
UNIVERSITY OF CALIFORNIA

SANTA CRUZ

Census : Collecting Host Information on a Wide Area

Network

A thesis submitted in partial satisfaction
of the requirements for the degree of

BACHELOR OF ARTS

in

COMPUTER AND INFORMATION SCIENCE

by

Nitin K. Ganatra

June 1992

The thesis of Nitin K. Ganatra is
approved:

Prof. Darrell D. E. Long



Census : Collecting Host Information on a Wide Area Network

Nitin K. Ganatra

ABSTRACT

The exponential growth of the Internet presents new problems in recording

global network information. The Domain Name System provided a way to cope

with the enormous growth rates by distributing network information among all

domains. This distribution accomplished its goal of eliminating the need for a

central database, but at the same time eliminated the source of centralized network

information. Such information is useful in applications dealing with resource

discovery on the Internet and in studies of the network topography. Census is a

program to traverse the Internet domain tree and collect information by recursively

querying name servers for host information and other sub-domains. During the

development of the Census program (about 6 months), the host population of the

Internet has grown in size by 30 percent, and has showed no sign of abating.



1

Chapter 1

Introduction

Since the mid-1980’s, an explosion of growth on the Internet has taken place

that strained earlier methods of recording network information. Originally, all

hosts on the Internet were registered with the Network Information Center (NIC).

Data on each host were kept in a central database for use by other hosts in need

of the information. Local copies of this database were kept on Internet hosts (on

UNIX systems in /etc/hosts) as a reference for host names, addresses, and other

information. Changes to the structure of the Internet were recorded in the central

host table through a request to the NIC. If changes were made and a host was still

using an old database, there was a chance that a host name-to-address mapping

would fail. Consequently, it was up to hosts to make sure they had the most

recent table by periodically deleting their host table and copying the latest file

from the NIC. The size of the Internet dictated how frequently changes to this

central database occurred. As more hosts and domains started following Internet

protocols, changes to the central host table became more frequent.

As the size of the Internet started to grow almost exponentially [4], the burden

of holding and accessing all of the Internet’s centralized information becamemuch

less feasible. Scanning the list for host information took linear time, which was

acceptable when the Internet’s host population was smaller. The time to retrieve



2

network information became substantial. As the Internet’s size increased, the

database look-up time increased as well, thereby slowing all network services.

Distribution of the file becamemuchmore cumbersome as network, disk, and CPU

resources were being used simply to access and update this host file. Furthermore,

failure of the NIC was a growing concern. Copies of the central database were

kept at other network information centers, but what if a crash occurred during the

updating process? Any other NICs, and the entire Internet, would have to rely on

older databases for network information until changes were once again recorded

and distributed.

The Domain Name System (DNS) was devised as a better way to deal with

large amounts of network information [5]. The DNS incorporated a hierarchical

name structure and provided guidelines for host databases at individual domains.

Thus, the DNS lifted the burden from the NIC, and made it possible to deal with

enormous growth rates. It was no longer necessary to rely on one centralized

database. Information about any part of the network could be obtained from a

traversal of the domain name tree.

Ironically, the biggest advantage of the DNS is also one of its disadvantages—a

lack of centralized data about the Internet. The Census program fills the need

for centralized information by producing a reasonably accurate snapshot of the

Internet. This information is invaluable for studies pertaining to the characteristics

and topography of the Internet, and even studies of the DNS protocol’s use.

Census works by walking over the entire Internet domain name tree, collecting

hosts and domains that still need to be traversed. Census yields a very large1

database on the Internet and its population. Census is written in portable C,

making it possible to run the program on different computer architectures.

1The latest run in June of 1992 produced a final database over 60 megabytes in size.



3

This report concentrates on the workings of Census, some of the problems

associated with writing such a piece of software, and the results from the program.

The remainder of the paper is organized as follows. Chapter 2 gives background

information about the Internet and the DomainName System. Chapter 3 discusses

related work that has been done in the field of resource discovery on the Internet.

Finally, chapter 4 gives an overview of the Census program, including some

problems encountered during the development of the program and some results

from data gathered by the Census program.



4

Chapter 2

The Internet

The Internet is a network consisting of local area andwide area networks. These

networks all follow certain regulations and standards (TCP/IP) that allow them to

interoperate in a transparent and consistent way. This allows for a large base of

shared information.

The TCP/IP suite consists of over 100 protocols used to connect and organize

computers on a network [7]. Examples of these protocols include the File Transfer

Protocol (FTP), telnet, and the Simple Mail Transfer Protocol (SMTP). Originally,

the TCP/IP suite was designed for use by the DefenseAdvanced Research Projects

Agency (DARPA) for its own network research. To be a part of the Internet, a

network must use the TCP/IP suite, though not all networks using TCP/IP are

connected to the Internet. As an example, Sun.Com has a gateway between its

network and the rest of the Internet that makes queries about hosts in the network

impossible. Such an arrangementallows greater security andautonomy for hosts at

Sun Microsystems, but brings up the question, are these hosts part of the Internet?



5

2.1 Domain Name System

In the mid-80’s, the DNS introduced a hierarchical naming structure that al-

lowed all the Internet’s information to be distributed around the network. The

DNS protocol lifted the load from the NIC, allowing growth of the Internet to

continue unimpeded by a dependency on the NIC and its resources [5]. All Inter-

net services depend on the DNS to communicate with other hosts, either within a

domain or with hosts in other domains.

The main theory behind the DNS is that every host doesn’t need to know

about every other host in the network—it just has to know how to find needed

information. For example, in order for a domain in Australia to find information

about another domain inAustralia, the host look-up should only be concernedwith

other domains on the continent. An information look-up should not have to sort

through hosts from a foreign domain unless that is where the desired information

resides. Domain and host changes are therefore only recorded locally, and any

information needed on a particular domain can be obtained from a host local to

the domain. With this in mind, the DNS has been implemented in an attempt to

operate transparently using a minimum of network resources. Design elements

[5] of the Domain Name System include domain name space, resource records, name

servers, and resolvers.

2.1.1 Domain Name Space

The Domain Name System imposes a tree structure on the network. This

structure treats leaf nodes as hosts and all other nodes in the tree as a name in

a host’s domain. At the root of the tree is the domain dot (.) which includes all

top-level domains as its children. Each of these top-level domains can then have



6

many different children under it. Each hierarchy level in the host or domain name

is separated by a dot. For example, willow.UCSC.EDU means the host willow is

under the UCSC domain, which is under the EDU domain. Names within the

domain name space are case-insensitive, although services should treat queries in

a case-sensitive manner. Treating queries as such will keep future changes to a

minimum if the DNS is modified to be case-sensitive [5].

2.1.2 Name Servers

Name servers are programs running on machines that hold information about

some domain’s structure. They are responsible for answering queries about these

domains. Duplicate name servers are kept in the interest of fault tolerance, because

of their importance in providing host name-to-address mapping necessary for

Internet services. Often domains have duplicate name servers in geographically

remote locations1 in case of some large-scale network failure or physical disaster.

Depending on the implementation of the name server, it may choose to cache

frequently requested information to speed up information look-ups [6].

2.1.3 Resource Records

The information that each name server holds is stored in a resource record. The

resource record holds more than simply a name-to-address mapping. Resource

records also hold : the name of the authoritative server for its domain, start of zone

authority (where a domain begins and another ends with respect to the domain

tree), mail exchange information, and common aliases for hosts. In order to obtain

1For example, theCalifornia InstituteofTechnology’s domain (caltech.edu) has a duplicate name
server in Ohio.



7

all host information from each domain’s name server, a zone transfer (AXFR) query

is sent to the resolver. AXFR queries send the entire contents of a resource record

over the network.

2.1.4 Resolvers

Resolvers sit between the name server and the client [5, 6]. They take in queries

from clients, querying the name server for the appropriate information, and then

send that information back to the client. If a particular query cannot be answered

by a name server, the resolver will query the name server of the domain that is

one level higher. This process continues until a matching domain is found, or until

the root domain (.) is queried. If the root domain name server has no information

about the domain in question, the client’s domain query cannot be answered.

It is up to the resolver to determine if the information has been cached and

is still residing in memory. If so, a name server look-up (which involves a more

time-consuming disk access) is not necessary. The resolver can pull necessary

information from the cache, thus saving time and CPU cycles on the name server.

The advantages of cached information become apparent when considering how

often similar information is requested from name servers of high-level domains.

For instance, watson.IBM.COM is an authoritative name server for IBM. Most

queries of this name server involve finding the name server of a commonly

accessed sub-domain of IBM.COM. Once this name server is found, it is then

queried about either some host or yet another sub-domain. If such a route is

common in IBM.COM’s daily network traffic, and if information caching is not

performed, the disk accesses needed for each look-up would be very taxing on the

name server. Usually retrieved information is cached for a period of 24 hours, at

which time it is removed. This policy relies on the (generally correct) assumption



8

that if information is needed once, it will probably be needed sometime in the near

future.

2.2 Problems with the DNS

One problem with the DNS is that its specifications make no reference to error

correction. Because the DNS can be implemented on many different machines,

bugs that are unique to each implementation are possible.

The specifications for the workings of the DNS [5, 6] detail all aspects about

every aspect of the DNS’s proper implementation, with the exception of error

correction. Consequently, the basic error correction algorithms are left to the

programmer. This allows it to be implemented in different, sometimes erroneous,

ways. Often, these error correction methods introduce loops into the querying

process, leading to an unnecessarily high number of packets being sent over

networks.2 Due to the nature of distributed, replicated systems these bugs often

go unnoticed [1]. This causes the name server and network load to be artificially

high, and sometimes reduces the response time of a query. Until standards are set

to deal with errors in a consistent manner, and until all DNSs are implemented

accordingly, these problems will most likely continue.

2The number of packets sent through the backbone of the Internet is at least twenty times higher
than absolutely necessary, according to one study by P. Danzig [1].



9

Chapter 3

Related Work

In the field of resource discovery on the Internet, many different studies have

been done or are currently being developed. The primary work related to Census

is the Zealot of Name Edification (ZONE) program written by Mark Lottor at SRI

International [4], but other works also make use of the DNS to perform information

retrieval, and could benefit from the use of Census.

3.1 Zealot of Name Edification

As the Internet community was making the transition to the DNS, a program

called Zealot of Name Edification (ZONE) was written. ZONE produced a host

table that non-DNS hosts could use while in the process of making the transition to

DNS [4]. In the end, ZONE’s purpose was altered, and it came to be used to study

the growth characteristics of the Internet. The program is now run every three

months at SRI International for the purpose of studying changes in the Internet’s

population. Unfortunately, the ZONE program is in need of a replacement. In

Mark Lottor’s own words [4]:

The amount of data is quickly reaching the limits of the DEC-20 section

address space, and the hardware’s ability to survive gets slimmer each



10

day.

During the development of Census, many of Lottor’s future design concepts

were considered and indeed incorporated in its design. ZONE’s basic algorithm

to collect host information is recursive, and is almost identical to that of Census.

The main difference between Census and ZONE is in the temporary storage of

information—ZONE holds all of its host information in memory until the end of

the data retrieval, where Census saves information to disk as it is found. The

advantage of holding all data in memory is that multiple hosts can be eliminated

as they are received. With Census, these duplicate host entries must be eliminated

using other tools once the data collection is completed.

3.2 Archie

Archie is another example of a wide-area information gathering service that

relies on the DNS. Archie was developed to make Internet services more accessible

as they grow rapidly. It provides a large database of software and information

that is available from anonymous FTP sites [2]. There are nine Archie information

servers which provide access for the entire Internet community. In its current

implementation, Archie maintains two databases; one holds the names of files that

are available, and the other holds brief descriptions of a fraction of the files. From

these two databases, Archie users can find out if certain software is available, and

exactly where it is on the Internet. When compared to telnetting to each site and

searching through directories by hand, Archie provides an invaluable service. In

order to provide recent information, the Archie servers update information about

a group of sites every 24 hours, and cycles through the list of sites about once a

month [2]. Archie could benefit from the use of Census to update its list of hosts



11

with publically accessible information, as could the following service.

3.3 Service-Level Reachability in the Global Internet

Mike Schwartz at the University of Colorado currently leads a study to test

the degree of connectivity on the Internet. The study attempts to make domain

connections bimonthly over a period of one year [7]. Connections are attempted

with almost 13,000 domains to perform 13 different TCP services, including finger,

telnet, rsh, andSMTP. If a connection to the specified service is made, it is recorded

as a success, and the connection is closed [7]. From fluctuations in the successes

and failures, different characteristics of the Internet can be studied. The resulting

information would be useful in future plans to design distributed information

exchanges, such as libraries, encyclopedias, and file systems.

These studies may benefit from the use of Census to gather hosts of the Internet.

The studymay be carried onwith different domains discovered byCensus in order

to vary the parts of the Internet being tested. This would give a better idea of what

domain services are offered at given times, making the study of the Internet more

comprehensive. Census could also be run to obtain host information such as what

kinds of computers are being tested, and correlations between the failure rates of

domains and their implementations of the DNS.



12

Chapter 4

Census

Census is a tool to collect host names, addresses, and other information of

a substantial portion of the Internet and store them in one central location. By

following theDNSprotocol, a list of the top level domain names can be transformed

into a list of virtually all the domains on the Internet. From these domains a list of

all the hosts and addresses can be composed.

The only thing Census requires is a list of domains in the domains.infile.1 When

Census starts running, a few files are created for its use:� tryagain.out holds all domains that are to be tried again once domains.in is

exhausted.� temporary.out holds host names and addresses of the domain currently being

queried.� hosts.out contains the host names and addresses of the domains that have

been successfully been queried.� successful.out domain names that have successfully been queried. Used in

crash recovery to find the last successfully queried domain.

1The domains.in file is not needed when Census is run with either the -all option, or the -domain
option, since one is created automatically.



13� lastdomain.out the last domain that was queried.

The main data structure in Census is a queue of domains upon which data

collection is to be performed. Domains are taken from the queue (which is in the

domains.in file) to be queried for host information and any sub-domains. All host

information found is stored in the temporary.out file, and sub-domains are tested

for uniqueness. This test consists of comparing the newly found domain against

all other domains known by Census. If the domain is unique, it is added to the

domain queue. If not, it is discarded. In theory, the DNS should be implemented

in such a way that all domains would only be seen once. However, relying on

this to be implemented correctly could lead to infinite loops in the discovery of

new domains. Finally, in the event of a system crash, if domain uniqueness not

checked, Census would record the same domains twice, leading to redundant host

information.

Failed domain queries occur for a number of reasons, the most common being

the improper implementation of the DNS or the AXFR query.2 However, queries

often fail for more mechanical reasons, such as network or gateway failure or

name server crashes. For this reason, domain queries must be retried until no

new information is received. Currently, Census retries the failed domain list three

times. This has proven to be sufficient by the fact that the domain queue has the

same domains as the tryagain.out file upon termination of the program, meaning

that all failed domains have been tried numerous times and have failed. Census

collects hosts and domains in a breadth-first manner. It starts with domains that

are specified before the program is run and works its way down the queue to the

most recently discovered domains.

2Some domains have chosen to intentionally disable certain services for security reasons, or as
a measure to reduce the load on its name servers.



14

4.1 Crash Recovery

Census was designed to run for a period of several days. This makes the

possibility of a reboot or operating system failure far greater than in a program that

runs for a fewminutes. The size of the Internet was alsomotivation to keep all data

that had been collected before a crash, instead of starting the data collection fresh.

If Census runs for two days and the system crashes, it’s preferable to start running

on the domain where the data collection was stopped. Obviously, a dependence

on volatile memory had to be kept to a minimum. Whenever Census reads all

pertinent information in a domain, it appends the completed data to hosts.out and

stores the name of the domain in successful.out. Since this information is stored

in the file system, it is protected from system failure more than volatile RAM. This

disk-intensive design is slower, but is justified when compared to the option of

having to restart the data collection at every crash.

4.2 Hanging Reads

Occasionally, when a read is set up from a socket that is connected to a remote

name server, it will hang indefinitely. During these hangs, the program does

nothing while waiting for data that will never be sent. Reasons for these hangs

vary from a failure of the network somewhere between the local host and the

remote server, to a failure of the remote server (sometimes a crash or a power

failure). By constraining the period of time a socket can be connected to a remote

server, Census avoids such problems. The select system call is used to set a timer

on the socket. If data is received the timer is reset, and the socket continues to wait

for more data. If, however, no data is read through the socket within the specified

amount of time (two minutes), the following action is taken:



15� Close the waiting socket.� Throw out any information in temporary.out.� Save the domain name in tryagain.out to try the domain later.

4.3 Future Improvements

With the use of the select system call, the performance of Census slowed

slightly—a small price to pay considering the benefits of its use. It would be

favorable, however, to gain back some speed. One way to do this would be to

have Census collect information from several hosts in parallel. Currently, Census

collects data sequentially, which takes a few days to complete. A parallel Census

could readdomains fromone file, fork off processes to gather host information from

several domains at once, and store their data in another file. The main concern

(and it is quite a concern) with implementing a parallel Census lies in its use of a

large fraction of network resources.

4.4 Results

In the development stage of Census, it’s usefulness in determining the growth

of the Internet has already materialized. Early runs of Census in the middle of

March indicated that the Internet’s host population hovered around 840,000, up

from 727,000 reported in January [4].

In its latest runs, Census has been collecting approximately 940,000unique hosts

that are reachable on the network. This is approximately a 30 percent increase of

the Internet’s size in a period of four months. The program currently takes a



16

10000100000200000300000400000500000600000700000800000900000
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
Figure 4.1: Growth of the Internet since 1982.

little under four days to complete the entire host collection, which is shorter than

ZONE’s collection period of over a week.

Figure 1 shows a graph of the growth of the Internet from 1982 to present,

with the results of Census appended to results of the ZONE program. Figure 2

shows the breakdown of Internet hosts byCPU. Unfortunately, this estimation only

involves hosts that have recorded the CPU type in the host information section of

their resource records. Over 700,000 hosts have either chosen to not record this

information, or have recorded it erroneously. Figure 3 gives a breakdown of the

population of the Internet by the number of hosts in each top-level domain.



17

Machine Types on the Internet

IBM PC 67,590
IBM RS/6000 1,145
IBM Other 14,007
Macintosh 67,891
Sun 53,024
DEC 19,213
HP 11,535
NeXT 3,732
SGI 3,444

ISI 1,359
Mips 313
Cray 97

Figure 4.2: Breakdown of hosts by CPU brand as of June, 1992. Obtained with
-hinfo option.

Internet Composition

EDU 296,053 NL 19,580 DK 2,521 SG 870
COM 242,485 CH 15,353 KR 2,152 MX 722
GOV 54,072 FI 14,534 NZ 1,741 IE 583

AU 42,336 JP 14,102 TW 1,477 GR 565
DE 41,888 NO 13,707 ZA 1,401 IS 361
CA 35,556 NET 7,445 HK 1,374 PL 345
MIL 39,523 AT 5,171 FR 1,311 CS 190
UK 28,411 IT 4,783 PT 1,241 US 172
ORG 23,671 ES 2,860 BE 1,135 CL 106
SE 19,942 IL 2,727 BR 1,017 INT 41

Figure 4.3: Distribution of hosts in the top 40 largest domains of the Internet as of
June, 1992.



18

Chapter 5

Conclusion

The distribution of information among all Internet domains provides a method

of dealing with large amounts of data. For the purposes of studying the dynamics

of growth, however, it is desirable to have the data all in one database. This is

what Census is designed to accomplish. Though Census was designed to collect

only host information, the data collected also provides useful information about

the implementation of DNS throughout the Internet.

The Internet’s explosion of growth is showing no signs of slowing down, as

more organizations follow the standards of the Internet Protocol. In many ways,

it is unfortunate that studying the growth dynamics of the Internet is outside the

scope of this report. However, there is now a tool to do just that, and I have no

doubt that there will be interest in this topic, not only within computer science but

in other fields as well.

Acknowledgments

I could devote an entire report to the information I learned from my many

interactions with Professor Darrell Long, not only about the workings of networks,

UNIX, and world religion, but also on the value of finding answers for yourself.



19

Thanks to Dean Long and Tim Kolar for their innumerable contributions and bug-

fixes. A special thanks to Leslie Bunnage for her extensive writing assistance

and general inspiration. I’d also like to thank Michelle Abram, Richard Golding,

William Osser, David Schreiber, and Bob Ellefson for their countless contributions.

Finally, thanks to Professors Charlie McDowell andKim Taylor for their willingness

to review my work of the past six months.



20

References

[1] Danzig, Peter “Probablistic Error Checkers : Fixing DNS”, 13 pages,
Spring 1992.

[2] Emtage, Alan “Archie – An Electronic Directory Service for the Internet,”
USENIX WINTER 92, 21 pages, Winter 92.

[3] Krol, E. “The Hitchhikers Guide to the Internet,” RFC1118, 24 pages,
September 1989.

[4] Lottor, Mark “Internet Growth (1981-1991),” RFC1296, 9 pages, January
1992.

[5] Mockapetris, P. “Domain Names—Concepts and Facilities,” RFC1034, 55
pages, November 1987.

[6] Mockapetris, P. “Domain Names—Implementation and Specification,”
RFC1035, 55 pages, November 1987.

[7] Schwartz, M. “A Measurement Study of Changes in the Service-Level
Reachability in the Global TCP/IP Internet”, RFC1273, 8 pages, Novem-
ber 1991.



21

Appendix A – Manual Page

NAME

census – collect host information from specified domains.

SYNOPSIS

census [-stubborn] [-domain <name>] [-all] [-restart] [-hinfo] [-verbose]

DESCRIPTION

Census is a tool used to collect a list of host names, addresses, and possibly
host CPU type and operating system. Census works by reading domains from
domains.in, and querying the domain’s name servers to obtain the desired infor-
mation. The default is a query to find all the domain’s host names and addresses.
Any new domains found are appended to domains.in to be queried once all previ-
ously specified domains are queried.

The input required to run census:

domains.in – a file that contains the names of domains that are to be
queried. New domains that are discovered during nameserver queries
are appended to the end of this file.

The output of census:

hosts.out – contains all host information from domains that have been
successfully queried.

tryagain.out – the names of domains that have been un-successfully
queried. These domains are tried again once all the domains in do-
mains.in have been queried once.

successful.out– a list of all domains that have been successfully queried.
lastdomain.out – the last domain queried. Only used if census is run
with the ‘-restart’ option.

temporary.out – used to collect the hosts of a domain that is currently
being queried. If zone data is sent successfully, the contents of tempo-
rary.out are appended to hosts.out, and the file is deleted.



22

OPTIONS

-a[ll] – removes the current domains.in file, and creates one containing
all top-level domains.

-h[info] – perform a hinfo query on each host, to find the CPU type and
operating system. Will return ‘unknown’ if one isn’t found.

-r[estart] – run census after the domain specified in lastdomain.out. Use
in case data collection is halted.

-v[erbose] – Verbose output to stdout. Tells how many name servers
were discovered, whichname server is currently being queried for hosts,
and any name server errors.

-d[omain] <domain name> – Creates a new domains.in file with only
the domain specified, and starts the domain traversal at that part of the
domain ‘tree’.

-s[tubborn] – Remove the current domains.in and move all domains in
tryagain.out to domains.in to be retried.


