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Services provided on wide-area networks like the Internet present several challenges. The relia-
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1 Introduction

Several information services have recently been, or will soon be, made available on the Internet. These
services provide access to specialized information from any Internet host. The bulk of these systems
centralize some parts of their service – either by centralizing the entire system, or by breaking the service
into several pieces and implementing each piece as a centralized application.

In this paper I will present an architecture for building distributed information services, drawing exam-
ples from the refdbms bibliographic database system. The architecture emphasizes scalability and fault
tolerance, so the application can respond gracefully to changes in demand and to site and network failure. It
uses weak-consistency replication techniques to build a flexible distributed service. I will start by defining
the environment in which this architecture is to operate and its goals. Next I will give an overview of the
architecture, followed by sections detailing three components: weak-consistency process groups, quorum
multicast protocols, and mechanisms to cache predefined slices or subsets of the database.

1.1 Environment

The Internet has several behaviors that must be accounted for when designing an information service. These
include the latency required to send messages, which can affect the response time of an application, and
communication unreliability, which may require robust communication protocols. Two hosts on an Ethernet
can exchange a pair of datagram packets in a few milliseconds, while two hosts on the same continent may
require 50–200 milliseconds. Hosts on different continents can require even longer. Packet loss rates of
40% are common, and can go much higher [Golding91b]. The Internet has many single points of failure,
and it is usually partitioned into several non-communicating networks. This is a difficult environment for
building distributed applications.

The application architecture must also handle the vast number of users that can access a widely-available
service. The Internet now includes more than 900 000 hosts1; the potential user base is in the millions, and
these numbers are expected to increase rapidly. The archie anonymous FTP location service reported on the
order of 10 000 queries per day (0.12 queries per second) using two servers in November 1991 [Emtage92].
The archie system is a specialized service with a limited audience, as compared to traditional information
services used by the general public, such as newspapers and library card catalogues. Anecdotal evidence
points to some current services with nearly 100 queries per second.

Despite this environment, users expect a service to behave as if it were being provided on a local system.
Several studies have shown that people work best if response time is under one second for queries presenting
new information, and much less for queries that provide additional details [Schatz90]. Furthermore, users
expect to be able to make use of the service as long as their local systems are functioning. This is an
especially difficult expectation to meet on portable systems, where the system may be disconnected from the
network for a long time or may be “semi-connected” by an expensive low-bandwidth connection. Several
researchers are investigating file systems that can tolerate disconnection [Kistler91, Alonso90a].

Throughout this paper the term process refers to a process, running at some site. Sites are processor
nodes on the network such as a workstation or file server. Server processes have access to pseudo-stable
storage such as disk that will not be affected by a system crash. Sites also have loosely synchronized clocks.
Sites and processes fail by crashing; that is, when they fail they do not send invalid messages to other
processes and they do not corrupt stable storage. Processes can temporarily fail and recover. Sites have
two failure modes: temporary recoverable failures, and permanent removal from service. The network is
sufficiently reliable that any two processes can eventually exchange messages, but it need never be free of

1This value was provided by Darrell Long, who has been tracking the Internet population as part of a longitudinal reliability
study [Long91, Long92].
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partitions. Semi-partitions are possible, where only a low-bandwidth connection is available between one
or more sites and the rest of the network.

1.2 Principles

There are some general principles guiding the solutions presented here. Service replication is the general
mechanism for meeting availability demands and enabling scalability. The replication is dynamic in that
new servers can be added or removed to accommodate demand changes. The system is asynchronous, and
servers are as independent as possible; it never requires synchronous cooperation of large numbers of sites.
This improves communication- and site-failure tolerance. Local communication is almost always faster than
long-distance communication, and should be used whenever possible. The solutions use prefetching and
caching where possible to improve response time. The service should be secure to the degree appropriate
and possible, so that client processes can trust the information provided by the service and service providers
can accurately charge for their service if needed. Finally, the architecture should minimize the effect of one
user on another.

1.3 The refdbms system

The weak-consistency architecture is being used to implement a distributed bibliographic database system,
refdbms. This project aims to evaluate this architecture for convenience and performance. The refdbms
system is derived from a system developed at Hewlett-Packard Laboratories over several years [Wilkes91].
That system emphasized sharing bibliography information within a research group. Users could search a
database by keywords, use references in TEX, and enter new or changed references.

Refdbms is being extended to handle multiple databases distributed to widely dispersed sites. Databases
can be specialized to particular topics, such as operating systems or an organization’s technical reports. Each
database can be replicated at several sites on the Internet, and users can create their own copy of interesting
parts of the database. When a user enters a new reference in one copy, the reference is propagated to all
other copies. The system also includes a simple mechanism for notifying users when interesting papers are
entered into the database.

Refdbms stores references in a format similar to that used by refer, as shown in Figure 1. Every
reference has a type, and a unique, mnemonic tag like Golding92l. Since these tags are determined by users
and can potentially collide, the system internally uses a unique identifier consisting of a timestamp plus the
address of the site that created the reference. References are stored in hashed files, and are indexed both by
tag and by keyword. Using location information in the database and an inference engine, the system will
determine the best way to provide the user with a copy.

1.4 The architecture

Replication is the cornerstone of this architecture. A set of replicated servers cooperate to provide the
service, as shown in Figure 2. Client processes use the service by contacting some server process. Server
processes in turn communicate amongst themselves to propagate update information.

The use of multiple servers can improve communication locality. If all clients must communicate with
the same server, some of them will have to use long-distance communication. If there several servers, clients
can communicate with the one closest to them. This both reduces communication latency and decreases the
load each communication imposes on the Internet. One approach is to place one server in each geographic
region or organization. Of course, clients must be able to identify nearby servers and maintain performance
when nearby sites fail; this problem is discussed in Section 3.
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%x failing by crashing, where n is the number of members in the group.
%k distributed systems, weak-consistency replication
%k lightweight group membership, process groups

FIGURE 1: An example reference.
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FIGURE 2: Overall system architecture. Some local-area networks will have a nearby server, while others must
communicate with more distant servers. Portable systems may include a slice server that maintains a copy of part of
the database.
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Replicated servers also help meet the goal of a highly available and reliable service. The service is
available as long as clients remain connected to at least one server, and that server is functioning. A recent
study of workstation reliability [Long91] shows that most hosts are available better than 90% of the time,
with a mean time-to-failure (MTTF) between two and three weeks. Another study has found that hosts
within North America respond when polled about 90% of the time [Golding91b], indicating that long-term
network failure is probably uncommon. This same study showed that communications were more reliable
the closer two sites were. This architecture can therefore be expected to provide nearly complete availability.

Each server maintains a copy of the database. For simplicity, every database entry is assumed to have a
unique key. Some servers will maintain a copy of the full database. Others will maintain caches or slices
of the information, as discussed in Section 4. A cache is an arbitrary collection of recently-used database
entries, while a slice is a subset of the database defined by a query, similar to a relational database view. In
refdbms, for example, a slice might maintain a copy of all entries on marsupials.

The servers are organized into a process group. Servers use a group communication protocol to multicast
a message to the group when they need to perform a database operation. Client processes send request
messages to just one server, which forwards the request if needed to other servers in a multicast. When
servers are added or removed, they follow a group membership protocol to inform other servers and to
obtain a copy of the database.

The servers must coordinate their operation so they provide consistent service: the answers provided
by one server should not contradict those provided by another. Consistency is controlled by the group
communication protocol, since the state of a server is determined by the messages it has received. This
topic is discussed further in Section 2.1.

Eventually or weakly consistent communication protocols do not perform synchronous updates. Instead,
messages are first delivered to one site, then propagated asynchronously to others. The answer a server
gives to a client query depends on whether that server has observed the update yet. Eventually, every server
will observe the update. Many existing information systems, such as Usenet [Quarterman86] and the Xerox
Grapevine system [Schroeder84], use similar techniques. Users of a bibliographic database are unlikely to
be worried if an update takes a few hours to propagate to every server, as long as their updates are available
right away at their server.

Delayed propagation means that clients do not wait for distant sites to be updated, and the fault-
tolerance of the service does not depend on client behavior. It also allows messages to be transferred using
bulk communication protocols, which provide the best efficiency on high-bandwidth high-latency networks.
These transfers can occur at off-peak times. Servers can be disconnected from the network for a period of
time, and will be updated after they are reconnected. On the other hand, clients must be able to tolerate
inconsistency, and the service may need to provide a mechanism for reconciling conflicting operations. In
refdbms, updates take the form of differences to the text of a reference, and all updates are applied in the
same order at every site. One update may occasionally be superseded by another, but collisions are unlikely.

The group of processes communicating this way can be organized into a weak-consistency process group.
Propagating updates from one server to another form a logical, asynchronous group multicast operation that
is immune to temporary crashes. I have developed protocols for weak-consistency group communication
and for adding and removing servers from the group. These are detailed in Section 2.

2 Weak-consistency process groups

Replicated services can be implemented as a process group. Members of the group use group communi-
cation protocols to communicate amongst themselves, and group membership protocols to determine what
processes are in the group. The membership and communication protocols are closely related: the mem-
bership protocol usually uses some form of the communication protocol to send membership information to
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processes, and the communication protocol uses membership information to identify what processes should
receive messages.

Weak consistency protocols guarantee that messages are delivered to all members but do not guarantee
when. In this section I will discuss how weak consistency compares to other kinds of consistency, and detail
protocols for weak-consistency group communication and membership.

2.1 Kinds of consistency

The service provided by a process depends on the messages it has received, so application-level consistency
depends on communication consistency. Communication protocols can provide guarantees on:

1. Message delivery. Messages can either be delivered reliably, in which case they are guaranteed to
arrive, or with best effort, meaning the system will make an attempt to deliver the message but it is
not guaranteed.

2. Delivery ordering. Messages will be delivered to processes in some order, perhaps different from
the order in which they are received. A total ordering means that all processes will see the same
messages in the same order, though that order will not necessarily be the order messages were sent.
Causal ordering implies that any messages with a potential causal relation will be delivered in the
same order at all replicas [Lamport78, Ladin91]. Messages with no causal relation, however, can be
delivered in different orders at different processes. Messages can also be delivered so that the database
at one site never differs from the correct global value by more than a constant [Pu91, Barbará90].
Weaker orderings include a per-process or FIFO channel ordering, where the messages from any
particular process are delivered in order, but the streams of messages from different processes may
be interleaved arbitrarily. Finally, there is the possibility of guaranteeing no particular order.

3. Time of delivery. The communication protocol can deliver messages synchronously, within a bounded
time, or eventually in a finite but unbounded time.

In general, strong guarantees require multiphase synchronous protocols while weaker guarantees allow
efficient asynchronous protocols.

The weak consistency used in this architecture provides reliable delivery, and can be modified to produce
several delivery orderings, but it only guarantees eventual message delivery. In particular, there is a non-zero
probability that two processes have received all the same messages, and all processes are guaranteed to
agree in finite but unbounded time if no further messages are sent.

Grapevine [Schroeder84] was one of the first wide-area systems to use weak consistency. In that system,
replicated data was updated first at one site, then the results were propagated to other sites in the background.
Updates were propagated three ways. A site might first use direct mail, an unreliable multicast, to get the
update to as many sites as possible. Then it would use rumor mongery to propagate recent updates from
one site to another. Finally, pairs of sites would periodically exchange all known updates in an anti-entropy
session until they were mutually consistent. Of the three methods, only anti-entropy guaranteed delivery to
all sites.

The tattler [Long92] is another system that uses weak-consistency groups. It uses group communication
to coordinate a group of processes that periodically retrieve uptime statistics from Internet hosts. The list
of hosts to be polled and the experimental results are propagated using the group communication protocols
outlined in the next section.
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2.2 Group communication

I have developed a new group communication protocol that provides reliable, eventual delivery, called
timestamped anti-entropy [Golding91a]. Since the protocol is fault tolerant, messages will be delivered to
every process in the group even if processes temporarily fail or are disconnected from the network.

To send a message to the group, a process appends some timestamp information and writes it to a
log on stable storage.2 From time to time each site selects a partner site, and the two exchange logs in
an anti-entropy session. In addition, processes maintain a summary of the timestamps on messages they
have received. These summaries are exchanged as the first step of anti-entropy sessions, and allow each
process to send only those messages the other has not yet received. An unreliable multicast can be used to
propagate a message quickly while anti-entropy sessions ensure the message is delivered to sites that miss
the multicast.

This protocol meets many architectural goals. It provides an asynchronous communication mechanism
that allows replicas to be mostly independent. Anti-entropy sessions only involve two replicas, so the
mechanism can scale to large, dynamically changing groups. Sites can tend to select nearby partners for
anti-entropy, minimizing long-distance communication. The protocol also handles disconnected and failed
sites well. While a replica is unavailable, messages accumulate in other replica’s logs, and are transmitted
to the replica when it becomes available again. Summaries provide a compact way for portable systems to
measure how far out of date their information has become; this measure can be used to prompt the user to
plug their machine into the network for fresher information.

The tradeoffs are that the protocol is blocking, that replicas must maintain fault-tolerant logs, and that
timestamps must be appended to every message. If an operation must be coordinated with the entire group,
perhaps so total consistency is preserved, it must be delayed until the request message can be received and
acknowledged by every process in the group. Until that time, the request message must be stored on disk
so it is not affected by failure and recovery.

The timestamps appended to each message can be used to generate a variety of different message delivery
orderings, including total (but not causal), per-process, or no ordering. Causal orderings are possible if
process clocks meet Lamport’s happens-before condition [Lamport78].

To execute the protocol, each process must maintain three data structures: a message log and two
timestamp vectors [Mattern88]. These must all be maintained on stable storage, so they are not corrupted
when the site or process crashes. Each site must also maintain a clock that is loosely synchronized with
other processes.3

The message log contains messages that have been received by a process:

Log = list of (sender id, timestamp, message).

Timestamped messages are entered into the log upon receipt, and removed when all other processes have
also received it. The sender identification and timestamp can both be on the order of four bytes each.
Messages are eventually delivered from the log and applied to the database.

Processes maintain a summary timestamp vector to record what updates they have observed:

Summary vector = list of (process id, timestamp).

Process A records a timestamp t for process B, if A has received all messages generated at B up to timet. Each process maintains one such timestamp in its timestamp vector for every process in the group. The
vector provides a fast mechanism for transmitting summary information about the state of a process.

2This paper is written in terms of a log. However, if update information can be retrieved from database contents a log is not
technically necessary. Grapevine [Demers88] used this technique.

3I have also developed a similar protocol that requires O(n2) state per process rather than O(n); but allows unsynchronized
clocks. This alternate protocol was discovered independently by Agrawal and Malpani [Agrawal91].
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Each process also maintains an acknowledgment timestamp vector to record what messages have been
acknowledged by other processes:

Acknowledgment vector = list of (process id, timestamp).

If process A holds a timestamp t for process B, A knows that B has received every message from any
sender with timestamp less than or equal to t. Process B periodically sets its entry in its acknowledgment
vector to the minimum timestamp recorded in its summary vector. This mechanism makes progress as long
as process clocks are loosely synchronized and the acknowledgment vector is updated regularly. A process
can determine that every other group member process has observed a particular message by looking at its
local acknowledgment vector.

From time to time, a process A will select a partner process B and start an anti-entropy session. A
session begins with the two processes allocating a session timestamp, then exchanging their summary
and acknowledgment vectors. Each process determines if it has messages the other has perhaps not yet
observed, when some of its summary timestamps are greater than the corresponding ones of its partner.
These messages are retrieved from the log and sent to the other process using a reliable stream protocol. If
any step of the exchange fails, either process can abort the session. The session ends with an exchange of
acknowledgment messages.

At the end of a successful session, both processes have received the same set of messages. Processes A
and B set their summary and acknowledgment vectors to the elementwise maximum of their current vector
and the one received from the other process.

After anti-entropy sessions have completed, update messages can be delivered from the log to the
database, and unneeded log entries can be purged. If the system guarantees that all processes will observe
messages in the same order, messages whose timestamp is less than the minimum timestamp in the summary
vector can be delivered. If per-process or weaker orderings are allowed, messages can be delivered
immediately upon receipt. A log entry can be purged when every other process has observed it. This is true
when the minimum timestamp in the acknowledgment vector is greater than the timestamp on the log entry.

The reliable delivery guarantee is not met in one important case: when a process permanently fails
and loses data. No weak consistency communication scheme can be free from this, since a window of
vulnerability must exist while the data is being sent to other processes. In practice the duration can often be
reduced by disseminating the new updates rapidly, but real networks do not allow complete certainty.

2.3 Group membership

The group membership protocol provides mechanisms for listing group membership, creating a new group,
joining and leaving a group, and recovering from member failure. The group communication protocol
uses this information to identify what sites should receive multicast messages. This section sketches a
weak-consistency group membership protocol; details and proofs of correctness are reported elsewhere
[Golding92c].

Each process maintains an eventually-consistent view of the membership, indicating the status of each
member:

View = list of (process id, status, timestamp).

Views are updated during anti-entropy sessions, and eventually all processes can reach agreement if the
membership stops changing.

Inconsistent group views can make a system vulnerable to failure. Since a process can only contact
processes in its view, the transitive closure of all views must be kept equal to the group membership. The
knows-about graph formed by membership views can become incorrect if the only process to know about
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another fails. To ensure the knows-about graph stays correct after up to k failures, the graph connectivity
must be k + 1 or greater.

To initialize a new group, a process p creates a new view with only itself. To join a group, p finds k+ 1
sponsor processes in the group. These processes insert p into their views, and send the resulting view back
to p. To leave a group, p marks its status as leaving, then waits for every other process to observe the status
change. While waiting it performs anti-entropy sessions but does not originate any messages. When p fails,
some outside mechanism will inform a functioning member process. This process marks p as failed in its
view. This information propagates to other processes, re-establishing k + 1-connectivity along the way.

In contrast to this system, previous group membership mechanisms ensure greater consistency of group
views at the expense of latency and communication overhead. Both the Isis system [Birman87, Birman91]
and a group membership mechanism by Cristian [Cristian89] are built on top of synchronous atomic
broadcast protocols, and hence provide each process with the same sequence of group views. The Arjuna
system [Little90] maintains a logically centralized group view via atomic transactions.

2.4 Performance

Three disadvantages of weak-consistency process groups were pointed out in the last section: some opera-
tions must be delayed until request messages have been observed throughout the group; they require on-disk
message logs; and messages can be lost when many sites fail simultaneously.

The magnitude of each of these problems depend on how fast messages are propagated through the
group, which can be determined by simulation. A system of n server processes can be modeled as a Markov
system of O(n2) states, where each state is labeled with the number of processes available and the number
that have observed the update.

Data loss due to permanent site failure appears to be negligible in systems like the Internet, where sites
stay in service for several years. The probability of losing a message depends on the ratio � of the rate at
which sites perform anti-entropy to the rate of permanent site failure. If sites perform anti-entropy hourly
and sites remain in service for a few years, � is more than 10 000 and the probability of failure is less than
1 in 10 000. The usual approximations to stable storage, such as delayed writeback from volatile storage,
also have negligible effect.

The size of logs is a function of the time required to propagate a message to every group member. The
time required increases approximately as the log of the number of processes, and under reasonable update
and read rates information is likely to propagate to most sites before it is needed. Figure 3 shows the
distribution of time required to reach consistency for different numbers of processes.

2.5 Presenting inconsistent information to users

Inconsistent information can be confusing to users. If one refdbms user finds a newly-added reference,
then sends a message to another user discussing the reference, the second user may not be able to find the
reference because it has not propagated to the right servers. This problem can be remedied by only making
information available to users after it has propagated everywhere, although this may make the information
unavailable for quite some time.

The refdbms system provides a hybrid solution that allows users immediate access to new information.
It maintains a pending copy of inconsistent database entries. Users can access the pending copies by
appending a .pending suffix to reference tags. The consistent copy is available using the unmodified tag.
Each server attempts to apply changes to the pending copy as they are received, but the changes may be
applied in an order different from the order they are applied to the final consistent copy.
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3 Using nearby servers

If a replicated service is to make communications local, clients must be able to locate and use the closest
servers. Servers can use a similar mechanism to bias their partner selection to favor other nearby servers. I
have investigated quorum multicast protocols that will use preferred sites [Golding91b, Golding92b]. These
protocols use an ordering on m sites, and attempt to communicate with the best n of them. Sites can be
ordered using predictions of communication latency, failure, and bandwidth.

3.1 Using quorum multicast to select sites

Quorum multicast protocols allow clients to generally communicate with nearby sites, falling back to
more distant sites when the nearby ones have failed. While these protocols were originally developed for
implementing majority voting replication protocols, they provide exactly the communication locality and
fault tolerance needed for communication with a single server.

The semantics of quorum multicast define the interface:

quorum-multicast(message, sites, reply count) ! replies
Exceptions: reply count not met.

The message is sent to at least a reply count of the sites. If at least that many responses are received,
the operation succeeds; otherwise, it fails. Either way it returns the set of responses received. Quorum
multicasts can be used for client-server communication by setting the sites to the list of servers and the
reply count to one. If the servers are ordered from nearest to farthest, the protocol will select nearby servers
over distant ones.

There are several variations on the protocol, each of which uses a different policy to handle site and
communication failure. Most can be tuned to declare possible failure of a nearby site early, improving
communication latency when the site is down at the expense of extra messages. Other variations provide

9



0

50

100

150

200

250

300

350

400

450

500

0 500 1000 1500 2000 2500 3000 3500 4000

N
u

m
be

r 
of

 m
es

sa
ge

s

Latency (milliseconds)

FIGURE 4: Distribution of communication latency. Measured between maple.ucsc.edu and cana.sci.kun.nl; average
latency 938 milliseconds.

different policies for retrying communication with nearby sites that may have failed.

3.2 The performance prediction problem

A client site must be able to rank servers by expected communication performance if quorum multicast is
to work. Expected performance is based on a prediction of communication latency, failure, and bandwidth.
If an operation requires that only a small amount of information be moved between sites, message and
processing latency will dominate performance. If large amounts of information must be transferred, then
bandwidth will dominate. The prediction should be biased by the probability that the client can communicate
with the server. A detailed examination of this problem is available [Golding92a].

Predictions can be derived statically from the topology of the network, or dynamically using performance
samples. The topology of the Internet is quite complex, and no detailed topological models are available.
Approximations of topological information, such as hop counts, have been shown to be poor performance
predictors [Golding91b]. Dynamic prediction is generally more accurate.

Communication latency is often predicted by a moving average of recent samples. The moving average
at time t of a sequence ai is defined as at = wat + (1 � w)at�1; with a0 = 0: The estimator can be
biased to weight recent or older samples more heavily by adjusting the parameter w: This method is used
in most implementations of TCP [Jacobson88]. That work assumes that latency is normally distributed,
and computes an estimate of the variance to determine failure timeouts. The actual distribution is generally
similar to that in Figure 4. While it is not normally distributed, it is predictable.

Latency predictions should be biased by the probability that a site will respond. A site may not respond
either because a message did not get through, or because it has crashed. A moving average of the probability
of message failure ft; 0 � ft � 1; can be combined with the packet timeout pt and expected latency lt to
give an overall expectation ot: ot = ftpt + (1� ft)lt:
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Figure 5 shows how this estimation responds to a sequence of samples. Experience has shown this is a good
overall estimator.

Sometimes bandwidth must be considered to rank servers – for example, when the refdbms system
is selecting a site to retrieve a copy of a paper. Unfortunately bandwidth is not as predictable as latency.
Figure 6 shows a typical bandwidth distribution. The distribution is nearly uniform and consequently has
a high variance. I have evaluated a number of prediction methods for bandwidth, and a moving average
prediction appears to work well.

Prediction methods using moving averages must have several recent samples to be accurate. Every
time a site communicates with a server it can log communication statistics to a database, and the sites on
a local-area network can pool their results to increase the number of samples. However, quorum multicast
techniques will cause most of the samples to come from nearby sites. Periodically dropping sites from the
database will ensure accurate prediction for all potential servers, as well as keep the database size small. If a
database of samples is available at every local organization, portable systems can find a database wherever
they connect to the Internet.

4 Caching and prefetching

While multiple servers bring information closer to clients, they do not necessarily make the information
local. Most clients, particularly portable systems, will not have the disk space to store the entire database.
However, clients on disconnected portable systems can only operate if the information is local. Other systems
perform better when information is local or on the same network. Caching and prefetching information to
personal or organization-wide servers can meet this need.

Cache and slice servers play different roles. Cache servers maintain copies of recently-accessed database
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FIGURE 6: Typical bandwidth distribution. Measured between beowulf.ucsd.edu and lcs.mit.edu.

entries, which can improve performance if one site or organization repeatedly accesses a small set of database
entries. Slice servers prefetch database entries that are likely to be used in the near future according to
user-specified interests. Slices provide a way to group information that has not yet been accessed with
entries that have. Caches and slices differ in their handling of new database entries: slice servers will store
a copy of a new entry if it matches some predicate; cache servers will not.

Alonso, Barbará, and Garcia-Molina have researched these issues for systems that use bounded incon-
sistency [Alonso90b]. They point out that slices (which they call quasi-copies) are similar to materialized
views in a relational database. As with views, the entries in a slice are determined by evaluating an expres-
sion that has the same form as a query on the database. In their system, each slice also has a coherency
condition that specifies how far out of date the entries in a slice can be.

A weak-consistency cache server stores a random subset of database entries. It is similar to servers that
store a full database copy, in that it maintains a message log and summary and acknowledgment vectors. It
periodically perform anti-entropy sessions with full servers, propagating any updates it originated to other
servers and receiving updates to the entries it has cached. The cache server will be unable to answer some
client queries, such as keyword searches in the reference database, because it does not have a full database
copy. These queries must be performed at a full or slice server.

Slice servers in a weak-consistency architecture also act much like ordinary servers, except that they
store the selection condition in addition to the database, log, and timestamp vectors. The selection condition
is a predicate on database entries. For simplicity assume the predicate is in disjunctive normal form; that is,
it has the form (p1 ^ p2) _ (p1 ^ p3)_ (p4):

When a client queries the slice server, the server can determine whether it can satisfy the query if the
query is equivalent to a subset of the slice predicates. For example, a refdbms slice server could answer
a query on marsupials if it stored references on marsupials _ australian animals: If the server cannot
satisfy the query, the query must be processed by some other server. As in the Domain Name Service, the
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forwarding can be recursive, where the server forwards the query to another sever, or iterative, where it
informs the client of other servers that might answer the query. Recursive forwarding makes for simple
clients, but increases the dependence of clients on server correctness.

The slice server conducts anti-entropy sessions to maintain its information. These sessions are similar to
ordinary ones, except that the selection predicate is passed to the partner and less information flows between
the two. The slice server can only perform sessions with full servers. The full server sends updates for
entries of interest to the slice server, while the slice server only sends updates it has originated.

Several users on a local network may share a common slice server. The combined selection condition
is the union of individual users’ conditions; the union can be computed in O(n logn) time if the predicates
are in disjunctive normal form.

The selection predicates will need to be changed from time to time to reflect changing user interest.
When a slice server needs to add to its slice predicate, it potentially increases the information it maintains.
The server computes the difference between the old and new predicates, then performs a special anti-entropy
session to both become consistent with another server and retrieve database entries matching the difference
predicate. To remove something from its predicate, potentially narrowing the server’s scope, the server can
discard consistent database entries without communicating with other servers.

The slicing mechanism is particularly useful for portable computing systems. These systems may be
disconnected from the network, or connected only by a low-bandwidth wireless link. A user can create
a small slice server on their system to keep important information local. The volume of updates to the
slice may then be small enough to send over the wireless link. A slice server can also obtain a summary
timestamp vector from a full server to determine how many updates the slice lacks. When the difference
exceeds some bound, the slice server can prompt the user to connect their machine to a higher bandwidth
network – perhaps a telephone connection – to get the new information.

4.1 Using slices for resource discovery

Many information services split their information into several separate databases, so users can have private
copies and to reflect different administrative domains. When multiple databases exist, there is the separate
problem of finding out about databases as they are added.

The usual solution is to have a metadatabase or database location service. This can be built using this
architecture as well. A user can specify what databases they want to use by specifying a selection condition
on the metadatabase entries. This condition can be used to build a slice of the metadatabase, and user queries
can be routed to those databases. As new databases become available, they will be added to the slice and
thus become available to the user. The user can install an agent to automatically create a slice of each new
database using the user’s selection condition.

5 Conclusions

In the Introduction, several principles were put forward as good ideas. The weak-consistency architecture
adheres to them.

The architecture uses weak-consistency process groups for replication. Having multiple servers provides
fault tolerance and allows the service to scale to very large user populations. The weak consistency protocols
are expressly designed to allow servers to be added or removed without disturbing normal operation,
meeting the goal of a dynamic server group. The protocols also allow servers to operate asynchronously
and independently. They ensure that servers can continue to function after several other servers have failed.

The quorum multicast mechanism enables local communication. Clients using quorum multicast pro-
tocols will make use of dynamically-determined performance predictions to communicate with nearby
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servers. The performance prediction information can be packaged so that portable systems can find an
accurate prediction database no matter where they are connected to the Internet.

Slicing allows local sites to store a small, often-used subset of the larger database. A slice server will
prefetch information based on user’s interests. Portable systems can use a local slice server when they are
disconnected from the Internet.

5.1 Continuing work

Several parts of the weak-consistency architecture presented here represent work in progress. At the time
of writing, the refdbms system uses the basic weak-consistency group communication and membership
protocols, but it does not provide slice or cache servers. The metadatabase mechanism has not yet been
finalized.

The performance prediction mechanisms are another subject of ongoing research. I will be conducting a
long-term performance study of the Internet to improve the analysis of prediction methods. There has been
some discussion of a performance prediction service, but this has not yet been implemented.

Refdbms servers can take on different roles to control access to the databases. Some servers will
allow both queries and updates, while others allow only queries. This paper has not addressed security and
authentication problems, but they have not been ignored in the actual implementation. It appears that a new
model of authentication is required for weak-consistency systems, so that a central authentication or key
server does not become a bottleneck.
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