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7. Summary and Future Work

7.0.3 Conclusion

Maintaining dynamic structures such as the constrained Delaunay triangulation is one of

the research topics in computational geometry. Most existing algorithms are semi-dynamic

in the sense that they only support insertions. This thesis presents a set of fully dynamic

algorithms for constrained Delaunay triangulation. They support insertions of new points

and new constrained edges as well as deletions of existing points and existing constrained

edges. Some interesting properties of the constrained Delaunay triangulation have been

shown by this thesis.

All these algorithms have been implemented and integrated into the SURF layout

system. Although the algorithms are developed for a multichip module layout system,

the ideas and algorithms should be applicable to other mesh generation.

The contributions of this thesis are:

� The algorithms are fully dynamic.

� The algorithms are concise and easy to implement.

� The algorithms are numerically stable even with a large amount of points.

� The experiments veri�es that if all the points are inserted in random order, the number

of new edges added for each new point in the process of locally updating CDT is O(1).

7.0.4 Future work

Although our algorithms have been successfully implemented, it might be possible

to get further improved. We are interested in developing a more e�cient algorithm to

locally updating a simple polygon, in which the boundary edges are not necessary be

the constrained edges, and points and edges outside of this polygon may be triangulated

already.
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a time to apply LOP [Law77] of the quadrilateral. The time and space complexity is

O(N

2

), or O(N

2

logN) time and O(N) space. Also, they use the polygon cutting theorem

and divide-and-conquer technique to make a Delaunay triangulation in a simple polygon.

The time complexity is O(N logN). One drawback of this approach is that the algorithm

couldn't handle the case in which the constrained edges are inserted incremently.

Please note in [FP88] that the algorithm for insertion of a point or a constrained edge

is very similar to the one presented in this thesis. The worst time complexity is O(N

2

),

and for the point insertion algorithm, it runs in O(N) time when the points are distributed

uniformly. For the polygon resulted from deleting invalid edges, they �rst triangulate the

polygon into a non-Delaunay triangulation, then optimized the portion of the triangulation

inside the polygon by applying the circle criterion (the optimization procedure was not

presented in the paper).

In this thesis, algorithms which dynamically update the constrained Delaunay triangula-

tion are presented. We use the circle criterion instead of the LOP approach. The expected

time complexity for point insertion is O(N logN) when points are inserted in random or-

der, where N is the total number of points in the graph. The expected time complexity

for point deletion is O(N). The insertion and deletion algorithms for constrained edges are

straightforward. There are no complex calculations. Although the worst time complexity is

worse than others (O(ljP j

3

), where l is the number of constrained edges, and the jP j is the

number of points of the corresponding polygon, it is expected that the number of points of

the resulting polygon at each stage will be small. In return for the higher worst case time

complexity, we have a simple incremental algorithm.
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two di�erent types of constraints: boundary and prespeci�ed line segments. A CDT provides

a natural way to retain the boundary and line segment information while providing a \good"

triangulation.

6.2.1 Divide-and-conquer approach

In [FFP85], the authors construct the constrained Delaunay triangulation within a

polygon. They divide the polygon by connecting those points of the polygon that were both

visible and Voronoi neighbors. Then, they incremently insert points and locally update the

triangulation. It requires O(N

2

) time in the worst case.

L. Paul Chew [Che89] used a divide-and-conquer algorithm to construct the constrained

Delaunay triangulation in a rectangle with points and constrained edges. It sorts all of the

vertices in the graph by x-coordinate, then divides the rectangle into vertical strips that

with exactly one vertex in each strip, calculates the constrained Delaunay triangulation for

each strip, and then pastes them together in pairs. The time complexity is O(N logN).

The divide-and-conquer techniques may not be easy to implement in practice. They

require the advance speci�cation of all data points and constrained segments, and require

more storage space, although they are generally more e�cient in computation. The incre-

mental techniques are usually easier to code and require limited amounts of storage. Our

experiments show that when the points are distributed uniformly, the performance of the

incremental techniques are quite promising. We are more interested in the incremental

algorithm, because we need to dynamically update the CDT to meet the demands of this

particular routing tool.

6.2.2 Incremental approach

D. T. Lee and A. K. Lin [LL86] proposed an algorithm to construct a constrained

Delaunay triangulation with points and constrained edges. It computes the Delaunay edges

incident with each vertex in the graph by �rst �nding the visibility graph of each vertex,

then for each one, it begins with a shortest edge and takes three consecutive vertices at
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details in both the algorithms and the proof. The idea of the quad-edge data structure is

that it keeps the records for vertices or faces in one data structure. One of the advantages

of this data structure is it allows uniform access to the dual and mirror-image subdivisions.

They used the circle criterion to construct Delaunay triangulation.

Rex A. Dwyer [Dwy87] gave an algorithm which ran in O(N log logN) time for a

large class of distributions that includes the uniform distribution in the unit square. The

algorithm partitioned the whole graph into square cells. The Delaunay triangulation of the

points within each cell was constructed with the Guibas-Stol� algorithm. The triangulations

within each row of cells were merged in pairs until the triangulation of the row has been

completed. The row triangulations were merged in pairs to complete the triangulation of

the entire set of points.

6.1.2 Incremental approach

D. T. Lee and B. J. Schachter [LS80] also provided an incremental algorithm to construct

the Delaunay triangulation. It used the LOP approach developed by Lawson [Law77]. The

algorithm requires O(N

2

) time in the worst case. If the points are distributed uniformly in

the rectangle, then the algorithm is O(N

3=2

) empirically.

Once again Guibas and Stol� [GS85] had a similar algorithm but using the quad-edge

data structure.

In [DD82], Pierre A. Devijver and Michel Dekesel presented two algorithms for a dynamic

Delaunay triangulation. Their algorithms are similar to the ones presented in this thesis.

The average case time complexity is both O(N

3

2

) with the assumption that the resulting

polygon from point deletion is a convex hull.

6.2 Constrained Delaunay triangulation

The methods above are restricted to Delaunay triangulation. Since there are some

constraint factors in applications, many people have worked on the constrained Delaunay

triangulation (also called generalized Delaunay triangulation [LL86]). Basically, there are
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6. Related Work

In 1934, the mathematician Delaunay proved that for any set of points there was a

unique triangulation which maximized the smallest angles in the mesh. In other words,

given a set of points, the Delaunay triangulation is the one which provides as near an

equilateral set of triangles as possible with the given points.

In [Law77], C. L. Lawson devised a local optimal procedure (LOP) to construct the Delau-

nay triangulation within the quadrilaterals for a set of points. This procedure implemented

using the max-min angle criterion.

There are some implementations that generate Delaunay triangulations from Voronoi

diagrams ([SH75,GS78]). The Delaunay triangulation is the dual graph of the Voronoi

diagram if no four points are co-circular, this transformation can be done in O(N) time.

Since the Voronoi diagram can be generated in O(N logN) time, the Delaunay triangulation

can also be generated in O(N logN) time.

The algorithms which generate this kind of triangulation directly can be divided as algo-

rithms for Delaunay triangulation and algorithms for constrained Delaunay triangulation.

They can be further divided by the strategies they used: divide-and-conquer technique

versus incremental technique.

6.1 Delaunay triangulation

6.1.1 Divide-and-conquer approach

The algorithm proposed by D. T. Lee and B. J. Schachter [LS80] sorted the given set V

of N points in lexicographically ascending order, then divided V into two subsets V

L

and

V

R

. It recursively constructed the Delaunay triangulation of V

L

and V

R

, and afterwards,

merged them to get the �nal Delaunay triangulation. The algorithm runs in O(N logN)

time.

Leonidas Guibas and Jorge Stol� [GS85] presented an algorithm which was very close

to the one in [LS80], but they used a quad-edge data structure and gave more complete
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Figure 5.5: The topological routing with CDT as the underlying data representa-

tion
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Figure 5.4: The minimum spanning tree from the Delaunay triangulation with

1000 points
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Figure 5.3: The Delaunay triangulation with 1000 points
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points sorted unsorted

size time (ms) no. of edges time (ms) no. of edges

1k 7970 7476 5910 5809

10k 105680 85814 63440 59758

15k 182730 132001 95780 89925

17.5k 212340 154608 112860 104996

20k 250110 176108 129000 119865

50k 872110 467698 331830 299483

75k 1604130 705938 511050 449355

Table 5.1: experiments with sorted and unsorted data



33

5. Implementation

The algorithms described in this paper have been implemented on Sun SPARCStation

1+ in C language. Randomly generated data has been used to test the algorithms. The

experiments have been conducted by inserting randomly generated points in di�erent orders.

The \sorted" means adding points one by one in x-sorted order (using y-order to break ties),

while \unsorted" is chosing points in random order. The experiments also calculate the total

number of the new edges generated in the process of constructing Delaunay triangulation.

The results (Figure 5.2) show that the running times for sorted data are worse than for the

unsorted data, and more edges are updated for sorted data while they generated the same

CDT from the same data in di�erent orders.

Although the Delaunay triangulation is built with an incremental algorithm, the experi-

mental results are promising when the points are inserted randomly. The expected number

of new edges for each new point is O(1). Our experiments also also this fact (see Table 5.1,

Figure 5.1 and Figure 5.2). They show the average number of new edges ranges from 5.8090

to 5.9998. The example for a Delaunay triangulation with a thousand randomly gener-

ated points is appended (Figure 5.3) as well as the corresponding minimum spanning tree

(Figure 5.4). An example of CDT is shown here as well (Figure 5.5).
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the center of the circle should be less than the radius of the circle:
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If all the coordinates of points are integers, as is the case in the SURF layout system,

then these calculations completely avoid rounding errors. Of course, when the integers are

very large, this may result in the integer over
ow, but this can be avoided by using double

precision arithmetic while avoiding the 
oating point calculations. This strategy successfully

constructs the Delaunay triangulation with as many as one hundred �fty thousand points.

It appears only to be limited by the amount of memory available.
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4. Precision Problem in the Calculation

The problem of numerical errors is very important in constructing Delaunay triangu-

lations. A number of algorithms for its construction are presented with the implicit as-

sumption that there is no numerical error in the course of computation. In the real world,

numerical errors cannot be ignored, and it is di�cult to judge correctly, whether a point

is inside, outside, or exactly on a line or circle. Misjudgement on geometric relations often

results in topological inconsistency, and many cause a \theoretically correct algorithm" to

fail. What we do here is to try to exclude the rounding errors in the course of calculations.

The only numerical calculation in the algorithm is to check whether a point is in a circle or

not. The following calculations are used to determine if a query point (x

q

; y

q

) is inside the

circle de�ned by the three points (x

1

; y

1

), (x

2

; y

2

), and (x

3

; y

3

).

The Circle Equation is:
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can always �nd at least one triangulation edge in each traverse. And this guarantees that

the algorithm will terminate. So the algorithm will triangulate the polygon correctly.

Time complexity

In the worst case, it takes O(N) time to traverse the boundary of the polygon, and O(N)

time to check the visibility for each proposed edge. So the worst case time complexity is

O(jP j

3

), where jP j is the number of points of the polygon.
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Figure 3.8: Two of the edges of the triangle are the edges of the polygon

A

B

C

D

E
A

B

C

D

E

Figure 3.9: Remaining polygon

Correctness

To show the algorithm is correct, the main thing is to show that each time it traverses

the remaining polygon, it always adds the correct triangulation edges. No new triangulation

edges will be put outside the polygon. To add the triangulation edges, the algorithm needs

to check if there are any points of the CDT which are visible from both the endpoints of

the proposed triangulation edge. After these checks, the new triangulation edges will meet

the circle criterion of CDT, and once these edges are added, they will not be deleted in this

procedure. Since for each polygon with more than three points, there are two triangles in

which two of its edges are the boundary of the polygon. That means with this algorithm, it
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a
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Figure 3.6: Successor point: case I

a
b

c

a

b

c

Figure 3.7: Successor point: case II

called the remaining polygon after adding AD.

The number of triangles in a polygon is proportional to the number of points of the

polygon. For the polygon triangulation algorithm, if every time it traverses the remaining

polygon, it can add one more triangle, then the algorithm will terminate. So if the algorithm

can guarantee that for each traversal, it triangulates at least one of the triangles in which

two of the edges of the triangle are the edges of the polygon, the algorithm will terminate

and the polygon will be fully triangulated at last.
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TriangulatePolygon(T; P )

f

a and b are the �rst two points of the P which are sorted in the direction

around polygon (for example: counter-clockwise).

c = successor of b;

while P is not decomposed into triangles completely

Triangulate the polygon with dummy triangulation edges;

if ac is inside P and

There is no point inside the checking circle that is visible from a and c

Delete all the dummy triangulation edges;

Connect a with c;

b = c;

c = successor of b; (Figure 3.6)

else

a = b;

b = c;

c = successor of b; (Figure 3.7)

Delete the dummy triangulation edge.

g

3.5.2 Analysis

Termination

Any triangulated polygon with N(N > 3) points has N � 2 triangles. Among them

there are at least two triangles which have the following characteristic: two of the edges of

the triangle are the edges of the original polygon. (Figure 3.8)

To continue the discussion, let's introduce the concept of remaining polygon. In

Figure 3.9, ABCDE is called the remaining polygon before adding AD, and ABCD is
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A

B

CA

B

C

case I case II

Figure 3.5: Triangulate polygon: special case I and II

Otherwise, it will pick the next point of c, such as d, to check these three points: b; c, and

d. Once again, to e�ciently check the visibility, the algorithm will �rst triangulate the

polygon with the dummy triangulation edges in any way. After all these visibility checks

are completed, the dummy triangulation edges will be removed.

Here is the algorithm for polygon triangulation.
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3.5 Triangulating polygons

When triangulating a polygon, we �rst pick an edge, such as AB in Figure 3.4. Then,

we consider another point of the polygon which is connected to one of the endpoints of the

edge, such as C.

A B

C

D

Figure 3.4: Triangulate polygon

Using the circle criterion of CDT, if there is a point of the CDT in the Circle(ABC)

and it is visible from both points A and C in Figure 3.4, we will skip edge AC and go to

check edge BD, otherwise, we connect A with C.

Since the polygon may be non-convex, there are several cases we need to check. Such

as these two cases in Figure 3.5:

In case I, A is already connected with C outside of the polygon; in case II, B is connected

with a point which is outside the polygon, and AC will intersect with it.

So, when triangulating a polygon, all these cases should be checked.

3.5.1 Algorithm

Each time the algorithm picks three consecutive points of the polygon, such as a; b, and

c. If there are no points of the CDT which are inside Circle(abc) and are visible from both

a and c, and ac is inside the polygon, a will be connected with c with a triangulation edge.
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3.4 Deleting a constrained edge from CDT

3.4.1 Algorithm

The steps for deleting a constrained edge from a CDT are: �rst delete the constrained

edge, then delete all the triangulation edges that surround the deleted edge which violate

the circle criterion, �nally, retriangulate the resulting polygon.

Here is the algorithm for deleting a constrained edge.

DeleteEdge(T; v

a

; e

b

)

f

Delete the constrained edge e;

Get the new polygon P by deleting all the triangulation edges which violate

the circle criterion of CDT;

TriangulatePolygon(T; P ).

g

3.4.2 Analysis

Since there are �nite number of edges in the CDT, the deletion of triangulation edges will

terminate. In the process of checking the validation of triangulation edges, the algorithm

will turn all the deleted edges including the constrained edges into dummy triangulation

edges. This keeps the polygon resulting from the deletion of these edges fully triangulated.

The triangulation is used to check the visibility of points, since visibility is the key in the

circle criterion to check the validation of triangulation edges. After deleting all the invalid

triangulation edges, all the dummy triangulation edges in the polygon will be deleted.

Removing an edge takes O(1) time. In the worst case, the time complexity to delete all

the triangulation edges which violate the circle criterion of CDT is O(N

2

), where N is the

number of triangulation edges in CDT. The polygon triangulation algorithm can be done

in O(jP j

3

) in the worst case, where jP j is the number of points of the resulting polygon. So

the worst case time complexity is O(N

2

+ jP j

3

).
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3.3 Deleting a point from a CDT

3.3.1 Algorithm

It is assumed that the point to be deleted is not incident to any constrained edge. The

algorithm �rst deletes all the triangulation edges that are connected to the point, then

deletes the point and calls the polygon triangulation algorithm to triangulate the resulting

polygon.

Here is the algorithm for deleting a point.

DeletePoint(T;Q)

f

Delete all the triangulation edges incident to point Q;

Delete point Q;

TriangulatePolygon(T; P ).

g

3.3.2 Analysis

Before the deletion, all the triangulation edges meet the circle criterion. After the

deletion, the circle criterion will not be violated by the triangulation edges outside the

polygon. So, to get the new CDT, it is su�cient to just triangulate the new polygon.

There are limit number of triangulation edges incident to any point in a graph, so

the deletion of triangulation edges will terminate. The worst time complexity to delete

all the triangulation edges incident to a point is O(N). The average degree of a point in a

triangulation is six (from Euler formuler), it takes constant time to get the polygon. For the

polygon triangulation algorithm in this case, it will be shown later that the worst case time

complexity is O(jP j

3

), where jP j is the number of points of the polygon, but on average, it

is O(1). So, for average case the time complexity for deleting a point from CDT is O(1).
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(a) Constrained Delaunay triangulation (b) Insert a constrained edge into the CDT

(d) The new constrained Delaunay triangulation
(c) Delete all the triangulation edges that 
       intersect with the constrained edge

Figure 3.3: Scenario of constrained edge insertion algorithm
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simple polygons split by the constrained edge. After that, the algorithm calls the polygon

triangulation algorithm to triangulate these two polygons.

Here is the algorithm for inserting a constrained edge.

AddEdge(T; v

a

; v

b

)

f

AddPoint(T , v

a

);

AddPoint(T , v

b

);

Connect v

a

and v

b

by adding the constrained edge e;

Delete all the triangulation edges which intersect with e;

Get polygons P1 and P2;

TriangulatePolygon(T , P1);

TriangulatePolygon(T , P2).

g

Figure 3.3 shows snap-shots of the constrained edge insertion algorithm.

3.2.2 Analysis

Now we show the algorithm is correct. After placing the constrained edge into the CDT

and deleting all the triangulation edges that intersect with the new constrained edge, the

other triangles in the CDT still meet the CDT circle criterion. So, it is su�cient to just

delete those triangulation edges that intersect with the new constrained edge. Since the

number of these edges is limited, the deletion stage will terminate. The correctness of

TriangulatePolygon will be discussed later.

For the AddPoint() routine, the running time in the worst case is O(N), and when

points are inserted in random order the time complexity is O(logN). To get the polygons,

the time in the worst case is O(N). For the polygon triangulation algorithm, the worst

case time complexity could be O(jP j

3

), where jP j is the number of points of the resulting

polygon. So the time complexity of the algorithm for adding a constrained edge into a CDT

is O(N + jP j

3

)
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3.1.3 Analysis

The correctness of the algorithm is established by Theorem 1 and Theorem 2.

During the insertion of a point, the procedure may introduce some triangles that are

later removed. However, a triangle once deleted will never be re-introduced into the

triangulation. Let T be the CDT, Q be a new point, T

Q

be the set of the triangles t

of T such that the circumcircle of t contains Q and Q is visible from all the vertices of t. It

has been proved by Guibas, Knuth and Sharir [GKS90] that for any collection of N points

(no distribution assumptions), if randomizing over the sequence of their insertion by the

incremental algorithm, then the expected sum of jT

Q

j is only O(n).

To insert Q to a CDT, �rst delete all the invalid edges, and then create edges between

Q and all the points of the resulting polygon. Among thoses newly created edges, three

edges connect Q to the points of the triangle enclosing Q. For the remaining new ones,

there is one-to-one correspondence between a created edge and a deleted one. Thus the

total number of edges created, denoted by jE

Q

j, is equal to:

jE

Q

j = jT

Q

j+ 3� 1 = jT

Q

j+ 2:

Therefore, the expected sum of jE

Q

j is also O(N).

Since overall the total number of jT

Q

j is O(n), the total number of jE

Q

j is O(n), too.

So, for each new point, the expected amortized number of new edges, or, the expected

amortized number of edges deleted is O(1).

Locating the triangle which encloses a point takes O(logN) time, the expected running

time of our point insertion algorithm for constrained Delaunay triangulation is O(N logN),

where N is the number of points in a CDT.

3.2 Inserting a constrained edge into a CDT

3.2.1 Algorithm

To insert a constrained edge, the two endpoints are inserted �rst, then the edge is added

to the CDT and all the triangulation edges that intersect it are deleted. This results in two
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(a) Constrained Delaunay Triangulation

(d) The new constrained Delaunay triangulation

(b) Locate the triangle which encloses the 
                             new point

(c) Delete all the invalid edges

Figure 3.2: Scenario of point insertion algorithm
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S

Q

Figure 3.1: Point location

3.1.2 Inserting a point into a CDT

After the triangle that encloses the new point is found, the point insertion algorithm

checks all the triangulation edges surrounding the new point and deletes those edges which

violate the circle criterion of CDT (Theorem 1). Then, it connects the new point with all

the points of the resulting polygon (Theorem 2).

The following algorithm updates a CDT to include the new point Q.

AddPoint(T;Q)

f

Locate the triangle which encloses the new point Q;

Get the new polygon P by deleting all the invalid triangulation edges;

Connect all the points of P to the new point Q.

g

Figure 3.2 shows snap-shots of various stages in the point insertion algorithm.
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AddEdge: Given a CDT and a constrained edge, e, insert this new edge and update the

CDT.

DeletePoint: Given a CDT containing a point, Q, delete Q and update the CDT.

DeleteEdge: Given a CDT containing a constrained edge, e, delete e and update the CDT.

In the following presentation, a CDT is denoted as T , a new point is denoted as Q, a

constrained straight-line segment is denoted as e = (v

a

; v

b

), and polygon is denoted as P .

All the analysis that deals with polygon triangulation is postponed until the discussion of

the algorithm which triangulates a polygon.

3.1 Inserting a point into a CDT

The point insertion algorithm consists of two steps: locating the triangle enclosing the

new point and updating the CDT to include the new point.

3.1.1 Point location

The �rst step when adding a point to an existing CDT is to locate the triangle that

encloses the new point. This triangle can be located by traversing the existing triangulation.

In general, such a search can start from any point in the triangulation. However, the running

time can be reduced by beginning the search at a point near the new point. In order to

e�ciently locate a starting point, an implementation stores the existing points in a quadtree.

So the nearby points can be located in O(logN) time ([FB74]).

In �gure 3.1, Q is the new point. Without loss of generality, assume we choose a starting

point, S, in the vicinity of Q. Now, connect the new point Q and S with SQ. By traversing

the triangulation edges along line SQ we can �nally locate the triangle which encloses the

new point Q.

If Q is in the same location as a point in the triangulation, then Q will not be inserted

into this triangulation again. If Q is on a triangulation edge, one of the two triangles which

share the edge is returned.
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3. Algorithms for Dynamic Constrained Delaunay

Triangulation

This chapter describes the main algorithm for constructing a CDT. The algorithms

use an incremental technique that constructs a CDT by incrementally inserting points and

straight-line segments. These algorithms were developed with the CAD routing problem

in mind, so the whole domain is bounded by a rectangle. The problem of incrementally

computing a CDT is reduced to three subproblems: computing an initial triangulation of the

rectangle, inserting a point, and inserting a constrained straight-line segment. Furthermore,

to allow dynamic updating of the circuit layout, algorithms for deleting a point and deleting

a constrained straight-line segment are also presented in this thesis. Every time a point

or a constrained edge is inserted or deleted, the CDT is updated locally. An iterative

triangulation algorithm is ideal for updating.

Since the algorithms presented in this thesis aim to improve the e�ciency of the layout

system, we are more interested in good average case performance for point insertion and

deletion when the points are distributed almost uniformly.

Initially, the graph only consists of the bounding rectangle. This rectangle is triangulated

by simply adding a diagonal edge.

The following algorithms will be described in detail in this chapter:

� Inserting a point into a CDT;

� Inserting a constrained straight-line segment into a CDT;

� Deleting a point from a CDT;

� Deleting a constrained straight-line segment from a CDT;

� Triangulating a polygon.

The main procedures are as follows:

AddPoint: Given a CDT and a new point, Q, insert Q and update the CDT.
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P
0

. ..

P
i

Q

P
j

P
n

P

k

...

P

. .
.

i+1

...

Figure 2.9: Theorem 2: connection

after Q is inserted, they are connected with point P

k

fP

k

jk 6= i; k 6= i + 1; k 6= jg. Note

here that no new constrained edge is introduced when point Q is inserted into the CDT. If

P

i

and P

i+1

could be connected with P

k

after Q is inserted, they could be so before Q is

inserted as well. From Lemma 4 we know, 4P

i

P

i+1

P

j

and 4P

i

P

i+1

P

k

can both be valid

triangles if and only if points P

i

; P

i+1

; P

j

, and P

k

are co-circular. P

i

P

j

and P

i+1

P

j

were

deleted because Q is in Circle(P

i

P

i+1

P

j

), that means Q is in Circle(P

i

P

i+1

P

k

). Hence, P

i

and P

i+1

can not be connected with P

k

, otherwise the resulting triangulation won't satisfy

the circle criterion of CDT.

Let T

0

be the CDT obtained from T by the insertion of Q, T

0

Q

be the triangulation of

the resulting polygon P

Q

. It is shown in [FP88] that T

0

= T

0

Q

[T �T

Q

. So the only way to

generate T

Q

is connecting all the points of the P

Q

with Q.
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and D are not co-circular, at most one of 4ABC and 4ABD could be a valid triangle in

CDT.

Now assume A;B;C and D are co-circular. C will be on the Circle(ABD) and D will be

on the Circle(ABC). Since neither C is in Circle(ABD) nor D is in Circle(ABC), 4ABC

and 4ABD could both be valid triangles in CDT (Note: In this case, each time only one

of these two triangles will be in a CDT).

A B

C D

Figure 2.8: Lemma 4(continued)

From Lemma 3 we know the new point Q could be connected with all the points of P

Q

without crossing any other edges. Now, we will show that after connecting Q with all the

points of P

Q

, the resulting triangulation is CDT.

Theorem 2: If Q is the new point inserted in a CDT and P

Q

is the resulting

polygon after removing invalid edges, connecting Q to every point of P

Q

will

produce a valid CDT.

Proof: In Figure 2.9, assume that in the �nal CDT some of the points of P

Q

are not

connected with Q. Without loss of generality, assume P

i

and P

i+1

are the neighbor points

of the polygon. Before Q is inserted, they were connected with point P

j

fP

j

jj 6= i; j 6= i+1g;
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Lemma 3: After deleting the invalid edges as the result of adding a point, Q, to

a CDT, Q is visible from all the points of the resulting polygon P

Q

.

Proof:

The removal of the invalid edges is due to the fact that Q is in their checking circles.

Thus, Q is visible from both endpoints of these edges. From Lemma 2, P

Q

consists of

exactly those points, so Q is visible from all the points of P

Q

.

Lemma 4: Let AB be an edge in CDT. Points C and D are on the same side

of AB (Figure 2.7), and they are visible from A and B. There are no points in

Circle(ABC) and Circle(ABD). 4ABC and 4ABD are both valid triangles of

CDT if and only if A, B, C, and D are co-circular.

A B

C D

Figure 2.7: Lemma 4: co-circular

Proof:

Assume A;B;C, and D are not co-circular, and Circle(ABC) and Circle(ABD) inter-

sect at AB. On the side of C and D with respect to AB, either Circle(ABC) encloses

Circle(ABD), or Circle(ABD) encloses Circle(ABC) (Figure 2.8). If Circle(ABC) encloses

Circle(ABD), then D is in Circle(ABC), 4ABC could not be in CDT; if Circle(ABD) en-

closes Circle(ABC), then C is in Circle(ABD), 4ABD could not be in CDT. So, if A;B;C



12

A B

C

Q

P

S1

Sn

Figure 2.6: Empty polygon

Without loss of generality, assume edge AB is a triangulation edge, and Q is in the

checking circle of AB, AB will be deleted and the endpoints of AB will be the points of the

new polygon APBC.

Any point in a triangulation has degree at least three, except the points on the bound-

ary of the triangulation. The boundary of the triangulation is considered to consist of

constrained edges, the boundary points cannot become isolated points.

Now AP and BP are the boundary edges of new polygon APBC. The checking circle

of AP and the checking circle of BP must intersect at point P , and the intersecting area

must be outside of polygon APBC. This means Q cannot be inside the intersecting area.

If Q is inside the checking circle of AP , Circle(APS

1

), AP will be deleted, but BP and

PS

1

will not be deleted. So, at most one of the edges AP or BP could be deleted, P is

still connected with other points, and this could not result in an isolated point. The same

argument can be applied to other points (points other than Q).

Therefore there is only one isolated point, Q, in the resulting polygon P

Q

after deleting

all the invalid edges. The points of P

Q

are the endpoints of the checked edges, such as BP

(if BP is in P

Q

).
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A B

C

Q

Figure 2.5: Theorem 1: circle criterion

All the invalid edges will be deleted after Q is added to T . Let T

Q

be the set of the

triangles t of T such that the circumcircle of t contains Q and Q is visible from all the

vertices of t. The resulting polygon P

Q

of point Q is formed by the external edges (the

edges not shared by two triangles in T

Q

) of the triangles in T

Q

.

Checking Circle Let AB be an edge of the polygon which encloses the query point Q. AB

belongs to the unique triangle 4ABC not containing Q. The circumcircle of 4ABC,

Circle(ABC), is referred to as the checking circle of AB.

Lemma 2: After deleting the invalid edges as the result of adding a point Q to

a CDT, the resulting polygon P

Q

of Q contains no other isolated points aside

fromQ, and this polygon consists of the endpoints of all the checked edges which

passed the circl criterion check in the process of deleting the invalid edges.

Proof:

In Figure 2.6, point Q is the new point inserted into a triangle 4ABC of a CDT T . If

all the three edges of 4ABC are constrained edges, then the polygon is 4ABC, and Q is

the only point inside it.
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a = jBDj; b = jODj:

Assume the perpendicular from C intersects the bisector at E,

c = jCEj; d = jEOj:

At the very beginning,

a

2

+ b

2

= c

2

+ d

2

:

Now assume after moving the Circle(ABC) toward C along the bisector line of AB, the

center of the new circle is O

0

, and

� = jOO

0

j:

The new radius of the circle

r

2

= jBO

0

j

2

= a

2

+ (b��)

2

;

jCO

0

j

2

= c

2

+ (d��)

2

;

r

2

� jCO

0

j

2

= 2(d� b)� > 0:

So jCO

0

j is always shorter than r. C will be inside the new circle.

Theorem 1: Let AB be a triangulation edge of a CDT and point C is visible

from both A and B. After adding a point Q on the side of edge AB opposite to

C, AB is no longer a triangulation edge of the resulting CDT if and only if Q is

in the Circle(ABC) and Q is visible from A and B.

Proof:

Assume as in Figure 2.5 that Q is in the Circle(ABC) and it is visible from A and

B. If Q is on AB, AB is no longer valid; otherwise, from Lemma 1, move the center of

Circle(ABC) along the bisector of AB away from Q, C will be inside the new circle; or,

move the center of Circle(ABC) along the bisector of AB away from C, Q will be inside

the new circle. Therefore, either C or Q will be inside the circumcircle of AB. From the

de�nition of CDT, AB is no longer a triangulation edge now.
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of CDT T are treated as triangulation edges. The circumcircle of points A, B, and C

will be denoted as Circle(ABC). We assume that no four points of the original CDT are

co-circular, hence, the CDT is unique. If this assumption is not true, inconsequential but

lengthy details must be added to the statement and proofs.

After a new point Q is added to a CDT T , the triangle which encloses Q is located.

Then all the edges surround Q are checked against the circle criterion.

Lemma 1: A;B; and C are three points on a plane. Let O be the center of

Circle(ABC), F be the in�nity point on the side of AB where C is on. If we

move O any amount toward F along the bisector of AB while varying the radius

of the circle in order to keep A and B on the boundary of the circle, point C

will be inside the new circle.

A B

C

D

O

E

O’

Figure 2.4: Lemma 1: C is inside Circle(ABD)

Proof:

In Figure 2.4, A;B and C are three points in a plane. Now move the center of the

Circle(ABC) as described in the lemma. Assume the bisector intersects AB at D. Let's

denote
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De�nition 2: (Constrained Delaunay Triangulation)(CDT): Let S be a set of

points and a set of non-intersecting straight-line segments connecting some pairs

of points in the plane. A triangulation T is a constrained Delaunay triangulation

of S if each edge of S is an edge of T and for each remaining edge e of T there

exists a circumcircle c with the following properties:

(1) The endpoints of edge e are on the boundary of c.

(2) If any point v of S is in the interior of c then it is not visible from at least

one of the endpoints of e.

Figure 2.3: Constrained Delaunay triangulation

It has been shown that given a planar graph, it is always possible to construct a

constrained Delaunay triangulation ([FFP85,LL86,FP88,Che89,LD91]). A set of dynamic

CDT algorithms is presented in this thesis. Each time a point or a constrained edge is added

or deleted, the algorithms will locally update the CDT. To show the algorithms update

the CDT appropriately, we have the following lemmas and theorems. In the following

presentation, the edges of S will be treated as constrained edges, and the remaining edges
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A

B C

D

Figure 2.2: Max-min angle criterion and circle criterion

Only a Delaunay triangulation satis�es this criterion[Sib78]. An example is given in

Figure 2.2, where 4ABC is a triangle of Delaunay triangulation, and

6

BCA is larger than

6

BDA.

The second criterion is the circle criterion:

A triangulation T of S is a Delaunay triangulation if and only if no point of S

is inside the circumcircle of any triangle in T.

We can construct the Delaunay triangulation based on these two criteria. It has been

proved by R. Sibson [Sib78] that if the max-min angle criterion is used, the resulting

triangulation must also satisfy the circle criterion, and vice versa. This can be illustrated

by the simple example in Figure 2.2 where point D is not in Circle(ABC),

6

BCA is larger

than

6

BDA, and AC is a triangulation edge in Delaunay triangulation not BD.

When there are prespeci�ed edges, these constraints have to be incorporated into the

triangulation (Figure 2.3). The triangulation is as close to the Delaunay triangulation

as possible. For constrained Delaunay triangulation, the max-min angle criterion is not

a�ected by the introduction of these constraints, but the de�nition of circle criterion must

be changed slightly.
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2. Preliminaries and Theorems

The concepts of Delaunay triangulation and constrained Delaunay triangulation were

introduced in the last chapter. Their formal de�nitions are now presented.

De�nition 1: (Delaunay Triangulation)(DT): Let S be a set of points in the

plane (Figure 2.1). A triangulation T is a Delaunay triangulation of S if for

each edge e of T there exists a circumcircle c with the following properties:

(1) The endpoints of edge e are on the boundary of c.

(2) There is no other point of S in the interior of c.

Figure 2.1: Delaunay triangulation

Delaunay triangulation satis�es two important criteria. The �rst is called max-min

angle criterion:

The smallest angle of the triangles in the Delaunay triangulation is maximum

among all possible triangulations.
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Figure 1.4: Delaunay triangulation

gorithm could fail in practical implementation. In this thesis, a technique is presented to

avoid the rounding errors.

The thesis is organized as follows: Chapter 2 presents some important properties and

theorems of constrained Delaunay triangulation, which are the basis of the algorithms.

Chapter 3 describes the algorithms that incrementally construct and update the constrained

Delaunay triangulation. The precision problem is discussed in Chapter 4. The results of

the implementation are shown in Chapter 5. Chapter 6 discusses some related work in this

area, and Chapter 7 summarizes the results and discusses the future work.
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Figure 1.3: Pretriangulation

the Euclidean distance between p and q, DT (p; q) be the length of the shortest

path between p and q in the Delaunay triangulation of S. Then,

DT (p; q)

d(p; q)

�

2�

3 cos

�

6

� 2:42:

Triangles with very small angles produce a poor mesh ([Fri72,BEG90]). A Delaunay

triangulation is an excellent choice for the �nite element mesh generation ([ZSZZ90]).

The Delaunay triangulation has many applications. It can be used to determine the

closest pair of points and the closest neighbor of each point in linear time ([LP78,YL79]).

Every minimum spanning tree is a subgraph of Delaunay triangulation ([SH75]), based on

Delaunay triangulation we can also get the Euclidean minimum spanning tree of n points

([CT76]).

Since all the algorithms that build Delaunay triangulations use either angle or circle

calculations

1

, rounding errors should be considered; otherwise, a theoretically correct al-

1

See Chapter 2 for the explanation of max-min angle criterion and circle criterion
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Figure 1.2: Voronoi diagram

(Figure 1.3). Given a Voronoi diagram V , the construction rules for its dual graph T (pre-

triangulation) are as follows. A point of T is associated with each point of V . For each edge

e

i

of V there is an associated edge e

�

i

of T . If e

i

separates the faces f

i

and f

k

in V , then

e

�

i

connects the two points of T with f

i

and f

k

. If no four points are co-circular (on the

same circle), the Delaunay triangulation is equivalent to the straight-line dual; otherwise,

the dual contains non-triangular polygons, these polygons can easily be decomposed into

non-overlapping triangles without violating the properties of the Delaunay triangulation

(Figure 1.4). As an algorithmic tool, the Delaunay triangulation is one of the central topics

in computational geometry.

It is known that if searching a shortest path between two points based upon the Delaunay

triangulation, the ratio of the length of the shortest path between two points in the Delaunay

triangulation to the Euclidean distance is bounded[KG89]:

Let p and q be a pair of points in a set S of N points in a plane. Let d(p; q) be
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and assigning cross points to the cut line for each crossing net. After global routing, a local

router is applied to each bin. The local router determines a topological routing (rubber-

band sketch) by using a minimum cost search to connect the points of each net within the

bin.

A triangulation of a set of points in a plane is a planar, straight-line graph that includes

the edges of the convex hull of the points and in which pairs of points are joined by straight-

line segments. These segments may intersect only at their endpoints, and every region

internal to the convex hull is a triangle. A triangulation as underlying data representation

is preferred because of the ease with which it can be made to �t complex boundaries and

obstacles.

The rubber-band sketch requires an e�cient dynamic data representation, and the local

routing requires the nearest neighbor information to �nd the minimum cost paths. The

triangulation required here should have the nearest neighbors information, so the shortest

path can be easily generated in O(N logN) time instead of O(N

2

) time, where N is the

number of points. If there are obstacles (prespeci�ed wires, pads, components, etc.) on

the routing surfaces, they will be transformed to the straight-line wires in the rubber-band

sketch, and these wires are called constrained edges. The constrained edges should be a part

of the triangulation to keep the complete routing topology. In this case, the triangulation

will have the nearest visible neighbors information. Here a point p is visible from point q if

the open line segment pq does not intersect any constrained edges in the triangulation. The

only triangulation which meets all these requirements is called the constrained Delaunay

triangulation.

The classical de�nition of Delaunay triangulation is expressed in terms of the Voronoi

diagram (also called the Dirichlet tessellation or the Thiessen tessellation) (Figure 1.2).

Given a set of points, S, in a plane, the Voronoi diagram is a partition of the plane into

Voronoi regions, each region being the locus of the points (x; y) closer to a point of S than

to any other point of S [PS85].

The straight-line dual of the Voronoi diagram is called the pretriangulation by Sibson[Sib78]
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1. Introduction

The SURF multichip module (MCM) routing system employs a gridless routing topology

called the rubber-band sketch. Wires represented by rubber-bands are 
exible and may be

stretched and bent around objects. A rubber-band sketch represents a topological routing

of one layer. It consists of a set of points, P , and a �nite set of interconnecting wires, W.

A rubber-band wire in W is a simple path between two points in P with minimum length.

No two wires may intersect and no wire may cross itself (Figure 1.1).

Figure 1.1: Rubber-band sketch

Given a set of interconnections (nets), a rubber-band sketch is generated by a topological

routing process. This routing de�nes paths on the wiring surface of the carrier (printed

circuit board, intergrated circuits or multichip module substrates), which realizes electrical

connections necessary to form a given circuit function. It is performed in two steps: global

routing and local routing. The global router begins with a rectangular bounding box which

encloses all the points in a routing problem, then partitions the problem into a set of smaller

rectangles, called bins. This partitioning is done by recursively splitting the bins in two,
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Abstract

The Voronoi diagram is a partition of a set S of N points in a plane, such that each

region is the locus of the points (x; y) closer to a point of S than to any other point of

S. If no four points are co-circular, the Delaunay triangulation is the straight-line dual of

the Voronoi diagram. The triangulation may be constrained, that is, a set of straight-line

segments may be prespeci�ed.

This thesis presents some characteristics of constrained Delaunay triangulation and

introduces a set of numerically stable algorithms for incremently constructing and updating

constrained Delaunay triangulation.

The dynamic constrained Delaunay triangulation algorithms have been implemented in a

layout system for multichip modules. It has been used as the underlying data representation

for rubber-band sketch, a topological routing for one layer.

We have proved the O(n logn) expected running time for the Delaunay triangulation

algorithm.

keywords: Voronoi diagram, Delaunay triangulation, constrained Delaunay triangulation,

layout, multichip module, topological routing
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