
Multi-Level Hierarchical RetrievalRobert Levinson�andGerard Ellis yAbstractAs large databases of conceptual graphs are developed for complex domains, e�cient retrievaltechniques must be developed to manage the complexity of graph-matching while maintainingreasonable space requirements. This paper describes a novel method \the multi-level hierar-chical retrieval method" that exploits redundancy to improve both space and execution timee�ciency. The method involves search in multiple partially ordered (by \more-general-than")hierarchies such that search in a simpler hierarchy reduces the search time in the hierarchy ofnext complexity. The speci�c hierarchies used are: the traditional partial order over conceptualgraphs; a partial order over node descriptors; a partial order over \descriptor units"; and �nally,the simplest partial order is the traditional type hierarchy.1 IntroductionAlthough it is true for many natural language applications that due to a wide variation of conceptand relation types that matching conceptual graphs [14] is relatively easy (and hence retrieval ise�cient), no such claims can be made for general conceptual graphs applied to other domains such aschemistry [16], chess[9,11], VLSI CAD designs, structural designs, etc. In these domains, since manyconcepts and relations may be repeated within the same graph, the cost of graph-matching becomesthe dominant cost. As these databases grow, e�ort must be taken to maintain space and executiontime e�ciency. As is often the case, optimizations can be achieved by exploiting redundancy. Inthe case of the system described here redundancy is exploited in multiple ways. Redundant featuresof graphs need only be stored once and redundant portions of the graph-matching tests may alsobe shared. Further e�ciency is achieved by taking advantage of the structure of the partial orderby \more-general-than" to do even further pruning.While retrieval in the traditional partial order graph hierarchy has been shown empirically torequire comparisons on the order of the log of the number of graphs in the database [6,7], the multi-level hierarchical technique described in this paper should perform even better by reducing the e�ortto compute the required comparisons. Due to the additional complexity of the database structurethese savings may be practically realizable for only large databases for the types of applicationsdescribed above. For simpler applications the uni-hierarchical method should be su�cient.In addition to providing potential gains in e�ciency the multi-level hierarchy serves as a concep-tual tool also: it gives a spectrum on which the graph hierarchy and type hierarchies can be seen asthe two extremes. The multi-level system maintains multiple hierarchies of increasing complexity:�Department of Computer and Information Sciences, University of California, Santa Cruz, CA 95064 U.S.A.yComputer Science Department, The University of Queensland, Brisbane, QLD 4072, Australia.1

1. The simplest partial order is the traditional type hierarchy.2. A partial order of \descriptor units". Descriptor units are the atomic information used in thenode descriptors, they re
ect the actual path distance between concept and relations in theconceptual graph and imply the adjacency relationships.3. A partial order of node descriptors. (where a node descriptor for some concept or relationis a description of the neighborhood of concepts and vertices radiating from that concept orrelation for a given radius).4. The traditional partial order of conceptual graphs.Search in the simpler hierarchy provides a rapid mechanism of indexing and searching thehierarchy of next complexity. The details of these hierarchies, the new method of graph description(as sets of node descriptors), and the retrieval method that allows one to move from one hierarchy tothe next are described in the remainder of the paper. Note that potentially exponential subgraph-isomorphism tests are being replaced with O(n3) graph comparisons where n is the number ofnodes in the graphs. This paper is meant to be read after reading [11]. The �rst paper providesthe background in graph matching and retrieval which has led to the multi-hierarchy system. Thecurrent paper provides extensions and further implementation details - in particular the additionof the descriptor unit hierarchy. Other supporting material can be found in [3] which discussescompilation of the conceptual graph hierarchy and gives improvements to the uni-hierarchy method.The most typical application of these techniques is bibliographic retrieval in which articles orabstracts of articles are stored as individual conceptual graphs. Along with the graphs is provideda type hierarchy. A query for such a database is a conceptual graph and answers to the query takethe form of subgraphs (generalizations) or supergraphs (specializations) of the query that occur inthe database. The database example that we will be using throughout the paper is shown in Fig. 1.In the traditional graph hierarchy, graphs are partially ordered by subsumption [1,2,3,5,7,11,13].Fig. 1 gives the generalization hierarchy for the conceptual graphs Sowa uses to demonstrate thecanonical formation rules for conceptual graphs [14]. The ordering in the hierarchy assumes thatPERSON is a subtype of GIRL and all other concept types are pairwise incomparable. The relationsAGNT, MANR, and OBJ are pairwise incomparable.In the next section we will describe how graphs are represented as sets of node descriptors andthe resulting node descriptor hierarchy. Following sections will describe the relationships betweenthe hierarchies, and give a search method that exploits the indexing information provided by themultiple hierarchies. Before going further it should be noted that the actual objects are not storedin the hierarchies directly but in order to take advantage of redundancy they are represented bythe di�erences between neighbouring objects. In this manner computation can be shared throughthe mappings between neighbouring objects. This compilation method is discussed in section 3.2 Node Descriptor HierarchyEvery conceptual graph is represented as a set of node descriptors.2

PIEOBJ

GIRL: Sue AGNT EAT MANR FAST

GIRL: Sue AGNT EAT MANR FAST PIEOBJEATAGNTGIRL: Sue

GIRL AGNT EAT MANR FAST PIEOBJEATAGNTPERSON: Sue

f

ed

cb

a

Figure 1: A generalization hierarchy2.1 Node DescriptorsA node descriptor describes the neighbourhood of a concept or relation in a conceptual graph. Theneighbourhood of radius r of a concept or relation c in a conceptual graph u is every concept andrelation in u, that has a path from c of length less than or equal to n. Other properties are alsoused, such as cycle length, distances, and arc information. There are three types of descriptorunits: one descriptor unit for the node itself; one descriptor unit for each adjacent node; and onedescriptor unit for every other node within the given radius.2.1.1 Self Descriptor Units (abbreviated \S-dus")A self descriptor unit describes the concept or relation that is the focus of the node description. Ittakes the form (S, v, d) where� S identi�es the descriptor unit as being a self descriptor unit.� v = the information contained in the concept or relation, a concept type and referent or arelation type respectively. We shall refer to the v �eld of all descriptor unit kinds as the label�eld for that kind.� d = the length of the shortest non-trivial cycle the node is on, 0 if none. This will be an evennumber, since conceptual graphs are bipartite.The partial ordering over self descriptor units is de�ned: (S, v1, d1) � (S, v2, d2) if and only if� v1 � v2 and� (d2 = 0 _ (d2 6= 0 ^ d2 �Z d1)) where �Z refers to the ordering over positive integers.3

For instance the concept [PERSON: Sue] in graph c in Fig. 1 has a self descriptor of (S,PERSON: Sue, 0). The concept [GIRL: Sue] in graph e has the self descriptor (S, GIRL: Sue, 0).The ordering between these is (S, GIRL: Sue, 0) � (S, PERSON: Sue, 0).2.1.2 Adjacent Descriptor Units (A-dus)An adjacent descriptor unit describes some concept or relation adjacent to the focus concept orrelation. The descriptor is of the form (A, v, a). The main di�erence from a self descriptor unit isthat the �eld a contains the label of the arc that attaches the node v to the focus. For conceptualgraphs the label of the arc is the number of the link. The arc number identi�es the argumentposition of the n-ary relation. An adjacent descriptor for the relation (AGNT) when the concept[PERSON: Sue] is the focus in graph c in Fig. 1 would look like (S, AGNT, 2), since the 2nd arcof the relation (AGNT) is attached to the focus.The partial order over adjacent descriptor units is de�ned:(A, v1, a1) � (A, v2, a2) , (v1 � v2 ^ a1 = a2).2.1.3 \Other" Descriptor Units (O-dus)An other descriptor unit is used to describe concepts or relations which are not adjacent to the focusconcept or relation, but are within the radius prescribed. In Section 2.1.5 we prescribe a radius oftwo for concepts and a radius of one for relations. The descriptor is of the form (O, v, d) where dis the shortest distance v is from the focus. (If we take the prescribed radii then this �eld is notneeded.) The descriptor for the concept [EAT: *] in graph c given the focus is [PERSON: Sue]is (O, EAT: *, 2). The notation [EAT] is a short notation for the generic EAT concept [EAT: *] .The partial order over Other descriptor units is de�ned:(O, v1, d1) � (O, v2, d2) , (v1 � v2 ^ d1 �N d2), where �N is the ordering over natural numbers.2.1.4 Comparing A-dus to O-dusSometimes it is necessary to see whether an O-du is a generalization of an A-du, since A-dus arereally O-dus but have distance 1 (and contain arc information). The partial order is as de�ned as:(O, v1, d1) � (A, v2, a2) , (v1 � v2).2.1.5 Radius of NeighbourhoodThe radius of the neighbourhood of each node is kept constant for some domain. Here we arguethat the radius of concept nodes and relation nodes should di�er (by one). The radius of conceptsshould be even and relations odd. If the radius is odd for a concept it will include relations but notnecessarily all the concepts it is attached to. The neighbourhood in this case scribes a subgraphof the original conceptual graph. This subgraph is not necessarily a conceptual graph. Similararguments hold for an even radius for relations.A radius of one for a relation gives neighbourhoods which represent subgraphs containing thearguments of each relation. A radius of two for a concept gives neighbourhoods which representsubgraphs that de�ne what concepts the concept can be associated with. They are like selectionalconstraints (the minimal graphs that certain combinations of concepts and relations can occur in).4

2.2 Node Descriptor ConstructionHere we give a process by which the set of node descriptors of a given graph can be constructed.The object is to bring the node descriptors to exactly the correct level of speci�city to \virtually"(i.e. not guaranteed in the worst case) insure that two nodes with identical descriptions are indeedisomorphic in the given graph. The process starts with all nodes in the same equivalence class andthen iteratively increases the descriptions of non-unique nodes until further \re�nement" can nolonger be made. Descriptions can be \increased" by considering the equivalence class informationfrom the previous iteration in the comparisons for the next iteration.Every node in every database graph (and every query graph) is to be represented as a nodedescriptor as above. The following algorithm gives the necessary details: (Two nodes are in thesame equivalence class if they have the same node descriptor. Thus, as descriptors become morespeci�c, equivalence classes may become smaller and more numerous.)BEGIN(* Generate Node Descriptors *)1. Represent each node as a set of dus as described above. Start with all nodes in equivalenceclasses based on their S-dus. Two nodes are in the same equivalence class i� their S-dus areidentical.2. REPEAT2.1 Record current node descriptors and equivalence classes. (classes need only be recom-puted for nodes that are not in singleton classes already). Two label �elds will beconsidered to match (in O-dus and A-dus) i� they are in the same equivalence class inthe previous iteration.2.2UNTIL equivalence classes of nodes have not changed from the previous iteration.3. Return node descriptors from the previous iteration.ENDExcept for very unusual graphs, the resulting node descriptors from this algorithm are suchthat two nodes with the same descriptor are truly symmetric in the given graph. For many graphsonly one iteration is required. The algorithm can be viewed as forming equivalence classes of nodesbased on transitive closures of their neighbourhoods.The node descriptors in Fig. 2 come from the graphs in the generalization hierarchy in Fig. 1.Because there are no isomorphic nodes within an individual graph only one iteration of the abovealgorithm was required to generate the node descriptors.In calculating node descriptors as above, a node descriptor equivalence predicate must be avail-able. Here is the algorithm; (for detecting exact matches, ignoring any type hierarchy and assumingS-dus are known to match):BEGIN (* Node Descriptor Equivalence Test for two node descriptors nd1and nd2 *) 5

1. FOR each du x in node descriptor nd11.1 Generate a candidate binding set (a set of dus in nd2 thatx can bind to given the above partial order definitions).1.2 IF the set generated in 1.1 is empty, RETURN false (no binding forx, so nd1 and nd2 are not equivalent).1.3 IF the set generated is a singleton, x has a unique match sodequeue it from further consideration and increment count ofunique matches.2. IF number of unique matches = number of dus, RETURN trueELSE call a bipartite matching algorithm to try to find a 1-1mapping between dus in nd1 and their candidates in nd2, RETURN result.END2.3 Comparing Node DescriptorsThe comparison tests for determining if one node descriptor subsumes another in the partial or-dering of node descriptors is similar to the equivalence test above which is the exact match case ofthe subsumption test. The candidate binding list are formed over the partial order over dus.The complexity of comparing node descriptors reduces to the complexity of bipartite matchingin the worst case, O(n3), but in practice is usually no worse than O(n). Comparing this with thepotentially exponential graph-isomorphism tests gives a sense of the possible savings.3 Constructing and Compiling the HierarchiesSubsumption of node descriptors implies a hierarchy over node descriptors. Fig 3 gives a nodedescriptor hierarchy for the graphs of Fig. 1.Node descriptors in the node descriptor hierarchy point directly to the graphs that they describein the generalization hierarchy, except that transitive links (based on only inter-hierarchy links) areignored.3.1 Compilation of HierarchiesTo reduce both space and processing requirements it is possible to further compile the informationin the hierarchies by replacing the objects in the hierarchies with di�erences between adjacentobjects in the hierarchies. Node descriptors represent subgraphs of the original graphs, thus theycan be treated as conceptual graphs. We believe that we can use the same formation rules for theirconstruction. The di�erences can then be replaced with instances of the formation rules. Hencewe can take advantage of a method [3] of sharing computation amongst conceptual graphs in thegeneralization hierarchy. Fig. 5 shows the result of compiling the node descriptor hierarchy basedon this method. Node descriptors 1 through 11 are in the basis so have no derivation rule otherthan copy, and hence they contain full node descriptors as in Fig 2.6

NodeDescriptorNumber Node Descriptora:1 f (S, >, 0) gb:2 f(S, GIRL: *, 0), (A, AGNT, 2), (O, EAT: *)g3 f(S, AGNT, 0), (A, GIRL: *, 2), (A, EAT: *, 1)g4 f(S, EAT: *, 0), (A, AGNT, 1), (A, MANR, 1), (O, GIRL: *), (O, FAST: *)g5 f(S, MANR, 0), (A, EAT: *, 1), (A, FAST: *, 2)g6 f(S, FAST: *, 0), (A, MANR, 2), (O, EAT: *)gc:7 f(S, PERSON: Sue, 0), (A, AGNT, 2), (O, EAT: *)g8 f(S, AGNT, 0), (A, PERSON: Sue, 2), (A, EAT: *, 1)g9 f(S, EAT: *, 0), (A, AGNT, 1), (A, OBJ, 1), (O, PERSON: Sue), (O, PIE: *)g10 f(S, OBJ, 0), (A, EAT: *, 1), (A, PIE: *, 2)g11 f(S, PIE: *, 0), (A, OBJ, 2), (O, EAT: *, 2)gd:12- substitute GIRL: Sue for GIRL: * (restrict-individual)16 in 2-6 respectivelye:17- substitute GIRL: Sue for PERSON: Sue (restrict-type)21 in 7-11 respectivelyf :22 f(S, GIRL: Sue, 0), (A, AGNT, 2), (O, EAT: *)g23 f(S, AGNT, 0), (A, GIRL: Sue, 2), (A, EAT: *, 1)g24 f(S, EAT: *, 0), (A, AGNT, 1), (A, MANR, 1), (A, OBJ, 1), (O, GIRL: Sue),(O, FAST: *), (O, PIE: *)g25 f(S, MANR, 0), (A, EAT: *, 1), (A, FAST: *, 2) g26 f(S, FAST: *, 0), (A, MANR, 2), (O, EAT: *) g27 f(S, OBJ, 0), (A, EAT: *, 1), (A, PIE: *, 1) g28 f(S, PIE: *, 0), (A, OBJ, 2), (O, EAT: *) gFigure 2: Node Descriptors for radius (1, 2) (relation, concept) of the graphs in Fig. 17

= nd22

= nd28
= nd21

= nd27
= nd20

= nd26
= nd16

= nd25
= nd15

= nd23
= nd18= nd17

(S, ,)

nd11nd10nd9nd8nd7nd6nd5nd4nd3nd2

nd12 nd13 nd19nd14

nd24

nd1

Figure 3: A Node Descriptor hierarchy (see Fig. 1)
Generalization Hierarchy

Node Descriptor Hierarchy

f

ed

cb

a

(S, ,)

nd11nd10nd9nd8nd7nd6nd5nd4nd3nd2

nd12 nd13 nd19nd14

nd24

nd1

Figure 4: The relationship of the node descriptor hierarchy in Fig. 3 to the generalization hierarchyin Fig. 1 8

join nd14 nd19 c1 c4 nd24
join nd24 nd24 c2 c5 nd24
simplify nd24 r1 r3 nd24

simplify nd13 r1 r3 nd13
join nd13 nd13 c2 c5 nd13
join nd3 nd8 c1 c4 nd13
restrictIndividual nd8 c4 GIRL nd8
restrictIndividual nd3 c1 Sue nd3

join nd12 nd12 c2 c5 nd12
join nd2 nd7 c1 c4 nd12

simplify nd12 r1 r3 nd12

restrictType nd7 c4 GIRL nd7
restrictIndividual nd2 c1 Sue nd2

(S, ,)

nd13

nd12

nd11nd10nd9nd8nd7nd6nd5nd4nd3nd2

nd12 nd13 nd19
restrictType nd9 c4 GIRL nd19

nd14
restrictIndividual nd4 c1 Sue nd14

nd24

nd1

Figure 5: Compilation of the node descriptor hierarchy in Fig. 3
9

(S, , 0)

(S, ,)

(S, , 0)

(S, GIRL: Sue, 0)

(S, PIE: *, 0)(S, OBJ, 0)(S, FAST : *, 0)(S, MANR, 0)(S, EAT: *, 0)(S, AGNT, 0)(S, PERSON: Sue, 0)(S, GIRL: *, 0)

Figure 6: A Self Descriptor Unit hierarchy3.2 Descriptor Unit HierarchyThe descriptor units making up the node descriptors allow similar gains that were achieved frommoving from the graph hierarchy to the node descriptors to be achieved by taking advantage of thefact that many node descriptors share dus. A \descriptor unit hierarchy" is generated to achievethis. Figs. 6, 7, 8, and 9 show the hierarchies which represent the partial orders over each kind ofdu.4 Insertion and RetrievalAn integrated search method has been developed that is used at each level of the search: throughthe descriptor unit hierarchy, node descriptor hierarchy, and the conceptual graph hierarchy. Thisis a generalization of the uni-hierarchy method developed in [1,2,3,5,7,11,13]. We shall assume thatthe type-hierarchy (the highest level hierarchy) is \compiled" into a hash table such that given anytwo types, in constant time it can be determined if one is a generalization of the other.Insertion and retrieval operations into a multi-hierarchy scheme are quite similar. They bothrequire �nding the position of the query graph in the conceptual graph (bottom level) hierarchy.Once done, generalizations and specializations of the query can be read out immediately. Further,because of the low granularity level provided by the multi-hierarchy scheme, close or partial matchesare also immediately available.First we give the method for insertion into a single hierarchy without regard to the otherhierarchies. This may be used to search the conceptual graph hierarchy directly as in the uni-hierarchy method, or in the case of a multi-hierarchy scheme, to search the descriptor unit hierarchy:The immediate generalization and immediate specialization sets are found in two phases. PhaseII makes use of the immediate generalizations found in Phase I. Both phases attempt to use the10

(A, GIRL: Sue, 2)

(A, PIE: *, 2)(A, FAST:*, 2)(A, PERSON: Sue, 2)(A, GIRL: *, 2)(A, EAT: *, 1)

(A, , 1) (A, , 2)

(A, ,)

(A, ,)Figure 7: An Adjacent Concept Descriptor Unit hierarchy
(A, OBJ, 2)(A, AGNT, 2)(A, MANR, 2)(A, OBJ, 1)(A, AGNT, 1)(A, MANR, 1)

(A, LINK, 2)(A, LINK, 1)

(A, LINK,)

(A, ,)Figure 8: An Adjacent Relation Descriptor Unit hierarchy11

(O, : *,)

(O, ,)

(O, GIRL: Sue, 2)

(O, GIRL: *, 2) (O, PIE: *, 2)(O, FAST: *, 2)(O, PERSON: Sue, 2)

(O, : *, 2)

(O, EAT: *, 2)

Figure 9: An Other Concept Descriptor Unit hierarchyinformation in the hierarchy to minimize the number of comparison tests.Phase I: (�nd IG(Q), the immediate generalizations of Q)(1) Ordering the database objects to produce a topologically sorted list, i.e. a total ordering thatembeds the original partial ordering by more-general-than.(2) S := ;.(3) While there is a member X in the listIf X is a generalization of Q (comparison test) thenS := S [fXg � IG(X)Remove X from the list.ElseRemove X and all specializations of X from the list.(4) Return S.Since all database objects will be preceded by their generalizations in the topologically orderedlist they only will make it to the front of the list if their generalizations have been found to begeneralizations of Q. Thus, the proper screening is taking place. Now let us return to our example,Fig. 1. One ordered list (among several) for this database would be a,c,b,d,e,f.Phase II. (�nd IS(Q), the immediate specializations of Q)(5) S := ;.(6) Y := some element of IG(Q)(7) I := intersection of the specialization sets of each element of IP(Q) except Y12

We suggest implementation of step 7 as follows. [3] gives a more e�cient method.(7') For each z in IP(Q) except Y doFor each specialization s of z doIncrement count(s)For each item s doIf count(s) = jIP(Q)j � 1 then I := I [fsg(8) For each specialization X of Y in topological order (as in step (1) above) doIf X is in I and X is a specialization of Q (isomorphism test) thenS := S [fXgEliminate specializations of X from the rest of the for loop.(9) Return S.If we actually wish to insert Q into the hierarchy, the IG and IS sets of other objects have tobe updated. This is done in Phase III:Phase III. (update immediate predecessor and successor sets of other items)(10) For each x in IP(Q) doS(x) := IS(x) [fQg � IS(Q)(11) For each x in IS(Q) doP(x) := IP(x) [fQg � IP(Q)KL-ONE's classi�cation algorithm [12] is somewhat di�erent: in phase I an object is comparedto the query as soon as one of its predecessors match Q (A depth-�rst approach as opposed to thebreadth-�rst approach described here). Our experimental studies have shown that the predecessorinformation gained for free by this method (usually simple comparisons) do not pay for the addi-tional predecessor tests (usually more complex) required by this method. Other variations may befeasible though, such as comparing an object as a predecessor as an IP when a certain proportion ofits immediate predecessors have succeeded. Since Phase I is not the expensive phase the di�erenceshere are not that signi�cant. Some systems that maintain a partial order have Phase II work ex-actly as Phase I but from the other end of the hierarchy. This is not as e�cient as the method heresince at the minimum all successors of Q (and some others) must be queried, whereas the PhaseII here only does comparisons on the immediate successors (and some others). Two other thingspoint to the de�ciencies of this approach: the immediate predecessor information from Phase I isnot taken into account and by starting at the other end of the hierarchy the system is required todo comparisons on the most complex objects!We have explored alternative algorithms to these that do not query the partial order in abottom-up or top-down fashion but instead use an information-theoretic heuristic that attemptsto maximize the ratio of expected information gained to comparison cost and using a few levels oflookahead [13]. We've had only limited success with these algorithms: only improvements of about15-20 percent despite a large amount of o�-line pre-processing.Now lets move to the multi-hierarchy scheme. Here the idea is that for object A to be more-general-than B at any hierarchical level it is necessary that each syntactic subunit of A must be13

a generalization of some syntactic subunit of B. The comparison between subunits is found bysearching the hierarchy of next higher level. Now, although the condition stated above is necessarybut not necessarily su�cient we �nd that in the context of the multi-hierarchy scheme, \acting" asif su�ciency is the case brings tremendous e�ciency gains with only a slight chance of error. If sucherror can not be tolerated the answers produced by the system can, of course, be double-checkedusing a standard comparison algorithm for objects of a given hierarchy.Thus, the multi-hierarchical method proceeds as follows with the only actual comparison testsbeing performed in the descriptor unit and type hierarchies (where they are easiest):1. Calculate node descriptors for the query graph (as described in Section 2.2)2. With each graph in the conceptual graph hierarchy maintain two �elds graph-g-count andgraph-s-count both initialized to 0.3. With each node descriptor in the node descriptor hierarchy maintain two �elds nd-g-countand nd-s-count, both initialized to 0.4. For each node descriptor q of the query graph:(a) Find its place in the node descriptor hierarchy as follows:i. For each du of the node descriptor:A. Find its place in the descriptor unit hierarchy, by searching that hierarchy di-rectly (and consulting the type hierarchy)B. Increment by 1 the nd-s-count of node descriptors that have a du that is morespeci�c than the given du. (by tracing inter-hierarchy links)C. Increment by 1 the nd-g-count of node descriptors that have a du that is moregeneral than the given du. (by tracing inter-hierarchy links)ii. Node descriptor q is then more-general-than node descriptors with an nd-s-countequal to the cardinality of q.iii. Node descriptor q is then more-speci�c-than node descriptors with an nd-g-countequal to their cardinality.(b) Increment by 1 the graph-g-count of graphs that have a node descriptor that is more-speci�c-than the given node descriptor (by tracing inter-hierarchy links)(c) Increment by 1 the graph-s-count of graphs that have a node descriptor that is more-general-than the given node descriptor (by tracing inter-hierarchy links)(d) The query graph is more-general-than graphs with a graph-s-count equal to the numberof nodes in the query graph.(e) The query graph is more-speci�c-than graphs with a graph-g-count equal to the numberof nodes.(f) Partial matches may be found by consulting the graph-s-count and graph-g-count �eldsof graphs with their maximum values.Since the relationship between hierarchies is uniform the multi-hierarchy algorithm can bespeci�ed and implemented in a recursive manner. Above we have given the expanded version14

in order to remove some of the mystery. The algorithm can be further enhanced by using theimproved intersection method discussed in [3]. This intersection algorithm obviates the needfor maintaining counts. Here is the recursive version of the algorithm:Place(x,H)(* Finds the place of node x in hierarchy H by returning two listsIG(x) and IS(x). The immediate generalizations IG and immediatespecializations of IG respectively. Once these are found, allgeneralizations and all specializations can be found by tracingpointers. If it is necessary to insert into the hierarchy, Phase III ofthe uni-hierarchical method given above may be used at this point.This algorithm is a recursive algorithm that can be called with thegraph hierarchy, node descriptor hierarchy, or descriptor unithierarchy. Normally, Place will be called with the graph hierarchy,with other hierarchies being called recursively. *)BeginIf hierarchy = du-hierarchy thencall the uni-hierarchical method and return IG sets and IS sets.The comparison test in this method consults the compiled typehierarchy directly.ElseGenerate all subunits of x (node descriptors if x is a graph, dus ifx is a node descriptor.)For each subunit y call Place(y,next(H)) where next(H) is the nextlevel hierarchy and temporarily insert the subunits in their place.Now all successors of x in H can be found by intersecting thesuccessor sets of its subunits in H using the intersection algorithm(by following first inter-hierarchy links and then intra-hierarchylinks). From these the IS set can be found.To find all predecessors of x in H, one runs the intersectionalgorithm on the predecessor sets of the subunits of x. Now thepredecessors of x are a superset of this intersection (which isoften empty). A node z is a predecessor if it has been reached bysize(z) subunits where size(z) is the number of nodes in z. Suchnodes can be calculated naturally in the normal processing of theintersection algorithm. Once the predecessors and successors of Zhave been found - it is straightforward to calculate and return theIG and IS sets.End 15

NodeDescriptorNumber Node Descriptoru: [PERSON] (AGNT) [EAT]!(OBJ)![PIE]q1 f(S, PERSON: *, 0), (A, AGNT, 2), (O, EAT: *)gq2 f(S, AGNT, 0), (A, PERSON: *, 2), (A, EAT: *, 1)gq3 f(S, EAT: *, 0), (A, AGNT, 1), (A, OBJ, 1), (O, GIRL: *), (O, PIE: *)gq4 f(S, OBJ, 0), (A, EAT: *, 1), (A, PIE: *, 2)gq5 f(S, PIE: *, 0), (A, OBJ, 2), (O, EAT: *)gFigure 10: Node descriptors for the query u
=q5=q4

q3q2q1

(S, ,)

nd11nd10nd9nd8nd7nd6nd5nd4nd3nd2

nd12 nd13 nd19nd14

nd24

nd1

Figure 11: The location of the query node descriptors of Fig. 1016

Including those from Query

From Query
New Intra-Hierarchy Links

Intra-Hierarchy Links
u

=q5=q4

q3q2q1

Generalization Hierarchy

Node Descriptor Hierarchy

f

ed

cb

a

(S, ,)

nd11nd10nd9nd8nd7nd6nd5nd4nd3nd2

nd12 nd13 nd19nd14

nd24

nd1

Inter-Hierarchy LinksFigure 12: The result of adding the query graph in Fig. 12 to the node descriptor hierarchy andgeneralization hierarchyFigs. 10 and 11 show the locations of the node descriptors for a sample query in the nodedescriptor hierarchy. Fig. 12 shows the resulting links in the node descriptor hierarchy andthe generalization hierarchy after the query graph has been inserted. Fig. 13 shows all thehierarchies generated from the graphs of Fig. 1, and their interrelationships.5 Ongoing WorkAdapting the multi-hierarchy method for abstraction remains to be done. The algorithmsdescribed here have been based on the assumption that generalization and subgraph (modulotyping and referents) are equivalent for conceptual graphs. When using abstraction in the formof concept type and relation type contraction and expansion this is not, the case generally.We are in the process of fully implementing the multi-hierarchical node descriptor methodin C++ and making relevant experimental comparisons with the uni-hierarchical system.We intend to incorporate these retrieval methods in a principled conceptual graph processorbased on �rst-order conceptual graphs [14]. It is hoped that this tool will support large scaleapplications of conceptual graphs.These methods are being explored in the associative graph database that is being used in17

LINK

Other ConceptAdjacent RelationSelf Adjacent Concept

Node Descriptor Hierarchy

Generalization Hierarchy

FASTPIEEATPERSON

GIRL

Concept Type

MANROBJAGNT

Relation Type

Figure 13: The relationship between the di�erent hierarchies
18

Morph - the graph-based adaptive pattern-oriented chess system[9,11]. Chess patterns in thissystem are represented as graphs. Because the symmetry in these graphs is high comparedto most conceptual graph domains avoiding direct comparisons and sharing computation iscritical.6 AcknowledgementsThe research has bene�ted from the constructive suggestions of Fritz Lehmann. J. DonRoberts helped implement and clarify the node descriptor generation process. Finally wewould like to thank John Sowa for sharing our enthusiasm for these methods.References[1] Ellis, G, `E�cient retrieval from the generalization hierarchy' Technical Report No114, Dept of Computer Science, University of Queensland, Australia (May 1989)[2] Ellis, G, `Deterministic all-solutions retrieval from the generalization hierarchy' Proc4th Annual Conceptual Structures Workshop Nagle, J A and Nagle, T E (Eds.) Detroit(August 1989)[3] Ellis, G `Compiled hierarchical retrieval' Proceedings of the 6th Workshop on Con-ceptual Graphs, Eileen Way (Ed.) SUNY Binghamton, (July 1991). Also, to appear inCurrent Directions in Conceptual Structures Research, Nagle, T et.al (Eds.), Springer-Verlag, (1991)[4] Levinson, R A A Self-Organizing Retrieval System for Graphs, PhD thesis, Univer-sity of Texas, May 1985[5] Levinson, R A `A self-organizing retrieval system for graphs' Proc AAAI-84 (1984)[6] Levinson, R A and Helman, D and Oswalt, E `Intelligent signal analysis andrecognition' Proc 1st Int'l Conference on Industrial and Engineering Applications ofArti�cial Intelligence, ACM (1988)[7] Levinson, R A `A self-organizing pattern retrieval system and its applications' Tech-nical Report UCSC-CRL-89-21, University of California at Santa Cruz (1989). (To bepublished in International Journal of Intelligent Systems)[8] Levinson, R A `Pattern formation, associative recall and search: a proposal' TechnicalReport UCSC-CRL-89-22, University of California at Santa Cruz (1989)[9] Levinson, R A `A self-learning, pattern-oriented, chess program' Proceedings of Work-shop on New Directions in Game-Tree Search, Marsland, T A (Ed), InternationalComputer Chess Association (1989). Also in International Computer Chess Associa-tion Journal, Edmonton, Vol 12 No 4 (December 1989) pp207-215[10] Levinson, R A and Snyder, R `Adaptive pattern oriented chess' Proceedings ofAAAI-91, Morgan-Kaufman, (1991) pp601-60519

[11] Levinson, R A `Pattern associativity and the retrieval of semantic networks' Com-puters and Mathematics with Applications, (Jan 1992) To appear in the Special Editionon Semantic Networks.[12] Lipkis, T `A KL-ONE classi�er' Proceedings of the 1981 KL-ONE Workshop Schmolze,J G and Brachman, R J (Eds.), pp128-145, Cambridge, MA, (1982). The Proceedingshave been published as BBN Report No 4842 and Fairchild Technical Report No 618[13] Ri�, B Searching a partially-ordered knowledge base of complex objects, Master'sThesis, University of California at Santa Cruz (1988)[14] Sowa, J F Conceptual structures: information processing in mind and machine Addi-son Wesley, Reading, MA (1984)[15] Sowa, J F `Semantic networks' Shapiro, S C (Ed), Encyclopedia of Arti�cial Intelli-gence, Wiley, New York (1987) pp1011-1024[16] Wilcox, C S and Levinson, R A `A self-organized knowledge base for recall, design,and discovery in organic chemistry' Arti�cial Intelligence Applications in Chemistry,ACS Symposium Series, 306 (1986)

20

