
Precompiling C++ for GarbageCollectionDaniel R. Edelson�UCSC{CRL{92{2823 June 1992Baskin Center forComputer Engineering & Information SciencesUniversity of California, Santa CruzSanta Cruz, CA 95064 USA
�Part of this research was performed while the author was a visiting researcher at INRIA Project SOR,BP 105 Rocquencourt, 78153 Le Chesnay CEDEX, FRANCE.This research was supported in part by Esprit project 5279 Harness.This paper �rst appeared in Proc. 1992 InternationalWorkshop on Memory Management, Springer-Verlag,1992.

11. IntroductionThe lack of garbage collection (GC) in C++ decreases productivity and increases mem-ory management errors. This situation persists principally because the common ways ofimplementing GC are deemed inappropriate for C++. In particular, tagged pointers areunacceptable because of the impact they have on the e�ciency of integer arithmetic, andbecause the cost is not localized.In spite of the di�culty, an enormous amount of work has been and continues to bedone in attempting to provide garbage collection in C++. The proposals span the entirespectrum of techniques including:� compiler-based concurrent atomic mostly-copying garbage collection [12],� library-based reference counting and mark-and-sweep GC [27],� library-based mostly copying generational garbage collection [5],� library-based reference counting through smart pointers [28, 29] (Smart pointers arediscussed momentarily),� library-based mark-and-sweep GC using smart pointers [16],� compiler-based GC using smart pointers [22],� library-based mark-and-sweep and generational copying collection using macros [21],and,� library-based conservative generational mark-and-sweep GC [8, 11].The vast number of proposals, without the widespread acceptance of any one, re
ects howhard the problem is.In the past, we have proposed implementing GC strictly in application-code: GC im-plemented in a library. The problem with this approach is that it requires too much e�orton the part of the end-user. The user must �rst customize/instantiate the library, and thenfollow its rules. This is a tedious and error-prone process.To solve our goal of compiler-independence, while keeping the associated complexity tothe user to a minimum, we are now proposing precompiling C++ programs to augmentthem for garbage collection. The user still needs to cooperate with the collector, but thelikelihood of errors is reduced. In addition, the precompiler can perform transformationsthat are independent of the actual garbage collection algorithm in use, making it very usefulfor experimentation in GC techniques.A Word About Smart PointersA number of the systems that are considered in the related work section use smartpointers, as does this collector. Therefore, this paper begins with an introduction to theterm.C++ provides the ability to use class objects like pointers; these objects are often calledsmart pointers [38]. Smart pointers allow the programmer to bene�t from additional pointersemantics, while keeping the syntax of the program largely unchanged. Smart pointers useoperator overloading to be usable in expressions with the same syntax as normal pointers.For example, the overloaded assignment operator = permits raw pointers to be assigned tosmart pointers and the overloading indirect member selection operator -> permits smartpointers to be used to access data members and operations of the referenced object.Smart pointers can be used for a variety for purposes. For example:

2 1. Introduction� reference counting [10, 27, 28, 29, 39],� convenient access to both transient and persistent objects [36, 39],� uniform access to local or distributed objects [24, 35, 37],� synchronizing operations on objects [39, p. 464],� tracing garbage collection [16, 18, 27],� instrumenting the code,� or others.Section 2 discusses how existing systems use smart pointers for memory management.A discussion of various issues concerning smart pointers can be found in [17]. Our imple-mentation of smart pointers is presented in x3.1.

32. A Brief Survey of Related WorkThere is a signi�cant body of related work, in the general �eld of GC, in C++ softwaretools, and speci�cally in collectors for C++.2.1 Conservative GCConservative garbage collection is a technique in which the collector does not have accessto type information so it assumes that anything that might be a pointer actually is a pointer[7, 8]. For example, upon examining a quantity that the program interprets as an integer,but whose value is such that it also could be a pointer, the collector assumes the value tobe a pointer. This is a useful technique for accomplishing compiler-independent garbagecollection in programming languages that do not use tagged pointers.Boehm, Demers, et al. describe conservative, generational, parallel mark-and-sweepgarbage collection [7, 8, 11] for languages such as C. Russo has adapted these techniquesfor use in an object-oriented operating system written in C++ [32, 34]. Since they are fullyconservative, during a collection these collectors must examine every word of the stack, ofglobal data, and of every marked object. Boehm discusses compiler changes to precludeoptimizations that would cause a conservative garbage collector to reclaim data that isactually accessible [6]. Zorn has measured the cost of conservative garbage collection andfound that it compares favorably not just with manual allocation, but even with optimizedmanual allocation [44].Conservative collectors sometimes retain more garbage than type-accurate collectorsbecause conservative collectors interpret non-pointer data as pointers. Often, the amountof retained garbage is small, and conservative collection succeeds quite well. Other times,conservative techniques are not satisfactory. For example, Wentworth has found thatconservative garbage collection performs poorly in densely populated address spaces [41,42]. Russo has found that the programming style must take into account the conservativegarbage collector: naive programming leads to inconveniently large amounts of garbageescaping collection [33, 34]. For example, he has found it necessary to disguise pointersand manually break garbage cycles [33]. To aid the programming task, he is investigatingaugmenting the conservative garbage collector with weak pointers [30], i.e. references that donot cause objects to be retained. Finally, we have tested conservative garbage collection witha CAD software tool called ITEM [16, 26]. This application creates large data structuresthat are strongly connected when they become garbage. A single false pointer into the datastructure keeps the entire mass of data from being reclaimed. Thus, our brief e�orts withconservative collection in this application proved unsuccessful.As these examples illustrate, conservative collection is a very useful technique, but itis not a panacea. Since it has its bad cases, it is worthwhile to investigate type-accuratetechniques for C++.2.2 Partially ConservativeBartlett's Mostly Copying Collector is a generational garbage collector for Scheme [14]and C++ [39] that uses both conservative and copying techniques [4, 5]. This collectordivides the heap into logical pages, each of which has a space-identi�er. During a collection

4 2. A Brief Survey of Related Workan object can be promoted in one of two ways: it can be physically copied to a to-spacepage or the space-identi�er of its present page can be advanced.Bartlett's collector conservatively scans the stack and global data seeking pointers. Anyword the collector interprets as a pointer may in fact be either a pointer or some otherquantity. Objects referenced by such roots must not be moved because, as the rootsare not de�nitely known to be pointers, the roots cannot be modi�ed. Such objects arepromoted by having the space identi�ers of their pages advanced. Then, the root-referencedobjects are scanned with the help of information provided by the application programmer;the objects they reference are compactly copied to the new space. This collector workswith non-polymorphic C++ data structures, and requires that the programmer make a fewdeclarations to enable the collector to locate the internal pointers within collected objects.Detlefs implements Bartlett's algorithm in a compiler and uses type information availableto the compiler to generalize the collector. Bartlett's �rst version contains two restrictions,the �rst of which is later eliminated:1. internal pointers must be located at the beginnings of objects, and2. heap-allocated objects may not contain unsure pointers.An unsure pointer is a quantity that is statically typed to be either a pointer or a non-pointer. For example, in \union f int i; node � p; g x;" x is an unsure pointer.Detlefs relaxes these by maintaining type-speci�c map information in a header in frontof every object. During a collection the collector interprets the map information to locateinternal pointers. The header can represent information about both sure pointers and unsurepointers. The collector treats sure pointers accurately and unsure pointers conservatively.Detlefs' collector is concurrent and is implemented in the cfront C++ compiler.2.3 Type-Accurate TechniquesKennedy describes a C++ type hierarchy called OATH that uses both reference countingand mark-and-sweep garbage collection [27]. In OATH, objects are accessed exclusivelythrough application-level references called accessors, that are very similar to stubs becausethey duplicate the interfaces of their target objects. Accessors implement reference countingon the objects that they reference. The reference counts are used to implement a three-phase mark-and-sweep garbage collection algorithm [9] that proceeds as follows. First,OATH scans the objects to eliminate from the reference counts all references betweenobjects. After that, all objects with non-zero reference counts are root-referenced. Theroot-referenced objects serve as the roots for a standard mark-and-sweep collection, duringwhich the reference counts are restored. Like normal reference counting, this algorithmincrementally reclaims some memory. In addition, however, this algorithm reclaims garbagecycles.In OATH, a method is invoked on an object by invoking an identically-named methodon an accessor to the object. The accessor's method forwards the call through a privatepointer to the object. This requires that an accessor implement all the same methods asthe object that it references. Kennedy implements this using preprocessor macros so thatthe methods only need to be de�ned once. The macros cause both the OATH objects andtheir accessors to be de�ned with the given list of methods. While not overly verbose, theprogramming style that this utilizes is quite di�erent from the standard C++ style and suchlong macros can make debugging di�cult.

2.3. Type-Accurate Techniques 5Goldberg describes tag-free garbage collection for polymorphic statically-typed lan-guages using compile-time information [23], building on work by Appel [2], who in turnbuilds on techniques that were invented for Algol-68 and Pascal. Goldberg's compiler emitsfunctions that know how to locate the pointers in all necessary activation records of theprogram. For example, if some function F contains two pointers as local variables, thenanother function would be emitted to mark from those pointers during a collection. Theemitted function would be called once for every active invocation of F to trace or copythe part of the datastructure that is reachable from each pointer. The collector follows thechain of return addresses up the run-time stack. As each stack frame is visited, the correctgarbage collection function is invoked. A function may have more than one garbage collec-tion routine because di�erent variables are live at di�erent points in the function. Clearly,this collector is very tightly coupled to the compiler.Yasugi and Yonezawa discuss user-level garbage collection for the concurrent object-oriented programming language ABCL/1 [43]. Their programming language is based onactive objects, thus, the garbage collection requirements for this language are basically thesame as for garbage collection of Actors [13, 25].Ferreira discusses a C++ library that provides garbage collection for C++ programs [21].The library supplies both incremental mark-and-sweep and generational copy collection, andsupports pointers to the interiors of objects. The programmer renders the program suitablefor garbage collection by placing macro de�nitions at various places in the program. Forexample, every constructor must invoke a macro to register the object and every destructormust invoke a complementary macro to un-register the object. Another macro must beinvoked in the class de�nition to add GC members to the class, based on the number ofbase classes it has. To implement the remembered set for generations, the collector requiresa macro invocation on every assignment to an internal pointer. Ferreira's collector requiresthat the programmer supply functions to locate internal pointers. It can also scan objectsconservatively to work without these functions.Maeder describes a C++ library for symbolic computation systems whose implementa-tion uses smart pointers and reference counting [29]. The library contains class hierarchiesfor expressions, strings, symbols, and other objects that are called normal, and reference-counting smart pointers are used exclusively to access the objects. To improve the e�ciencyof assignment of reference counted pointer assignment, the address of a discrete object servesas a replacement for the NULL pointer. This means that pointers do not need to be comparedwith NULL before being dereferenced to modify the reference count. The smart pointerssupport debugging by allowing the programmer to detect dangling references: rather thanbeing deleted, an object is marked deleted and subsequent accesses to the object cause anerror to be reported. Other functionality allows the programmer to detect memory leaksby reporting objects that are still alive when the program terminates.Madany et al. discuss the use of reference counting in the Choices object-orientedoperating system [28]. The hierarchy of operating system classes is shadowed by parallelsmart pointer classes, called ObjectStars. By programmer convention, the system classesare accessed exclusively through ObjectStars, which implement reference counting on theirreferents. As identi�ed by Kennedy in [27], returning reference counting smart pointers fromfunctions can sometimes result in dangling references. This was observed to be true of theObjectStars, and therefore the following convention was adopted: Whenever an ObjectStaris returned from a function, it must �rst be assigned to a variable; it cannot be immediatelydereferenced [15]. This prevents that particular error.

6 3. Garbage Collecting C++ Code3. Garbage Collecting C++ CodeThe program's dynamically allocated garbage collected objects are collectively referredto as the data structure. The collector's job is to determine which objects in the datastructure are no longer in use and to reclaim their memory. The application has pointersinto the data structure; these pointers are called roots and are collectively referred to asthe root set. Any object in the data structure that can be reached by following a chain ofreferences from any root is alive. The other objects are garbage and should be reclaimed.The two hard problems are: 1) �nding the roots, and 2), locating pointers inside objects,called internal pointers.3.1 Roots and Smart PointersThis system uses smart pointers that implement indirection through a root table. Allof the direct pointers are concentrated in the root table and can therefore be located bythe collector. The term root is used to refer to the smart pointer objects. In contrast,the built-in pointers, i.e. the pointers that are directly supported by the compiler and thehardware, are called raw pointers.A problem with smart pointers is that they can be nontrivial to code [17]. The problemarises from emulating the implicit type conversions of raw pointers. For example, a rawpointer of type T� can be implicitly converted to type const T�, based on the safety ofconverting an unrestricted pointer to a pointer that permits only read accesses. Also,derived class pointers can be converted to base class pointers, re
ecting the isa relationshipbetween a derived class and its base classes. C++ allows smart pointers to emulate thesetype conversions using user-de�ned type conversions. The need to add these user-de�nedtype conversions makes generation of the smart pointer classes inconvenient. They cannotbe automatically produced from a parameterized type, a template, because that does notsupply the necessary type conversions. While macros or inheritance can abbreviate theprocess, some coding is required. Emitting smart pointer class de�nitions, rather thannecessitating hand coding, is one of the tasks of the precompiler.3.1.1 The Root TableThe data structure that allows the collector to �nd the root set is the root table. It itimplemented as a linked list of cell arrays. Each cell array contains its list link and manydirect pointer cells. A cell may be active, in which case it contains a direct pointer value,or it may be free, in which case it is in the free list. A diagram of this data structure ispresented in Fig. 3.1.The application's smart pointers point to pointer cells rather than directly to objects; thecells, in turn, contain the direct pointers. C++ objects implement this in the following way.The initialization code for a root, i.e. the constructor, gets a cell from the free list, optionallyinitializes the cell, and makes the root point to the cell. The de-initialization code for a root,the destructor, adds the root's cell to the free list. The overloaded indirection operators�rst dereference the indirect pointer to fetch the direct pointer and then dereference thedirect pointer. The overloaded assignment operator causes assignment to a root to assignto the direct pointer rather than to the indirect pointer.

3.1. Roots and Smart Pointers 7
F

L

Global data

The stack

The registers

Dynamic Objects
Root Table

Link in list of cell arrays

F

L

Head of the free list of cells

Head of list of cell arrays

Link in free list of cells

Direct or indirect object pointerFigure 3.1: The root table
Dynamic Objects

Global data

The stack

The registers

Root Table

F

X

X

L

The specific cell that causes a trap

The read-protected memory regionFigure 3.2: The protected page of a cell arrayThe last cell array has its last page read protected. When the protection violation occurs,a new array is allocated and linked to the others.Linked list removal usually requires a test and conditional branch to check for the endof the list. In this implementation, however, when a cell is removed from the free list, itsvalue is immediately fetched. That fetch is used to avoid the test and branch. The last pageof the last cell array is read-protected [3]. Attempting to load the link stored in the �rstcell on the read-protected page causes the program to receive a signal. The signal handlerunprotects the page, links in and initializes a new cell array, and read-protects the last pageof the new array. A new diagram of a cell array is presented in Fig. 3.2; the shaded areaillustrates the read-protected region.

8 3. Garbage Collecting C++ Codeclass Root_C_T {protected:const T * * iptr; // The indirect pointerpublic:const T & operator*() const { return **iptr; }const T * operator->() const { return *iptr; }void operator=(const T * p) { *iptr = p; }void operator=(const Root_C_T r) { *iptr = *r.iptr; }int operator==(const void * vp) const { return *iptr == vp; }int operator==(const T * tp) const { return *iptr == tp; }int operator!=(const void * vp) const { return *iptr != vp; }int operator!=(const T * tp) const { return *iptr != tp; }int operator==(const Root_C_T r) const { return *iptr == *r.iptr; }int operator!=(const Root_C_T r) const { return *iptr != *r.iptr; }const T * value() const { return *iptr; }Root_C_T() { iptr = (T**) _gc_RootTable.pop(); }Root_C_T(const T * p) { iptr = (T**) _gc_RootTable.pop(p); }Root_C_T(const Root_C_T & r) { iptr = (T**) _gc_RootTable.pop(*r.iptr); }~Root_C_T() { _gc_RootTable.push(iptr); }}; Figure 3.3: A smart pointer class for const objects of type T3.1.2 Smart Pointer Class De�nitionsFor every application class two smart pointer classes are generated. One of thememulates pointers to mutable objects and the other emulates pointers to const objects.When the application classes are related through inheritance, the precompiler gives thederived class smart pointers user-de�ned type conversions to the base class smart pointertypes. A detailed description of this organization can be found in [17].The precompiler parses the program to determine what smart pointer classes are neededand writes the classes to a �le. Then, the preprocessed and otherwise transformed applica-tion code is appended.A typical smart pointer class is shown in Fig. 3.3. This shows the smart pointer classfor const objects. The associated smart pointer class for mutable objects derives from thisclass.3.1.3 Smart Pointer E�ciencyEach smart pointer takes up two words in memory, one for the indirect pointer and onefor the direct pointer. The actual space overhead is greater than that because the root tablegrows in increments of 8 kilobytes.Measurements of the e�ciency of these smart pointers show them to be more expensivethan raw pointers but less expensive than reference counted pointers [16]. If a global register

3.2. Locating Internal Pointers 9can be dedicated to the Root Table, then initializing a new smart pointer requires twomemory references and destroying one requires one memory reference. Without a dedicatedglobal register, the cost of each of construction and destruction is increased by one memoryreference. Accesses through a smart pointer pay a one memory reference penalty due to thelevel of indirection.3.2 Locating Internal PointersLocating pointers within managed objects is the second task of the precompiler: theprecompiler parses type de�nitions and emits a gc() function per garbage-collected type.This function identi�es the internal pointer members to the garbage collector.3.2.1 Internal Pointers and Type TagsFor every managed type the precompiler emits a gc() function. The gc() function invokesan internal pointer, or ip(), function on every pointer member of an object. The ip() functionis global to the program and de�ned inline for e�ciency. As an example, in the existingmark-and-sweep collector, the ip() function pushes internal pointer values onto the markstack.The precompiler emits code to register each managed type with the collector. Registra-tion consists of a call to gc register() that passes in the type's gc() function pointer. Eachsuch registration causes the garbage collector to generate and return a new type tag. Sub-sequent memory allocation requests pass in the tag, which is stored in the object's allocatormeta-information.Three type tags are prede�ned: one for objects that contain no pointers, one for objectsthat are entirely pointers, and one for foreign objects. Foreign objects are only reclaimedmanually, i.e. they are never garbage collected, and there is no type information availablefor them. They are called foreign because they are ignorant of the presence of the garbagecollector. Support for foreign objects permits this memory allocator to be the only one inthe program; it can satisfy the dynamic memory needs of the standard libraries by treatingtheir allocation calls as requests for foreign objects. Foreign objects are not examined by thecollector; they should only reference collected objects through smart pointers, not throughraw pointers.The C++ feature that makes this process convenient is overloadable dynamic storageallocation operators: new and delete. These operators permit every class to supply functionsto handle memory allocation and deletion. In this case, operator new for a managed classpasses in the type tag to the memory allocator. The default, global operator new passes inthe type tag for foreign objects. A call to malloc(), which circumvents new, also allocates aforeign object.Figure 3.4 shows some sample input to the precompiler; the transformations for locatinginternal pointers are shown in Fig. 3.5.3.3 FinalizationIf the programmer speci�es a static member function named T:: gc �nalize(T*), thenthat becomes the �nalization function [31] for objects of type T. As in Cedar, �nalizationcan be enabled or disabled for individual objects; the collector maintains a bit with every

10 3. Garbage Collecting C++ Codeclass CL {private:CL * ptr1;OTHER * ptr2;static void _gc_finalize(CL *); /* optional */...public:...}; Figure 3.4: A class with internal pointersclass CL {private:CL * ptr1;OTHER * ptr2;static void _gc_finalize(CL *);...public:...private:static _gc_tag_t _gc_tag;static void _gc_(CL *);public:void * operator new(size_t sz) { return malloc(sz,_gc_tag); }void operator delete(void * p) { return free(p); }};// The inline ip() function...inline void _gc_ip_(void * ptr) { _gc_MarkStack.push(ptr); }// Emitted in exactly one .C file ...void CL::_gc_(CL * ptr) // the type's gc() function{ _gc_ip_(ptr->ptr1);_gc_ip_(ptr->ptr2);}// register type CL with the collector_gc_tag_t CL::_gc_tag = _gc_register(&CL::_gc_, &CL::_gc_finalize);Figure 3.5: The internal pointers transformation

3.4. Garbage Collection 11object indicating whether or not the object needs �nalization. By default, �nalization isenabled for an object whose class has a �nalization function; a library call is available todisable or to re-enable �nalization for any object.There are no restrictions on what a �nalization function can do. This means that a�nalization function, which is only called when the object is unreachable, may make theobject reachable. Therefore, in order not to create dangling references, an object is neverreclaimed in a turn when it is �nalized; it is only reclaimed after another collection con�rmsthat it is unreachable and that �nalization is disabled for it [19, 31].A �nalize function must be static, therefore, it may not be virtual (i.e. dynamicallybound). However, since it is allowed to invoke virtual functions, the e�ect of a virtual�nalize function is easily obtained.3.4 Garbage CollectionThe collector divides the heap into blocks that are used to allocate objects of uniformsize. Using an integer division operation and knowledge of where blocks begin and end, thecollector is able to make a pointer to the interior of an object (an interior pointer) point tothe beginning of the object. This is potentially expensive because integer division can beexpensive on RISC processors. Nonetheless, this ability is needed because a pointer to thebeginning of the object is necessary to locate the object's type tag and mark bit. Forbiddinginterior pointers is impossible, �rstly because the collector is sometimes conservative, alsobecause multiple inheritance in C++ is generally implemented using interior pointers.Garbage collection begins by examining every cell of the root table. For each cell, thecollector determines if the cell points to a page that is part of the heap. If so, the value ispushed onto the mark stack. After all the roots have been pushed, the collector begins themarking traversal.Every time a value is popped from the mark stack, the collector determines whether ornot the value points into the heap, and if so, what object it references. The collector fetchesthe object's mark bit. If the mark bit was already set, the pointer is ignored. Otherwise,the bit is set and the type tag is fetched from the allocator's meta-information. The typetag indexes into an array of type descriptors that contain the gc() and �nalization functionpointers. The gc() function is called with a pointer to the object; the gc() function pushesthe internal pointers onto the mark stack.After the mark phase, the collector performs �nalization and reclamation. For everyobject, one of three cases is true:1. The object is unmarked and has �nalization enabled: The object is �nalized and its�nalization bit is unset.2. The object is allocated, unmarked, has �nalization disabled, and is not a foreignobject: The object is reclaimed. If the object's page is now empty of objects, thenthe page is added to the free page list. Otherwise, the object is added to the free listfor its size.3. Neither of the above is true: No action is taken.After this, garbage collection is �nished and the application resumes execution. In the nextversion this phase will be incremental.

12 3. Garbage Collecting C++ Code3.5 this PointersIn C++, whenever a method is invoked on an object, a pointer to the object is passedto the method on the stack. This pointer is called the this pointer. Through the this pointerthe method can access the object's instance data. These pointers are part of the root set,so the garbage collector should consider them.There are a number of di�erent ways of �nding the this pointers. For example, theprecompiler could add a root local variable to every member function and assign the thispointer to the root. This would be invasive and ine�cient for small member functions.Another way is to coarsely decode the stack and treat the �rst argument to every functionconservatively in case the argument is a this pointer. This requires information about thestack frame layout that only the compiler has. In particular, the �rst argument to a functioncall is not necessarily always placed at a consistent o�set in the stack frame. Thus, thiseither requires knowledge about the stack frame layout for each individual function, or itrequires treating virtually the entire stack conservatively.A pure copying collector must accurately �nd all pointers during every collection. How-ever, a collector that does not move all objects does not necessarily need to �nd all thepointers. We do not to attempt to locate the this pointers. Instead, the programmer mustensure that the following property is always true:There may not be an object whose only reference is through one or more thispointers.For example, the following code is illegal:int main(void){ (new T)->method_X();...}This code is invalid because in method X(), the object's only reference is the this pointer.If the programmer suspects that this restriction is accidentally being violated, thecollector can be con�gured to scan the stack conservatively in addition to using the roottable. Then, the collector can report the presence of pointers on the stack to objects thatwould otherwise be reclaimed. The debugger can then be used to determine what code isresponsible.3.6 Controlling the PrecompilerBy default, all of the class, struct, and union types that the precompiler sees are assumedto be garbage collected. Thus, for all such types, the precompiler performs its two transfor-mations. In fact, a great many of these types are likely not to be managed. For example,while the vast majority of C++ �les include the standard header �le <iostream.h>, emittingsmart pointer types for the iostream classes would unnecessarily slow down compilation be-cause there is no need for them. As an optimization, therefore, there are precompiler-speci�c#pragmas to control generation of garbage collection information, either at the granularityof the individual type, or at much coarser granularity. (This functionality permits program-mers to take control of storage management for certain types if they so choose.)

3.7. Translation Unit Management 133.7 Translation Unit ManagementThe precompiler processes every �le in a multi-�le program. Therefore, it is likely to seethe class de�nitions multiple times. Some of the transformations are performed every time a�le is compiled; others must be performed more selectively. In particular, the modi�cationsto the class de�nitions are always performed so that all of the code in the program sees thesame de�nitions. However, the gc() functions must not be replicated every time the classde�nitions are seeing because that would de�ne these functions multiple times.The precompiler uses the following heuristic to make the decision in most cases: Producethe gc() functions in the same �le that de�nes the �rst non-inline function of the class. Thisrule tells the precompiler when to emit the gc() function for every class that has at leastone non-inline function. If a managed class does not have a non-inline function member,then the precompiler will issue a warning. The user must then add a #pragma to the classtelling the precompiler what �le should contain the de�nition of the class's gc() function.This technique is used in some C++ compilers to determine when to emit the vtbl for aclass [20, x10.8.1c].3.8 StatusThe design and development of this system are both underway. The smart pointersand the garbage collector are operational. The precompiler has been prototyped usingan existing C++ compiler as the starting point. The modi�ed C++ compiler parses theuser's C++ code and emits smart pointers and other declarations. The precompiler doesnot yet reintegrate the emitted code back into the original source program. A completereimplementation of the precompiler is in progress.The SOR group at INRIA Rocquencourt has designed and is developing a distributedgarbage collection algorithm [35]. The distributed garbage collector requires local garbagecollectors with support for �nalization. This garbage collector serves as the foundation forthe distributed garbage collector.3.9 Future WorkThis collector will be used as a platform for research on the interaction between thecollector and the virtual memory system. The areas of future research include VM synchro-nized incremental and generational collection, and in
uencing collection decisions based onthe state of the virtual memory system.

14 4. Conclusions4. ConclusionsC++ is a very well designed language considering its goals, however, the complexity of itssemantics is daunting. Adding to that complexity by requiring manual storage reclamationmakes programming in C++ di�cult and error-prone.Precompiling C++ programs for garbage collection is more convenient for the program-mer than a pure library-based approach. Simultaneously, it is portable and not tied toany particular compiler technology. Also, it should reclaim more garbage then a purelyconservative approach.A number of other systems use smart pointers, generally for reference counting. Auto-matic generation of smart pointer classes can be of bene�t to those projects. Similarly, thetransformation that locates internal pointers is independent of the implementation of theGC algorithm, and could be used by other C++ garbage collectors.There are three main bene�ts to our approach. First, the precompiler can be used as agarbage collector front-end and as a smart pointer generator. Second, this is a convenientplatform for research in garbage collection techniques and issues, and will be used as such.Finally, the collector makes programming in C++ less complex and safer, and may makegarbage collection available to a large part of the C++ programming community.

15AcknowledgementsI am grateful to Marc Shapiro for supporting this work.

16 ReferencesReferences[1] ACM. Proc. PLDI '91 (June 1991). SIGPLAN Not. 26(6).[2] Appel, A. W. Runtime tags aren't necessary. In Lisp and Symbolic Computation(1989), vol. 2, pp. 153{162.[3] Appel, A. W., and Li, K. Virtual memory primitives for user programs. In ASPLOSInter. Conf. Architectural Support for Programming Languages and Operating Systems(Santa Clara, CA (USA), Apr. 1991), pp. 96{107. SIGPLAN Not. 26(4).[4] Bartlett, J.F. Compacting garbage collection with ambiguous roots. Tech.Rep. 88/2,Digital Equipment Corporation, Western Research Laboratory, Palo Alto, California,Feb. 1988.[5] Bartlett, J. F. Mostly copying garbage collection picks up generations and C++.Tech. Rep. TN{12, DEC WRL, Oct. 1989.[6] Boehm,H.-J. Simple gc-safe compilation. WorkshoponGC in ObjectOriented Systemsat OOPSLA '91, 1991.[7] Boehm, H.-J., Demers, A. J., and Shenker, S. Mostly parallel garbage collection.In Proc. PLDI '91 [1], pp. 157{164. SIGPLAN Not. 26(6).[8] Boehm, H.-J., and Weiser, M. Garbage collection in an uncooperative environment.Softw. { Pract. Exp. 18, 9 (Sept. 1988), 807{820.[9] Christopher, T. W. Reference count garbage collection. Softw. { Pract. Exp. 14, 6(1984), 503{508.[10] Coplien, J. Advanced C++ Programming Styles and Idioms. Addison-Wesley, 1992.[11] Demers, A., Weiser, M., Hayes, B., Boehm, H., Bobrow, D., and Shenker,S. Combining generational and conservative garbage collection: Framework and imple-mentations. In Proc. POPL '90 (Jan. 1990), ACM, ACM, pp. 261{269.[12] Detlefs, D. Concurrent garbage collection for C++. Tech. Rep. CMU-CS-90-119,Carnegie Mellon, 1990.[13] Dickman, P. Trading space for time in the garbage collection of actors. In unpublishedform, 1992.[14] Dybvig, K. R. The SCHEMEProgramming Language. Prentice Hall, Englewood Cli�s,N.J., 1987.[15] Dykstra, D. Conventions on the use of ObjectStars, 1992. Private communication.[16] Edelson, D. R. Comparing two garbage collectors for C++. In unpublished form,1992.[17] Edelson, D. R. Smart pointers: They're smart but they're not pointers. In Proc.Usenix C++ Technical Conference (Aug. 1992), Usenix Association, pp. 1{19.[18] Edelson, D. R., and Pohl, I. A copying collector for C++. In Proc. Usenix C++Conference [40], pp. 85{102.[19] Ellis, J. Con�rmation of unreachability after �nalization, 1992. Private communica-tion.[20] Ellis, M. A., and Stroustrup, B. The Annotated C++ ReferenceManual. Addison-Wesley, Feb. 1990.[21] Ferreira, P. Garbage collection in C++. Workshop onGC in ObjectOriented Systemsat OOPSLA '91, July 1991.

References 17[22] Ginter, A. Cooperative garbage collectors using smart pointers in the C++ program-ming language. Master's thesis, Dept. of Computer Science, University of Calgary, Dec.1991. Tech. Rpt. 91/451/45.[23] Goldberg, B. Tag-free garbage collection for strongly typed programming languages.In Proc. PLDI '91 [1], pp. 165{176. SIGPLAN Not. 26(6).[24] Grossman, E. Using smart pointers for transparent access to objects on disk or acrossa network, 1992. Private communication.[25] Kafura, D., Washabaugh, D., and Nelson, J. Garbage collection of actors. InProc. OOPSLA/ECOOP (Oct. 1990), pp. 126{134. SIGPLAN Not. 25(10).[26] Karplus, K. Using if-then-else DAGs for multi-level logic minimization. In AdvancedResearch in VLSI: Proceedings of the Decennial Caltech Conference on VLSI (Pasadena,CA, 20-22 March 1989), C. L. Seitz, Ed., MIT Press, pp. 101{118.[27] Kennedy, B. The features of the object-oriented abstract type hierarchy (OATH). InProc. Usenix C++ Conference [40], pp. 41{50.[28] Madany, P. W., Islam, N., Kougiouris, P., and Campbell, R. H. Rei�cationand re
ection in C++: An operating systems perspective. Tech. Rep. UIUCDCS{R{92{1736, Dept. of Computer Science, University of Illinois at Urbana-Champaign, Mar.1992.[29] Maeder, R. E. A provably correct reference count scheme for a symbolic computationsystem. In unpublished form, 1992.[30] Miller, J. S. Multischeme: A Parallel Processing System Based on MIT Scheme. PhDthesis, MIT, 1987. MIT/LCS/Tech. Rep.-402.[31] Rovner, P. On adding garbage collection and runtime types to a strongly-typed,statically checked, concurrent language. Tech. Rep. CSL{84{7, Xerox PARC, 1984.[32] Russo, V. Garbage collecting an object-oriented operating system kernel. Workshopon GC in Object Oriented Systems at OOPSLA '91, 1991.[33] Russo, V. There's no free lunch in conservative garbage collection of an operatingsystem, 1991. Private communication.[34] Russo, V. Using the parallel Boehm/Weiser/Demers collector in an operating system,1991. Private communication.[35] Shapiro, M., Dickman, P., and Plainfoss�e, D. Robust, distributed references andacyclic garbage collection. In Symp. on Principles of Distributed Computing (Vancouver,Canada, Aug. 1992), ACM.[36] Shapiro, M., Gourhant, Y., Habert, S., Mosseri, L., Ruffin, M., and Valot,C. SOS: An object-oriented operating system|assessment and perspectives. Comput.Syst. 2, 4 (Dec. 1989), 287{338.[37] Shapiro, M., Maisonneuve, J., and Collet, P. Implementing references as chainsof links. In Workshop on Object Orientation in Operating Systems (1992). To appear.[38] Stroustrup, B. The evolution of C++ 1985 to 1987. In Proc. Usenix C++Workshop(Nov. 1987), Usenix Association, pp. 1{22.[39] Stroustrup, B. The C++ Programming Language, 2nd ed. Addison-Wesley, 1991.[40] Usenix Association. Proc. Usenix C++ Conference (Apr. 1991).[41] Wentworth, E. P. An environment for investigating functional languages and imple-mentations. PhD thesis, University of Port Elizabeth, 1988.

18 References[42] Wentworth, E. P. Pitfalls of conservative garbage collection. Softw. { Pract. Exp.(July 1990), 719{727.[43] Yasugi, M., and Yonezawa, A. Towards user (application) language-level garbagecollection in object-oriented concurrent languages. Workshop on GC in Object OrientedSystems at OOPSLA '91, 1991.[44] Zorn, B. The measured cost of conservative garbage collection. Tech. Rep. CU-CS-573-92, University of Colorado at Boulder, 1992.

