
Smart Pointers: They're Smart, butThey're Not PointersDaniel R. Edelson�UCSC{CRL{92{2710 June 1992Baskin Center forComputer Engineering & Information SciencesUniversity of California, Santa CruzSanta Cruz, CA 95064 USA
�This research was performed while the author was a visiting researcher at INRIA Project SOR, BP 105Rocquencourt, 78153 Le Chesnay CEDEX, FRANCE.This work was supported in part by Esprit project 5279 Harness.This paper �rst appeared in Proc. 1992 Usenix C++ Conference, Usenix Association, 1992, pp 1{19.

11. IntroductionThe ability to substitute user-de�ned code for pointers is a very powerful programmingmechanism. It facilitates using C++ in domains for which the language is not specialized.For example, smart pointers [Str87] or variations thereof can be used to support distributedsystems [SDP92, SMC92], persistent object systems [MIKC92, SGH+89, Str91, pg. 244], toprovide reference counting (e.g. the ObjectStars of [MIKC92] or the counted pointers idiomof [Cop92]) or garbage collection [Ken91, Ede92].In this paradigm, a smart pointer encapsulates some kind of raw pointer or complexhandle. The smart pointer overloads the indirection operators in order to be usable withnormal pointer syntax. For example, code that accesses both transient and persistentobjects can be written to perform its manipulations through smart pointers. These pointerswould be able to refer to either normal transient objects, or to objects that reside inpersistent storage. When an object in persistent storage is referenced through the smartpointer, a copy is loaded into memory. The smart pointers should even be able to enforcea consistency protocol if the object is replicated or loaded into shared memory.In analyzing how e�ective a pointer substitute is, we consider two criteria: (1) how run-time e�cient it is, and (2), how it impacts the code in terms of programming style. Smartpointers with a lot of functionality could be quite ine�cient; it is also possible to write verylightweight smart pointers. We do not concentrate on run-time e�ciency because that isentirely determined by the speci�c implementation. Rather, we focus on the second issue:how the use of smart pointers impacts the client code.This paper shows how the behavior of smart pointers diverges from that of raw pointersin certain common C++ constructs. Given this, we conclude that the C++ programminglanguage does not support seamless smart pointers: smart pointers cannot transparentlyreplace raw pointers in all ways except declaration syntax. We show that this conclusionalso applies to accessors [Ken91].The organization of this paper is as follows: Section 1 very briey summarizes thebehavior of raw pointers that smart pointers try to emulate, particularly in terms of thestandard type conversions. Then, Sect. 2 presents several ways of implementing smartpointers, and for each, shows limitations and problems with it. Section 3 shows why theseresults apply equally to accessors, after which the last section concludes the paper.Raw Pointer BehaviorIn order to evaluate the e�ectiveness of a pointer substitute, it is necessary to have abaseline for comparison. That baseline is, of course, the raw pointer.1 The semantics of rawpointers are too complex to list exhaustively. The most important aspect of their behaviorfor this discussion is how they undergo implicit type conversions. The problem is to designuser-de�ned pointers that will behave nearly the same as raw pointers, in terms of implicittype conversions, in all interesting cases.Table 1.1 summarizes the conversions that take place on function arguments and inexpressions such as assignment. All of these type conversions may be performed implicitlyby the compiler. We are not interested in explicit type coercions.1We use raw pointer to mean the pointer type that is directly supported by the compiler.

2 1. Introduction
Table 1.1: Summary of implicit type conversionsThe conversion classes are listed in order of precedence. The conversions within a groupare of approximately the same precedence.Class 0: Trivial ConversionsFrom To Notes1. T T& object) reference2. T& T reference) object3. T[] T� array) pointer4. T(args) T(�)(args) function) pointer5. T const T type) const type6. T volatile T type) volatile type7. T� const T� pointer) pointer to const8. T� volatile T� pointer) pointer to volatileClass 1: Standard ConversionsFrom To Notes9. 0 T� the NULL pointer conversion10. Derived� Base� if base is accessible andderived isn't const or volatile11. Derived& Base& if base is accessible andderived isn't const or volatile12. T[] T� array) pointer to �rst element13. T(args) T(�)(args) except following & or before ()14. T� void� provided T is not const or volatile15. T(�)(args) void� provided su�cient bits are available[ANS91, x4.6, line 6]Class 2: User-de�ned Conversions16. conversion by constructor17. conversion by conversion operator

32. Smart PointersSmart pointers are class objects that behave like raw pointers [Str87, Str91]. The smartpointers overload the indirection operators (� and ->) in order to be usable with normalpointer syntax. They have constructors that permit them to be initialized with raw pointerssuch as new returns. Smart pointers may supply a conversion to void� in order to beusable directly used in control statements, e.g. if (ptr) and while (ptr). The conversion tovoid� may also be seen as undesirable [Gau92], in which case all testing is explicit usingoverloaded comparison operators. Smart pointers may optionally supply a conversion tothe corresponding raw pointer types.Our goal in manipulating smart pointers is to have all the functionality of regularpointers and then some. For example, the `and then some' might be:� tracing garbage collection [Ede92],� reference counting [Ken91, Mae92, MIKC92, Cop92],� convenient access to persistent objects [SGH+89, Str91, HM90, SGM89, MIKC92],� uniform access to distributed objects [SDP92, Gro92, SMC92],� instrumenting (measuring) the code,� or others.To accomplish this, the smart pointers should look and feel, to the greatest extent possible,like raw pointers. Achieving the ideal, i.e. making the smart pointer semantics a supersetof raw pointer semantics, is impossible (as we will show). The next best thing is to see howclose the code can come to making the smart pointers perfect substitutes for raw pointersin all ways except declaration syntax.Raw pointers support numerous conversions, for example, conversion of T� to void�, ofT� to const T�, and of derived� to base�. There are two ways to de�ne smart pointers thatcan allow them to emulate these conversions:1. the smart pointer classes can use user-de�ned type conversions to emulate the standardconversions, or,2. the smart pointer classes can be related in an inheritance hierarchy.In this paper we will consider both these possibilities, sub-possibilities of each, and combi-nations thereof.2.1 Supporting Class HierarchiesPointers in a class hierarchy undergo a very important set of conversions. In particulara derived class pointer can be implicitly converted to a base class pointer for an accessiblebase class. This conversion, along with virtual functions, is how C++ supports polymorphism.To be general, the smart pointer classes must emulate this type conversion.2.1.1 User-De�ned ConversionsFirst we consider the case where the smart pointer classes do not have any subclassrelations, even though the referenced classes may derive from each other. In this case, thestandard conversions of raw pointers must be emulated with user-de�ned conversions. In

4 2. Smart Pointers
C

A

B

DFigure 2.1: A sample class hierarchyThis hierarchy is rooted, but it need not be.Sections 2.1.1 through 2.1.3 require that class D be in the hierarchy. However, �gures laterin the paper will only include classes A, B and C.particular, we are concerned with line 10 in Table 1.1: the derived class pointer to baseclass pointer conversion.Let us assume that the class hierarchy of user objects is as shown in Fig. 2.1. Thereare four client classes: A, B, C, and D. Since there are four client classes we also requirefour smart pointer classes. We call the pointer classes Pa, Pb, Pc, and Pd. With standardconversions and raw pointers, the following implicit conversions are available:B�) A� C�) A�D�) A� D�) B�C�) B� D�) C�The goal is to implement these same conversions among the smart pointer classes. Usinguser-de�ned conversions, there are two possibilities:1. every smart pointer class provides a user-de�ned conversion to the smart pointer types thatcorrespond to its referent type's direct bases, or,2. every smart pointer class provides a user-de�ned conversion corresponding to every base class,whether direct or indirect.2.1.2 Conversion to Direct BasesSuppose every smart pointer class supplies a user-de�ned conversion to the smart pointerclasses for direct base classes of the referent type. In our current example, this would providethe following user-de�ned conversions:Pb) Pa Pc) PbPc) Pa Pd) PcUnder this scheme, there is no implicit conversion from Pd to Pa. This is because user-de�ned conversions can't be implicitly chained together. By contrast, with raw pointers thecorresponding conversion is available. The failure to support conversion to an indirect basepointer is a substantial shortcoming of this implementation.

2.2. Inheritance Hierarchy 52.1.3 Conversion to All BasesInstead of supplying user-de�ned conversions only to direct bases, we can instead provideconversions to all bases, direct and indirect. This scheme requires the following user-de�nedconversions: Pb) Pa Pc) PbPc) Pa Pd) PaPd) Pb Pd) PcThis supplies the conversion from Pd to Pa that was missing from the previous imple-mentation. However, consider the following code:void f(Pa);void f(Pc);int main(void) {Pd pd = new D;f(pd);return 0;} The call to f() is ambiguous. There are conversions to match both of the overloadedfunctions and there is no way to choose between them. In contrast, the equivalent codewith raw pointers is unambiguous because, with raw pointers, conversion to a direct baseis preferred over conversion to an indirect base, thus, f(C�) would be called. This problemis less severe than the problem identi�ed in x2.1.2; this is a more viable implementation.2.2 Inheritance HierarchyIn the previous section, we discussed emulating the standard pointer conversions withuser-de�ned conversions. It is also possible to emulate them using the standard referenceconversions [Ken91]. We arrange the smart pointer classes in a class hierarchy that parallelsthe object hierarchy. Figure 2.2 illustrates this.Since class Pc derives from Pb, any instance of Pc can be converted to an instance of Pbthrough the standard Derived& to Base& conversion. This reference conversion from Pc toPb can thus be used to emulate the corresponding standard pointer conversion from C� toB�. The reference conversion has the same precedence as the pointer conversion, and alsofavors conversion to a direct base class over conversion to an indirect base class.This scheme emulates the usual base class/derived class pointer conversions as follows.Assume that an instance of Pc (as shown in Fig. 2.2) must be converted to an instance ofPb, perhaps to initialize a temporary or to match a function parameter. Since class Pc isderived from class Pb, an instance of Pc contains an instance of Pb as a subobject. Thestandard conversion (Table 1.1, line 11) converts the Pc object to a Pb object by using thePb subobject in place of the complete object. No user-de�ned code needs to be or may beprovided to perform this conversion. The conversion simply changes the `logical' address ofthe object from the beginning of the object to the beginning of the Pb subobject.In an inheritance hierarchy of smart pointers, there is a choice to be made: What classde�nes the pointer instance data? Every class could potentially declare a pointer datamember. Alternatively, either the root of the hierarchy or some other class can provide thedata.

6 2. Smart Pointers
A, B, C:

Pa, Pb, Pc:

A B Public virtual derivation of B from A

Smart pointer classes for A, B, and C

User classes

A

B

C

Pa

Pb

PcFigure 2.2: A pointer hierarchy for an object hierarchy2.2.1 Replicated DataIt is plausible for every smart pointer class in the smart pointer class hierarchy to de�nea new data member. Any derived class smart pointer then contains one pointer memberadded by the derived class, plus one pointer member for every direct or indirect base class.For example, suppose that Pb is a subclass of Pa, then a Pb contains a B� and the Pasubobject contains an A�.A derived class smart pointer contains a subobject for each of its base classes; convertinga derived class smart pointer to a base type uses the corresponding base class subobjectin place of the complete object. After a conversion, the overloaded operators (such asindirection) use the base class pointer member rather than the derived class pointer member.To correctly emulate raw pointers, these base class pointers must all point into the sameobject as the main derived pointer, which is also called the most derived pointer. Therefore,assigning to a smart pointer under this implementation must update all of the componentpointers. Failure to do this results in a derived class smart pointer that cannot be correctlyconverted to a base class smart pointer.This implementation does not require any explicit type conversions, and emulates thestandard pointer conversions well: conversion of a smart pointer to a base class smartpointer favors conversion to a direct base over conversion to an indirect base; this eliminatesthe problem discussed in x2.1.3 in which a choice between converting to a direct baseor an indirect base is ambiguous. It also works correctly in the presense of multipleinheritance. However, it's ine�cient because updating a derived class smart pointer requiresan operation per base class. In addition, this scheme permits an incorrect type conversion.The alternative described in the following subsection su�ers from the same error, so wedefer the discussion until x2.2.3.2.2.2 Nonreplicated DataTo improve the e�ciency of the previous organization, we make every smart pointercontain exactly one pointer as its instance data. This is done by de�ning an abstract

2.2. Inheritance Hierarchy 7
User classes

Smart pointer classes for A, B, and C

Public virtual derivation of B from A

Base class to supply the pointer datum

A B

Pa, Pb, Pc:

A, B, C:

Ptr:

A

B

C

Pa

Pb

Pc

Ptr

Figure 2.3: A smart pointer hierarchy with an abstract base to supply the datavirtual base class that supplies the pointer datum; call this class Ptr. (Smart pointerclasses that are indirectly derived from Ptr need not also be directly derived from it.) Thisway, each smart pointer class contains only one instance pointer. It also contains invisiblepointers that implement the virtual derivation, but these pointers don't get modi�ed duringassignment. Figure 2.3 demonstrates this organization.Since they use a virtual base class, under most C++ implementations, these smart point-ers will have size larger than one word. Nonetheless, in contrast with the previous solution,assigning to one of these smart pointers only requires one indirect memory reference.This organization supports conversion to a direct or indirect base class, and conversionto a direct base is preferred. Conversion to a base pointer is also preferred over conversionto void�. However, these smart pointers do not work with multiple inheritance.Under multiple inheritance (and some implementations of single inheritance) a baseclass subobject may have a nonzero o�set within a derived class object. With raw pointers,converting a derived pointer to a base pointer for such a base class adds the correct o�setto the value of the pointer; this redirects the pointer from the beginning of the main objectto the beginning of the base class subobject. For example, in Fig. 2.3, an object of class Ccontains a subobject of class B whose o�set is probably nonzero. Converting a C� to a B�redirects the pointer from the beginning of the C object to the beginning of the B subobjectby adding a positive o�set to the pointer.The corresponding conversion is performed on these smart pointers using the standardderived& to base& conversion shown on Line 11 of Table 1.1. The conversion causes the basesmart pointer subobject to be used in place of the derived smart pointer object. This doesnot add the requisite o�set to the value of the pointer. Instead, it simply reinterprets thesame pointer value as a pointer of the base class type. Thus, these smart pointers cannotbe converted to base class smart pointers for subobjects with nonzero o�sets.

8 2. Smart Pointersclass BASE { ... };class DER1 : public BASE { ... };class DER2 : public BASE { ... };void f(BASE** p1, BASE** p2) { *p1 = *p2; }int main(void){ DER1 * d1 = new DER1;DER2 * d2 = new DER2;f(&d1,&d2); // Illegal, but what if?return 0;} Figure 2.4: Why a derived�� may not be converted to a base��If a derived�� could be converted to a base��, then this code would assign a DER1� to a DER2�.However, there is no relationship between classes DER1 and DER2 that would justify suchan assignment.Expressed di�erently, the problem is that the operation derived::operator base&() cannotbe overloaded. This is a built-in standard conversion that causes the compiler to substitutethe base subobject in place of the derived object. If this operator could be overloadedsuch that it altered the value of the pointer, then the error could be avoided. Note, thecurrent language de�nition does not explicitly forbid overloading this operator, nor doesit explicitly permit it [ANS91], however, it seems inevitable that overloading this operatorwill eventually be prohibited.2.2.3 Another Error with Pointer HierarchiesThere is one other error that the schemes presented in the last two subsections bothshare: they both permit an incorrect, implicit type conversion.Every C++ programmer is familiar with the conversion from Derived� to Base�. However,the conversion from Derived�� to Base�� is prohibited because it introduces a gaping holein the otherwise (mostly) safe type system. Speci�cally, given two objects whose classesare di�erent but have a common base, this conversion allows you to incorrectly compare orassign pointers to these objects [Sal92]. Figure 2.4 provides a example of how this conversionallows assignment between two incompatible pointer types.With a class hierarchy of smart pointers, this conversion is not just between Derived��and Base��; it is also between Derived� and Base� because the smart pointer classes are relatedthrough inheritance. The compiler permits the conversion because it uses the standard baseclass pointer conversion listed on Line 10 of Table 1.1. Figure 2.5 shows the same incorrectcode using smart pointers. The di�erence is that the code using smart pointers compileswithout error and crashes at runtime.

2.2. Inheritance Hierarchy 9void f(PtrBASE* p1, PtrBASE* p2) { *p1 = *p2; }int main(void){ PtrDER1 d1 = new DER1;PtrDER2 d2 = new DER2;// Legal and wrong with a pointer hierarchyf(&d1,&d2);return 0;} Figure 2.5: The invalid conversion with smart pointersSince the smart pointer classes are related through inheritance, the compiler permits thetype conversion, even though this results in an assignment between incompatible types.To show that this error also occurs with accessors, the code of Figure 2.6, written usingOATH accessors and library classes, encounters this bug and dies with a segmentationviolation. This error exists because the pointer hierarchy provides the incorrect conversionof Derived�� to Base��. (For those readers not acquainted with OATH accessors, there is adiscussion of the di�erences between them and smart pointers in x3.)#include <iostream.h>#include "oath/minString.h"void f(objA & a, objA & b) { a = b; }int main(void){ characterA ch = characterA::make('A');stringA str = minStringA::make();str << "hello\n";cout << str;f(str,ch); // incompatible assignmentcout << str; // This causes a core dump.return 0;} Figure 2.6: How to misuse the conversion that smart pointer hierarchies permitThis example uses OATH accessors, which are discussed in x3.

10 2. Smart Pointers2.2.4 Class Hierarchies SummaryWe have presented four ways of organizing smart pointers to support class hierarchies.These ways include two that depend on user-de�ned conversions and two that use a parallelclass hierarchy.With user-de�ned conversions, it's best to supply conversions to both direct and indirectbase classes. Given that, the problem is that the compiler can't choose between converting toa direct base and converting to an indirect base, nor between converting to a base class andconverting to void�. Consequently, certain overloaded function invocations are ambiguous,whereas they are legal using raw pointers.The alternative to user-de�ned conversions is to use a parallel class hierarchy of smartpointers. This uses standard reference conversions to convert a derived class smart pointerto a base class smart pointer. It is ine�cient to replicate the pointer data in each class, soan abstract base class is used to supply a void� instance datum. However, this scheme doesnot support multiple inheritance, and it permits an incorrect pointer conversion.Of the possibilities discussed, we suggest using user-de�ned type conversions to directand indirect base classes. The programmer may need to disambiguate some overloadedfunction calls that would be legal using raw pointers.2.3 Supporting constSupporting the base class conversions is one problem. Supporting the conversion ofT� to const T� is equally or more important because of the major role that const plays indocumenting and structuring C++ programs.Using raw pointers, there are two ways to modify a pointer declaration using const:1. const T� The referent is const.2. T� const The pointer is const.These uses of const are not mutually exclusive, thus, const T� const is the type of a pointerfor which both the referent and the value are const.With smart pointers, on the other hand, const only can be used one way: const PtrT ptr;.This does not declare a smart pointer to a const object. Rather, this declares a smartpointer whose value may not change. The reader may argue that this discussion does notapply given templates because with templates we can declare both Ptr<T> and Ptr<constT>. However, these are two distinct types. This is the same as hand coding two classes:Ptr T and Ptr const T. Being de�ned from the same template does not give the two classesany special relationship. In particular, there is no implicit type conversion from Ptr<T> toPtr<const T>.For this reason, one class of smart pointer cannot reference both const and mutableobjects; instead, we need two smart-pointer classes. Let PtrT be the smart pointer classthat replaces pointers of type T�, and let CPtrT be the smart pointer class that replacespointers of type const T�. An overloaded indirection operator of CPtrT returns a const object;this allows the compiler to complain about attempts to modify an object through a CPtrT.For these smart pointers to resemble raw pointers, there must be a conversion from PtrT toCPtrT.

2.4. Overall 11The conversion from PtrT to CPtrT can be implemented two ways: either there can bea user-de�ned conversion between them, or PtrT can be a derived class of CPtrT. The useof the user-de�ned conversion is self-explanatory. If the one is a derived class of the other,then the standard reference conversion can be used in place of the normal standard pointerconversion, as we have described previously.Assume that the conversion between the two smart pointer classes is user-de�ned. Hereare two classes of code that are a�ected:1. The following works �ne with raw pointers, but when the conversion from PtrT to CPtrTis user-de�ned, the code is illegal because it requires two user-de�ned conversions.struct S {S(CPtrT);};S func(PtrT p) { return p; }2. If a function is overloaded on types void� and CPtrT, it cannot be invoked with aPtrT because the call would be ambiguous. With raw pointers, the call would favorconversion to const T� over conversion to void�.A better way to implement the const pointer conversion is to make the class PtrT a derivedclass of CPtrT through public non-virtual derivation. They can share the same pointer datamember so that instances of each class occupy only one word of storage. Figure 2.7 presentsthe basic structure of this organization. This uses a standard reference conversion to emulatethe standard pointer conversion. The di�erence will be unnoticeable for most programs,except for the declaration syntax.// smart pointer class to replace 'const T *'class CPtrT {protected:union {T * ptr;const T * cptr;} value;public:...};// smart pointer class to replace 'T *'class PtrT : public CPtrT {public:...}; Figure 2.7: A smart pointer hierarchy for const2.4 OverallWe have identi�ed 7 properties that a smart pointer organization should provide. Theyare (with keywords for future reference):

12 2. Smart PointersTable 2.1: Strengths and weaknesses of these methodsMethod dir indir prefer mult safe const fastuserdef direct (x2.1.2) � � + + +userdef all (x2.1.3) � + + +hier replicated (x2.2.1) + + + + � + �hier abstract (x2.2.2) + + + � � + +recommended hybrid (x2.4) � + + + +OATH accessors (x3) + + + � � � ++ good behavior[] a user-de�ned conversion replaces a standard one� incorrect behaviordir implicit conversion to a direct base pointer;indir implicit conversion to an indirect base pointer;prefer a preference for converting to a direct base over an indirect base;mult support for multiple inheritance;safe no conversion from derived�� to base��;const the ability to reference normal and const objects, with compiler enforcement of the constattribute, and a conversion from non-const to const;fast the organization should be intrinsically e�cient.In general, any type conversion among the smart pointers should be the same precedenceas the conversion to which it corresponds among raw pointers. For example, the conversionfrom derived� to base� is Class 1 (a standard conversion), as shown in Table 1.1. Therefore,it would be best for the corresponding conversion among smart pointers also to be Class1. If this is done, the smart pointers closely resemble raw pointers in terms of overloadedfunction resolution and implicit conversions. Table 2.1 shows how well each organizationthat we've presented satis�es these goals.As shown in Table 2.1, a class hierarchy of smart pointers emulates the derived class/baseclass conversion and the const pointer conversion well. However, it only supports inheritancewhen all subobjects have o�set zero, and thus it fails to support multiple inheritance.In addition, it introduces the erroneous derived�� to base�� conversion. Therefore, a classhierarchy of smart pointers is good for implementing the const conversion, but not forimplementing the base class conversions.By contrast, user-de�ned conversions are less desirable in all cases because they replacea standard or trivial conversion with a user-de�ned conversion; this di�erence is noticeablein terms of overloaded function resolution and chaining of type conversions. In spite ofthat disadvantage, however, user-de�ned conversions allow the smart pointers to supportthe base class/derived class conversion, even under multiple inheritance, and don't permitthe erroneous conversion.These two observations lead to our recommended overall organization. We suggest usinguser-de�ned conversions to emulate the base class/derived class conversions because this is

2.4. Overall 13
A

B

C

Pa

Ra

Rb

Pb
Rc

Pc

User classes

Smart pointer classes for A*, B*, and C*

Smart pointer classes for const A*, etc.

A, B, C:

Pa, Pb, Pc:

Ra, Rb, Rc:

User-defined type conversion

Public derivationFigure 2.8: The �nal smart pointer organization for the indicated object classes.safe and correct. Simultaneously, the smart pointers should use a smart pointer inheritancehierarchy to emulate the const conversions.A diagram of this organization is shown in Fig. 2.8. This shows an application classhierarchy and the corresponding smart pointer classes, including both the smart pointerclasses for regular objects, and those for const pointers. For each of the application'sclasses there are two smart pointer classes, one that references mutable objects and onethat references const objects. The smart pointer class that references mutable objects is aderived class of the one that references const objects. This supplies a standard conversionfrom pointer to mutable to pointer to const. In addition, the smart pointer classes fordistinct application classes are related through user-de�ned type conversions. If class B is aderived class of A, then Pb provides a user-de�ned type conversion to Pa, and CPb providesa user-de�ned type conversion to CPa. (CPb is the smart pointer class for const Bs.)The use of user-de�ned conversions between distinct types PtrX and PtrY supportsmultiple inheritance and avoids the erroneous conversion. The classes PtrX and CPtrX arerelated by inheritance because it gives better behavior without allowing false conversions;the compiler can correctly enforce the const attribute of a referent of CPtrX.2.4.1 A Unrooted HierarchyWhile we have only discussed using the smart pointers in a class hierarchy with a uniqueroot, this does not make any di�erence in the implementation that has been suggested.Any type conversion that is legal among raw pointers can be implemented by the smartpointers by encapsulating the raw pointer conversion within a user-de�ned type conversion.

14 2. Smart PointersTable 2.2: Some ways in which our smart pointers don't behave like raw pointers.Case Raw Pointers Smart PointersConvert either to pointer to direct base orto pointer to indirect base Convert to directbase AmbiguousConvert either to pointer to base or tovoid� Convert to base AmbiguousChain conversion to pointer to base withanother user-de�ned type conversion Legal IllegalOf course, as we have mentioned, whenever a user-de�ned conversion replaces a built-inconversion, some cases of overloading and chaining of conversions do not behave as desired.2.5 Other Weaknesses2.5.1 Pointers to volatile ObjectsThis paper has discussed const, but not volatile. Pointers to volatile objects must besupported in exactly the same way as pointers to const objects. In particular, for a singleapplication class, distinct smart pointer classes are required to reference:1. normal objects2. const objects3. volatile objects4. const volatile objectsThis plethora of classes adds a certain amount of notational complexity to the program.2.5.2 Conversion PrecedenceThe proposed organization appears to be the best of the ones that have been consideredbecause it is both safe and e�cient. However, it emulates the standard derived� to base�conversions with user-de�ned type conversions. User-de�ned type conversions have lowerprecedence than the standard conversions. Therefore, there are many situations, primarilyinvolving function overloading, in which these smart pointers do not behave the same as thecorresponding raw pointers. Table 2.2 lists some of the cases in which these smart pointersbehave di�erently than raw pointers.2.5.3 Pointer LeakageIt is essentially impossible to prevent smart pointers from leaking raw pointers to theapplication (e.g. this pointers). In some cases, it is desirable to prevent this. For example,if smart pointers are used to implement copying garbage collection, then after a garbagecollection, all dynamically allocated objects have been moved and any raw pointer no longerhas the correct value.

2.5. Other Weaknesses 15As another example, [Ken91] discusses why the problem of raw pointer leakage makessmart pointers unsafe for reference counting. The basic idea is that the application canobtain reference counted pointer as a temporary expression, perhaps as the return valuefrom a function. The application may then dereference the reference counted pointer byinvoking the overloaded operator ->, which returns a raw pointer, which will in turn bedereferenced. Once the raw pointer is returned from the overloaded operator ->, thereference counted pointer has served its purpose and may be destroyed. However, destroyingthe reference counted pointer decrements the object's reference count and may cause theobject to be deallocated. If the object is deallocated, then the raw pointer, which is aboutto be dereferenced, is a dangling reference.In other cases, it is not critical that the application be prevented from obtaining rawpointers. For example, mark-and-sweep garbage collectors can normally tolerate the exis-tence of raw pointers, provided the raw pointers point at objects that are also referencedby smart pointers [Ede92].Smart pointers leak raw pointers because of the de�nition in C++ of the overloadedindirect member access operator, ->. When the compiler sees an expression of the formX->Y, where X is an expression of class type, the compiler evaluates X.operator->(). Thelanguage de�nition requires that this operator return a raw pointer.1 This is a potentialproblem because if the smart pointer was a temporary object, the compiler may destroy itas soon as the raw pointer is obtained. However, as shown for the case of reference counting,for example, destroying the smart pointer may cause the raw pointer to become a danglingreference. This is the main problem that accessors solve.

1These operators may be chained together, but must eventually return a raw pointer.

16 3. Accessors3. AccessorsKennedy describes accessors in OATH [Ken91] as an alternative to smart pointers. Thecentral di�erence between accessors and smart pointers is that accessors don't overload theindirection operators; instead, like stubs [DMS92], they duplicate all the public memberfunctions of the referent object and forward those calls through a pointer to the object.Accessors are somewhere in between smart pointers and smart references, because theyimplement pointer semantics, but use `.' rather than `->' to access the underlying object.Figure 3.1 gives the general idea behind how accessors work. This �gure does not attemptto reproduce all the functionality described in [Ken91], instead, it just shows the relationbetween the application class and the accessor class.Accessors are clearly superior to smart pointers because they prevent raw pointer leak-age. However, they are di�cult to declare because every member function of the applicationclass must also be declared in the accessor class. Macros can abbreviate this, but the codelooks signi�cantly di�erent from standard C++ class de�nitions and complex macros can// A sample application class.class Thing {friend class ThingA;private:int value;Thing(int initial) : value(initial) { }void set(int val) { value = val; }int get() { return value; }...};// A class for accessing Things.class ThingA {private:Thing * ptr;public:ThingA() : ptr(0) { }void make(int i) { ptr = new Thing(i); }void set(int i) { ptr->set(i); }int get() { return ptr->get(); }...}; Figure 3.1: An object class and an accessor-type reference classThe accessor class contains a raw pointer as its instance datum. All of the client class'member functions are duplicated in the accessor class and accessed with `.'. Therefore, theaccessor class does not need to overload the indirection operators.

17hinder debugging.The accessors in OATH are organized into a class hierarchy that parallels the data objecthierarchy. The reference conversions are used to convert one accessor class into a di�erentone. The class hierarchy is rooted in the class oathCoreA; it is this class that supplies thepointer data member. This organization was discussed in Sect. 2.2.2. (Indeed, it was OATHthat led us to consider this organization.)The OATH class hierarchy uses only single inheritance; the class hierarchy, therefore,forms a tree. If it used multiple inheritance, then its implementation would su�er fromthe incorrect o�set problem described in 2.2.2. In particular, for a pointer conversion thatchanges the value of the pointer, the corresponding reference conversion is incorrect becauseit changes the type of the accessor without changing the value of the pointer. Even usingonly single inheritance, this scheme permits the incorrect type conversion of derived�� tobase�� that we discuss in 2.2.3 (see Fig. 2.6). Finally, the hierarchy of OATH uses a singleaccessor class per object class; therefore, it is unable to represent pointers to const objects(x2.3).Accessors su�er from the same problems, with respect to type conversions, as smartpointers. However, the accessor model is safer than the smart pointer model. By notoverloading ->, accessors avoid leaking raw pointers in a way that may result in danglingreferences if the compiler is aggressive in destroying temporary objects.

18 4. Conclusion4. ConclusionPointer substitutes, whether smart pointers or accessors, are a powerful programmingparadigm. C++ supports them, but not to the extent of allowing them to integrate seamlesslyinto a program. There are two main limitations: (1) supporting pointers to const objects,and (2) supporting the standard pointer conversions.We have presented several possible implementations, and discussed how they addressthese two limitations. Supporting pointers to const objects requires two smart pointerclasses per object class. The two smart pointer classes should be de�ned such that the classfor the pointer to mutable is derived from the class for pointer to const. Supporting classhierarchies is more di�cult. The best way appears to be to use user-de�ned type conversionsbetween the pointer classes. The behavior under this organization diverges from that of rawpointers in some circumstances that involve function overloading or chaining user-de�nedconversions. However, this should present only a slight inconvenience, not a fatal handicap.Changes to C++ could allow it to support smart pointers better. Some possible changesinclude allowing some user-de�ned conversions to chain, or permitting user-de�ned codeto implement the derived::operator base&() conversion. However, smart pointers are usefulenough that it's important to identify how best to implement them, given the currentlanguage de�nition. That's what this paper has done: We've shown how to make smartpointers closely emulate the standard pointer conversions for const and class hierarchies,while circumventing erroneous and incorrect type conversions.

19AcknowledgementsI would like to thank: Peter Dickman,David Plainfoss�e, Darrell Long and MarcShapiro for commenting on various versions of the paper, the referees of the 1992 UsenixC++ Conference for their relevant insightful comments, Philipe Gautron for some livelydiscussions and comments on the paper, and, Marc Shapiro (again) for supporting thiswork at INRIA.

20 ReferencesReferences[ANS91] ANSI X3J16/ISO WG21 working document X3J16/91-0115, May 1991. DraftANSI/ISO standard for the C++ programming language.[Cop92] James Coplien. Advanced C++Programming Styles and Idioms. Addison-Wesley,1992.[DMS92] Peter Dickman, Messac Makpangou, and Marc Shapiro. Contrasting fragmentedobjects with uniform transparent object references for distributed programming.In SIGOPS 1992 European Workshop on Models and Paradigms for DistributedSystems Structuring, 1992.[Ede92] Daniel R. Edelson. Precompiling C++ for garbage collection. In InternationalWorkshop on Memory Management, 1992. To appear in the Spring-Verlag LectureNotes in Computer Science.[Gau92] Philippe Gautron. Don't convert smart pointers to void�, 1992. Private commu-nication.[Gro92] Ed Grossman. Using smart pointers for transparent access to objects on disk oracross a network, 1992. Private communication.[HM90] Antony L. Hosking and J. Eliot B. Moss. Towards compile-time optimizations forpersistence. In 4th Inter. Workshop on Persistent Object Systems, pages 17{27.Morgan Kaufman (1991), 1990.[Ken91] Brian Kennedy. The features of the object-oriented abstract type hierarchy(OATH). In Proc. Usenix C++ Conference, pages 41{50. Usenix Association,April 1991.[Mae92] Roman E. Maeder. A provably correct reference count scheme for a symboliccomputation system. In unpublished form, 1992.[MIKC92] Peter W. Madany, Nayeem Islam, Panos Kougiouris, and Roy H. Campbell.Rei�cation and reection in C++: An operating systems perspective. TechnicalReport UIUCDCS{R{92{1736, Dept. of Computer Science, University of Illinoisat Urbana-Champaign, March 1992.[Sal92] Hayssam Saleh. Conception et r�ealisation d'un syst�eme pour la programmationd'applications objets concurrentes et r�eparties sur machines parall�eles. PhD thesis,Universit�e Pierre et Marie Curie|Paris VI, 1992.[SDP92] Marc Shapiro, Peter Dickman, and David Plainfoss�e. Robust, distributed ref-erences and acyclic garbage collection. In Symp. on Principles of DistributedComputing, Vancouver, Canada, August 1992. ACM.[SGH+89] Marc Shapiro, Yvon Gourhant, Sabine Habert, Laurence Mosseri, Michel Ru�n,and C�eline Valot. SOS: An object-oriented operating system|assessment andperspectives. Comput. Syst., 2(4):287{338, December 1989.[SGM89] Marc Shapiro, Philippe Gautron, and Laurence Mosseri. Persistence and mi-gration for C++ objects. In Stephen Cook, editor, ECOOP'89, Proc. of theThird European Conf. on Object-Oriented Programming, British Computer Soci-ety Workshop Series, pages 191{204, Nottingham (GB), July 1989. The BritishComputer Society, Cambridge University Society.

References 21[SMC92] Marc Shapiro, Julien Maisonneuve, and Pierre Collet. Implementing referencesas chains of links. InWorkshop on Object Orientation in Operating Systems, 1992.To appear.[Str87] Bjarne Stroustrup. The evolution of C++ 1985 to 1987. In Proc. Usenix C++Workshop, pages 1{22. Usenix Association, November 1987.[Str91] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 2ndedition, 1991.

