Fault Interpretation: Fine-Grain Monitoring of
Page Accesses

Daniel R. Edelson*

INRIA Project SOR
Rocquencourt B.P. 105
78153 Le Chesnay CEDEX
FRANCE
Daniel. Edelson@inria.fr

9 November 1992

Abstract

This paper presents a technique for obtaining fine-grain informa-
tion about page accesses from standard virtual memory hardware and
UNIX operating system software. This can be used to monitor all user-
mode accesses to specified regions of the address space of a process.
Application code can intervene before and/or after an access occurs,
permitting a wide variety of semantics to be associated with mem-
ory pages. The technique facilitates implementing complex replication
or consistency protocols on transparent distributed shared memory
and persistent memory. The technique can also improve the efficiency
of certain generational and incremental garbage collection algorithms.
This paper presents our implementation and suggest several others.
Efficiency measurements show faults to be about three orders of mag-
nitude more expensive than normal memory accesses, but two orders
of magnitude less expensive than page faults. Information about how
to obtain the code via anonymous ftp appears at the end of the paper.

*This work was performed while the author was visiting INRIA. The author’s most
recent affiliation is: Computer and Information Science, University of California, Santa
Cruz CA 95064, daniel@cse.ucsc.edu.

Introduction

This paper shows how a program can use common UNIX virtual memory
page protection and signal handling to monitor all accesses to selected pages
of its address space. The technique has been encapsulated in a library called
FT for Fault Interpretation. We discuss a number of applications for this
technique including garbage collection and consistency /replication protocols
for transparent distributed shared memory.

Virtual memory page protection has been used for similar reasons before
[AELSS, AL91, DWH'90]. The difference with our approach is that most
other techniques unprotect a protected page when a fault occurs. For some
period of time thereafter, there is no monitoring of how many times and at
what addresses the page is accessed. With fault interpretation, in contrast,
a page does not remain unprotected. When an access causes a fault, the
page is now unprotected and the access is performed. Then, the page is
restored to its previous protection state and the application resumes at the
subsequent machine instruction. A notification function, registered by the
application, can intervene immediately before and/or after the access. It
is as if the access succeeds and the application is informed that the access
occurs.!

The remainder of this report is organized as follows: Section 1 gives
an overview of the technique with a small example. Section 2 presents a
C library interface that encapsulates the functionality. Section 3 discusses
some applications. Then, Sect. 4 describes the implementation and Sect. 5
presents efliciency measurements. Section 6 discusses the availability of the
library and some caveats, and Sect. 7 concludes the report.

1 Fault Interpretation: Memory Access Moni-
toring

Fault interpretation allows an application to detect all reads and/or writes
to selected pages of its virtual address space. The library uses the mprotect
system call to disallow accesses to monitored pages. An access to a protected
page causes a fault, which UNIX passes to the application as a signal. The F7
signal handler unprotects the page and notifies the application of the access.

! Caveat: This technique requires knowing the precise state of the CPU when a protec-
tion violation occurs. It may not be possible to implement this functionality on all RISC
architectures. We have implemented it on the SPARC processor [Cyp90, Sun87].

Then, the faulting instruction is restarted; it succeeds because the page is
unprotected. Control returns immediately to the FZ library, which notifies
the application again, re-protects the page, and resumes the application at
the next instruction.

As just described, the application can be notified twice per access. These
two function invocations are referred to as pre-access notification and post-
access notification. The two calls permit a wide variety of semantics, for
example, pre-access notification might be used to read a page over the net-
work, to obtain a write-lock on a page, or simply to record the address of
the access. Post-access notification might release a write lock or send an
updated page to other hosts. It might also be used by a debugger to detect
that a variable has been accessed.

Arguments to the notify function indicate the address of the access, its
type (read, write or swap) and how many bytes are involved; the access
type and number of bytes are obtained by decoding the instruction. During
notification, the accessed page is unprotected, permitting the notify function
to access the page without faulting.

FT utilizes the UNIX mprotect system call and traps the resulting sig-
nal, which is typically either SEGV or BUS. When the signal is caught, the
operating system passes the handler information about the faulting context.
To support fault interpretation, this information must include the program
counter and the other registers. F7 uses this information to determine what
access the program was performing and to alter the usual flow of control.

The FZ signal handler can coexist peacefully with other signal handlers,
provided they are not both trying to catch the same kinds of signals on the
same memory pages. When FZ traps a signal from a fault on an unmon-
itored page, the signal is propagated to any other handler that is installed
for the signal.

The biggest difference between this and common uses of virtual mem-
ory (VM) protection is that the faulting instruction is (effectively) single-
stepped, rather than resumed normally. After the instruction succeeds, con-
trol returns to the library’s reprotect block, which performs the post-access
notification, reprotects the page, and resumes the application. Thus, the
page is only unprotected for the one instruction that faults (as well as dur-
ing notification); all accesses to the page can be trapped. This effect could be
accomplished using the ptrace system call but that doesn’t permit a process
to monitor itself; it can only monitor another process.

The best way to demonstrate the exact effect obtained is through an
example. We present a small test application that obtains some protected

memory and causes faults. The handler displays the address and the type of
every fault. The application is shown in Fig. 1. The output of the application
follows in Fig. 2. As this example demonstrates, an application can very
easily obtain a region of managed memory. Thereafter, the application will
be notified upon every access to the region.

2 Library

The FZ library encapsulates the functionality that is described in the previ-
ous section. The library includes calls to obtain managed memory, to change
the state or attributes of the memory, and to release the memory when it is
no longer needed.

When a fault occurs, the exact sequence of events is the following;:

1.

An instruction attempts to access a protected page; the instruction
faults. The operating system invokes the FZ-installed signal handler.

. The FZ signal handler verifies that the fault occurred on a page that

is managed by FZ. If not, the signal is propagated to any previously
installed signal handler. If the page is managed, the page will not be
unprotected.

. If pre-access notification has been requested, the application is notified.

The notification function is passed the fault address, the number of
bytes, and flags indicating whether the access is a read or write (or
both) and that the notification is pre-access. The notification function
can examine or modify the page.

. The faulting instruction is executed again. Since the page is not pro-

tected, the access succeeds. Control returns immediately to FZ.

. If post-access notification has been requested, FZ calls the notification

function. The same arguments are passed except that the flags indicate
post-access.

. FT returns the page to its previous protection state and resumes the

application. The application continues with the instruction following
the one that caused the fault.

The library is written in C [ANSR9, ISO90] using UNIX system call ex-
tensions. It can also be compiled as C++ code. In order to avoid name
clashes, all external identifiers used in FZ begin with fi_.

#include <stdio.h>
#include "fi.h"
#define PGSIZE 4096

/* notify prints the address and type of the access */

void notify(void * addr, size_t nb, fi_flags_t type) {
printf ("NOTIFY: Access Oxl/p for %d bytes, type ",addr,nb);
if (type & FI_PREREAD) printf("PREREAD ");
if (type & FI_PREWRITE) printf("PREWRITE ");
if (type & FI_POSTREAD) printf ("POSTREAD ");
if (type & FI_POSTWRITE) printf ("POSTWRITE ");
printf ("\n");

int main() {
int i, * addr;

fi_initialize();

/* Allocate one page of managed memory */

addr = (int*) fi_alloc(PGSIZE,fi_noaccess,notify,FI_ALL);
printf("Causing four faults now!\n");

addr[0] = 6;

addr[121] = 999;

i = addr[40];

i = addr[400];

printf("Permit READ accesses without faulting.\n");
fi_setprot(addr, PGSIZE, fi_readonly);

printf("Causing two faults now'!\n");

addr[0] = 6;

addr[121] = 999;

i = addr[40]; /* no fault: read access permitted */
i = addr[400]; /* no fault: read access premitted */
fi_free(addr);

return O;

Figure 1: A small FZ application

Causing four faults now!
NOTIFY: Access at 0x7000 for
NOTIFY: Access at 0x7000 for
NOTIFY: Access at 0Ox71le4 for
NOTIFY: Access at 0Ox71le4 for
NOTIFY: Access at 0x70a0 for
NOTIFY: Access at 0x70a0 for
NOTIFY: Access at 0x7640 for
NOTIFY: Access at 0x7640 for
Change page to READONLY.
Causing two faults now!
NOTIFY: Access at 0x7000 for
NOTIFY: Access at 0x7000 for
NOTIFY: Access at 0Ox71le4 for
NOTIFY: Access at 0Ox71le4 for

bytes of type PREWRITE
bytes of type POSTWRITE
bytes of type PREWRITE
bytes of type POSTWRITE
bytes of type PREREAD
bytes of type POSTREAD
bytes of type PREREAD
bytes of type POSTREAD

RN N O N N N S

bytes of type PREWRITE
bytes of type POSTWRITE
bytes of type PREWRITE
bytes of type POSTWRITE

Figure 2: Output of the small F7 application

Managed memory is obtained in segments whose size is an integral num-
ber of pages. Within a segment, the protection state, notification, and notify

function of each page may be independently specified.

The library interface defines a small number of types, constants and
functions. The first type is an enumeration that indicates what protection
state the application requires for a page. The type is defined as follows:

typedef enum {
fi_noaccess,
fi_readonly,
fi_readwrite
} fi_prot_t;

The enumeration constants mean:

finoaccess No accesses to the page are permitted, meaning all
accesses result in faults.

fi readonly Read accesses do not fault.

fi readwrite Both reads and writes are permitted without faulting.

Another set of flags defines the types of notification. The flags are bit
values that may be ORed together. The values of the constants have been
elided.

typedef unsigned char fi_flags_t;

#define FI_PREREAD /* Pre-access notification for reads */
#define FI_PREWRITE /#* Pre-access notification for writes */
#define FI_PRE /* Pre-access notification for all accesses */
#define FI_POSTREAD /#* Post-access notification for reads */
#define FI_POSTWRITE /* Post-access notification for writes */
#define FI_POST /* Post-access notification for all accesses */
#define FI_READ /* Pre and post notification for reads */
#define FI_WRITE /* Pre and post notification for writes */
#define FI_ALL /* Pre and post notification for all accesses*/

When obtaining pages of managed memory, the application supplies a
pointer to a notification function. The type of that function pointer is the
following:

typedef void (*fi_notify_t)(caddr_t, size_t, fi_flags_t);

The caddr_t argument is the address of the fault. The size_t argument is
the number of bytes involved in the access. The fi_flags_t argument indicates
the type of access and whether the notification is pre-access or post-access.

Finally, the last part of the interface is the prototypes of the library
functions. These prototypes are summarized in Fig. 3. The meanings of the
functions are the following:

fi_initialize This function must be called first to initialize the library.

fi_alloc This routine allocates new monitored memory. The function
returns a pointer to the allocated pages. The initial protection state
and notify function are parameters to the function, as is the number
of pages to allocate.

fi_addpages As with fi_alloc this function adds more managed mem-
ory. However, this routine allows the user to supply the address of the
memory, rather than obtaining the memory from valloc or sbrk.

fi_free This free routine tells the library to stop using a set of pages.
If the pages were obtained with fi_alloc they are deallocated.

void

fi_initialize(void);

void* fi_alloc(size_t, fi_prot_t, fi_notify_t, fi_flags_t);
void* fi_addpages(void*, size_t, fi_prot_t, fi_notify_t, fi_flags_t);

int
int
int
int
int
int
int

fi_free(void#* addr);

fi_setprot(void* pgaddr, size_t nb, fi_prot_t nw);
fi_setnotify(void* pageaddr, size_t nb, fi_notify_t nw);
fi_setflags(void#* pgaddr, size_t nb, fi_flags_t nw);
fi_getprot(void* pgaddr, fi_prot_t* old);
fi_getnotify(void* pageaddr, fi_notify_t* old);
fi_getflags(void#* pgaddr, fi_flags_t#* old);

Figure 3: FZ function prototypes

3

fi_setprot This function sets the protection state of one or more man-
aged pages. This determines what kinds of accesses, reads or writes,
cause faults.

fi_setnotify This function sets the notify function pointer associated
with one or more pages.

fi_setflags The fi_setflags interface is used to set the kind of notifica-
tion required: pre-access and/or post-access.

fi_getprot This function returns the protection state of a page.

fi_getnotify This function returns the notify function pointer associ-
ated with a page.

fi_getflags This routine returns the notification flags of a page.

Applications

Possible applications of this technique include: write-detection in genera-

tional or incremental garbage collection, and consistency/replication proto-
cols for shared memory.

3.1 Generational Garbage Collection

The idea behind generational garbage collection (GC) is that some objects
are likely to remain reachable for the immediate future, thus, attempting to
reclaim their memory is not worthwhile. [DWH'90, LH83, Moo84]. Typi-
cally, young objects are expected to become garbage relatively soon [Ung84],
therefore, the garbage collector concentrates its effort on the young objects.

A garbage collection of the young objects (the younger generation) re-
quires locating all pointers to young objects. Such pointers are of three

types:

1. pointers on the stack, in global data, and in registers,
2. pointers in young objects, or,
3. pointers in old objects.

Pointers of the first two types are common to all GC algorithms and do
not introduce new difficulties. Pointers of the third kind are called back
pointers and they introduce a problem that is unique to generational garbage
collectors. These pointers must be located to avoid erroneously reclaiming
live objects. However, since the collector is concentrating on young objects,
it does not want to examine the old objects to locate these pointers. Thus,
the task is to efficiently locate the set of all these pointers.

Some collectors add a run-time test to every (pointer) assignment to
see if a back pointer is being created. Other collectors do not attempt to
locate each individual pointer, but rather identify the set of pages that might
contain such pointers, the remembered pages. During garbage collection,
every object on a remembered page is scanned for back pointers. This has
been implemented using page protection [DWHT90]. The garbage collector
write-protects all of the older-generation pages. Every fault indicates that
there has been an assignment to an older generation object; the page is
added to the remembered set. Upon collection, the remembered pages are
scanned for back pointers. If a page contains no back pointers, then then it
is deleted from the remembered set. Otherwise, it is left in the set.

This implementation of the remembered set unprotects a page every time
a fault occurs, permitting any number of writes to the page. Since it doesn’t
know what addresses were written, the collector must scan every object on
every remembered page looking for back pointers. Even if only one word
on the page is modified, the collector still must check every field of every
object. In contrast, through memory access monitoring, the collector can

have available the exact list of address that are modified. It is not necessarily
desirable to remember the exact list, since that could be quite expensive.
Instead, the collector can keep N remembered addresses per page. For the
first N faults that occur on a page, the collector stores the fault address.
Upon the next fault after that, the collector unprotects the page and treats
the page the same as in the old system. This bounds the maximum time
and space overhead due to faulting.

The exact value of N depends on two things: the efficiency of handling
a fault, and the cost of scanning a page. If every field on a page can be
scanned in less time than it takes to handle a fault, then fault interpretation
should not be used. However, if scanning objects is relatively expensive,
then remembering several stored addresses may improve efficiency.

3.2 Incremental Garbage Collection

Incremental garbage collection is a family of algorithms in which the col-
lector never stops the application for an extended period of time. The first
such algorithm was Baker’s copying collector [Bak78] with many other algo-
rithms based on it. To avoid annoying pauses, the collector does its work in
short chunks. Incremental garbage collectors are often concurrent, in which
case protected pages of memory can serve as medium grain synchronization
mechanism between the collector and the application [AELSS].

3.2.1 Incremental Mark-and-Sweep Collection

Incremental mark-and-sweep garbage collection has been implemented pre-
viously using virtual memory page protection [BDS91]. The normal imple-
mentation provides one bit of information per page: there was or was not
a fault. Pages on which a fault occurred must be entirely rescanned. This
is another case in which fault interpretation can provide finer granularity
information, possibly increasing the efficiency of the algorithm.

Incremental mark-and-sweep collectors do their work in short bursts.
During each burst, the collector follows pointers and may discover that some
additional objects are accessible. The collector marks the accessible objects
so they will not be deallocated at the end of the collection. After chasing
some pointers and marking some objects, the cycle ends and the collector
returns control to the application. A burst in which the collector runs out
of pointers signals the end of the mark phase.

Each time the collector returns control to the application, the application

10

is free to modify marked objects. The application may store in a marked
object the only pointer to an unmarked object. If the collector never again
examines the marked object, the pointer won’t be discovered: the unmarked
object remains unmarked and is incorrectly deallocated by the collector.
Thus, marked objects that are subsequently modified must be reexamined.

VM protection can be used to detect this case. Any page that contains
marked objects is write-protected. If a fault occurs, the page is flagged. Af-
ter the mark phase has nominally finished, all the flagged pages are scanned
for marked objects with pointers to unmarked objects. When any such
pointer is found, the data structure reachable from the pointer is marked.

Fault interpretation can be used to remember the first NV fault addresses
per page. Only N addresses per page are remembered to bound the total
time spent servicing faults. After the mark phase has terminated, the pages
that had between 1 and N faults can be serviced very quickly because the
addresses of the writes have been saved.

3.3 Consistency and Replication Control

FT can be used to implement arbitrary replication and consistency protocols
on top of transparent distributed shared memory [LH89]. The contribution
of F7 is the ability to execute application code before and after memory
pages are accessed. This code might, for example, implement a voting al-
gorithm [Lon88]. The consistency protocol runs transparently; the client
accesses the memory with normal load and store instructions.

One possible implementation is the following. Shared memory pages
are replicated on all the participating sites. Upon a write, the pre-access
handler of the process that is writing sends packets over the network to lock
the location. When the lock is obtained, the write executes. Then, the
post-access handler unlocks the location. For reads, if there are currently
no locks on a page, the page does not need to be read-protected. If there is
at least one lock on a page, the page is protected so that read accesses can’t
occur concurrently with a write access at the same location. The pre-access
handler for reads checks that the location is not locked, and if it is not,
allows the read to complete. If the location is locked, the handler blocks
until the location is unlocked. Post-access read notification is not required.

11

4 Implementation

There are a number of ways that fault interpretation can be implemented.
By and large, they are architecture specific and require reading the state
of the CPU when the fault occurs. Thus, this technique is less portable
and less general than those discussed by Appel [AL91]. Nonetheless, it has
several uses and may let some programs run more efficiently.

4.1 Code Modification

When the signal handler is invoked after a fault, it determines what in-
struction has faulted. The instruction immediately following the faulting
instruction is overwritten with an unconditional branch to the block of han-
dler code called the reprotect block.? Then, the signal handler unprotects the
page and returns, allowing the operating system to resume the application.

When it resumes, the application re-executes the instruction that caused
the fault. Since the page is now unprotected, this succeeds. Then, control
follows the branch to the reprotect block. This block performs post-access
notification, reprotects the page, restores the instruction sequence that was
modified, and branches back to the application.

4.2 Register Modification

The SPARC architecture permits a much simpler implementation that does
not require code modification. The SPARC has a register called npc for next
program counter. This register contains the address of the instruction that
will execute after the current instruction completes. This register is used to
implement delayed branches. The npc register makes it particularly easy to
implement F7.

Upon a fault, the signal handler can read and modify the CPU state
at the faulting instruction. This state includes the contents of npc. The
previous value of this register is saved, and the address of the reprotect block
is assigned to the register. Then, the signal handler unprotects the page and
returns. The application again executes the instruction that faulted; this
time the access succeeds. Since npc points to handler code, control jumps
to the reprotect block. As before, the application is notified, the page is
restored to its former protection state, and control branches back to the

20n delayed branch architectures, a nop is written after the branch.

12

application. This is the implementation used in the current version of the

FT library.

4.3 Instruction interpretation

Another way of executing a single instruction is to parse and interpret the
instruction. On a RISC processor this is not very difficult or inefficient,
provided the operating system makes the entire context of the faulting in-
struction available. This also requires being able to restart the instruction
following the faulted instruction. One advantage of this is the interpreter can
take advantage of extra information. For example, if the fault page is also
mapped without protection elsewhere in the address space [AL91, Wil92],
the interpreter can use that version to avoid needing to unprotect and re-
protect the page.

4.4 Parallelization

The FZ code is currently sequential. However, the majority of it could be
parallelized. There are two main issues that must be resolved. The first is
the use of global data. Two parts of the FZ library communicate through
global variables. In a parallel implementation, this data would have to be
replicated on a per-thread basis.

The second issue is the following: If any thread is executing when a page
is unprotected, the thread can access the page without being monitored.
Thus, whenever F7 unprotects a page, it must first stop all the threads in
the system. They remain stopped until the page’s protection is restored.

5 Efficiency

The key operations in terms of efficiency are changing the protection state
of a page and handling a fault. The times for these two operations are
presented in Table 1. The timing information was obtained with the SunOS
version 4.1.1 getrusage system call. The tests were performed on a Sun IPX
with a cycle time of 25 ns (40Mhz). The cycles-per-operation figures are
obtained by dividing the time per operation by the cycle time.

The time to protect a page was obtained by making the mprotect system
call in a loop. The time this call requires to execute depends on whether
the page in question is accessed or not, and whether it is clean or dirty.
Therefore, this test was repeated for unaccessed pages, pages that had been

13

read from, and pages that had been written to. In each case, the page was
entirely initialized to zeros before beginning the test. The data for each class
of page are presented. This was repeated several times with the total time
and the total number of iterations summed and averaged.

The time for handling a fault was obtained by writing a fault handler
that leaves the page protected N — 1 times so that restarting the instruction
causes another fault. Then, on the N iteration, the handler unprotects
the page and the instruction completes successfully.

The time for protect+fault+unprotect was obtained by protecting a page,
faulting, and unprotecting the page, all in a loop. This is a test whose effi-
ciency is also measured in [AL91] and is repeated here to provide a baseline
for comparison.

The time for fault interpret is the time to interpret a fault, i.e. to ac-
cess a protected page and have the application’s notify function informed
that the access has occurred, while finishing with the page still protected.
This consists of fault+unprotect+protect+small overhead. The application’s
notify function for this test returns immediately.

Lastly, we present the time for handling a page fault. This data was
obtained obtained by allocating more virtual memory than the machine has
physical memory and repeatedly sequentially touching every page. This was
done once with pages being read and once with pages being read and written.
In both cases, page accesses are sequential. This information is provided to
offer a comparison between the efliciency of handling protection faults and
page faults.

The data show that this implementation of fault interpretation is about
5% more expensive than standard fault handling (for substantially greater
functionality). Nonetheless, protection faults are very expensive, costing
approximately 20,000 cycles each. This cost in terms of memory references
is much different, of course, probably closer to 8000 memory references.
Therefore, if taking a fault can save more than 8000 memory references,
there will be an increase in efficiency.

What is really clear is how expensive page faults are. If we can save a
single page fault, then we can interpret over 30 protection faults and still see
an increase in efficiency (based on the relative costs of a page fault and fault
interpretation). A generational collector that stores generation counters in
objects, or an incremental mark-and-sweep collector that stores mark bits
with objects, could significantly improve efficiency with fault interpretation.
For transparent persistent memory, the fault time is inconsequential com-
pared to the time to write the data to disk. Similarly, assuming that the

14

Table 1: Efficiency of the component operations

Operation Count Total Time per Cycles per

Time Operation Operation

mprotect, unaccessed 80,000 4.0s 50us 2000
mprotect RO-RW, clean 80,000 14.4s 179us 7160
mprotect RW-RW, clean 80,000 22.1s 27bus 11000
mprotect RW-RW, dirty 80,000 21.2s 2655 10600
handle a fault 500,000 81.7s 163us 6520
protect+fault+unprotect 500,000 258.5s 517us 20680
fault interpret 500,000 270.0s 540us 21600
page fault, reading 20,480 480.0s 23,437us 937,480
page fault, writing 20,480 757.0s 36,963us 1,478,520

The measurements were taken on a 40Mhz Sun IPX. Unaccessed means
the page has neither been read nor written. Clean means the page has
been read since the last call to mprotect. Dirty means the page has
been written since the last call to mprotect. RW-RW means successive
calls to mprotect always grant full access to the page. RO-RW means
successive calls to mprotect alternate between restricting access and
restoring access.

15

time for a network message for a relatively fast protocol such as UDP is on
the order of 1.5ms [Mak89], fault handling should not be the bottleneck in
implementing distributed shared memory.

Lastly, we observe that disk and network latencies do not scale with
processor speeds, whereas fault handling latency does increase with faster
CPUs, subject to memory access time. Thus, relative to disk and network
I/0, the efficiency of fault interpretation will improve with faster CPUs.
It will also improve if operating system implementors provide faster trap

handling,.

6 Availability

The FZ library has been implemented for the SPARC processor. The
code will compile either as an ANSI/ISO C program or as a C++ pro-
gram. The source code is available via anonymous ftp from ftp.cse.ucsc.edu
(128.114.134.19) in pub/csl/vm-trace.tar.Z. It can also be obtained from
ftp.inria.fr (128.93.1.26) in INRIA /c4+-gc/vm-fault.tar.Z. The code is not
public domain, but may be used without fee for any purpose, commercial or
otherwise.

All of the test programs that were used for our efficiency measurements
are available with the library. The names of the files (and their purposes)
are as follows:

File Purpose

t0.c Measure the effliciency of mprotect

tl.c Sample F7 application, obtain and exercise managed memory

t2.c Measure the efficiency of trapping the signal upon a memory
protection fault

t3.c Measure the time required to protect a page, fault on it, and then
unprotect it

t4.c Measure the time required to interpret a fault

th.c Measure the time required to handle a page fault when reading
sequential pages

t6.c Measure the time required to handle a page fault when writing
sequential pages

t7.c Measure the efficiency of mprotect (more detail than t0.c)

16

7 Conclusion

We present a library that provides more functionality than is usually ob-
tained from standard virtual memory hardware and operating system soft-
ware. Given sufliciently fast trap handling, this technique can be used to
improve the efficiency of incremental or generational garbage collectors. It
may also be useful for persistent object stores, coherent distributed shared
virtual memory, and other algorithms.

Acknowledgements

This work was supported in part by Esprit project 5279 Harness.

Biography

The author is a Ph.D. student in Computer and Information Science at the
University of California, Santa Cruz. He plans to graduate in 1993. From
1991 to 1992, he spent 12 months as a visiting researcher at INRIA Roc-
quencourt, where this work was done. He also programs C++ on contracts
and teaches C++ classes in industry. Formerly, he was an engineer in the
operating systems group at the Santa Cruz Operation.

References

[AEL88] Andrew W. Appel, John R. Ellis, and Kai Li. Real-time con-
current collection on stock multiprocessors. In Proc. PLDI °88,
pages 11-20, July 1988. SIGPLAN Not. 23(7).

[AL91] Andrew W. Appel and Kai Li. Virtual memory primitives for
user programs. In ASPLOS Inter. Conf. Architectural Support
for Programming Languages and Operating Systems, pages 96—
107, Santa Clara, CA, April 1991. SIGPLAN Not. 26(4).

[ANS89] ANSI X3.159-1989, 1989. American national standard for the C
programming language.

[Bak78] H. G. Baker. List processing in real time on a serial computer.
Communications of the ACM, 21(4):280-294, April 1978.

17

[BDS91]

[Cyp90]
[DWHT90]

[1SO90]

[LHS3]

[LHS9]

[Lon88]

[Maks9)

[Moo84]

[Sun&7]

[Ung84]

Hans-J. Boehm, Alan J. Demers, and Scott Shenker. Mostly
parallel garbage collection. In Proc. PLDI °91, pages 157-164.
ACM, June 1991. SIGPLAN Not. 26(6).

Cypress Semiconductor. SPARC risc users guide, 1990.

Alan Demers, Mark Weiser, Barry Hayes, Hans Boehm, Daniel
Bobrow, and Scott Shenker. Combining generational and con-

servative garbage collection: Framework and implementations.
In Proc. POPL °90, pages 261-269. ACM, January 1990.

IS0 9899-1990, 1990. International standard for the C program-
ming language.

Henry Lieberman and Carl Hewitt. A real-time garbage collector
based on the lifetimes of objects. Communications of the ACM,
26(6):419-429, June 1983.

Kai Li and Paul Hudak. Memory coherence in shared virtual
memory systems. ACM Transactions on Computer Systems,
7(4):321-359, November 1989.

Darrell D. E. Long. The Management of Replication in a Dis-
tributed System. Ph.D. dissertation, University of California at
San Diego, August 1988.

Mesaac Mounchili Makpangou. Protocoles de communication
et programmation par objets: Uexemple de SOS. PhD thesis,
Université Paris VI, Paris (France), February 1989.

David Moon. Garbage collection in a large LISP system. In
Symp. Lisp and Functional Programming, pages 235-246. ACM,
1984.

Sun Microsystems, Inc. The SPARC architecture manual, 1987.
Part No. 800-11399-07.

David Ungar. Generation Scavenging: A non—disruptive high
performance storage reclamation algorithm. In ACM SIG-
PLAN/SIGSOFT Symp. Practical Software Development FEn-
vironments, pages 157-167. ACM, April 1984. SIGPLAN Not.
19(2).

18

[Wil92] Paul Wilson, 1992. Personal communication.

19

