Smart Pointers: They’re Smart, but
They’re Not Pointers

Daniel R. Edelson*

UCSC-CRL-92-27
10 June 1992

Baskin Center for
Computer Engineering & Information Sciences
University of California, Santa Cruz

Santa Cruz, CA 95064 USA

*This research was performed while the author was a visiting researcher at INRIA Project SOR, BP 105
Rocquencourt, 78153 Le Chesnay CEDEX, FRANCE.

This work was supported in part by Esprit project 5279 Harness.

This paper first appeared in Proc. 1992 Usenixz C++ Conference, Usenix Association, 1992, pp 1-19.



1. Introduction

The ability to substitute user-defined code for pointers is a very powerful programming
mechanism. It facilitates using C++ in domains for which the language is not specialized.
For example, smart pointers [Str87] or variations thereof can be used to support distributed
systems [SDP92, SMC92], persistent object systems [MIKC92, SGHT89, Str91, pg. 244], to
provide reference counting (e.g. the ObjectStars of [MIKC92] or the counted pointers idiom
of [Cop92]) or garbage collection [Ken91, Ede92].

In this paradigm, a smart pointer encapsulates some kind of raw pointer or complex
handle. The smart pointer overloads the indirection operators in order to be usable with
normal pointer syntax. For example, code that accesses both transient and persistent
objects can be written to perform its manipulations through smart pointers. These pointers
would be able to refer to either normal transient objects, or to objects that reside in
persistent storage. When an object in persistent storage is referenced through the smart
pointer, a copy is loaded into memory. The smart pointers should even be able to enforce
a consistency protocol if the object is replicated or loaded into shared memory.

In analyzing how effective a pointer substitute is, we consider two criteria: (1) how run-
time efficient it is, and (2), how it impacts the code in terms of programming style. Smart
pointers with a lot of functionality could be quite inefficient; it is also possible to write very
lightweight smart pointers. We do not concentrate on run-time efficiency because that is
entirely determined by the specific implementation. Rather, we focus on the second issue:
how the use of smart pointers impacts the client code.

This paper shows how the behavior of smart pointers diverges from that of raw pointers
in certain common C++ constructs. Given this, we conclude that the C++ programming
language does not support seamless smart pointers: smart pointers cannot transparently
replace raw pointers in all ways except declaration syntax. We show that this conclusion
also applies to accessors [Ken91].

The organization of this paper is as follows: Section 1 very briefly summarizes the
behavior of raw pointers that smart pointers try to emulate, particularly in terms of the
standard type conversions. Then, Sect. 2 presents several ways of implementing smart
pointers, and for each, shows limitations and problems with it. Section 3 shows why these
results apply equally to accessors, after which the last section concludes the paper.

Raw Pointer Behavior

In order to evaluate the effectiveness of a pointer substitute, it is necessary to have a
baseline for comparison. That baseline is, of course, the raw pointer.! The semantics of raw
pointers are too complex to list exhaustively. The most important aspect of their behavior
for this discussion is how they undergo implicit type conversions. The problem is to design
user-defined pointers that will behave nearly the same as raw pointers, in terms of implicit
type conversions, in all interesting cases.

Table 1.1 summarizes the conversions that take place on function arguments and in
expressions such as assignment. All of these type conversions may be performed implicitly
by the compiler. We are not interested in explicit type coercions.

We use raw pointer to mean the pointer type that is directly supported by the compiler.



1. Introduction

The conversion classes are listed in order of precedence. The conversions within a group
are of approximately the same precedence.

Table 1.1: Summary of implicit type conversions

Class 0: Trivial Conversions

From To Notes
1. T T& object = reference
2. T& T reference = object
3. T[ T array = pownter
4. T(args) T(x)(args) function = pointer
5. T const T type = const type
6. T volatile T type = wolatile type
7. T const T pointer = pointer to const
8. T volatile Tx  pointer = pointer to volatile

Class 1: Standard Conversions

From To Notes
9. 0 T the NULL pointer conversion
10.  Derived* Basex if base s accessible and

derived isn’t const or volatile
11.  Derived& Base& if base is accessible and
derived isn’t const or volatile
12. 1) T* array = pointer to first element
13.  T(args) T(x)(args) except following & or before ()
14. T« void* provided T s not const or volatile
15.  T(*)(args) voidsx provided sufficient bits are available] ANS91, §4.6, line 6]
Class 2: User-defined Conversions

16.  conversion by constructor
17.  conversion by conversion operator




2. Smart Pointers

Smart pointers are class objects that behave like raw pointers [Str87, Str91]. The smart
pointers overload the indirection operators (* and ->) in order to be usable with normal
pointer syntax. They have constructors that permit them to be initialized with raw pointers
such as new returns. Smart pointers may supply a conversion to void+ in order to be
usable directly used in control statements, e.g. if (ptr) and while (ptr). The conversion to
voidx may also be seen as undesirable [Gau92], in which case all testing is explicit using
overloaded comparison operators. Smart pointers may optionally supply a conversion to
the corresponding raw pointer types.

Our goal in manipulating smart pointers is to have all the functionality of regular
pointers and then some. For example, the ‘and then some’ might be:

e tracing garbage collection [Ede92],

e reference counting [Ken91, Mae92, MIKC92, Cop92],

e convenient access to persistent objects [SGHT89, Str91, HM90, SGM89, MIKC92],

e uniform access to distributed objects [SDP92, Gro92, SMC92],

e instrumenting (measuring) the code,

e or others.

To accomplish this, the smart pointers should look and feel, to the greatest extent possible,
like raw pointers. Achieving the ideal, i.e. making the smart pointer semantics a superset
of raw pointer semantics, is impossible (as we will show). The next best thing is to see how
close the code can come to making the smart pointers perfect substitutes for raw pointers
in all ways except declaration syntax.

Raw pointers support numerous conversions, for example, conversion of T* to void*, of
Tx to const T*, and of derived* to basex. There are two ways to define smart pointers that
can allow them to emulate these conversions:

1. the smart pointer classes can use user-defined type conversions to emulate the standard
conversions, or,

2. the smart pointer classes can be related in an inheritance hierarchy.
In this paper we will consider both these possibilities, sub-possibilities of each, and combi-
nations thereof.

2.1 Supporting Class Hierarchies

Pointers in a class hierarchy undergo a very important set of conversions. In particular
a derived class pointer can be implicitly converted to a base class pointer for an accessible
base class. This conversion, along with virtual functions, is how C++ supports polymorphism.
To be general, the smart pointer classes must emulate this type conversion.

2.1.1 User-Defined Conversions

First we consider the case where the smart pointer classes do not have any subclass
relations, even though the referenced classes may derive from each other. In this case, the
standard conversions of raw pointers must be emulated with user-defined conversions. In



4 2. Smart Pointers

Figure 2.1: A sample class hierarchy

This hierarchy is rooted, but it need not be.
Sections 2.1.1 through 2.1.3 require that class D be in the hierarchy. However, figures later
in the paper will only include classes A, B and C.

particular, we are concerned with line 10 in Table 1.1: the derived class pointer to base
class pointer conversion.

Let us assume that the class hierarchy of user objects is as shown in Fig. 2.1. There
are four client classes: A, B, C, and D. Since there are four client classes we also require
four smart pointer classes. We call the pointer classes Pa, Pb, Pc, and Pd. With standard
conversions and raw pointers, the following implicit conversions are available:

Bx = Ax Cx = Ax
Dx = Ax D = B
C+x = B« D = Cx

The goal is to implement these same conversions among the smart pointer classes. Using
user-defined conversions, there are two possibilities:

1. every smart pointer class provides a user-defined conversion to the smart pointer types that
correspond to its referent type’s direct bases, or,

2. every smart pointer class provides a user-defined conversion corresponding to every base class,
whether direct or indirect.

2.1.2 Conversion to Direct Bases

Suppose every smart pointer class supplies a user-defined conversion to the smart pointer
classes for direct base classes of the referent type. In our current example, this would provide
the following user-defined conversions:

Pb = Pa Pc = Pb
Pc = Pa Pd = Pc

Under this scheme, there is no implicit conversion from Pd to Pa. This is because user-
defined conversions can’t be implicitly chained together. By contrast, with raw pointers the
corresponding conversion is available. The failure to support conversion to an indirect base
pointer is a substantial shortcoming of this implementation.



2.2. Inheritance Hierarchy 5

2.1.3 Conversion to All Bases

Instead of supplying user-defined conversions only to direct bases, we can instead provide
conversions to all bases, direct and indirect. This scheme requires the following user-defined

conversions:
Pb = Pa Pc = Pb
Pc = Pa Pd = Pa
Pd = Pb Pd = Pc

This supplies the conversion from Pd to Pa that was missing from the previous imple-
mentation. However, consider the following code:

void f(Pa);
void f£(Pc);

int main(void) {
Pd pd = new D;
f(pd);
return O;

¥

The call to f() is ambiguous. There are conversions to match both of the overloaded
functions and there is no way to choose between them. In contrast, the equivalent code
with raw pointers is unambiguous because, with raw pointers, conversion to a direct base
is preferred over conversion to an indirect base, thus, f{Cx) would be called. This problem
is less severe than the problem identified in §2.1.2; this is a more viable implementation.

2.2 Inheritance Hierarchy

In the previous section, we discussed emulating the standard pointer conversions with
user-defined conversions. It is also possible to emulate them using the standard reference
conversions [Ken91]. We arrange the smart pointer classes in a class hierarchy that parallels
the object hierarchy. Figure 2.2 illustrates this.

Since class Pc derives from Pb, any instance of Pc can be converted to an instance of Pb
through the standard Derived& to Base& conversion. This reference conversion from Pc to
Pb can thus be used to emulate the corresponding standard pointer conversion from Cx to
B+. The reference conversion has the same precedence as the pointer conversion, and also
favors conversion to a direct base class over conversion to an indirect base class.

This scheme emulates the usual base class/derived class pointer conversions as follows.
Assume that an instance of Pc (as shown in Fig. 2.2) must be converted to an instance of
Pb, perhaps to initialize a temporary or to match a function parameter. Since class Pc is
derived from class Pb, an instance of Pc contains an instance of Pb as a subobject. The
standard conversion (Table 1.1, line 11) converts the Pc object to a Pb object by using the
Pb subobject in place of the complete object. No user-defined code needs to be or may be
provided to perform this conversion. The conversion simply changes the ‘logical’ address of
the object from the beginning of the object to the beginning of the Pb subobject.

In an inheritance hierarchy of smart pointers, there is a choice to be made: What class
defines the pointer instance data? Every class could potentially declare a pointer data
member. Alternatively, either the root of the hierarchy or some other class can provide the
data.



6 2. Smart Pointers

@‘: (@) T

A, B, C: User classes
Pa, Pb, Pc: Smart pointer classesfor A, B, and C
A——B Public virtual derivation of B from A

Figure 2.2: A pointer hierarchy for an object hierarchy

2.2.1 Replicated Data

It is plausible for every smart pointer class in the smart pointer class hierarchy to define
a new data member. Any derived class smart pointer then contains one pointer member
added by the derived class, plus one pointer member for every direct or indirect base class.
For example, suppose that Pb is a subclass of Pa, then a Pb contains a B+ and the Pa
subobject contains an Ax.

A derived class smart pointer contains a subobject for each of its base classes; converting
a derived class smart pointer to a base type uses the corresponding base class subobject
in place of the complete object. After a conversion, the overloaded operators (such as
indirection) use the base class pointer member rather than the derived class pointer member.
To correctly emulate raw pointers, these base class pointers must all point into the same
object as the main derived pointer, which is also called the most derived pointer. Therefore,
assigning to a smart pointer under this implementation must update all of the component
pointers. Failure to do this results in a derived class smart pointer that cannot be correctly
converted to a base class smart pointer.

This implementation does not require any explicit type conversions, and emulates the
standard pointer conversions well: conversion of a smart pointer to a base class smart
pointer favors conversion to a direct base over conversion to an indirect base; this eliminates
the problem discussed in §2.1.3 in which a choice between converting to a direct base
or an indirect base is ambiguous. It also works correctly in the presense of multiple
inheritance. However, it’s ineflicient because updating a derived class smart pointer requires
an operation per base class. In addition, this scheme permits an incorrect type conversion.
The alternative described in the following subsection suffers from the same error, so we
defer the discussion until §2.2.3.

2.2.2 Nonreplicated Data

To improve the efficiency of the previous organization, we make every smart pointer
contain exactly one pointer as its instance data. This is done by defining an abstract



2.2. Inheritance Hierarchy 7

Ptr

- ©

A,B,C: User classes

Pa, Pb, Pc: Smart pointer classesfor A, B, and C
A——=B Public virtual derivation of B from A
Ptr: Base classto supply the pointer datum

Figure 2.3: A smart pointer hierarchy with an abstract base to supply the data

virtual base class that supplies the pointer datum; call this class Ptr. (Smart pointer
classes that are indirectly derived from Ptr need not also be directly derived from it.) This
way, each smart pointer class contains only one instance pointer. It also contains invisible
pointers that implement the virtual derivation, but these pointers don’t get modified during
assignment. Figure 2.3 demonstrates this organization.

Since they use a virtual base class, under most C++ implementations, these smart point-
ers will have size larger than one word. Nonetheless, in contrast with the previous solution,
assigning to one of these smart pointers only requires one indirect memory reference.

This organization supports conversion to a direct or indirect base class, and conversion
to a direct base is preferred. Conversion to a base pointer is also preferred over conversion
to void+. However, these smart pointers do not work with multiple inheritance.

Under multiple inheritance (and some implementations of single inheritance) a base
class subobject may have a nonzero offset within a derived class object. With raw pointers,
converting a derived pointer to a base pointer for such a base class adds the correct offset
to the value of the pointer; this redirects the pointer from the beginning of the main object
to the beginning of the base class subobject. For example, in Fig. 2.3, an object of class C
contains a subobject of class B whose offset is probably nonzero. Converting a Ck to a Bx
redirects the pointer from the beginning of the C object to the beginning of the B subobject
by adding a positive offset to the pointer.

The corresponding conversion is performed on these smart pointers using the standard
derived& to base& conversion shown on Line 11 of Table 1.1. The conversion causes the base
smart pointer subobject to be used in place of the derived smart pointer object. This does
not add the requisite offset to the value of the pointer. Instead, it simply reinterprets the
same pointer value as a pointer of the base class type. Thus, these smart pointers cannot
be converted to base class smart pointers for subobjects with nonzero offsets.



8 2. Smart Pointers

class BASE { ... };
class DER1 : public BASE { ... };
class DER2 : public BASE { ... };

void f(BASE*#* pl, BASE*x* p2) { *pl = *p2; }

int main(void)

{
DER1 * d1 = new DER1;
DER2 * d2 = new DER2;
£(&d1,&d2); // Illegal, but what if?
return O;
}

Figure 2.4: Why a derived** may not be converted to a basexx

If a deriveds* could be converted to a bases*, then this code would assign a DER1x to a DER2x.
However, there is no relationship between classes DER1 and DER2 that would justify such
an assignment.

Expressed differently, the problem is that the operation derived::operator base&() cannot
be overloaded. This is a built-in standard conversion that causes the compiler to substitute
the base subobject in place of the derived object. If this operator could be overloaded
such that it altered the value of the pointer, then the error could be avoided. Note, the
current language definition does not explicitly forbid overloading this operator, nor does
it explicitly permit it [ANS91], however, it seems inevitable that overloading this operator
will eventually be prohibited.

2.2.3 Another Error with Pointer Hierarchies

There is one other error that the schemes presented in the last two subsections both
share: they both permit an incorrect, implicit type conversion.

Every C++ programmer is familiar with the conversion from Derived* to Basex. However,
the conversion from Deriveds* to Basesx is prohibited because it introduces a gaping hole
in the otherwise (mostly) safe type system. Specifically, given two objects whose classes
are different but have a common base, this conversion allows you to incorrectly compare or
assign pointers to these objects [Sal92]. Figure 2.4 provides a example of how this conversion
allows assignment between two incompatible pointer types.

With a class hierarchy of smart pointers, this conversion is not just between Derivedsx
and Basexx; it is also between Derived+ and Basex because the smart pointer classes are related
through inheritance. The compiler permits the conversion because it uses the standard base
class pointer conversion listed on Line 10 of Table 1.1. Figure 2.5 shows the same incorrect
code using smart pointers. The difference is that the code using smart pointers compiles
without error and crashes at runtime.



2.2. Inheritance Hierarchy 9

void f(PtrBASE* pil, PtrBASE* p2) { #pl = *p2; }

int main(void)

{
PtrDER1 d1 = new DER1;
PtrDER2 d2 = new DER2;
// Legal and wrong with a pointer hierarchy
£(&d1,ad2);
return 0O;
}

Figure 2.5: The invalid conversion with smart pointers

Since the smart pointer classes are related through inheritance, the compiler permits the
type conversion, even though this results in an assignment between incompatible types.

To show that this error also occurs with accessors, the code of Figure 2.6, written using
OATH accessors and library classes, encounters this bug and dies with a segmentation
violation. This error exists because the pointer hierarchy provides the incorrect conversion
of Derived+* to Basesx. (For those readers not acquainted with OATH accessors, there is a
discussion of the differences between them and smart pointers in §3.)

#include <iostream.h>
#include "oath/minString.h"

void f(objA & a, objA & b) { a =b; }

int main(void)

{
characterA ch = characterA::make(’A’);
stringhA str = minStringA::make();
str << '"hello\n";
cout << str;
f(str,ch); // incompatible assignment
cout << str; // This causes a core dump.
return O;

}

Figure 2.6: How to misuse the conversion that smart pointer hierarchies permit

This example uses OATH accessors, which are discussed in §3.



10 2. Smart Pointers

2.2.4 Class Hierarchies Summary

We have presented four ways of organizing smart pointers to support class hierarchies.
These ways include two that depend on user-defined conversions and two that use a parallel
class hierarchy.

With user-defined conversions, it’s best to supply conversions to both direct and indirect
base classes. Given that, the problem is that the compiler can’t choose between converting to
a direct base and converting to an indirect base, nor between converting to a base class and
converting to voidx. Consequently, certain overloaded function invocations are ambiguous,
whereas they are legal using raw pointers.

The alternative to user-defined conversions is to use a parallel class hierarchy of smart
pointers. This uses standard reference conversions to convert a derived class smart pointer
to a base class smart pointer. It is inefficient to replicate the pointer data in each class, so
an abstract base class is used to supply a void* instance datum. However, this scheme does
not support multiple inheritance, and it permits an incorrect pointer conversion.

Of the possibilities discussed, we suggest using user-defined type conversions to direct
and indirect base classes. The programmer may need to disambiguate some overloaded
function calls that would be legal using raw pointers.

2.3 Supporting const

Supporting the base class conversions is one problem. Supporting the conversion of
Tx to const Tx is equally or more important because of the major role that const plays in
documenting and structuring C++ programs.

Using raw pointers, there are two ways to modify a pointer declaration using const:
1. const Tx The referent is const.

2. Tx const The pointer is const.

These uses of const are not mutually exclusive, thus, const T* const is the type of a pointer
for which both the referent and the value are const.

With smart pointers, on the other hand, const only can be used one way: const PtrT ptr;.
This does not declare a smart pointer to a const object. Rather, this declares a smart
pointer whose value may not change. The reader may argue that this discussion does not
apply given templates because with templates we can declare both Ptr<T> and Ptr<const
T>. However, these are two distinct types. This is the same as hand coding two classes:
Ptr_T and Ptr_const_T. Being defined from the same template does not give the two classes
any special relationship. In particular, there is no implicit type conversion from Ptr<T> to
Ptr<const T>.

For this reason, one class of smart pointer cannot reference both const and mutable
objects; instead, we need two smart-pointer classes. Let PtrT be the smart pointer class
that replaces pointers of type Tx, and let CPtrT be the smart pointer class that replaces
pointers of type const T+. An overloaded indirection operator of CPtrT returns a const object;
this allows the compiler to complain about attempts to modify an object through a CPtrT.
For these smart pointers to resemble raw pointers, there must be a conversion from PtrT to
CPtrT.



2.4. Overall 11

The conversion from PtrT to CPtrT can be implemented two ways: either there can be
a user-defined conversion between them, or PtrT can be a derived class of CPtrT. The use
of the user-defined conversion is self-explanatory. If the one is a derived class of the other,
then the standard reference conversion can be used in place of the normal standard pointer
conversion, as we have described previously.
Assume that the conversion between the two smart pointer classes is user-defined. Here
are two classes of code that are affected:
1. The following works fine with raw pointers, but when the conversion from PtrT to CPtrT
is user-defined, the code is illegal because it requires two user-defined conversions.
struct S {
S(CPtrT);
3;

S func(PtrT p) { return p; }

2. If a function is overloaded on types void+ and CPtrT, it cannot be invoked with a
PtrT because the call would be ambiguous. With raw pointers, the call would favor
conversion to const T+ over conversion to voidsx.

A better way to implement the const pointer conversion is to make the class PtrT a derived
class of CPtrT through public non-virtual derivation. They can share the same pointer data
member so that instances of each class occupy only one word of storage. Figure 2.7 presents
the basic structure of this organization. This uses a standard reference conversion to emulate
the standard pointer conversion. The difference will be unnoticeable for most programs,
except for the declaration syntax.

// smart pointer class to replace ’const T *’
class CPtxT {
protected:
union {
T * ptr;
const T * cptr;
} value;
public:

s
// smart pointer class to replace ’T *’
class PtrT : public CPtrT {

public:

};

Figure 2.7: A smart pointer hierarchy for const

2.4 Overall

We have identified 7 properties that a smart pointer organization should provide. They
are (with keywords for future reference):



12 2. Smart Pointers

Table 2.1: Strengths and weaknesses of these methods

Method dir indir prefer mult safe const fast
userdef direct (§2.1.2) - — + n T
userdef all (§2.1.3) — + + 1+
hier replicated (§2.2.1) + + + + — n _
hier abstract (§2.2.2) + + + — - + +
recommended hybrid (§2.4) — + 1+ n +
OATH accessors (§3) + + + - - _ +

+ good behavior
[ ] a user-defined conversion replaces a standard one
— incorrect behavior

dir  implicit conversion to a direct base pointer;

indir implicit conversion to an indirect base pointer;

prefer a preference for converting to a direct base over an indirect base;

mult support for multiple inheritance;

safe no conversion from deriveds*x to basexx;

const the ability to reference normal and const objects, with compiler enforcement of the const
attribute, and a conversion from non-const to const;

fast the organization should be intrinsically efficient.

In general, any type conversion among the smart pointers should be the same precedence
as the conversion to which it corresponds among raw pointers. For example, the conversion
from derived to basex is Class 1 (a standard conversion), as shown in Table 1.1. Therefore,
it would be best for the corresponding conversion among smart pointers also to be Class
1. If this is done, the smart pointers closely resemble raw pointers in terms of overloaded
function resolution and implicit conversions. Table 2.1 shows how well each organization
that we’ve presented satisfies these goals.

As shown in Table 2.1, a class hierarchy of smart pointers emulates the derived class/base
class conversion and the const pointer conversion well. However, it only supports inheritance
when all subobjects have offset zero, and thus it fails to support multiple inheritance.
In addition, it introduces the erroneous derived+* to basex* conversion. Therefore, a class
hierarchy of smart pointers is good for implementing the const conversion, but not for
implementing the base class conversions.

By contrast, user-defined conversions are less desirable in all cases because they replace
a standard or trivial conversion with a user-defined conversion; this difference is noticeable
in terms of overloaded function resolution and chaining of type conversions. In spite of
that disadvantage, however, user-defined conversions allow the smart pointers to support
the base class/derived class conversion, even under multiple inheritance, and don’t permit
the erroneous conversion.

These two observations lead to our recommended overall organization. We suggest using
user-defined conversions to emulate the base class/derived class conversions because this is



2.4. Overall 13

A, B, C: User classes

Pa, Pb, Pc:  Smart pointer classesfor A*, B*, and C*
Ra, Rb, Rc:  Smart pointer classes for const A*, etc.
Public derivation

******* = User-defined type conversion

Figure 2.8: The final smart pointer organization for the indicated object classes.

safe and correct. Simultaneously, the smart pointers should use a smart pointer inheritance
hierarchy to emulate the const conversions.

A diagram of this organization is shown in Fig. 2.8. This shows an application class
hierarchy and the corresponding smart pointer classes, including both the smart pointer
classes for regular objects, and those for const pointers. For each of the application’s
classes there are two smart pointer classes, one that references mutable objects and one
that references const objects. The smart pointer class that references mutable objects is a
derived class of the one that references const objects. This supplies a standard conversion
from pointer to mutable to pointer to const. In addition, the smart pointer classes for
distinct application classes are related through user-defined type conversions. If class B is a
derived class of A, then Pb provides a user-defined type conversion to Pa, and CPb provides
a user-defined type conversion to CPa. (CPb is the smart pointer class for const Bs.)

The use of user-defined conversions between distinct types PtrX and PtrY supports
multiple inheritance and avoids the erroneous conversion. The classes PtrX and CPtrX are
related by inheritance because it gives better behavior without allowing false conversions;
the compiler can correctly enforce the const attribute of a referent of CPtrX.

2.4.1 A Unrooted Hierarchy

While we have only discussed using the smart pointers in a class hierarchy with a unique
root, this does not make any difference in the implementation that has been suggested.
Any type conversion that is legal among raw pointers can be implemented by the smart
pointers by encapsulating the raw pointer conversion within a user-defined type conversion.



14 2. Smart Pointers

Table 2.2: Some ways in which our smart pointers don’t behave like raw pointers.

Case Raw Pointers Smart Pointers
Convert either to pointer to direct base or | Convert to direct | Ambiguous

to pointer to indirect base base

Convert either to pointer to base or to | Convert to base Ambiguous

void*

Chain conversion to pointer to base with | Legal Tllegal

another user-defined type conversion

Of course, as we have mentioned, whenever a user-defined conversion replaces a built-in
conversion, some cases of overloading and chaining of conversions do not behave as desired.

2.5 Other Weaknesses

2.5.1 Pointers to volatile Objects

This paper has discussed const, but not volatile. Pointers to volatile objects must be
supported in exactly the same way as pointers to const objects. In particular, for a single
application class, distinct smart pointer classes are required to reference:

1. normal objects
2. const objects
3. volatile objects
4

. const volatile objects

This plethora of classes adds a certain amount of notational complexity to the program.

2.5.2 Conversion Precedence

The proposed organization appears to be the best of the ones that have been considered
because it is both safe and efficient. However, it emulates the standard derivedx to basex
conversions with user-defined type conversions. User-defined type conversions have lower
precedence than the standard conversions. Therefore, there are many situations, primarily
involving function overloading, in which these smart pointers do not behave the same as the
corresponding raw pointers. Table 2.2 lists some of the cases in which these smart pointers
behave differently than raw pointers.

2.5.3 Pointer Leakage

It is essentially impossible to prevent smart pointers from leaking raw pointers to the
application (e.g. this pointers). In some cases, it is desirable to prevent this. For example,
if smart pointers are used to implement copying garbage collection, then after a garbage
collection, all dynamically allocated objects have been moved and any raw pointer no longer
has the correct value.



2.5. Other Weaknesses 15

As another example, [Ken91] discusses why the problem of raw pointer leakage makes
smart pointers unsafe for reference counting. The basic idea is that the application can
obtain reference counted pointer as a temporary expression, perhaps as the return value
from a function. The application may then dereference the reference counted pointer by
invoking the overloaded operator ->, which returns a raw pointer, which will in turn be
dereferenced. Once the raw pointer is returned from the overloaded operator ->, the
reference counted pointer has served its purpose and may be destroyed. However, destroying
the reference counted pointer decrements the object’s reference count and may cause the
object to be deallocated. If the object is deallocated, then the raw pointer, which is about
to be dereferenced, is a dangling reference.

In other cases, it is not critical that the application be prevented from obtaining raw
pointers. For example, mark-and-sweep garbage collectors can normally tolerate the exis-
tence of raw pointers, provided the raw pointers point at objects that are also referenced
by smart pointers [Ede92].

Smart pointers leak raw pointers because of the definition in C++ of the overloaded
indirect member access operator, ->. When the compiler sees an expression of the form
X->Y, where X is an expression of class type, the compiler evaluates X.operator->(). The
language definition requires that this operator return a raw pointer.! This is a potential
problem because if the smart pointer was a temporary object, the compiler may destroy it
as soon as the raw pointer is obtained. However, as shown for the case of reference counting,
for example, destroying the smart pointer may cause the raw pointer to become a dangling
reference. This is the main problem that accessors solve.

!These operators may be chained together, but must eventually return a raw pointer.



16 3. Accessors

3. Accessors

Kennedy describes accessors in OATH [Ken91] as an alternative to smart pointers. The
central difference between accessors and smart pointers is that accessors don’t overload the
indirection operators; instead, like stubs [DMS92], they duplicate all the public member
functions of the referent object and forward those calls through a pointer to the object.
Accessors are somewhere in between smart pointers and smart references, because they
implement pointer semantics, but use ‘.’ rather than >’ to access the underlying object.
Figure 3.1 gives the general idea behind how accessors work. This figure does not attempt
to reproduce all the functionality described in [Ken91], instead, it just shows the relation
between the application class and the accessor class.

Accessors are clearly superior to smart pointers because they prevent raw pointer leak-
age. However, they are difficult to declare because every member function of the application
class must also be declared in the accessor class. Macros can abbreviate this, but the code
looks significantly different from standard C++ class definitions and complex macros can

// A sample application class.
class Thing {
friend class ThingA;
private:
int value;
Thing(int initial) : value(initial) { }
void set(int val) { value = val; }
int get( { return value; }

};

// A class for accessing Things.
class Thingh {
private:
Thing * ptr;
public:
ThingA() : ptr(0) { }
void make(int i) { ptr = new Thing(i); }

void set(int i) { ptr->set(i); }
int get( { return ptr->get(); }

};

Figure 3.1: An object class and an accessor-type reference class

The accessor class contains a raw pointer as its instance datum. All of the client class’
member functions are duplicated in the accessor class and accessed with ‘.’. Therefore, the
accessor class does not need to overload the indirection operators



17

hinder debugging.

The accessors in OATH are organized into a class hierarchy that parallels the data object
hierarchy. The reference conversions are used to convert one accessor class into a different
one. The class hierarchy is rooted in the class oathCoreA; it is this class that supplies the
pointer data member. This organization was discussed in Sect. 2.2.2. (Indeed, it was OATH
that led us to consider this organization.)

The OATH class hierarchy uses only single inheritance; the class hierarchy, therefore,
forms a tree. If it used multiple inheritance, then its implementation would suffer from
the incorrect offset problem described in 2.2.2. In particular, for a pointer conversion that
changes the value of the pointer, the corresponding reference conversion is incorrect because
it changes the type of the accessor without changing the value of the pointer. Even using
only single inheritance, this scheme permits the incorrect type conversion of derived+* to
basex+ that we discuss in 2.2.3 (see Fig. 2.6). Finally, the hierarchy of OATH uses a single
accessor class per object class; therefore, it is unable to represent pointers to const objects
(§2.3).

Accessors suffer from the same problems, with respect to type conversions, as smart
pointers. However, the accessor model is safer than the smart pointer model. By not
overloading ->, accessors avoid leaking raw pointers in a way that may result in dangling
references if the compiler is aggressive in destroying temporary objects.



18 4. Conclusion

4. Conclusion

Pointer substitutes, whether smart pointers or accessors, are a powerful programming
paradigm. C++ supports them, but not to the extent of allowing them to integrate seamlessly
into a program. There are two main limitations: (1) supporting pointers to const objects,
and (2) supporting the standard pointer conversions.

We have presented several possible implementations, and discussed how they address
these two limitations. Supporting pointers to const objects requires two smart pointer
classes per object class. The two smart pointer classes should be defined such that the class
for the pointer to mutable is derived from the class for pointer to const. Supporting class
hierarchies is more difficult. The best way appears to be to use user-defined type conversions
between the pointer classes. The behavior under this organization diverges from that of raw
pointers in some circumstances that involve function overloading or chaining user-defined
conversions. However, this should present only a slight inconvenience, not a fatal handicap.

Changes to C++ could allow it to support smart pointers better. Some possible changes
include allowing some user-defined conversions to chain, or permitting user-defined code
to implement the derived::operator base&() conversion. However, smart pointers are useful
enough that it’s important to identify how best to implement them, given the current
language definition. That’s what this paper has done: We’ve shown how to make smart
pointers closely emulate the standard pointer conversions for const and class hierarchies,
while circumventing erroneous and incorrect type conversions.



19

Acknowledgements

I would like to thank: Peter Dickman, David Plainfossé, Darrell Long and Marc
Shapiro for commenting on various versions of the paper, the referees of the 1992 Usenix
C++ Conference for their relevant insightful comments, Philipe Gautron for some lively
discussions and comments on the paper, and, Marc Shapiro (again) for supporting this

work at INRIA.



20

References

References

[ANSO1]

[Cop92]

[DMS92]

[Ede92]

[Gau92]
[Gr0o92]

[HM90]

[Ken91]

[Mae92]

[MIKC92]

[Sal92]

[SDP92]

[SGH*89]

[SGMS9]

ANSI X3J16/ISO WG21 working document X3J16/91-0115, May 1991. Draft
ANSI/ISO standard for the C+4 programming language.

James Coplien. Advanced C++ Programming Styles and Idioms. Addison-Wesley,
1992.

Peter Dickman, Messac Makpangou, and Marc Shapiro. Contrasting fragmented
objects with uniform transparent object references for distributed programming.
In SIGOPS 1992 Furopean Workshop on Models and Paradigms for Distributed
Systems Structuring, 1992.

Daniel R. Edelson. Precompiling C4++ for garbage collection. In International
Workshop on Memory Management, 1992. To appear in the Spring- Verlag Lecture
Notes in Computer Science.

Philippe Gautron. Don’t convert smart pointers to void+, 1992. Private commu-
nication.

Ed Grossman. Using smart pointers for transparent access to objects on disk or
across a network, 1992. Private communication.

Antony L. Hosking and J. Eliot B. Moss. Towards compile-time optimizations for
persistence. In 4% Inter. Workshop on Persistent Object Systems, pages 17-27.
Morgan Kaufman (1991), 1990.

Brian Kennedy. The features of the object-oriented abstract type hierarchy
(OATH). In Proc. Useniz C++ Conference, pages 41-50. Usenix Association,
April 1991.

Roman E. Maeder. A provably correct reference count scheme for a symbolic
computation system. In unpublished form, 1992.

Peter W. Madany, Nayeem Islam, Panos Kougiouris, and Roy H. Campbell.
Reification and reflection in C++: An operating systems perspective. Technical
Report UTUCDCS-R-92-1736, Dept. of Computer Science, University of Illinois
at Urbana-Champaign, March 1992.

Hayssam Saleh. Conception et réalisation d’un systéme pour la programmation
d’applications objets concurrentes et réparties sur machines paralléles. PhD thesis,
Université Pierre et Marie Curie—Paris VI, 1992.

Mare Shapiro, Peter Dickman, and David Plainfossé. Robust, distributed ref-
erences and acyclic garbage collection. In Symp. on Principles of Distributed
Computing, Vancouver, Canada, August 1992. ACM.

Marc Shapiro, Yvon Gourhant, Sabine Habert, Laurence Mosseri, Michel Ruffin,
and Céline Valot. SOS: An object-oriented operating system—assessment and
perspectives. Comput. Syst., 2(4):287-338, December 1989.

Mare Shapiro, Philippe Gautron, and Laurence Mosseri. Persistence and mi-
gration for C++4 objects. In Stephen Cook, editor, FCOOP’89, Proc. of the
Third Furopean Conf. on Object-Oriented Programming, British Computer Soci-
ety Workshop Series, pages 191-204, Nottingham (GB), July 1989. The British
Computer Society, Cambridge University Society.



References 21

[SMC92] Marc Shapiro, Julien Maisonneuve, and Pierre Collet. Implementing references
as chains of links. In Workshop on Object Orientation in Operating Systems, 1992.
To appear.

[Str&7] Bjarne Stroustrup. The evolution of C4++ 1985 to 1987. In Proc. Usenix C'++
Workshop, pages 1-22. Usenix Association, November 1987.

[Str91] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 274
edition, 1991.



