : ; xn ofinstances is �xed arbitrarily and only the outcomes y1; : : : ; yn vary. If one wants to use theseresults for the case when both the instances and the outcomes vary, one can either averageover possible sequences x1; : : : ; xn, or take the worst case over such sequences, dependingon what type of result one desires. For now let us �x the sequence of instances x1; : : : ; xn.To simplify the notation in what follows, we will no longer mention the xts in our formulae,focusing only on the sequence y1; : : : ; yn of outcomes. For a particular sequence y1; : : : ; yn,for further brevity, we de�ne yt = (y1; : : : ; yt) for every 0 � t � n. Thus y0 denotes theempty sequence.Finally, for a random variable X, we denote by E(X) the expectation of X. We useP;P� , etc. to denote probability distributions. For random variables X and Y , we denotea conditional distribution on Y given that X = x by PY jx. If the distribution is not clearfrom the context when we take an expectation, then we make it explicit by subscripting, asin EP�(Y ) or EPY jx(Y ). The latter is abbreviated E(Y jx).2.1 PriorsIn this paper we concentrate on Bayes methods for choosing the actions a1; : : : ; an to try tominimize the total loss on the outcomes y1; : : : ; yn. Bayes methods utilize prior informationon which sequences of outcomes are more likely than others in order to choose appropriateactions. For �xed instance sequence x1; : : : ; xn this prior information consists of a priordistribution P over an (arbitrary) index set �, and a class fP� : � 2 �g of probabilitydistributions over the set Y n of possible outcome sequences. (When � is continuous, P isa density.) Each distribution P� actually represents a conditional distribution on possibleoutcome sequences y1; : : : yn, given that the instance sequence is x1; : : : ; xn. However, sincethis instance sequence is �xed for now, to avoid cluttering our notation, we omit this implicitconditioning on the xts.The prior information used by a Bayes method can be interpreted as the belief that thesequence of outcomes is generated at random in the following manner. First an index � isselected at random from � according to the prior distribution P . The index � is viewed as anunknown underlying \state of Nature" that determines the probabilities of various sequencesof outcomes via the corresponding distribution P�. After � is chosen, the actual outcomesequence yn = y1; : : : ; yn is chosen at random from Y n according to P�. Thus the outcome ytcan be considered to be a realization of the random variable Yt, 1 � t � n, where Y1; : : : ; Ynare (not usually independent) random variables with joint distribution de�ned by the abovetwo step process. Note that implicit in this model is the assumption that the action taken atthe current time t does not a�ect the outcome at time t, nor do past actions inuence futureinstances or outcomes. Thus the model studied in this paper is much more appropriate forproblems like predicting the weather than for learning to y an airplane.Even though they implicitly make very speci�c assumptions about how outcomes aregenerated, Bayes methods can be applied whether or not outcome sequences are really gen-4



erated in the assumed manner or an equivalent manner. We evaluate the performance ofBayes methods both under the optimistic assumption that outcome sequences are gener-ated in the manner described above, and under certain more pessimistic assumptions. Inthe extreme case, even though the Bayes method uses a prior distribution, we analyze theperformance of the method assuming nothing about the way the actual outcome sequence isgenerated [Daw84, Vov90b, LW89].We are often interested in certain special types of prior information that may be availableto help choose an appropriate action. The type of prior information available determinesthe kind of learning problem one has. Three special cases of interest are described below, inorder of increasing generality. We present results for some of these special cases later.Case 1: Noise-free functions. In this case, for each state of nature � 2 � there isa function f� : X ! Y . Let F = ff� : � 2 �g. By assuming that initially a state ofnature � 2 � is chosen at random according to the prior P , we are in e�ect assuming that atarget function f� is chosen at random from F according to the induced prior on F . After thetarget function is chosen, for any instance x 2 X, the outcome y is f�(x), independent of anyprevious instances, outcomes and actions, i.e. a state of nature is deterministic and noise-free. Thus for any � and any �xed sequence of instances x1; : : : ; xn, the outcome sequencey1; : : : ; yn is completely determined: the distribution P� assigns probability 1 to the event(y1; : : : ; yn) = (f�(x1); : : : ; f�(xn)). The performance of Bayes methods for this case wasstudied in [HKS91, OH91b].Case 2: Functions corrupted by i.i.d. noise. Here a state of nature is representedby a function, but the the observations are altered by an independent noise process. Thus,as in Case 1, for each � 2 � there is a possible target function f� : X ! Y , and some f� ischosen at random according to the prior P . However, for the instance sequence x1; : : : ; xn,instead of observing the outcome sequence (y1; : : : ; yn) = (f�(x1); : : : ; f�(xn)), we observe(y1; : : : ; yn) = (�1f�(x1); : : : ; �nf�(xn)), where the (unobserved) noise events �1; : : : �n areindependent and identically distributed, with �t = �1 with probability � and �t = +1 withprobability 1 � �, the noise rate � being known. Since for a given � and instance sequencex1; : : : ; xn, many di�erent outcome sequences are possible, here P� is not a trivial distributionon Y n like it was in Case 1. The performance of Bayes method for this case was studied in[OH91a] for a particular class of functions.Case 3: Conditionally independent Yts. In this case, the random variables Y1; : : : ; Ynare conditionally independent given � and x1; : : : ; xn (and completely independent of theactions taken). This includes the previous case, as well as the more general cases in whicheither the noise rate is not known but we have a prior distribution over possible noise rates, orthe noise events are independent but not identically distributed. This latter case occurs, forexample, if the distribution for the noise event �t depends on the instance xt, i.e. observationsof the outcome are less reliable for some instances than they are for others. One way tocapture this is with the statistical regression setup in which for each � 2 � there is adistribution D� on X � Y , and after � is chosen, examples (x1; y1); : : : ; (xn; yn) are chosenindependently according to D�. Thus for a given � and x1; : : : ; xn, the random variables5



Y1; : : : ; Yn are independent, and the distribution of Yt is the marginal of D� for X = xt. Forthis case P� is the joint distribution of these Yts.2.2 De�nition of Bayes MethodWe now return to the most general case where � indexes an arbitrary set fP� : � 2 �g ofdistributions on Y n, i.e. arbitrary joint distributions on the random variables Y1; : : : ; Yn.In this section we derive the general form of Bayes method for this case. To simplify ourformulae, we use the following notation.� P (�) denotes the prior probability of state � 2 �, or the density at � if the prior isgiven as a density function.� For all t, 0 � t � n, and � 2 �,P (ytj�) = P�(yt) = P�f(ŷ1; : : : ; ŷn) : ŷi = yi; 1 � i � tg:� For any y 2 Y ,P (Yt = yjyt�1; �) = P�(Yt = yjyt�1)= P�f(ŷ1; : : : ; ŷn) : ŷi = yi; 1 � i � t� 1; ŷt = yg=P�(yt�1)(assuming that P�(yt�1) 6= 0, else it is unde�ned.).� P (yt) = P�2� P (ytj�)P (�) if � is countable, otherwise P (yt) = R�2� P (ytj�)P (�)d�.� For any y 2 Y , P (Yt = yjyt�1) = P�2� P (Yt = yjyt�1; �)P (�jyt�1) if � is countable,otherwise P (Yt = yjyt�1) = R�2� P (Yt = yjyt�1; �)P (�jyt�1)d�.Note that P (�jyt), used above, is calculated by Bayes rule:P (�jyt) = P (�)P (ytj�)P (yt) :Given the above notation, Bayes method of choosing actions can be stated quite simply:At each time t, choose the action a 2 A that minimizesXy2Y P (Yt = yjyt�1)L(y; a):The logic of this is simple. If your belief that outcome sequences are generated at random inthe two step process described above is correct, then P (Yt = yjyt�1) is the probability thatthe tth outcome will be y, given that the previous t � 1 outcomes were y1; : : : ; yt�1. This iscalled the posterior probability of y (having seen yt�1). HencePy2Y P (Yt = yjyt�1)L(y; a) isthe expected loss you will su�er if you take action a at time t (the posterior expected loss).Bayes method is simply to choose the action that minimizes the (posterior) expected loss.Bayes method leads to familiar strategies for both the 0-1 and log losses. Here we describethe action at taken by Bayes method in each of these cases for a general outcome space Y .6



1. 0-1 loss: at = ŷt = argminŷ2Y Xy2Y;y 6=ŷ P (Yt = yjyt�1)= argmaxŷ2YP (Yt = ŷjyt�1) (1)Hence in this case Bayes method predicts the outcome that has the highest posteriorprobability.2. log loss: at = P̂t = argminP̂2A Xy2Y P (Yt = yjyt�1) log 1P̂ (y)= PY tjyt�1 (whenever this distribution is in A) (2)The latter equality follows from the fact that the relative entropy1 is minimal betweena distribution and itself (see e.g. [CT91]). Hence in this case Bayes method simplyproduces the posterior distribution on Yt as its action.Since Bayes method always chooses the action that minimizes the posterior expected loss,it is clear that when the actual outcome sequence is in fact generated by the two step randomprocess implicit in the Bayes prior, then the expected loss at each time t is minimized bythis strategy, among all possible prediction strategies. Hence the expected total loss is alsominimized by the Bayes method. The expected (total) loss is known as Bayes risk, anddenoted R(P ) = Rbayes(P ) = Xyn2Y n P (yn)LTbayes;P (yn); (3)where LTbayes;P (yn) is the total loss on the outcome sequence y1; : : : ; yn when the actionstaken are those of the Bayes method using prior P .2.3 Evaluating Bayes Performance: Omniscient ScientistsBecause the Bayes method is optimal in terms of the risk when outcome sequences are drawnaccording to the given prior, the Bayes risk is a lower bound on the risk of any strategy forchoosing actions in this case. In the following sections we give some estimates of the Bayesrisk, as a function of the sample size n, in some common cases. However, before proceedingwith this, we de�ne a few more pessimistic types of risks we want to look at.First, let us still assume that the true underlying \state of Nature" is some �� 2 �,and that the outcome sequence yn is chosen at random according to the distribution P��.1See section 3.2 for a de�nition of relative entropy.7



However, let us not assume that �� itself is actually chosen at random. Rather, for eachpossible � 2 �, we de�ne the risk when � is true byr(�) = rbayes(�) = Xyn2Y n P (ynj�)LTbayes;P (yn): (4)Thus r(�) is the average total loss of Bayes method using an (implicit) prior P over possiblestates of Nature, when the outcome sequences are in fact generated randomly according tothe particular state of nature �. Of course, Bayes method does not minimize the risk in thiscase (i.e. for a particular � = ��). To minimize the risk for a particular ��, we would requirean omniscient scientist (OS) who somehow knew at the outset, before any examples weregiven, that �� was the true state of nature. To obtain optimal risk for this particular ��,the omniscient scientist would then use a Bayes method in which the prior distribution Pover the index set � assigns probability 1 to �� and probability 0 to everything else. Hencethe omniscient scientist is also a Bayesian, but a better informed one. We denote the totalloss on the outcome sequence y1; : : : ; yn when the actions taken are those of the omniscientscientist using true state �� by LTos;��(yn). Similarly, we denote the risk of the omniscientscientist when �� is true by ros(��) = Xyn2Y n P (ynj��)LTos;��(yn): (5)Note that for noise-free functions, the risk ros(��) of the omniscient scientist is zero for anyreasonable loss function, since in this case knowledge of the true state of nature �� allows oneto predict the outcomes perfectly. In the case that � indexes a set of functions corruptedby i.i.d. noise, the risk rOS(��) is simply n times the average loss of predicting one noisyoutcome, knowing the distribution of that outcome. Surprisingly, we show below that inmany cases the risk of the original Bayes method, which does not know ��, is not muchworse than that of the omniscient scientist, no matter what �� is the true state of Nature.Finally, we might be much more pessimistic, and assume nothing whatsoever about theactual outcome sequence yn. We can simply look directly at the total loss LTbayes;P (yn)of the Bayes method (using prior P ) for each �xed outcome sequence yn. Of course, it isusually the case that for any outcome sequence yn there is a strategy for choosing actionsthat does extremely well on that particular sequence. So it is uninteresting (and perhapsunfair) to compare the performance of Bayes algorithm on each particular sequence to theperformance of the best strategy for that sequence. However, if we again restrict ourselvesto the type of omniscient scientist introduced above, then we do get some interesting results.In this case the omniscient scientist is not as omniscient as she could be, i.e. she doesn'tknow beforehand what the outcome sequence yn will be; rather, she knows which state ofnature � 2 � is the best one to assume true for the particular sequence of outcomes yn thatis about to happen, i.e. she knows �̂ = �̂(yn) = argmin�2�LTos;�(yn). The risk for the OS inthis case is LTos;�̂(yn) = min�2� LTos;�(yn):8



Again surprisingly, we show below that in many cases the risk of the original Bayes methodis not much worse than that of the omniscient scientist, no matter what the actual outcomesequence yn is.One �nal note: In de�ning r(�); R(P ), etc. in this and the previous section, we haveassumed that the particular loss function being used is clear from the context. If this is notthe case, then a subscript will be used to denote the loss function, as in Rlog or R0�1. Othersubscripts may be dropped if they are clear from the context.3 Results for Log LossThroughout this section the loss function is assumed to be the log loss. All of the results inthis section, except for the speci�c applications mentioned in the last subsection, hold whenY is an arbitrary countable set. By changing to densities in appropriate places, they holdalso for continuous Y .3.1 Performance on Arbitrary Outcome SequencesWe begin with the most pessimistic case, assuming nothing about the outcome sequence yn.As we have noted above, for the log loss scenario, Bayes method simply returns the posteriordistribution as its action. Thus the action taken at time t isat = PY tjyt�1 :Hence the total loss of Bayes method isLTbayes;P (yn) = nXt=1L(yt; at)= � nXt=1 logP (ytjyt�1)= � log nYt=1P (ytjyt�1)= � logP (yn): (6)Hence the total loss is the information gained by seeing the outcome sequence yn. Thissimple information theoretic interpretation of the total loss is what makes the log loss souseful.We want to compare the total loss of Bayes method to that of an omniscient scientistwho already knows the best state of nature �̂ 2 � to assume for predicting the outcomesequence yn, even before the outcomes are observed.For each time t, the omniscient scientist returns the distributionat = P̂t = PY tjyt�1;�̂:9



Hence the total loss of the omniscient scientist isLTos;�̂(yn) = nXt=1L(yt; at)= � nXt=1 logP (ytjyt�1; �̂)= � log nYt=1P (ytjyt�1; �̂)= � logP (ynj�̂): (7)The state �̂ used by the omniscient scientist is the best possible for the sequence yn, i.e.�̂ = �̂(yn) = argmin�2�fLTos;�(yn)g = argmin�2�f� logP (ynj�)g = argmax�2�P (ynj�):Hence in the case of the log loss, �̂ is the maximum likelihood estimate (MLE) of the\true" state of nature, based on the (as yet unseen) outcome sequence yn. (Even though inthis section we do not assume there really is a \true" state of nature.)We focus now on the di�erence between the Bayes loss and the loss of the omniscientscientist. This di�erence is given byL�(yn) := LTbayes;P (yn)� LTos;�̂(yn)= log P (ynj�̂)P (yn) : (8)Let us �rst assume that � is countable. Then from the above, we haveL�(yn) = log P (ynj�̂)P (yn)= log P (ynj�̂)P�2� P (ynj�)P (�)� log P (ynj�̂)P (ynj�̂)P (�̂)= log 1P (�̂) (9)Thus the additional loss su�ered by the Bayes method is at most the extra informationprovided to the omniscient scientist, namely the number of bits needed to describe the MLE�̂ with respect to the prior P . This observation was made in [DMW88]. However, it may besomething of a \folk theorem" in the statistics/information theory community.The above argument cannot be applied if � is uncountable and P is a distribution on� unless P puts positive mass at the point �̂ 2 � (and hence cannot be represented as a10



density), or P assigns positive probability to the set of all � that are MLEs, in the casethat the MLE �̂ is not unique. Furthermore, for both countable and uncountable �, even ifthe prior distribution does put positive mass on the MLE �̂, the above estimate ignores thebene�cial e�ect of other � 2 � that may also give the outcome sequence yn relatively highprobability, and thereby help the Bayes method to perform better on yn. We now derivesome better upper bounds that overcome these shortcomings. These upper bounds can alsobe applied in the case of countable �, although we state them only in the continuous formhere. We begin with the following observation.L�(yn) = log P (ynj�̂)P (yn)= log P (ynj�̂)R�2� P (ynj�)P (�)d�= � log Z�2� P (ynj�)P (ynj�̂)P (�)d�= � log Z 10 Pf� : P (ynj�)P (ynj�̂) � zgdz (10)= � log Z 10 Pf� : 1n ln P (ynj�̂)P (ynj�) � � ln zn gdz= � log Z 10 Pf� : 1n ln P (ynj�̂)P (ynj�) � xgne�nxdx (11)Step (10) follows from the fact that E(Z) = RM0 PfZ � zgdz for any random variable Ztaking values in the interval [0;M ], and the last step follows by a simple change of variable.Let Nr(�̂; yn) = f� : 1n ln P (ynj�̂)P (ynj�) � rgand g(r) = P (Nr(�̂; yn))for each r � 0. Intuitively, for small r we may think of Nr(�̂; yn) as a kind of \neighborhood"around the MLE �̂ in which other � 2 � live who assign similar probabilities to the outcomesequence yn. When this neighborhood has large enough prior probability g(r) for smallenough \radius" r, then Bayes method will work well for that yn. For larger r, the negativeexponential term in the integral (11) dominates, and the contribution is negligible. Whatradius is small enough depends on the rate at which g(r) grows. Since g(r) is nondecreasing,we can use the estimateZ 10 g(x)ne�nxdx � supr�0fg(r) Z 1r ne�nxdxg11



= supr�0fg(r)e�nrg (12)to obtain (from (11) above)L�(yn) � � log supr�0fg(r)e�nrg= infr�0f� log �g(r)e�nr�g= infr�0fnr � log(g(r))g= infr�0fnr � log P (Nr(�̂; yn))g (13)Note that when g(0) > 0, i.e. when the prior puts positive mass on the set N0(�̂; yn) ofall � that are MLEs for yn, then we can use the estimateL�(yn) � � logP (N0(�̂; yn)) (14)This gives a slightly more general version of the \folk theorem" (9).Another interesting case is when g(0) = 0 but the prior probability g(r) = P (Nr(�̂; yn))grows with the radius r at least as fast as a volume of radius r in k-dimensional space forsome k. This can happen when Y is continuous and the index set � gives a smooth enough�nite dimensional real vector-valued parameterization of the class fP� : � 2 �g (see e.g.[Ris86, CB90, Dawa, Yam92]). In particular, let us assume that g(0) = 0 but there existc; k; �0 > 0 such that g(r) � crk for all 0 � r � �0 In this case from (13) we haveL�(yn) � inf0�r��0fnr � k log r � log cg (15)Di�erentiating with respect to r, we �nd that the in�mum is obtained for r = k=n. Whenk=n � �0, this givesL�(yn) � k + k log nk � log c = (1 + o(1))k log n; (16)where o(1) is a quantity that goes to zero as the sample size n!1.3.2 Performance on Random Sequences Assuming True State ofNatureWe now look at the risk (i.e. average total loss) of Bayes method when the outcome sequenceis generated at random according to an unknown true state of nature �� 2 �, as compared12



to the risk for an omniscient scientist who knows the true state ��. By the same argumentused in the previous section, the di�erence in these two risks isr�(��) := rbayes(��)� rOS(��)= Xyn2Y n P (ynj��)LTbayes;P (yn)� Xyn2Y n P (ynj��)LTOS;��(yn)= Xyn2Y n P (ynj��)(LTbayes;P (yn)� LTOS;��(yn))= Xyn2Y n P (ynj��) log P (ynj��)P (yn):= I(PY nj�� k PY n); (17)where I(P k Q) = EP log P (X)Q(X) denotes the relative entropy or Kullback-Leibler divergencebetween distribution P and distribution Q [Kul59].Continuing the analogy with the previous section, for each r � 0 letNr(��) = f� : I(PY nj�� k PY nj�) � rng:Hence now we de�ne a neighborhood Nr(��) around �� instead of a neighborhood around�̂(yn), and this neighborhood includes all � 2 � that assign probabilities to outcomes ynthat are similar to the probabilities assigned by ��, at least on yn that are likely under ��.Now for countable � and any r � 0I(PY nj�� k PY n) = Xyn2Y n P (ynj��) log P (ynj��)P (yn)= Xyn2Y n P (ynj��) log P (ynj��)P�2� P (ynj�)P (�)� Xyn2Y n P (ynj��) log P (ynj��)P�2Nr(��) P (ynj�)P (�)= Xyn2Y n P (ynj��) log P (ynj��)P�2Nr(��) P (�)P (Nr(��))P (ynj�) � logP (Nr(��))� Xyn2Y n P (ynj��) X�2Nr(��) P (�)P (Nr(��)) log P (ynj��)P (ynj�) � logP (Nr(��))(18)= X�2Nr(��) P (�)P (Nr(��))I(PY n j�� k PY nj�)� logP (Nr(��))� rn � log P (Nr(��)); (19)where (18) follows from Jensen's inequality, using the convexity of log 1x , and (19) follows fromthe de�nition of Nr(��). The same result follows similarly for continuous � (see [Bar87]).13



From (17) and (19), in analogy with (13), we haver�(��) � infr�0frn � logP (Nr(��))g: (20)3.3 Bayes RiskFinally we look at the Bayes risk. This is the expected cumulative loss of Bayes methodwhen the outcome sequence is generated in the manner speci�ed by the prior P , namely,a true state of nature �� 2 � is selected at random according to the prior P , and then asequence yn of observations is generated at random according to P �� . In keeping with thephilosophy of the previous sections, we compare the Bayes risk with the risk of an omniscientscientist who knows �� before seeing yn. Thus we de�neRos(P ) := X��2�P (��)rOS(��) (21)and R�(P ) := Rbayes(P )�Ros(P )= X��2�P (��)(rbayes(��)� rOS(��))= X��2�P (��)I(PY nj�� k PY n):= I(�;Y n); (22)where I(X;Y ) = Px2X PX(x)I(PY jx k PY ) denotes the mutual information between therandom variablesX and Y . Here we view the state of nature � 2 � and the outcome sequenceyn 2 Y n as dependent random variables with the joint distribution de�ned (implicitly) bythe prior P and the set fP� : � 2 �g.Let � be any partition of � into a countable sequence �1;�2; : : : of pairwise disjointsubsets of � with Si�i = �. Each �i is called an equivalence class. For each � 2 �, let�(�) denote the equivalence class containing �.The entropy of � is given byH(�) = �EP logP (�(�)) = � 1Xi=1 P (�i) logP (�i):(The entropy can be in�nite.) The average diameter of � is de�ned byD(�) = 1Xi=1 P (�i) sup�� ;�2�i I(PY nj�� k PY nj�):Using tricks like those used in the previous section, for any countable � and any partition� we get 14



I(�;Y n) = X��2�P (��) Xyn2Y n P (ynj��) log P (ynj��)P (yn)= X��2�P (��) Xyn2Y n P (ynj��) log P (ynj��)P�2� P (ynj�)P (�)� X��2�P (��) Xyn2Y n P (ynj��) log P (ynj��)P�2�(��) P (ynj�)P (�)= X��2�P (��)0@ Xyn2Y n P (ynj��) log P (ynj��)P�2�(��) P (�)P (�(��))P (ynj�) � logP (�(��))1A� X��2�P (��)0@ X�2�(��) P (�)P (�(��)) Xyn2Y n P (ynj��) log P (ynj��)P (ynj�) � log P (�(��))1A= 0@X��2�P (��) X�2�(��) P (�)P (�(��))I(PY nj�� k PY nj�)1A+H(�)� D(�) +H(�): (23)The same result also holds for continuous �.From (22) and (23) we haveR�(P ) � infpartitions � of �fD(�) +H(�)g: (24)3.4 ApplicationsTo upper bound the total risk of Bayes method under the log loss, we can simply calculatethe risk of the omniscient scientist, and add to it the upper bounds on the di�erence betweenthe risk of the Bayes method and that of the omniscient scientist. This method is usuallyeasy to use, because the risk for the omniscient scientist is usually easy to calculate. Inparticular, whenever the Yts are conditionally independent given �, then the risk of theomniscient scientist in each of the cases treated in the previous three subsections is:� for arbitrary yn: LTos;�̂(yn) = �Pnt=1 logP (ytj�̂),� for particular true state of nature ��: ros(��) = Pnt=1H(Ytj��), and� for random state of nature drawn by P : Ros(P ) = P��2� P (��)Pnt=1H(Ytj��),15



where H(Ytj��) = �Py2Y P (Yt = yj��) log P (Yt = yj��). Thus, for example, for learningf�1g-valued functions with i.i.d. sign noise with rate �,Ros(P ) = ros(��) = h�n; (25)where h� = �� log � � (1 � �) log(1 � �), andLTos;�̂(yn) = N log 1� + (n �N) log 11 � �; (26)where N is the minimum number of noisy outcomes in any interpretation of yn, i.e. N =min�2� jft : yt 6= f�(xt)gj.3.4.1 Finite �Let us illustrate this method with a simple application of the \folk theorem" (9). Supposethat � is �nite and the prior distribution P is uniform over �. Then by (9), for any outcomesequence yn, L�bayes(yn) � log 1P (�̂) = log j�j: (27)Hence for � indexing a class of f�1g-valued functions with i.i.d. sign noise with rate �,LTbayes(yn) � N log 1� + (n�N) log 11� � + log j�j: (28)For large enough n, the additional loss log j�j of the Bayes method over and above that ofthe omniscient scientist will be negligible. By averaging over yn, we obtain the related upperbound of h�n+log j�j for the risk of Bayes method when the outcome sequence is generatedat random, either according to a �xed state of nature �� or a random ��.3.4.2 In�nite �, noisy f�1g-valued functionsFor in�nite (possibly uncountable) � indexing a class of f�1g-valued functions with i.i.d.sign noise with rate �, an only slightly more sophisticated method gives useful bounds inmany cases. These are the cases when the class F = ff� : � 2 �g has �nite VC dimension.This notion can be de�ned briey as follows:For any class F of functions from X ! f�1g and sequence S = (x1; : : : ; xm) of pointsin X, we say that S is shattered by F if for any sequence (y1; : : : ; ym) of values in f�1g,there is a function f 2 F with yi = f(xi) for all i, 1 � i � m. The VC Dimension of F ,denoted dim(F), is de�ned as the length m of the longest such shattered sequence, over allpossible �nite sequences of points in X. Further discussion and examples of this concept canbe found in [Vap82, BEHW89]. 16



Now let us consider the case where F = ff� : � 2 �g and x1; : : : ; xn is a �xed instancesequence. Let us de�ne the partition � of � by letting�(�) = �(��)$ f�(xt) = f�� (xt); 1 � t � n:By the most basic theorem connected with the VC dimension, known as the Sauer/VClemma [VC71, Sau72], the number j�j of distinct equivalence classes in � is bounded byj�j � dXi=0 ni! � �end �d ; (29)where d = dim(F) and e is the base of the natural logarithm. (The latter inequality holdsfor n � d.) It follows that for any prior P on �,H(�) � d log end ; (30)since the entropy is maximized for the uniform distribution on �, and takes the value log j�jin this case. Furthermore, by our de�nition of � it is clear that if �(�) = �(��), then � and�� induce the same conditional distribution on Y n. Hence I(PY nj�� k PY nj�) = 0: If followsthat D(�) = 0. Putting this all together, and applying (24), we get the following bound forthe Bayes risk:For all n � d = dim(F), all instance sequences x1; : : : ; xn, and all priors P on �,R�(P ) � D(�) +H(�) � d log end = (1 + o(1))d log n (31)and hence R(P ) � h�n+ d log end ; (32)when the noise rate is �, where h� = �� log � � (1� �) log(1 � �).Using the other bounds given in the previous sections, upper bounds can also be obtainedfor the risk of Bayes method when the outcome sequence yn is arbitrary, and when it isgenerated at random from a particular ��. However, the bounds in these cases depend onthe probability P (�(�̂)) (resp. P (�(��))) of the relevant equivalence class in the partition�. If all equivalence classes have roughly the same prior probability, then the result is muchthe same as given above for the Bayes risk. Otherwise more careful analysis is required.Sometimes we can also obtain interesting bounds even in the case that the VC dimensionof F is in�nite. Here we also average over random choices of the instances xn = (x1; : : : ; xn),and instead of using the VC dimension, we use the VC entropy [VC71] (see also [HKS91]). LetQ be a distribution on the instance spaceX, and assume that each xt is chosen independentlyat random according to Q. For each xn de�ne the partition �xn of � as above by letting�xn(�) = �xn(��)$ f�(xt) = f�� (xt); 1 � t � n:The VC entropy of F (for sample size n) isEQn(log j�xnj). It is clear that the above derivationof (32) can be generalized to obtainEQn(R(P )) � h�n+EQn(log j�xnj): (33)17



4 0-1 LossWe now derive upper bounds on the risk of Bayes method for the 0-1 loss. As shown in(1), for this loss function Bayes method predicts the outcome with the highest posteriorprobability. Thus for outcome sequence yn = (y1; : : : ; yn) 2 Y n, where Y = f�1g, and1 � t � n, the action at of Bayes method at time t is the predictionat = ŷt = argmaxy2f�1gP (yjyt�1): (34)The total 0-1 loss for an outcome sequence yn 2 f�1gn is the total number of times thisprediction is incorrect, i.e.LTbayes;P;0�1(yn) = jft : yt 6= ŷt; 1 � t � ngj: (35)This is often called the number of mistakes.4.1 Performance on Arbitrary Outcome SequencesLittlestone and Warmuth [LW89, Lit89] and Vovk [Vov90b] have obtained bounds on thenumber of mistakes made by Bayes method for arbitrary f�1g-valued outcome sequencesfor the case that � is a countable class ff� : � 2 �g of functions and the prior informationassumes that outcomes are generated by applying sign noise with known rate � (even thoughthe actual outcome sequence is arbitrary). The bound from [LW89] is particularly easy toderive, and generalizes to continuous � easily as well. We give a variant of this derivationnow.First, let us de�ne the Heavyside function � by letting �(x) = 1 if x � 0 and �(x) = 0if x < 0. We use the fact that for any b and x, where 0 < b; x � 1,�(b� x) � log 1xlog 1b ; (36)which is easily veri�ed (assuming 0/0 = 1). We note also that since 0 � � � 1=2,12(1� �) � 1and P (yt) = X�2�P (ytj�)P (�)= X�2�P (ytj�)P (yt�1j�)P (�)� X�2�(1� �)P (yt�1j�)P (�)= (1� �)P (yt�1);18



thus P (yt)(1 � �)P (yt�1) � 1:(Of course the same result holds for continuous �.)It is clear that Bayes method makes a mistake only when the posterior probability of theoutcome yt, given the previous outcomes yt�1, is less than or equal to one half. Hence thetotal number of mistakes is bounded byLTbayes;P;0�1(yn) � jft : P (ytjyt�1) � 1=2; 1 � t � ngj= jft : P (yt)P (yt�1) � 1=2; 1 � t � ngj= nXt=1�(12 � P (yt)P (yt�1))= nXt=1�( 12(1� �) � P (yt)(1 � �)P (yt�1))� nXt=1 log2 (1��)P (yt�1)P (yt)log2(2(1� �))= n log2(1� �)� log2 P (yn)1 + log2(1� �)= n log2(1� �) + LTbayes;P;log2(yn)1 + log2(1� �) ; (37)where the last equality follows from (6).It is very useful to have a bound for the risk of Bayes method under the 0-1 loss in termsof the risk under the log loss, because this allows us to apply the results of the previoussection. In particular, from (26), we haveLTbayes;P;log(yn) = LTos;�̂;log(yn) + L�bayes;log(yn)= N log 1� + (n�N) log 11� � + L�bayes;P;log(yn); (38)where N = min�2� jft : yt 6= f�(xt)gj is the minimum number of noisy outcomes in anyinterpretation on yn. Note that this is the same as the 0-1 loss of the omniscient scientist,i.e. N = LTOS;P;0�1(yn). Hence, combining (37) and (38),LTbayes;P;0�1(yn) � �log2 1��� �LTOS;P;0�1(yn) + L�bayes;P;log2(yn)1 + log2(1 � �) (39)19



In particular, if � is �nite and the prior P is uniform on � then from (27) we haveLTbayes;P;0�1(yn) � �log2 1��� �LTOS;P;0�1(yn) + log2 j�j1 + log2(1� �) : (40)Other bounds on L�Bayes;P;log(yn) can be plugged in in other circumstances.4.2 Performance for Random Sequences Assuming True State ofNatureUsing the same prior as in the previous section, we now assume that the outcome sequence isactually generated at random according to the distribution P�� for some true state of nature��. In the case of f�1g-valued functions with independent sign noise, which we examinehere, this means that yt = f��(xt) with probability 1� � and yt = �f��(xt) with probability�. The risk of Bayes method under 0-1 loss for this case is the average total number ofmistakes made by Bayes method.We can obtain bounds on the average total number of mistakes by averaging the formulaefrom the previous section (e.g. (39)), using the fact that min�2� jft : yt 6= f�(xt)gj � jft : yt 6=f�� (xt)gj, and hence the average performance of the omniscient scientist who uses knowledgeof the MLE for each individual outcome sequence is at least as good as the risk (= averageperformance) of the omniscient scientist that uses knowledge of ��. Since the expectation ofjft : yt 6= f�� (xt)gj is �n, from (39), this givesrbayes;P;0�1(��) � log2 1���1 + log2(1 � �)�n+ r�Bayes;P;log2(��)1 + log2(1� �) :Unfortunately, this bound is not tight. We show how to get rid of the extra log2 1���1+log2(1��) factorin front of the �n. This is especially important, since in most cases the remaining term isO(log n).The main idea is to bound the di�erence in 0-1 loss at time t between the Bayes methodand the omniscient scientist in terms of the di�erence at time t of the corresponding logloss. Fix the outcome sequence yn. The loss of Bayes method at time t is � logP (ytjyt�1),and the loss at time t of the omniscient scientist who knows the true state of nature ��is � logP (ytjyt�1; ��) = � log P (ytj��), since Yt is conditionally independent of Y1; : : : ; Yt�1given �� in the case of f�1g-functions with independent sign noise. Thus the di�erence inthese losses is L�t;log(yn) := log P (ytj��)P (ytjyt�1) : (41)Let K�(x) = � log �x + (1 � �) log 1��1�x for � � x � 1 � �. We can rewrite the di�erencebetween the risk of Bayes method and the risk of the omniscient scientist under the log loss20



as follows. r�log(��) = Xyn2Y n P (ynj��) nXt=1 L�t;log(yn)= Xyn2Y n P (ynj��) nXt=1 log P (ytj��)P (ytjyt�1)= Xyn2Y n P (ynj��) nXt=1 Xy2Y P (Yt = yj��) log P (Yt = yj��)P (Yt = yjyt�1) (42)= Xyn2Y n P (ynj��) nXt=1K�(pt); (43)where pt = P (Yt = �f��(xt)jyt�1). Equation (42) looks a bit strange at �rst, but all that isreally being introduced here is superuous averaging over possibilities that we are alreadyaveraging over in the outermost sum. Thus the overall expectation is unchanged. Thismethod is analogous to that used in [HKS91]. The last equation, (43), follows directly fromthe de�nition of the noise model. It is easily veri�ed that we always have � � pt � 1 � �.We now derive analogous equations for the 0-1 loss. Let h be the modi�ed Heavysidefunction de�ned by h(x) = 1 if x > 0, h(x) = 0 if x < 0 and h(0) = 1=2. We assume thatfor the 0-1 loss, Bayes method tosses a fair coin to make its prediction when the posteriorprobabilities of �1 and +1 are each 1=2. This will make our analysis easier, and does nota�ect previous results.Under these assumptions, for �xed yn the 0-1 loss of Bayes method at time t (averagingover coin tosses when necessary) is h(12�P (ytjyt�1)). The 0-1 loss of the omniscient scientistat time t is h(12 � P (ytj��)). Thus the di�erence in these losses isL�t;0�1(yn) := h(12 � P (ytjyt�1))� h(12 � P (ytj��)): (44)In analogy with the function K�, let us de�ne J�(x) = (1 � 2�)h(x � 12). We can thenexpress the di�erence between the risk of Bayes method and the risk of the omniscientscientist under the 0-1 loss as follows.r�0�1(��) = Xyn2Y n P (ynj��) nXt=1L�t;0�1(yn)= Xyn2Y n P (ynj��) nXt=1[h(12 � P (ytjyt�1))� h(12 � P (ytj��))]= Xyn2Y n P (ynj��) nXt=1 Xy2Y P (Yt = yj��)[h(12 � P (Yt = yjyt�1))� h(12 � P (Yt = yj��))]= Xyn2Y n P (ynj��) nXt=1[�(h(12 � pt)� h(12 � �)) + (1 � �)(h(pt � 12)� h(�� 12))]21



� Xyn2Y n P (ynj��) nXt=1 J�(pt); (45)where pt = P (Yt = �f��(xt)jyt�1) as above. The last inequality is readily veri�ed by caseanalysis.Note that K� increases monotonically as x goes from � to 1 � �, and J�(x) is a stepfunction that is 0 for x < 1=2 and 1� 2� for x > 1=2. Hence it is clear thatJ�(x) � 1 � 2�K�(1=2)K�(x) = C�1 � 2�K�(x) (46)for all � � x � 1 � �, whereC� = (1� 2�)2� log(2�) + (1� �) log(2(1� �)) :It can be shown that if log is the natural log, then 1log2 � C� � 2 for 0 � � � 1=2. Thelower bound is tight as �! 0, and the upper bound is tight as �! 1=2.Hence it follows from (43), (45) and (46) thatr�0�1(��) � C�1 � 2�r�ln(��); (47)where 1ln2 � C� � 2.4.3 Bayes Risk For 0-1 LossIn this �nal section we look at the 0-1 Bayes risk, that is the risk of Bayes procedure for0-1 loss under the assumption that the outcome sequence yn is generated by choosing ��according to the prior distribution and then generating yn according to P �� . As above, wecompare the risk of the Bayes method to the risk of an omniscient scientist who knows ��.Again, we can simply average the results of the previous section to obtain bounds on theexcess risk of the Bayes method. However, a direct analysis yields a bound that is better by afactor of 2. As above we consider only the case of f�1g-valued functions times independentsign noise with rate �. Our analysis is similar to that given in [HKS91] for the noise-freecase, and generalizes the corresponding results given there. It also parallels the analysis ofthe previous section.The Bayes risk for the log loss isRlog(P ) = Xyn2Y n P (yn) nXt=1 log 1P (ytjyt�1)22



= Xyn2Y n P (yn) nXt=1 Xy2Y P (Yt = yjyt�1) log 1P (Yt = yjyt�1)= Xyn2Y n P (yn) nXt=1H(Ytjyt�1) (48)The corresponding risk for the omniscient scientist under the log loss is h�n, whereh� = � log 1� + (1 � �) log 11�� , since the omniscient scientist knows everything except whichvalues are changed by the noise. HenceR�log(P ) = Xyn2Y n P (yn) nXt=1[H(Ytjyt�1) � h�] (49)Now turning to the 0-1 loss, the Bayes risk isR0�1(P ) = Xyn2Y n P (yn) nXt=1 h(12 � P (ytjyt�1))= Xyn2Y n P (yn) nXt=1 Xy2Y P (Yt = yjyt�1)h(12 � P (Yt = yjyt�1))= Xyn2Y n P (yn) nXt=1 ~H(Ytjyt�1); (50)where ~H(Ytjyt�1) = min(P (Yt = +1jyt�1); P (Yt = �1jyt�1)).The corresponding risk for the omniscient scientist under the 0-1 loss is �n. HenceR�0�1(P ) = Xyn2Y n P (yn) nXt=1[ ~H(Ytjyt�1)� �] (51)Both H(Ytjyt�1)� h� and ~H(Ytjyt�1)� � are functions of x = P (Yt = +1jyt�1) that aresymmetric about x = 1=2, equal 0 for x = � and x = 1 � �, increasing as x goes from � to1/2 and (by symmetry) decreasing as x goes from 1/2 to 1 � �. In fact, ~H(x) � � is linearfor � � x � 1=2 and H(x)� h� is concave. It follows that ~H(x)� � � ~H(1=2)��H(1=2)�h� (H(x)� h�)for all � � x � 1 � �, using symmetry again to verify the inequality for the second half ofthe range. Furthermore,~H(1=2) � �H(1=2) � h� = 12(1 � 2�)� log(2�) + (1 � �) log(2(1 � �)) = C�2(1 � 2�) ;where C� is as de�ned in the previous section, and we assume natural logs. Since x alwayslies between � and 1 � � when x = P (Yt = +1jyt�1), it follows from (49) and (51) thatR�0�1(P ) � C�2(1 � 2�)R�ln(P ); (52)23



where 1ln2 � C� � 2.For � = 0, C� = 1ln2 and from (52) we get R�0�1(P ) � 12 ln2R�ln(P ) = 12R�log2(P ); whichwas the result from [HKS91]. As � approaches 1=2, C� approaches 2, and we get R�0�1(P ) �11�2�R�ln(P ): Combining this with (31) from section 3.4.2, if the class of functions has VCdimension d then this gives R�0�1(P ) � d1� 2� ln end :Hence R0�1(P ) � �n + d1� 2� ln end : (53)This holds for any class F of VC dimension d, any sample size n � d, and any prior P .5 ConclusionWe have derived a number of upper bounds on the risk of Bayes method for sequential clas-si�cation and regression problems on the outcome space Y = f�1g. Many of our techniquesshould generalize easily to other kinds of outcome spaces, as well as other decision spacesand loss functions. Some of these techniques may also help in analyzing other learningmethods, such as the \Gibbs" method [GT90, HKS91, OH91b, OH91a, SST92]. However,a major problem remaining is to develop equally simple and general techniques to obtainlower bounds on the risk, so that we can see how tight these upper bounds are.Very tight upper and lower bounds on the risk of Bayes methods under log loss areavailable for the case when � is a compact subset of Rd and the relative entropy I(P� k P��)is twice continuously di�erentiable at � = �� for almost all �� 2 �, so that the Fisherinformation is well-de�ned[Sch78, Efr79, Ris86, CB90, Dawa, Yam91, Yam92]. This is veryoften not the case for a discrete outcome space such as f�1g, so we have concentrated onmore general bounds here, which involve much weaker assumptions, such as �niteness of theVC dimension or bounds on the VC entropy. It remains to see exactly how the results givenhere relate to the more standard statistical approaches using Fisher information.It should also be noted that whereas the bounds obtained for the log loss are quitegeneral, those we have obtained for the 0-1 loss are restricted to the case of noisy functionswith known noise rate. It would be nice to have more general bounds for 0-1 loss. There alsomany cases of interest in which the class of functions indexed by � can be decomposed intoclasses F1;F2; : : : of increasing VC dimension [Vap82], including the case where � consists ofa sequence of smooth real parameterizations as above of increasing dimension [Yam92]. Somegeneral results on the performance of Bayes methods in this case for noise-free outcomes arereported in [HKS]. These results should be (and can be) extended to the noisy case.Finally, it would be nice to have good bounds on the average loss for the nth example, inaddition to bounds on the average total loss for the �rst n examples. Yamanishi gives boundsof this type for some special cases [Yam91, Yam92] (see also [Ama92, AFS92]). The formerquantity is what is usually displayed as a \learning curve". Of course, if we had matching24
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