
Fault Interpretation: Fine-Grain Monitoring ofPage AccessesDaniel R. Edelson�INRIA Project SORRocquencourt B.P. 10578153 Le Chesnay CEDEXFRANCEDaniel.Edelson@inria.fr9 November 1992AbstractThis paper presents a technique for obtaining �ne-grain informa-tion about page accesses from standard virtual memory hardware andUnix operating system software. This can be used to monitor all user-mode accesses to speci�ed regions of the address space of a process.Application code can intervene before and/or after an access occurs,permitting a wide variety of semantics to be associated with mem-ory pages. The technique facilitates implementing complex replicationor consistency protocols on transparent distributed shared memoryand persistent memory. The technique can also improve the e�ciencyof certain generational and incremental garbage collection algorithms.This paper presents our implementation and suggest several others.E�ciency measurements show faults to be about three orders of mag-nitude more expensive than normal memory accesses, but two ordersof magnitude less expensive than page faults. Information about howto obtain the code via anonymous ftp appears at the end of the paper.�This work was performed while the author was visiting INRIA. The author's mostrecent a�liation is: Computer and Information Science, University of California, SantaCruz CA 95064, daniel@cse.ucsc.edu. 1



IntroductionThis paper shows how a program can use common Unix virtual memorypage protection and signal handling to monitor all accesses to selected pagesof its address space. The technique has been encapsulated in a library calledFI for Fault Interpretation. We discuss a number of applications for thistechnique including garbage collection and consistency/replication protocolsfor transparent distributed shared memory.Virtual memory page protection has been used for similar reasons before[AEL88, AL91, DWH+90]. The di�erence with our approach is that mostother techniques unprotect a protected page when a fault occurs. For someperiod of time thereafter, there is no monitoring of how many times and atwhat addresses the page is accessed. With fault interpretation, in contrast,a page does not remain unprotected. When an access causes a fault, thepage is now unprotected and the access is performed. Then, the page isrestored to its previous protection state and the application resumes at thesubsequent machine instruction. A noti�cation function, registered by theapplication, can intervene immediately before and/or after the access. Itis as if the access succeeds and the application is informed that the accessoccurs.1The remainder of this report is organized as follows: Section 1 givesan overview of the technique with a small example. Section 2 presents aC library interface that encapsulates the functionality. Section 3 discussessome applications. Then, Sect. 4 describes the implementation and Sect. 5presents e�ciency measurements. Section 6 discusses the availability of thelibrary and some caveats, and Sect. 7 concludes the report.1 Fault Interpretation: Memory Access Moni-toringFault interpretation allows an application to detect all reads and/or writesto selected pages of its virtual address space. The library uses the mprotectsystem call to disallow accesses to monitored pages. An access to a protectedpage causes a fault, which Unix passes to the application as a signal. The FIsignal handler unprotects the page and noti�es the application of the access.1Caveat: This technique requires knowing the precise state of the CPU when a protec-tion violation occurs. It may not be possible to implement this functionality on all RISCarchitectures. We have implemented it on the SPARC processor [Cyp90, Sun87].2



Then, the faulting instruction is restarted; it succeeds because the page isunprotected. Control returns immediately to the FI library, which noti�esthe application again, re-protects the page, and resumes the application atthe next instruction.As just described, the application can be noti�ed twice per access. Thesetwo function invocations are referred to as pre-access noti�cation and post-access noti�cation. The two calls permit a wide variety of semantics, forexample, pre-access noti�cation might be used to read a page over the net-work, to obtain a write-lock on a page, or simply to record the address ofthe access. Post-access noti�cation might release a write lock or send anupdated page to other hosts. It might also be used by a debugger to detectthat a variable has been accessed.Arguments to the notify function indicate the address of the access, itstype (read, write or swap) and how many bytes are involved; the accesstype and number of bytes are obtained by decoding the instruction. Duringnoti�cation, the accessed page is unprotected, permitting the notify functionto access the page without faulting.FI utilizes the Unix mprotect system call and traps the resulting sig-nal, which is typically either SEGV or BUS. When the signal is caught, theoperating system passes the handler information about the faulting context.To support fault interpretation, this information must include the programcounter and the other registers. FI uses this information to determine whataccess the program was performing and to alter the usual ow of control.The FI signal handler can coexist peacefully with other signal handlers,provided they are not both trying to catch the same kinds of signals on thesame memory pages. When FI traps a signal from a fault on an unmon-itored page, the signal is propagated to any other handler that is installedfor the signal.The biggest di�erence between this and common uses of virtual mem-ory (VM) protection is that the faulting instruction is (e�ectively) single-stepped, rather than resumed normally. After the instruction succeeds, con-trol returns to the library's reprotect block, which performs the post-accessnoti�cation, reprotects the page, and resumes the application. Thus, thepage is only unprotected for the one instruction that faults (as well as dur-ing noti�cation); all accesses to the page can be trapped. This e�ect could beaccomplished using the ptrace system call but that doesn't permit a processto monitor itself; it can only monitor another process.The best way to demonstrate the exact e�ect obtained is through anexample. We present a small test application that obtains some protected3



memory and causes faults. The handler displays the address and the type ofevery fault. The application is shown in Fig. 1. The output of the applicationfollows in Fig. 2. As this example demonstrates, an application can veryeasily obtain a region of managed memory. Thereafter, the application willbe noti�ed upon every access to the region.2 LibraryThe FI library encapsulates the functionality that is described in the previ-ous section. The library includes calls to obtain managed memory, to changethe state or attributes of the memory, and to release the memory when it isno longer needed.When a fault occurs, the exact sequence of events is the following:1. An instruction attempts to access a protected page; the instructionfaults. The operating system invokes the FI-installed signal handler.2. The FI signal handler veri�es that the fault occurred on a page thatis managed by FI. If not, the signal is propagated to any previouslyinstalled signal handler. If the page is managed, the page will not beunprotected.3. If pre-access noti�cation has been requested, the application is noti�ed.The noti�cation function is passed the fault address, the number ofbytes, and ags indicating whether the access is a read or write (orboth) and that the noti�cation is pre-access. The noti�cation functioncan examine or modify the page.4. The faulting instruction is executed again. Since the page is not pro-tected, the access succeeds. Control returns immediately to FI.5. If post-access noti�cation has been requested, FI calls the noti�cationfunction. The same arguments are passed except that the ags indicatepost-access.6. FI returns the page to its previous protection state and resumes theapplication. The application continues with the instruction followingthe one that caused the fault.The library is written in C [ANS89, ISO90] using Unix system call ex-tensions. It can also be compiled as C++ code. In order to avoid nameclashes, all external identi�ers used in FI begin with � .4



#include <stdio.h>#include "fi.h"#define PGSIZE 4096/* notify prints the address and type of the access */void notify(void * addr, size_t nb, fi_flags_t type) {printf("NOTIFY: Access 0x%p for %d bytes, type ",addr,nb);if (type & FI_PREREAD) printf("PREREAD ");if (type & FI_PREWRITE) printf("PREWRITE ");if (type & FI_POSTREAD) printf("POSTREAD ");if (type & FI_POSTWRITE) printf("POSTWRITE ");printf("\n");}int main() {int i, * addr;fi_initialize();/* Allocate one page of managed memory */addr = (int*) fi_alloc(PGSIZE,fi_noaccess,notify,FI_ALL);printf("Causing four faults now!\n");addr[0] = 6;addr[121] = 999;i = addr[40];i = addr[400];printf("Permit READ accesses without faulting.\n");fi_setprot(addr, PGSIZE, fi_readonly);printf("Causing two faults now!\n");addr[0] = 6;addr[121] = 999;i = addr[40]; /* no fault: read access permitted */i = addr[400]; /* no fault: read access premitted */fi_free(addr);return 0;} Figure 1: A small FI application5



Causing four faults now!NOTIFY: Access at 0x7000 for 4 bytes of type PREWRITENOTIFY: Access at 0x7000 for 4 bytes of type POSTWRITENOTIFY: Access at 0x71e4 for 4 bytes of type PREWRITENOTIFY: Access at 0x71e4 for 4 bytes of type POSTWRITENOTIFY: Access at 0x70a0 for 4 bytes of type PREREADNOTIFY: Access at 0x70a0 for 4 bytes of type POSTREADNOTIFY: Access at 0x7640 for 4 bytes of type PREREADNOTIFY: Access at 0x7640 for 4 bytes of type POSTREADChange page to READONLY.Causing two faults now!NOTIFY: Access at 0x7000 for 4 bytes of type PREWRITENOTIFY: Access at 0x7000 for 4 bytes of type POSTWRITENOTIFY: Access at 0x71e4 for 4 bytes of type PREWRITENOTIFY: Access at 0x71e4 for 4 bytes of type POSTWRITEFigure 2: Output of the small FI applicationManaged memory is obtained in segments whose size is an integral num-ber of pages. Within a segment, the protection state, noti�cation, and notifyfunction of each page may be independently speci�ed.The library interface de�nes a small number of types, constants andfunctions. The �rst type is an enumeration that indicates what protectionstate the application requires for a page. The type is de�ned as follows:typedef enum {fi_noaccess,fi_readonly,fi_readwrite} fi_prot_t;The enumeration constants mean:fi noaccess No accesses to the page are permitted, meaning allaccesses result in faults.fi readonly Read accesses do not fault.fi readwrite Both reads and writes are permitted without faulting.6



Another set of ags de�nes the types of noti�cation. The ags are bitvalues that may be ORed together. The values of the constants have beenelided.typedef unsigned char fi_flags_t;#define FI_PREREAD /* Pre-access notification for reads */#define FI_PREWRITE /* Pre-access notification for writes */#define FI_PRE /* Pre-access notification for all accesses */#define FI_POSTREAD /* Post-access notification for reads */#define FI_POSTWRITE /* Post-access notification for writes */#define FI_POST /* Post-access notification for all accesses */#define FI_READ /* Pre and post notification for reads */#define FI_WRITE /* Pre and post notification for writes */#define FI_ALL /* Pre and post notification for all accesses*/When obtaining pages of managed memory, the application supplies apointer to a noti�cation function. The type of that function pointer is thefollowing:typedef void (*fi_notify_t)(caddr_t, size_t, fi_flags_t);The caddr t argument is the address of the fault. The size t argument isthe number of bytes involved in the access. The � ags t argument indicatesthe type of access and whether the noti�cation is pre-access or post-access.Finally, the last part of the interface is the prototypes of the libraryfunctions. These prototypes are summarized in Fig. 3. The meanings of thefunctions are the following:� initialize This function must be called �rst to initialize the library.� alloc This routine allocates new monitored memory. The functionreturns a pointer to the allocated pages. The initial protection stateand notify function are parameters to the function, as is the numberof pages to allocate.� addpages As with � alloc this function adds more managed mem-ory. However, this routine allows the user to supply the address of thememory, rather than obtaining the memory from valloc or sbrk.� free This free routine tells the library to stop using a set of pages.If the pages were obtained with � alloc they are deallocated.7



void fi_initialize(void);void* fi_alloc(size_t, fi_prot_t, fi_notify_t, fi_flags_t);void* fi_addpages(void*, size_t, fi_prot_t, fi_notify_t, fi_flags_t);int fi_free(void* addr);int fi_setprot(void* pgaddr, size_t nb, fi_prot_t nw);int fi_setnotify(void* pageaddr, size_t nb, fi_notify_t nw);int fi_setflags(void* pgaddr, size_t nb, fi_flags_t nw);int fi_getprot(void* pgaddr, fi_prot_t* old);int fi_getnotify(void* pageaddr, fi_notify_t* old);int fi_getflags(void* pgaddr, fi_flags_t* old);Figure 3: FI function prototypes� setprot This function sets the protection state of one or more man-aged pages. This determines what kinds of accesses, reads or writes,cause faults.� setnotify This function sets the notify function pointer associatedwith one or more pages.� setags The � setags interface is used to set the kind of noti�ca-tion required: pre-access and/or post-access.� getprot This function returns the protection state of a page.� getnotify This function returns the notify function pointer associ-ated with a page.� getags This routine returns the noti�cation ags of a page.3 ApplicationsPossible applications of this technique include: write-detection in genera-tional or incremental garbage collection, and consistency/replication proto-cols for shared memory. 8



3.1 Generational Garbage CollectionThe idea behind generational garbage collection (GC) is that some objectsare likely to remain reachable for the immediate future, thus, attempting toreclaim their memory is not worthwhile. [DWH+90, LH83, Moo84]. Typi-cally, young objects are expected to become garbage relatively soon [Ung84],therefore, the garbage collector concentrates its e�ort on the young objects.A garbage collection of the young objects (the younger generation) re-quires locating all pointers to young objects. Such pointers are of threetypes:1. pointers on the stack, in global data, and in registers,2. pointers in young objects, or,3. pointers in old objects.Pointers of the �rst two types are common to all GC algorithms and donot introduce new di�culties. Pointers of the third kind are called backpointers and they introduce a problem that is unique to generational garbagecollectors. These pointers must be located to avoid erroneously reclaiminglive objects. However, since the collector is concentrating on young objects,it does not want to examine the old objects to locate these pointers. Thus,the task is to e�ciently locate the set of all these pointers.Some collectors add a run-time test to every (pointer) assignment tosee if a back pointer is being created. Other collectors do not attempt tolocate each individual pointer, but rather identify the set of pages that mightcontain such pointers, the remembered pages. During garbage collection,every object on a remembered page is scanned for back pointers. This hasbeen implemented using page protection [DWH+90]. The garbage collectorwrite-protects all of the older-generation pages. Every fault indicates thatthere has been an assignment to an older generation object; the page isadded to the remembered set. Upon collection, the remembered pages arescanned for back pointers. If a page contains no back pointers, then then itis deleted from the remembered set. Otherwise, it is left in the set.This implementation of the remembered set unprotects a page every timea fault occurs, permitting any number of writes to the page. Since it doesn'tknow what addresses were written, the collector must scan every object onevery remembered page looking for back pointers. Even if only one wordon the page is modi�ed, the collector still must check every �eld of everyobject. In contrast, through memory access monitoring, the collector can9



have available the exact list of address that are modi�ed. It is not necessarilydesirable to remember the exact list, since that could be quite expensive.Instead, the collector can keep N remembered addresses per page. For the�rst N faults that occur on a page, the collector stores the fault address.Upon the next fault after that, the collector unprotects the page and treatsthe page the same as in the old system. This bounds the maximum timeand space overhead due to faulting.The exact value of N depends on two things: the e�ciency of handlinga fault, and the cost of scanning a page. If every �eld on a page can bescanned in less time than it takes to handle a fault, then fault interpretationshould not be used. However, if scanning objects is relatively expensive,then remembering several stored addresses may improve e�ciency.3.2 Incremental Garbage CollectionIncremental garbage collection is a family of algorithms in which the col-lector never stops the application for an extended period of time. The �rstsuch algorithm was Baker's copying collector [Bak78] with many other algo-rithms based on it. To avoid annoying pauses, the collector does its work inshort chunks. Incremental garbage collectors are often concurrent, in whichcase protected pages of memory can serve as medium grain synchronizationmechanism between the collector and the application [AEL88].3.2.1 Incremental Mark-and-Sweep CollectionIncremental mark-and-sweep garbage collection has been implemented pre-viously using virtual memory page protection [BDS91]. The normal imple-mentation provides one bit of information per page: there was or was nota fault. Pages on which a fault occurred must be entirely rescanned. Thisis another case in which fault interpretation can provide �ner granularityinformation, possibly increasing the e�ciency of the algorithm.Incremental mark-and-sweep collectors do their work in short bursts.During each burst, the collector follows pointers and may discover that someadditional objects are accessible. The collector marks the accessible objectsso they will not be deallocated at the end of the collection. After chasingsome pointers and marking some objects, the cycle ends and the collectorreturns control to the application. A burst in which the collector runs outof pointers signals the end of the mark phase.Each time the collector returns control to the application, the application10



is free to modify marked objects. The application may store in a markedobject the only pointer to an unmarked object. If the collector never againexamines the marked object, the pointer won't be discovered: the unmarkedobject remains unmarked and is incorrectly deallocated by the collector.Thus, marked objects that are subsequently modi�ed must be reexamined.VM protection can be used to detect this case. Any page that containsmarked objects is write-protected. If a fault occurs, the page is agged. Af-ter the mark phase has nominally �nished, all the agged pages are scannedfor marked objects with pointers to unmarked objects. When any suchpointer is found, the data structure reachable from the pointer is marked.Fault interpretation can be used to remember the �rst N fault addressesper page. Only N addresses per page are remembered to bound the totaltime spent servicing faults. After the mark phase has terminated, the pagesthat had between 1 and N faults can be serviced very quickly because theaddresses of the writes have been saved.3.3 Consistency and Replication ControlFI can be used to implement arbitrary replication and consistency protocolson top of transparent distributed shared memory [LH89]. The contributionof FI is the ability to execute application code before and after memorypages are accessed. This code might, for example, implement a voting al-gorithm [Lon88]. The consistency protocol runs transparently; the clientaccesses the memory with normal load and store instructions.One possible implementation is the following. Shared memory pagesare replicated on all the participating sites. Upon a write, the pre-accesshandler of the process that is writing sends packets over the network to lockthe location. When the lock is obtained, the write executes. Then, thepost-access handler unlocks the location. For reads, if there are currentlyno locks on a page, the page does not need to be read-protected. If there isat least one lock on a page, the page is protected so that read accesses can'toccur concurrently with a write access at the same location. The pre-accesshandler for reads checks that the location is not locked, and if it is not,allows the read to complete. If the location is locked, the handler blocksuntil the location is unlocked. Post-access read noti�cation is not required.11



4 ImplementationThere are a number of ways that fault interpretation can be implemented.By and large, they are architecture speci�c and require reading the stateof the CPU when the fault occurs. Thus, this technique is less portableand less general than those discussed by Appel [AL91]. Nonetheless, it hasseveral uses and may let some programs run more e�ciently.4.1 Code Modi�cationWhen the signal handler is invoked after a fault, it determines what in-struction has faulted. The instruction immediately following the faultinginstruction is overwritten with an unconditional branch to the block of han-dler code called the reprotect block.2 Then, the signal handler unprotects thepage and returns, allowing the operating system to resume the application.When it resumes, the application re-executes the instruction that causedthe fault. Since the page is now unprotected, this succeeds. Then, controlfollows the branch to the reprotect block. This block performs post-accessnoti�cation, reprotects the page, restores the instruction sequence that wasmodi�ed, and branches back to the application.4.2 Register Modi�cationThe SPARC architecture permits a much simpler implementation that doesnot require code modi�cation. The SPARC has a register called npc for nextprogram counter. This register contains the address of the instruction thatwill execute after the current instruction completes. This register is used toimplement delayed branches. The npc register makes it particularly easy toimplement FI.Upon a fault, the signal handler can read and modify the CPU stateat the faulting instruction. This state includes the contents of npc. Theprevious value of this register is saved, and the address of the reprotect blockis assigned to the register. Then, the signal handler unprotects the page andreturns. The application again executes the instruction that faulted; thistime the access succeeds. Since npc points to handler code, control jumpsto the reprotect block. As before, the application is noti�ed, the page isrestored to its former protection state, and control branches back to the2On delayed branch architectures, a nop is written after the branch.12



application. This is the implementation used in the current version of theFI library.4.3 Instruction interpretationAnother way of executing a single instruction is to parse and interpret theinstruction. On a RISC processor this is not very di�cult or ine�cient,provided the operating system makes the entire context of the faulting in-struction available. This also requires being able to restart the instructionfollowing the faulted instruction. One advantage of this is the interpreter cantake advantage of extra information. For example, if the fault page is alsomapped without protection elsewhere in the address space [AL91, Wil92],the interpreter can use that version to avoid needing to unprotect and re-protect the page.4.4 ParallelizationThe FI code is currently sequential. However, the majority of it could beparallelized. There are two main issues that must be resolved. The �rst isthe use of global data. Two parts of the FI library communicate throughglobal variables. In a parallel implementation, this data would have to bereplicated on a per-thread basis.The second issue is the following: If any thread is executing when a pageis unprotected, the thread can access the page without being monitored.Thus, whenever FI unprotects a page, it must �rst stop all the threads inthe system. They remain stopped until the page's protection is restored.5 E�ciencyThe key operations in terms of e�ciency are changing the protection stateof a page and handling a fault. The times for these two operations arepresented in Table 1. The timing information was obtained with the SunOSversion 4.1.1 getrusage system call. The tests were performed on a Sun IPXwith a cycle time of 25 ns (40Mhz). The cycles-per-operation �gures areobtained by dividing the time per operation by the cycle time.The time to protect a page was obtained by making the mprotect systemcall in a loop. The time this call requires to execute depends on whetherthe page in question is accessed or not, and whether it is clean or dirty.Therefore, this test was repeated for unaccessed pages, pages that had been13



read from, and pages that had been written to. In each case, the page wasentirely initialized to zeros before beginning the test. The data for each classof page are presented. This was repeated several times with the total timeand the total number of iterations summed and averaged.The time for handling a fault was obtained by writing a fault handlerthat leaves the page protected N�1 times so that restarting the instructioncauses another fault. Then, on the N th iteration, the handler unprotectsthe page and the instruction completes successfully.The time for protect+fault+unprotect was obtained by protecting a page,faulting, and unprotecting the page, all in a loop. This is a test whose e�-ciency is also measured in [AL91] and is repeated here to provide a baselinefor comparison.The time for fault interpret is the time to interpret a fault, i.e. to ac-cess a protected page and have the application's notify function informedthat the access has occurred, while �nishing with the page still protected.This consists of fault+unprotect+protect+small overhead. The application'snotify function for this test returns immediately.Lastly, we present the time for handling a page fault. This data wasobtained obtained by allocating more virtual memory than the machine hasphysical memory and repeatedly sequentially touching every page. This wasdone once with pages being read and once with pages being read and written.In both cases, page accesses are sequential. This information is provided too�er a comparison between the e�ciency of handling protection faults andpage faults.The data show that this implementation of fault interpretation is about5% more expensive than standard fault handling (for substantially greaterfunctionality). Nonetheless, protection faults are very expensive, costingapproximately 20,000 cycles each. This cost in terms of memory referencesis much di�erent, of course, probably closer to 8000 memory references.Therefore, if taking a fault can save more than 8000 memory references,there will be an increase in e�ciency.What is really clear is how expensive page faults are. If we can save asingle page fault, then we can interpret over 30 protection faults and still seean increase in e�ciency (based on the relative costs of a page fault and faultinterpretation). A generational collector that stores generation counters inobjects, or an incremental mark-and-sweep collector that stores mark bitswith objects, could signi�cantly improve e�ciency with fault interpretation.For transparent persistent memory, the fault time is inconsequential com-pared to the time to write the data to disk. Similarly, assuming that the14



Table 1: E�ciency of the component operationsOperation Count Total Time per Cycles perTime Operation Operationmprotect, unaccessed 80,000 4.0s 50�s 2000mprotect RO-RW, clean 80,000 14.4s 179�s 7160mprotect RW-RW, clean 80,000 22.1s 275�s 11000mprotect RW-RW, dirty 80,000 21.2s 265�s 10600handle a fault 500,000 81.7s 163�s 6520protect+fault+unprotect 500,000 258.5s 517�s 20680fault interpret 500,000 270.0s 540�s 21600page fault, reading 20,480 480.0s 23,437�s 937,480page fault, writing 20,480 757.0s 36,963�s 1,478,520The measurements were taken on a 40Mhz Sun IPX. Unaccessed meansthe page has neither been read nor written. Clean means the page hasbeen read since the last call to mprotect. Dirty means the page hasbeen written since the last call to mprotect. RW-RW means successivecalls to mprotect always grant full access to the page. RO-RW meanssuccessive calls to mprotect alternate between restricting access andrestoring access.
15



time for a network message for a relatively fast protocol such as UDP is onthe order of 1.5ms [Mak89], fault handling should not be the bottleneck inimplementing distributed shared memory.Lastly, we observe that disk and network latencies do not scale withprocessor speeds, whereas fault handling latency does increase with fasterCPUs, subject to memory access time. Thus, relative to disk and networkI/O, the e�ciency of fault interpretation will improve with faster CPUs.It will also improve if operating system implementors provide faster traphandling.6 AvailabilityThe FI library has been implemented for the SPARC processor. Thecode will compile either as an ANSI/ISO C program or as a C++ pro-gram. The source code is available via anonymous ftp from ftp.cse.ucsc.edu(128.114.134.19) in pub/csl/vm-trace.tar.Z. It can also be obtained fromftp.inria.fr (128.93.1.26) in INRIA/c++-gc/vm-fault.tar.Z. The code is notpublic domain, but may be used without fee for any purpose, commercial orotherwise.All of the test programs that were used for our e�ciency measurementsare available with the library. The names of the �les (and their purposes)are as follows:File Purposet0.c Measure the e�ciency of mprotectt1.c Sample FI application, obtain and exercise managed memoryt2.c Measure the e�ciency of trapping the signal upon a memoryprotection faultt3.c Measure the time required to protect a page, fault on it, and thenunprotect itt4.c Measure the time required to interpret a faultt5.c Measure the time required to handle a page fault when readingsequential pagest6.c Measure the time required to handle a page fault when writingsequential pagest7.c Measure the e�ciency of mprotect (more detail than t0.c)16



7 ConclusionWe present a library that provides more functionality than is usually ob-tained from standard virtual memory hardware and operating system soft-ware. Given su�ciently fast trap handling, this technique can be used toimprove the e�ciency of incremental or generational garbage collectors. Itmay also be useful for persistent object stores, coherent distributed sharedvirtual memory, and other algorithms.AcknowledgementsThis work was supported in part by Esprit project 5279 Harness.BiographyThe author is a Ph.D. student in Computer and Information Science at theUniversity of California, Santa Cruz. He plans to graduate in 1993. From1991 to 1992, he spent 12 months as a visiting researcher at INRIA Roc-quencourt, where this work was done. He also programs C++ on contractsand teaches C++ classes in industry. Formerly, he was an engineer in theoperating systems group at the Santa Cruz Operation.References[AEL88] Andrew W. Appel, John R. Ellis, and Kai Li. Real-time con-current collection on stock multiprocessors. In Proc. PLDI '88,pages 11{20, July 1988. SIGPLAN Not. 23(7).[AL91] Andrew W. Appel and Kai Li. Virtual memory primitives foruser programs. In ASPLOS Inter. Conf. Architectural Supportfor Programming Languages and Operating Systems, pages 96{107, Santa Clara, CA, April 1991. SIGPLAN Not. 26(4).[ANS89] ANSI X3.159-1989, 1989. American national standard for the Cprogramming language.[Bak78] H. G. Baker. List processing in real time on a serial computer.Communications of the ACM, 21(4):280{294, April 1978.17



[BDS91] Hans-J. Boehm, Alan J. Demers, and Scott Shenker. Mostlyparallel garbage collection. In Proc. PLDI '91, pages 157{164.ACM, June 1991. SIGPLAN Not. 26(6).[Cyp90] Cypress Semiconductor. SPARC risc users guide, 1990.[DWH+90] Alan Demers, Mark Weiser, Barry Hayes, Hans Boehm, DanielBobrow, and Scott Shenker. Combining generational and con-servative garbage collection: Framework and implementations.In Proc. POPL '90, pages 261{269. ACM, January 1990.[ISO90] ISO 9899-1990, 1990. International standard for the C program-ming language.[LH83] Henry Lieberman and Carl Hewitt. A real-time garbage collectorbased on the lifetimes of objects. Communications of the ACM,26(6):419{429, June 1983.[LH89] Kai Li and Paul Hudak. Memory coherence in shared virtualmemory systems. ACM Transactions on Computer Systems,7(4):321{359, November 1989.[Lon88] Darrell D. E. Long. The Management of Replication in a Dis-tributed System. Ph.D. dissertation, University of California atSan Diego, August 1988.[Mak89] Mesaac Mounchili Makpangou. Protocoles de communicationet programmation par objets : l'exemple de SOS. PhD thesis,Universit�e Paris VI, Paris (France), February 1989.[Moo84] David Moon. Garbage collection in a large LISP system. InSymp. Lisp and Functional Programming, pages 235{246. ACM,1984.[Sun87] Sun Microsystems, Inc. The SPARC architecture manual, 1987.Part No. 800{11399{07.[Ung84] David Ungar. Generation Scavenging: A non{disruptive highperformance storage reclamation algorithm. In ACM SIG-PLAN/SIGSOFT Symp. Practical Software Development En-vironments, pages 157{167. ACM, April 1984. SIGPLAN Not.19(2). 18



[Wil92] Paul Wilson, 1992. Personal communication.

19


