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1. Introduction

The lack of garbage collection (GC)in C++ decreases productivity and increases mem-
ory management errors. This situation persists principally because the common ways of
implementing GC are deemed inappropriate for C++. In particular, tagged pointers are
unacceptable because of the impact they have on the efficiency of integer arithmetic, and
because the cost is not localized.

In spite of the difficulty, an enormous amount of work has been and continues to be
done in attempting to provide garbage collection in C++. The proposals span the entire
spectrum of techniques including:

e compiler-based concurrent atomic mostly-copying garbage collection [12],

e library-based reference counting and mark-and-sweep GC [27],

e library-based mostly copying generational garbage collection [5],

e library-based reference counting through smart pointers [28, 29] (Smart pointers are

discussed momentarily),

e library-based mark-and-sweep GC using smart pointers [16],

e compiler-based GC using smart pointers [22],

e library-based mark-and-sweep and generational copying collection using macros [21],

and,

e library-based conservative generational mark-and-sweep GC [8, 11].

The vast number of proposals, without the widespread acceptance of any one, reflects how
hard the problem is.

In the past, we have proposed implementing GC strictly in application-code: GC im-
plemented in a library. The problem with this approach is that it requires too much effort
on the part of the end-user. The user must first customize/instantiate the library, and then
follow its rules. This is a tedious and error-prone process.

To solve our goal of compiler-independence, while keeping the associated complexity to
the user to a minimum, we are now proposing precompiling C++ programs to augment
them for garbage collection. The user still needs to cooperate with the collector, but the
likelihood of errors is reduced. In addition, the precompiler can perform transformations
that are independent of the actual garbage collection algorithm in use, making it very useful
for experimentation in GC techniques.

A Word About Smart Pointers

A number of the systems that are considered in the related work section use smart
pointers, as does this collector. Therefore, this paper begins with an introduction to the
term.

CH++ provides the ability to use class objects like pointers; these objects are often called
smart pointers [38]. Smart pointers allow the programmer to benefit from additional pointer
semantics, while keeping the syntax of the program largely unchanged. Smart pointers use
operator overloading to be usable in expressions with the same syntax as normal pointers.
For example, the overloaded assignment operator = permits raw pointers to be assigned to
smart pointers and the overloading indirect member selection operator -> permits smart
pointers to be used to access data members and operations of the referenced object.

Smart pointers can be used for a variety for purposes. For example:
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e reference counting [10, 27, 28, 29, 39],

e convenient access to both transient and persistent objects [36, 39],
e uniform access to local or distributed objects [24, 35, 37],

e synchronizing operations on objects [39, p. 464],

e tracing garbage collection [16, 18, 27],

e instrumenting the code,

e or others.

Section 2 discusses how existing systems use smart pointers for memory management.
A discussion of various issues concerning smart pointers can be found in [17]. Our imple-
mentation of smart pointers is presented in §3.1.



2. A Brief Survey of Related Work

There is a significant body of related work, in the general field of GC, in C++ software
tools, and specifically in collectors for C++.

2.1 Conservative GC

Conservative garbage collection is a technique in which the collector does not have access
to type information so it assumes that anything that might be a pointer actually is a pointer
[7, 8]. For example, upon examining a quantity that the program interprets as an integer,
but whose value is such that it also could be a pointer, the collector assumes the value to
be a pointer. This is a useful technique for accomplishing compiler-independent garbage
collection in programming languages that do not use tagged pointers.

Boehm, Demers, et al. describe conservative, generational, parallel mark-and-sweep
garbage collection [7, 8, 11] for languages such as C. Russo has adapted these techniques
for use in an object-oriented operating system written in C++ [32, 34]. Since they are fully
conservative, during a collection these collectors must examine every word of the stack, of
global data, and of every marked object. Boehm discusses compiler changes to preclude
optimizations that would cause a conservative garbage collector to reclaim data that is
actually accessible [6]. Zorn has measured the cost of conservative garbage collection and
found that it compares favorably not just with manual allocation, but even with optimized
manual allocation [44].

Conservative collectors sometimes retain more garbage than type-accurate collectors
because conservative collectors interpret non-pointer data as pointers. Often, the amount
of retained garbage is small, and conservative collection succeeds quite well. Other times,
conservative techniques are not satisfactory. For example, Wentworth has found that
conservative garbage collection performs poorly in densely populated address spaces [41,
42]. Russo has found that the programming style must take into account the conservative
garbage collector: naive programming leads to inconveniently large amounts of garbage
escaping collection [33, 34]. For example, he has found it necessary to disguise pointers
and manually break garbage cycles [33]. To aid the programming task, he is investigating
augmenting the conservative garbage collector with weak pointers [30], i.e. references that do
not cause objects to be retained. Finally, we have tested conservative garbage collection with
a CAD software tool called ITEM [16, 26]. This application creates large data structures
that are strongly connected when they become garbage. A single false pointer into the data
structure keeps the entire mass of data from being reclaimed. Thus, our brief efforts with
conservative collection in this application proved unsuccessful.

As these examples illustrate, conservative collection is a very useful technique, but it

is not a panacea. Since it has its bad cases, it is worthwhile to investigate type-accurate
techniques for C++.

2.2 Partially Conservative

Bartlett’s Mostly Copying Collector is a generational garbage collector for Scheme [14]
and C++ [39] that uses both conservative and copying techniques [4, 5]. This collector
divides the heap into logical pages, each of which has a space-identifier. During a collection
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an object can be promoted in one of two ways: it can be physically copied to a to-space
page or the space-identifier of its present page can be advanced.

Bartlett’s collector conservatively scans the stack and global data seeking pointers. Any
word the collector interprets as a pointer may in fact be either a pointer or some other
quantity. Objects referenced by such roots must not be moved because, as the roots
are not definitely known to be pointers, the roots cannot be modified. Such objects are
promoted by having the space identifiers of their pages advanced. Then, the root-referenced
objects are scanned with the help of information provided by the application programmer;
the objects they reference are compactly copied to the new space. This collector works
with non-polymorphic C++ data structures, and requires that the programmer make a few
declarations to enable the collector to locate the internal pointers within collected objects.

Detlefs implements Bartlett’s algorithm in a compiler and uses type information available
to the compiler to generalize the collector. Bartlett’s first version contains two restrictions,
the first of which is later eliminated:

1. internal pointers must be located at the beginnings of objects, and

2. heap-allocated objects may not contain unsure pointers.
An unsure pointer is a quantity that is statically typed to be either a pointer or a non-
pointer. For example, in “union { int i; node * p; } x;” x is an unsure pointer.

Detlefs relaxes these by maintaining type-specific map information in a header in front
of every object. During a collection the collector interprets the map information to locate
internal pointers. The header can represent information about both sure pointers and unsure
pointers. The collector treats sure pointers accurately and unsure pointers conservatively.
Detlefs’” collector is concurrent and is implemented in the cfront C++ compiler.

2.3 Type-Accurate Techniques

Kennedy describes a C++ type hierarchy called OATH that uses both reference counting
and mark-and-sweep garbage collection [27]. In OATH, objects are accessed exclusively
through application-level references called accessors, that are very similar to stubs because
they duplicate the interfaces of their target objects. Accessors implement reference counting
on the objects that they reference. The reference counts are used to implement a three-
phase mark-and-sweep garbage collection algorithm [9] that proceeds as follows. First,
OATH scans the objects to eliminate from the reference counts all references between
objects. After that, all objects with non-zero reference counts are root-referenced. The
root-referenced objects serve as the roots for a standard mark-and-sweep collection, during
which the reference counts are restored. Like normal reference counting, this algorithm
incrementally reclaims some memory. In addition, however, this algorithm reclaims garbage
cycles.

In OATH, a method is invoked on an object by invoking an identically-named method
on an accessor to the object. The accessor’s method forwards the call through a private
pointer to the object. This requires that an accessor implement all the same methods as
the object that it references. Kennedy implements this using preprocessor macros so that
the methods only need to be defined once. The macros cause both the OATH objects and
their accessors to be defined with the given list of methods. While not overly verbose, the
programming style that this utilizes is quite different from the standard C++ style and such
long macros can make debugging difficult.
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Goldberg describes tag-free garbage collection for polymorphic statically-typed lan-
guages using compile-time information [23], building on work by Appel [2], who in turn
builds on techniques that were invented for Algol-68 and Pascal. Goldberg’s compiler emits
functions that know how to locate the pointers in all necessary activation records of the
program. For example, if some function F contains two pointers as local variables, then
another function would be emitted to mark from those pointers during a collection. The
emitted function would be called once for every active invocation of F to trace or copy
the part of the datastructure that is reachable from each pointer. The collector follows the
chain of return addresses up the run-time stack. As each stack frame is visited, the correct
garbage collection function is invoked. A function may have more than one garbage collec-
tion routine because different variables are live at different points in the function. Clearly,
this collector is very tightly coupled to the compiler.

Yasugi and Yonezawa discuss user-level garbage collection for the concurrent object-
oriented programming language ABCL/1 [43]. Their programming language is based on
active objects, thus, the garbage collection requirements for this language are basically the
same as for garbage collection of Actors [13, 25].

Ferreira discusses a C++ library that provides garbage collection for C++ programs [21].
The library supplies both incremental mark-and-sweep and generational copy collection, and
supports pointers to the interiors of objects. The programmer renders the program suitable
for garbage collection by placing macro definitions at various places in the program. For
example, every constructor must invoke a macro to register the object and every destructor
must invoke a complementary macro to un-register the object. Another macro must be
invoked in the class definition to add GC members to the class, based on the number of
base classes it has. To implement the remembered set for generations, the collector requires
a macro invocation on every assignment to an internal pointer. Ferreira’s collector requires
that the programmer supply functions to locate internal pointers. It can also scan objects
conservatively to work without these functions.

Maeder describes a C++ library for symbolic computation systems whose implementa-
tion uses smart pointers and reference counting [29]. The library contains class hierarchies
for expressions, strings, symbols, and other objects that are called normal, and reference-
counting smart pointers are used exclusively to access the objects. To improve the efficiency
of assignment of reference counted pointer assignment, the address of a discrete object serves
as a replacement for the NULL pointer. This means that pointers do not need to be compared
with NULL before being dereferenced to modify the reference count. The smart pointers
support debugging by allowing the programmer to detect dangling references: rather than
being deleted, an object is marked deleted and subsequent accesses to the object cause an
error to be reported. Other functionality allows the programmer to detect memory leaks
by reporting objects that are still alive when the program terminates.

Madany et al. discuss the use of reference counting in the Choices object-oriented
operating system [28]. The hierarchy of operating system classes is shadowed by parallel
smart pointer classes, called ObjectStars. By programmer convention, the system classes
are accessed exclusively through ObjectStars, which implement reference counting on their
referents. Asidentified by Kennedy in [27], returning reference counting smart pointers from
functions can sometimes result in dangling references. This was observed to be true of the
ObjectStars, and therefore the following convention was adopted: Whenever an ObjectStar
is returned from a function, it must first be assigned to a variable; it cannot be immediately
dereferenced [15]. This prevents that particular error.
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3. Garbage Collecting C++4 Code

The program’s dynamically allocated garbage collected objects are collectively referred
to as the data structure. The collector’s job is to determine which objects in the data
structure are no longer in use and to reclaim their memory. The application has pointers
into the data structure; these pointers are called roots and are collectively referred to as
the root set. Any object in the data structure that can be reached by following a chain of
references from any root is alive. The other objects are garbage and should be reclaimed.
The two hard problems are: 1) finding the roots, and 2), locating pointers inside objects,
called internal pointers.

3.1 Roots and Smart Pointers

This system uses smart pointers that implement indirection through a root table. All
of the direct pointers are concentrated in the root table and can therefore be located by
the collector. The term root is used to refer to the smart pointer objects. In contrast,
the built-in pointers, i.e. the pointers that are directly supported by the compiler and the
hardware, are called raw pointers.

A problem with smart pointers is that they can be nontrivial to code [17]. The problem
arises from emulating the implicit type conversions of raw pointers. For example, a raw
pointer of type T* can be implicitly converted to type const Tx, based on the safety of
converting an unrestricted pointer to a pointer that permits only read accesses. Also,
derived class pointers can be converted to base class pointers, reflecting the isa relationship
between a derived class and its base classes. C++ allows smart pointers to emulate these
type conversions using user-defined type conversions. The need to add these user-defined
type conversions makes generation of the smart pointer classes inconvenient. They cannot
be automatically produced from a parameterized type, a template, because that does not
supply the necessary type conversions. While macros or inheritance can abbreviate the
process, some coding is required. Emitting smart pointer class definitions, rather than
necessitating hand coding, is one of the tasks of the precompiler.

3.1.1 The Root Table

The data structure that allows the collector to find the root set is the root table. It it
implemented as a linked list of cell arrays. Each cell array contains its list link and many
direct pointer cells. A cell may be active, in which case it contains a direct pointer value,
or it may be free, in which case it is in the free list. A diagram of this data structure is
presented in Fig. 3.1.

The application’s smart pointers point to pointer cells rather than directly to objects; the
cells, in turn, contain the direct pointers. C++ objects implement this in the following way.
The initialization code for a root, i.e. the constructor, gets a cell from the free list, optionally
initializes the cell, and makes the root point to the cell. The de-initialization code for a root,
the destructor, adds the root’s cell to the free list. The overloaded indirection operators
first dereference the indirect pointer to fetch the direct pointer and then dereference the
direct pointer. The overloaded assignment operator causes assignment to a root to assign
to the direct pointer rather than to the indirect pointer.
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Figure 3.1: The root table

Global data . .
Dynamic Objects

The registers

The specific cell that causes atrap
H The read-protected memory region

Figure 3.2: The protected page of a cell array

The last cell array has its last page read protected. When the protection violation occurs,
a new array is allocated and linked to the others.

Linked list removal usually requires a test and conditional branch to check for the end
of the list. In this implementation, however, when a cell is removed from the free list, its
value is immediately fetched. That fetch is used to avoid the test and branch. The last page
of the last cell array is read-protected [3]. Attempting to load the link stored in the first
cell on the read-protected page causes the program to receive a signal. The signal handler
unprotects the page, links in and initializes a new cell array, and read-protects the last page
of the new array. A new diagram of a cell array is presented in Fig. 3.2; the shaded area
illustrates the read-protected region.
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class Root_C_T {
protected:
const T * * iptr; // The indirect pointer

public:
const T & operator*() const { return **iptr; }
const T * operator->() const { return *iptr; }
void operator=(const T * p) { *iptr = p; }
void operator=(const Root_C_T r) { *iptr = *r.iptr; }
int operator==(const void * vp) const { return *iptr == vp; }
int operator==(const T * tp) const { return *iptr == tp; }
int operator!=(const void * vp) const { return *iptr !'= vp; }
int operator!=(const T * tp) const { return *iptr !'= tp; }
int operator==(const Root_C_T r) const { return *iptr == #*r.iptr; }
int operator!=(const Root_C_T r) const { return *iptr != #*r.iptr; }
const T * value() const { return *iptr; }
Root_C_T() { iptr = (T**) _gc_RootTable.pop(); }
Root_C_T(const T * p) { iptr = (T**) _gc_RootTable.pop(p); }
Root_C_T(const Root_C_T & r) { iptr = (T**) _gc_RootTable.pop(*r.iptr); }
“Root_C_T() { _gc_RootTable.push(iptr); }

Figure 3.3: A smart pointer class for const objects of type T

3.1.2 Smart Pointer Class Definitions

For every application class two smart pointer classes are generated. One of them
emulates pointers to mutable objects and the other emulates pointers to const objects
When the application classes are related through inheritance, the precompiler gives the
derived class smart pointers user-defined type conversions to the base class smart pointer
types. A detailed description of this organization can be found in [17].

The precompiler parses the program to determine what smart pointer classes are needed
and writes the classes to a file. Then, the preprocessed and otherwise transformed applica-
tion code is appended.

A typical smart pointer class is shown in Fig. 3.3. This shows the smart pointer class
for const objects. The associated smart pointer class for mutable objects derives from this
class.

3.1.3 Smart Pointer Efficiency

Each smart pointer takes up two words in memory, one for the indirect pointer and one
for the direct pointer. The actual space overhead is greater than that because the root table
grows in increments of 8 kilobytes.

Measurements of the efficiency of these smart pointers show them to be more expensive
than raw pointers but less expensive than reference counted pointers [16]. If a global register
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can be dedicated to the Root Table, then initializing a new smart pointer requires two
memory references and destroying one requires one memory reference. Without a dedicated
global register, the cost of each of construction and destruction is increased by one memory
reference. Accesses through a smart pointer pay a one memory reference penalty due to the
level of indirection.

3.2 Locating Internal Pointers

Locating pointers within managed objects is the second task of the precompiler: the
precompiler parses type definitions and emits a ge() function per garbage-collected type.
This function identifies the internal pointer members to the garbage collector.

3.2.1 Internal Pointers and Type Tags

For every managed type the precompiler emits a ge() function. The ge() function invokes
an internal pointer, or ip(), function on every pointer member of an object. The ip() function
is global to the program and defined inline for efficiency. As an example, in the existing
mark-and-sweep collector, the ip() function pushes internal pointer values onto the mark
stack.

The precompiler emits code to register each managed type with the collector. Registra-
tion consists of a call to _gc_register() that passes in the type’s ge() function pointer. Each
such registration causes the garbage collector to generate and return a new type tag. Sub-
sequent memory allocation requests pass in the tag, which is stored in the object’s allocator
meta-information.

Three type tags are predefined: one for objects that contain no pointers, one for objects
that are entirely pointers, and one for foreign objects. Foreign objects are only reclaimed
manually, i.e. they are never garbage collected, and there is no type information available
for them. They are called foreign because they are ignorant of the presence of the garbage
collector. Support for foreign objects permits this memory allocator to be the only one in
the program; it can satisfy the dynamic memory needs of the standard libraries by treating
their allocation calls as requests for foreign objects. Foreign objects are not examined by the
collector; they should only reference collected objects through smart pointers, not through
raw pointers.

The C++ feature that makes this process convenient is overloadable dynamic storage
allocation operators: new and delete. These operators permit every class to supply functions
to handle memory allocation and deletion. In this case, operator new for a managed class
passes in the type tag to the memory allocator. The default, global operator new passes in
the type tag for foreign objects. A call to malloc(), which circumvents new, also allocates a
foreign object.

Figure 3.4 shows some sample input to the precompiler; the transformations for locating
internal pointers are shown in Fig. 3.5.

3.3 Finalization

If the programmer specifies a static member function named T::_gc_finalize(T*), then
that becomes the finalization function [31] for objects of type T. As in Cedar, finalization
can be enabled or disabled for individual objects; the collector maintains a bit with every
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class CL {
private:
CL * ptri;
OTHER * ptr2;

3. Garbage Collecting C++ Code

static void _gc_finalize(CL *); /* optional */

public:

};

Figure 3.4: A class with internal pointers

class CL {
private:
CL * ptri;
OTHER * ptr2;
static void _gc_finalize(CL *);

public:

private:
static _gc_tag_t _gc_tag;
static void _gc_(CL *);
public:

void * operator new(size_t sz) { return

malloc(sz,_gc_tag);

void  operator delete(void * p) { return free(p); }

};

// The inline ip() function...

inline void _gc_ip_(void * ptr) { _gc_MarkStack.push(ptr); }

// Emitted in exactly one .C file ...
void CL::_gc_(CL * ptr)
{
_gc_ip_(ptr->ptri);
_gc_ip_(ptr->ptr2);

// register type CL with the collector

// the type’s gc() function

_gc_tag_t CL::_gc_tag = _gc_register(&CL::_gc_, &CL::_gc_finalize);

Figure 3.5: The internal pointers transformation
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object indicating whether or not the object needs finalization. By default, finalization is
enabled for an object whose class has a finalization function; a library call is available to
disable or to re-enable finalization for any object.

There are no restrictions on what a finalization function can do. This means that a
finalization function, which is only called when the object is unreachable, may make the
object reachable. Therefore, in order not to create dangling references, an object is never
reclaimed in a turn when it is finalized; it is only reclaimed after another collection confirms
that it is unreachable and that finalization is disabled for it [19, 31].

A finalize function must be static, therefore, it may not be virtual (i.e. dynamically
bound). However, since it is allowed to invoke virtual functions, the effect of a virtual
finalize function is easily obtained.

3.4 Garbage Collection

The collector divides the heap into blocks that are used to allocate objects of uniform
size. Using an integer division operation and knowledge of where blocks begin and end, the
collector is able to make a pointer to the interior of an object (an interior pointer) point to
the beginning of the object. This is potentially expensive because integer division can be
expensive on RISC processors. Nonetheless, this ability is needed because a pointer to the
beginning of the object is necessary to locate the object’s type tag and mark bit. Forbidding
interior pointers is impossible, firstly because the collector is sometimes conservative, also
because multiple inheritance in C++ is generally implemented using interior pointers.

Garbage collection begins by examining every cell of the root table. For each cell, the
collector determines if the cell points to a page that is part of the heap. If so, the value is
pushed onto the mark stack. After all the roots have been pushed, the collector begins the
marking traversal.

Every time a value is popped from the mark stack, the collector determines whether or
not the value points into the heap, and if so, what object it references. The collector fetches
the object’s mark bit. If the mark bit was already set, the pointer is ignored. Otherwise,
the bit is set and the type tag is fetched from the allocator’s meta-information. The type
tag indexes into an array of type descriptors that contain the ge() and finalization function
pointers. The ge() function is called with a pointer to the object; the ge() function pushes
the internal pointers onto the mark stack.

After the mark phase, the collector performs finalization and reclamation. For every
object, one of three cases is true:

1. The object is unmarked and has finalization enabled: The object is finalized and its
finalization bit is unset.

2. The object is allocated, unmarked, has finalization disabled, and is not a foreign
object: The object is reclaimed. If the object’s page is now empty of objects, then
the page is added to the free page list. Otherwise, the object is added to the free list
for its size.

3. Neither of the above is true: No action is taken.
After this, garbage collection is finished and the application resumes execution. In the next
version this phase will be incremental.
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3.5 +this Pointers

In C4++4, whenever a method is invoked on an object, a pointer to the object is passed
to the method on the stack. This pointer is called the this pointer. Through the this pointer
the method can access the object’s instance data. These pointers are part of the root set,
so the garbage collector should consider them.

There are a number of different ways of finding the this pointers. For example, the
precompiler could add a root local variable to every member function and assign the this
pointer to the root. This would be invasive and inefficient for small member functions.
Another way is to coarsely decode the stack and treat the first argument to every function
conservatively in case the argument is a this pointer. This requires information about the
stack frame layout that only the compiler has. In particular, the first argument to a function
call is not necessarily always placed at a consistent offset in the stack frame. Thus, this
either requires knowledge about the stack frame layout for each individual function, or it
requires treating virtually the entire stack conservatively.

A pure copying collector must accurately find all pointers during every collection. How-
ever, a collector that does not move all objects does not necessarily need to find all the
pointers. We do not to attempt to locate the this pointers. Instead, the programmer must
ensure that the following property is always true:

There may not be an object whose only reference is through one or more this
pointers.
For example, the following code is illegal:

int main(void)

{
(new T)->method_X();

¥

This code is invalid because in method_X(), the object’s only reference is the this pointer.

If the programmer suspects that this restriction is accidentally being violated, the
collector can be configured to scan the stack conservatively in addition to using the root
table. Then, the collector can report the presence of pointers on the stack to objects that
would otherwise be reclaimed. The debugger can then be used to determine what code is
responsible.

3.6 Controlling the Precompiler

By default, all of the class, struct, and union types that the precompiler sees are assumed
to be garbage collected. Thus, for all such types, the precompiler performs its two transfor-
mations. In fact, a great many of these types are likely not to be managed. For example,
while the vast majority of C++ files include the standard header file <iostream.h>, emitting
smart pointer types for the iostream classes would unnecessarily slow down compilation be-
cause there is no need for them. As an optimization, therefore, there are precompiler-specific
#pragmas to control generation of garbage collection information, either at the granularity
of the individual type, or at much coarser granularity. (This functionality permits program-
mers to take control of storage management for certain types if they so choose.)
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3.7 Translation Unit Management

The precompiler processes every file in a multi-file program. Therefore, it is likely to see
the class definitions multiple times. Some of the transformations are performed every time a
file is compiled; others must be performed more selectively. In particular, the modifications
to the class definitions are always performed so that all of the code in the program sees the
same definitions. However, the gec() functions must not be replicated every time the class
definitions are seeing because that would define these functions multiple times.

The precompiler uses the following heuristic to make the decision in most cases: Produce
the ge() functions in the same file that defines the first non-inline function of the class. This
rule tells the precompiler when to emit the ge() function for every class that has at least
one non-inline function. If a managed class does not have a non-inline function member,
then the precompiler will issue a warning. The user must then add a #pragma to the class
telling the precompiler what file should contain the definition of the class’s ge() function.
This technique is used in some C++ compilers to determine when to emit the vtbl for a
class [20, §10.8.1c].

3.8 Status

The design and development of this system are both underway. The smart pointers
and the garbage collector are operational. The precompiler has been prototyped using
an existing C++ compiler as the starting point. The modified C4++4+ compiler parses the
user’s C++ code and emits smart pointers and other declarations. The precompiler does
not yet reintegrate the emitted code back into the original source program. A complete
reimplementation of the precompiler is in progress.

The SOR group at INRIA Rocquencourt has designed and is developing a distributed
garbage collection algorithm [35]. The distributed garbage collector requires local garbage
collectors with support for finalization. This garbage collector serves as the foundation for
the distributed garbage collector.

3.9 Future Work

This collector will be used as a platform for research on the interaction between the
collector and the virtual memory system. The areas of future research include VM synchro-
nized incremental and generational collection, and influencing collection decisions based on
the state of the virtual memory system.
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4. Conclusions

C++ is a very well designed language considering its goals, however, the complexity of its
semantics is daunting. Adding to that complexity by requiring manual storage reclamation
makes programming in C++ difficult and error-prone.

Precompiling C++ programs for garbage collection is more convenient for the program-
mer than a pure library-based approach. Simultaneously, it is portable and not tied to
any particular compiler technology. Also, it should reclaim more garbage then a purely
conservative approach.

A number of other systems use smart pointers, generally for reference counting. Auto-
matic generation of smart pointer classes can be of benefit to those projects. Similarly, the
transformation that locates internal pointers is independent of the implementation of the
GC algorithm, and could be used by other C++ garbage collectors.

There are three main benefits to our approach. First, the precompiler can be used as a
garbage collector front-end and as a smart pointer generator. Second, this is a convenient
platform for research in garbage collection techniques and issues, and will be used as such.
Finally, the collector makes programming in C++ less complex and safer, and may make
garbage collection available to a large part of the C++ programming community.
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