
End-to-end performance prediction for
the Internet

(Work in progress)

Richard A. Golding

UCSC–CRL–92–26

June 19, 1992

Concurrent Systems Laboratory
Computer and Information Sciences
University of California, Santa Cruz

Santa Cruz, CA 95064

Many applications designed for wide-area systems use replication to provide a service at multiple
locations. From which site should a client choose to obtain service? A client can specify its needs
in terms of communication latency, bandwidth, or error rate. This specification must be matched
against the expected performance available from each site. I present the results of two experiments
that measured end-to-end performance, and discuss how the results can be used for prediction.

Keywords: distributed systems, communication latency, network bandwidth, performance pre-
diction



Client workstation

Storage servers

Directory servers

Internet

Client workstation

FIGURE 1: Architecture for Internet information services.

1 Introduction

Applications for wide-area systems often use replication to provide a service at several different sites. This
approach improves both the fault-tolerance of the system and its performance. In many systems, clients can
contact any one server, so that the service is unavailable only when all servers are unavailable. The client
can also select the server that will provide it the best service.

In general, the best server for an operation will be the one that will respond most quickly. If the operation
requires that only a small amount of information be moved between the sites, message latency will dominate
performance. On the other hand, if large amounts of information must be transferred then bandwidth will
dominate.

For example, the archie system [Emtage92] provides an index of files that are available for anonymous
FTP on the Internet. A user typically first sends one or more query message to archie to find a set of sites
providing the file, then uses FTP to transfer it. The query operations typically send only a few bytes to the
server and obtain at most a few kilobytes in return, so message latency is most important in selecting an
archie server. FTP sessions often transfer files of a megabyte or more, so throughput is more important in
selecting an FTP site.

I am investigating an architecture for providing replicated information services on the Internet, as shown
in Figure 1. In this model, client systems use the information service to locate and access collections of
information that I will call “files”. This information need not actually be provided as a file. The client
software runs on a workstation, and uses the Internet to communicate with directory and storage services.
The directory servers process user queries, returning locations and details about files that contain the
requested information. A client can then contact storage servers to retrieve the file.

This architecture enables an information service to use several performance-improving techniques. The
service can dynamically cache interesting files at several sites throughout the internetwork, improving the
distance a client must communicate to retrieve files. Different caching policies can be used depending on the
kind of information – a new software distribution system can proactively create many copies, anticipating

1



future needs, while an information retrieval service can use semantic structure to cache information likely
to be used.

I have investigated quorum multicast protocols that will use preferred sites [Golding91, Golding92].
These protocols use an ordering on m sites, and attempt to communicate with the best n of them. The sites
can be ordered, for example, from lowest to greatest latency.

This approach requires accurate performance predictions. In the next three sections I will consider, first,
predicting latency, then using these predictions. I will then discuss a separate experiment on predicting
bandwidth. All of this work should be considered preliminary; sample sizes are not always large enough to
ensure statistical accuracy and the analysis can surely be improved.

2 Predicting latency and loss

This section is based upon my Master’s thesis work [Golding91], which in turn used ideas from Van
Jacobson’s TCP implementation [Jacobson88]. I was investigating quorum multicast protocols, that send
a message to a fixed-size subset of a set of sites. The subset is selected according to an ordering on the
sites; for example, sites could be ordered by increasing expected response latency. Some of these protocols
attempt to handle packet loss through retry. The site orderings and packet loss timers both required accurate
predictions of expected communication latency.

I conducted the performance evaluation by collecting samples of packet latency and loss, then using
the traces to drive simulation. There were two such experiments, varying mainly in duration. I also built a
simple quorum multicast implementation to verify the simulation results.

2.1 Methods

Trace records were obtained by polling the remote host from maple.ucsc.edu, a Sun 4/20 workstation in
the Concurrent Systems Laboratory (CSL) at UC Santa Cruz. The measurement software was built atop
the the ping program, which sends ICMP echo messages. Hosts are expected to respond to ICMP echo
messages by returning the message as soon as possible. It polled each host 30 or 50 times (depending on
the experiment) every 20 minutes. The first experiment lasted 48 hours; the second lasted one week.

The first measurement experiment used 24 hosts chosen from those hosts with which CSL systems
communicated regularly. The experiment collected 50 samples at one-second intervals every 20 minutes
for each host, on a Wednesday and Thursday. This resulted in 7200 samples for each host. The hosts, and a
summary of their behaviors, are reported in Table 1. One host, andreas.wr.usgs.gov, was unavailable for 7
of the 48 hours sampled; the other hosts appear to have been available the entire time.

The second experiment was similar to the first, except that it involved more hosts and behavior was
traced over an entire week. For this study I selected 125 hosts on the Internet from a list of several thousand
Sun 4 systems. One set of polls was collected for each host every 20 minutes over a seven-day period.
Each set of polls consisted of 30 ICMP echo requests issued at one-second intervals. This resulted in 15 120
samples for each host.

2.2 Packet loss behavior

Packet loss is the simplest measure to be obtained from the traces. I first examined the success rate for
communicating with each host. The results for the 24-host experiment are reported in Table 1. In the
this experiment I found that most hosts would respond to a message more than 90% of the time. The one
exception (andreas.wr.usgs.gov) represented a host that appears to have been continuously unavailable for
7 of the 48 hours sampled. Combining this information with published results on the reliability of hosts, I

2



TABLE 1: Hosts selected for first study.

Mean response Message
Location latency (ms) success (%)

spica.ucsc.edu Santa Cruz, CA 0.59 100.00
cs.stanford.edu Palo Alto, CA 18.50 97.79
apple.com Cupertino, CA 24.50 95.96
ucbvax.berkeley.edu Berkeley, CA 24.96 96.43
andreas.wr.usgs.gov Menlo Park, CA 26.64 79.90
fermat.hpl.hp.com Palo Alto, CA 39.88 97.92
ucsd.edu San Diego, CA 51.86 91.15
june.cs.washington.edu Seattle, WA 52.56 97.11
beowulf.ucsd.edu San Diego, CA 57.68 93.33
unicorn.cc.wwu.edu Bellingham, WA 107.88 96.44
gvax.cs.cornell.edu Ithaca, NY 162.35 95.28
prep.ai.mit.edu Cambridge, MA 215.97 89.47
lcs.mit.edu Cambridge, MA 219.13 89.08
vivaldi.helios.nd.edu Notre Dame, IN 228.96 96.57
acrux.is.s.u-tokyo.ac.jp Tokyo, Japan 263.68 96.46
swbatl.sbc.com Atlanta, GA 298.57 97.06
zia.aoc.nrao.edu Virginia 353.09 97.79
sdsu.edu San Diego, CA 404.54 92.85
inria.inria.fr France 1142.99 84.63
top.cs.vu.nl Netherlands 1312.32 90.42
slice.ooc.uva.nl Netherlands 1340.40 88.97
cs.helsinki.fi Finland 1525.78 90.42
mtecv1.mty.itesm.mx Mexico 1641.70 91.33

3



0

20

40

60

80

100

120

140

0 20 40 60 80 100

C
u

m
u

la
ti

ve
 n

u
m

be
r 

of
 h

os
ts

Message success (%)

FIGURE 2: Overall packet delivery rates (1-packet loss rate). Average rate 80%.

conclude that communication will succeed most of the time when a host is functioning.
The data from the 125-host experiment are less encouraging. In this set, four hosts were continuously

unavailable for the entire seven days, while some hosts exhibited overall packet loss rates of more than
50%. All sample hosts selected were known to exist and function a few weeks before I recorded the traces,
and it seems unlikely that these four hosts had been deliberately taken out of service in the interval. The
mean loss rate was 20.0%, as compared to 6.7% for the 24-host experiment. Figure 2 shows the fraction of
hosts with different overall packet loss rates.

I conjectured that the packet loss rate might be related to the number of gateways that must pass the
message. I plotted overall delivery rates against distance (Figure 3.) I had expected that nearby replicas,
those that require three or four number hops to reach, would have high delivery rates. Indeed this appears
to be the case. However, outside of this local organization the number of hops does not appear to be a good
predictor of packet delivery.

Packets can be lost for one of two reasons: they are lost in transmission, or the remote host is down.
While host availability cannot be determined exactly, a host that does not answer any pings for 30 seconds
is likely to have failed. This is not a perfect measure for two reasons: a gateway or link crash would appear
to be a host failure, and because a very busy host could also appear to have failed. Bearing these limitations
in mind, I computed an estimate of overall host availability as the fraction of 30-ping data sets containing at
least one response to the total number of such data sets collected for the host. Figure 4 shows the distribution
of overall availabilities in the 125-host experiment.

Next, I examined the data sets to determine how long communication failures lasted. Failures were
classified by the length of the run of lost packets, as shown in Figure 5 and in Tables 2 and 3. The first
column in these tables lists those run lengths that contributed to 1% or more of the lost messages. The
second column reports the percentage of lost messages that were in runs of each length. I found that in
more than half the cases where a packet was lost, it was part of a run of only one or two. The only other
significant run length was 30 or 50, the size of one data set, due to hosts being down for an entire data set.
The third column in Tables 2 and 3 lists the percentage of lost packets that were not in runs of length 30.

4



0

20

40

60

80

100

0 5 10 15 20 25 30

M
es

sa
ge

 s
u

cc
es

s 
(%

)

Host distance (hops)

FIGURE 3: Packet delivery versus distance.

0

20

40

60

80

100

120

140

0 20 40 60 80 100

C
u

m
u

la
ti

ve
 n

u
m

be
r 

of
 h

os
ts

Availability (%)

FIGURE 4: Approximate host availability. Average availability 87.5%

5



0

5000

10000

15000

20000

25000

30000

0 5 10 15 20 25 30

N
u

m
be

r 
of

 r
u

n
s

Run length

FIGURE 5: Lengths of runs of failed messages.

This number approximates the percentage of each run length that is due solely to communication failure,
such as congestion, loss of connectivity, or routing loops.

I compared this distribution to what would be obtained if all communication failures were independent.
This can be modeled as a Bernoulli trial with parameter f . The parameter corresponds to the probability
that a packet would be successfully acknowledged. The probability p(n) that a lost packet would be part of
a run of length n is p(n) = n(1� f)nfP1i=1 i(1� f)if
Values of this distribution are shown in the fourth column of Tables 2 and 3, for the 24-host and 125-host
experiments respectively.

If packet losses were independent, there would be many more single- or double-packet failures than were

TABLE 2: Fraction of lost packets by size of run (24-host experiment).

Length Failure fraction (%) Independent
of run All failures Communication f = 93:32%

1 50.04 67.81 87.09
2 6.87 9.31 11.63
3 1.33 1.80 1.17

11 1.99 2.70 —
12 3.47 4.70 —
13 1.52 2.07 —
17 0.77 1.04 —
50 26.22 — —

6



TABLE 3: Fraction of lost packets by size of run (125-host experiment).

Length Failure fraction (%) Independent
of run All failures Communication f = 80:0%

1 7.73 20.63 64.00
2 1.03 2.74 25.60
3 0.26 0.68 7.68
4 0.11 0.29 2.05
5 0.08 0.21 0.51

30 2.09 — —

0

5000

10000

15000

20000

25000

30000

35000

0 5 10 15 20 25 30

N
u

m
be

r 
of

 r
u

n
s

Run length

FIGURE 6: Lengths of runs of successful messages.

observed. The difference between the observed behavior and predicted behavior for independent failure
leads to the unsurprising conclusion that packet losses are not independent events.

There appear to be two behaviors for message failure: short, transient failures due to temporary network
conditions, and longer failures due to host or network failure. These data indicate that an internetwork
communication protocol would do well to retry failed messages. Further, it appears that most of the
advantage can be obtained using a small number of retries. In the 125-host traces, when a sequence of three
failures has been observed there is about a 60% probability that the host will be unreachable for the entire
set of 30 or 50 polls.

I also considered how many consecutive packets succeeded. As with failures, successful packets were
classified by run length (Figure 6.) I found that there were many data sets in which all messages succeeded.
However, I also found that there were many runs of a small number of successful messages. Short times
between failures are further indication that failures tend to cluster.

7



0

1000

2000

3000

4000

5000

6000

0 5 10 15 20 25 30

L
at

en
cy

 (
m

il
li

se
co

n
ds

)

Host distance (hops)

FIGURE 7: Message latency versus distance.

2.3 Packet latency distribution

Communication latency was the second focus of the measurements. The values were obtained using a
Sun 4/20 workstation that has a clock resolution of approximately 10 milliseconds. (This resolution is
obvious in Figures 12 and 13.) The average response latency for hosts in the first experiment is reported in
Table 1.

As with packet loss, I was curious whether the number of gateways traversed in communicating with a
host was related to the average latency. Figure 7 shows the latency against the distance in hops. It would
appear that there may be some relation between the two.

While the average latency may be of interest, its distribution is equally important. Figures 8 through 11
present four typical distributions. These graphs show histograms of the fraction of messages that fell into
10-millisecond ranges, starting from zero. Most hosts showed a very few short-latency messages, with a
sudden peak dropping rapidly back to zero.

The host sequoia.ucsc.edu (Figure 8) is at UC Santa Cruz, in the same organization as the host from
which the measurements were taken. One gateway machine connects the Ethernets used by either machine.
Most response times were sufficiently small that the 10-millisecond sampling resolution is of some concern.
This curve is typical of the results observed for hosts on the same or nearby Ethernet segments. The latency
distribution for bromide.chem.utah.edu (Figure 9) is typical of the distribution observed for hosts in North
America. It is similar to that of a nearby host, but shifted toward greater latency.

The distributions for the hosts cana.sci.kun.nl (Figure 10), a site in the Netherlands, and brake.ii.uib.no
(Figure 11), a site in Norway, illustrate the range of distributions observed for overseas connections. The
distribution for the Dutch host appears not unlike that of a host in North America, with the majority of
messages having a small latency, though the variance is quite a bit larger. The Norwegian site exhibits a
much more random distribution. I believe that the packets to this host are routed through a satellite channel,
which usually causes high variability.

8



0

2000

4000

6000

8000

10000

12000

14000

0 100 200 300 400 500 600

N
u

m
be

r 
of

 m
es

sa
ge

s

Latency (milliseconds)

FIGURE 8: Distribution of communication latency for sequoia.ucsc.edu.

0

1000

2000

3000

4000

5000

6000

0 100 200 300 400 500 600 700

N
u

m
be

r 
of

 m
es

sa
ge

s

Latency (milliseconds)

FIGURE 9: Distribution of communication latency for bromide.chem.utah.edu. Average latency 87 milliseconds.

9



0

50

100

150

200

250

300

350

400

450

500

0 500 1000 1500 2000 2500 3000 3500 4000

N
u

m
be

r 
of

 m
es

sa
ge

s

Latency (milliseconds)

FIGURE 10: Distribution of communication latency for cana.sci.kun.nl. Average latency 938 milliseconds.

0

10

20

30

40

50

60

70

80

90

0 500 1000 1500 2000 2500 3000 3500 4000

N
u

m
be

r 
of

 m
es

sa
ge

s

Latency (milliseconds)

FIGURE 11: Distribution of communication latency for brake.ii.uib.no. Average latency 1653 milliseconds.

10



2.4 Predicting effective latency

The overall average values for communication latency and packet loss may not be good predictors of actual
performance. It appears from the samples that failures cluster. Upon examining the traces it also appears
that the latency of one message is related to the latency of the next. This section examines a way to predict
latency and loss rate from recent past behavior.

There are two uses for behavior prediction. First, the prediction can be used to select probably nearby
sites. Second, it can also be used to adaptively set timeout values for detecting packet loss.

The performance predictions can be based on a priori information, such as the topology of the network,
or on observed behavior, such as past message latency. Most systems have used a moving average of recent
behavior for prediction. This is used, for example, in most TCP implementations.

The moving average of a sequence Ai of latency samples ai at time t isat = tXi=o wt�iai;
where w is the weight of new samples, 0 < w � 1: This can also be written as the more convenient
recurrence at = wat + (1� w)at�1:

Figure 12 illustrates how the moving averages of latency behave. This figure shows 100 samples of
communication latency from a trace of communication with sequoia.ucsc.edu. Two curves show the effects
of different weighting values. As long-latency samples are observed, the moving average rises, then decays
back to a lower value as latency returns to normal. Figures 13, 14, and 15 show similar curves for the other
three hosts considered in the last section. The moving average can be seen to track changes in behavior. The
flat sections in Figure 14 (for cana.sci.kun.nl) and Figure 15 (for brake.ii.uib.no) represent failed samples.
These are ignored when calculating moving averages.

An appropriate timeout period for determining when messages have failed can be based on the predicted
communication latency. The moving average at time t is an estimate of the mean of the latency distribution
for the next sample. While it is obvious from the latency distributions for cana.sci.kun.nl (Figure 10) and
brake.ii.uib.no (Figure 11) that message latencies are not quite exponentially distributed, they can be used
as such to calculate a timeout period. The parameter � for the exponential distribution can be estimated
for a sample using �̂ = 1=at, the maximum likelihood estimator. The exponential is used to estimate a
reasonable upper bound for message latency by taking, say, its 95th percentile. The rth percentile ar;t of
the exponential approximating the predicted latency can be computed asar;t = � ln (1� 0:01r)�̂ = � ln (1� 0:01r)at:
For the 95th percentile, this leads to the formulaa95;t � 2:995732 at:

This computation is different from that proposed by Jacobson for his TCP system. His approach treats
latency as normally distributed, and uses an approximation of the sample standard deviation to find a likely
value for the timeout. I have not yet done any systematic comparison of the two approaches, but it is worth
consideration.

If this setting is to be useful for the timeout period, it must not be too short. When it is, the protocol will
time out before a reply is received and either send another message or declare the host unavailable, even

11



0

5

10

15

20

25

30

8300 8310 8320 8330 8340 8350 8360 8370 8380 8390 8400

L
at

en
cy

 (
m

il
li

se
co

n
ds

)

Sample number

Observed latency
Moving average, w=0.75
Moving average, w=0.95

Overall average

FIGURE 12: Sample moving averages of latency for sequoia.ucsc.edu.

60

80

100

120

140

160

180

200

8300 8310 8320 8330 8340 8350 8360 8370 8380 8390 8400

L
at

en
cy

 (
m

il
li

se
co

n
ds

)

Sample number

Observed latency
Moving average, w=0.75
Moving average, w=0.95

Overall average

FIGURE 13: Sample moving averages of latency for bromide.chem.utah.edu.

12



400

500

600

700

800

900

1000

1100

1200

1300

1400

8300 8310 8320 8330 8340 8350 8360 8370 8380 8390 8400

L
at

en
cy

 (
m

il
li

se
co

n
ds

)

Sample number

Observed latency
Moving average, w=0.75
Moving average, w=0.95

Overall average

FIGURE 14: Sample moving averages of latency for cana.sci.kun.nl.

1000

1500

2000

2500

3000

3500

4000

4500

8300 8310 8320 8330 8340 8350 8360 8370 8380 8390 8400

L
at

en
cy

 (
m

il
li

se
co

n
ds

)

Sample number

Observed latency
Moving average, w=0.75
Moving average, w=0.95

Overall average

FIGURE 15: Sample moving averages of latency for brake.ii.uib.no.

13



TABLE 4: Fraction of replies rejected because of short timeout. 95th percentile used to set timeout. Moving average
weight w = 0:95.

Fraction rejected
No min 40ms min

sequoia.ucsc.edu 3.17% 1.20%
bromide.chem.utah.edu 0.27% 0.27%
cana.sci.kun.edu 0.54% 0.54%
brake.ii.uib.no 0.19% 0.19%

though the reply was on its way. The expense of retrying or declaring failure is likely to be unacceptable, so
any timeout setting must not reject too many valid messages. On the other hand, the timeout period must not
be too long, since a protocol must wait for that period before a message can be determined to have failed.

I examined the the traces using the 95th percentile estimator. The fraction of replies that were returned
later than the estimated timeout period are shown in Table 4. It is very small for all but the nearby site, for
which it was 3.17%. The estimated timeout period for this host often goes to zero. This occurs because
the resolution of the trace samples is only 10 milliseconds, so the actual latency was almost always small
enough to be recorded as zero. The fraction rejected dropped to 1.20% of successful replies upon applying
a minimum timeout period of 40 milliseconds. While this is still high, from the distribution in Figure 8 it
can be seen that the cutoff would have to be set to several hundred milliseconds to obtain less than 0:05%
rejection fractions from this host. The average latency and variance are small enough that cutoff values
more than about 40 milliseconds make no sense.

Moving averages can also be applied to the estimation of failure probability. Given a sequence of
samples Fi 2 f0; 1g, the moving average ft = tXi=0

wt�ifi
gives an approximation of the likelihood of failure. A large weight, that is, a value of w near one, appears
to work well by accounting for short-term failure behavior.

The overall latency expectation is useful when a communication protocol is to selectively communicate
with the replicas most likely to respond quickly. Given that the communication latency, probability of
failure, and timeout period can all be estimated, the overall expected time ot is the sum of the expected
latency and timeout period, weighted by failure probability:ot = fta95;t + (1� ft)at:
Figure 16 shows a sample of this overall expectation for one of the sample hosts. The latencies shown in

this figure for failed messages are the timeout periods for w = 0:95. The way the expectation responds
to changing conditions is evident in the samples between 8330 and 8350, where the expectation changes
from tracking actual latency in a low-failure period to averaging actual latency and time-out period in a
high-failure period.

3 Effect of using nearby sites

The quorum multicast protocols use the performance predictions discussed in the last section to attempt to
optimize communication latency. These protocols provide the interface:

14



1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

8300 8310 8320 8330 8340 8350 8360 8370 8380 8390 8400

L
at

en
cy

 (
m

il
li

se
co

n
ds

)

Sample number

Observed latency
Failed messages

Expected time, w=0.75
Expected time, w=0.95

FIGURE 16: Expected communication latency for brake.ii.uib.no

quorum-multicast(message, site set, reply count, tuning parameter)! reply set

The message is sent to at least a reply count of the sites. If the protocol cannot communicate with at
least that many sites, it reports an exception. The site set is assumed to be ordered (or orderable), perhaps
using the latency predictions of the last section. The tuning parameter controls the eagerness with which
some protocols contact less preferred sites, as will be explained shortly.

I have investigated four variations of quorum multicast protocols. The naive protocol is the simplest: it
sends one message to each site, and waits until it either receives enough replies or times out. The reschedule
protocol tries to only contact the best possible sites by first sending enough packets to make the reply count,
and sending packets to less favored sites when the first packets time out. This time out is set to a “delay”
fraction d of the normal message time out period, 0 � d � 1: In this way the reschedule protocol can
behave like naive by setting the delay d to zero, or it can use the fewest possible messages by setting d to
one. The retry and count protocols improve upon reschedule by retrying when packets are lost. They use
different policies for doing so; the details are not relevant to this paper.

Operation success is measured by the fraction of all multicast operations that were successful in meeting
the reply count. In the simulations, the naive and reschedule protocols each exhibited an approximately
constant success fraction, at about 82% of all operations. Since these two protocols each attempt to send at
most one message to a replica, the delay parameter d has no effect on the probability of success. The retry
protocol, which retries nearby replicas more times when the delay parameter d is larger, succeeds in more
than 94% of all cases when d � 0:1, while count performs even better.

The data obtained by measuring a test application show that all four protocols met the reply count more
than 95% of the time. Count succeeded more often than the other protocols for almost all values of d,
with retry generally succeeding more often than naive and reschedule. These results are similar to the
simulation results.

15



800

1000

1200

1400

1600

1800

2000

2200

2400

0 0.2 0.4 0.6 0.8 1

M
il

li
se

co
n

ds

Delay Parameter d

Naive
Reschedule

Retry
Count

FIGURE 17: Communication latency for all operations.

For operations that are able to meet their reply count, naive is generally the fastest of the four protocols,
since it always sends messages to every replica immediately. The communication latency for the other
protocols increases approximately linearly as the delay parameter d increases, taking about the same amount
of time as naive at d = 0. Of the three, count takes longer than retry, which in turn takes very slightly
longer than reschedule. Reschedule takes less time than the other two because of the rare cases where the
retry and count protocols must send more than one message to distant replicas to obtain the reply count.

The performance of the four protocols is quite different when the reply count cannot be met – all four
protocols require several seconds to declare failure. While this is quite a long time, failures constitute only a
few percent of all operations and the latency is not onerous. Naive is the baseline measure, requiring about
4:8 seconds to determine that a reply count cannot be obtained – almost an order of magnitude longer than
was generally required for success. The latency of the other three protocols again increases roughly linearly
in d. Reschedule requires more time than naive since it must detect just as many failed messages, but it
may have delayed sending some of those messages. Retry requires more time than all the others for most
values of d. Count performs much better than any of the other three protocols. It avoids the problem of
having to communicate with the most distant replica, since it can stop when sufficient nearby replicas have
failed.

The measured results differ slightly because fewer messages failed. While simulation indicated that
reschedule takes more time than naive to declare failure, and that this time increases with d, the measured
results show that the two have quite similar latencies. The sample size is small enough that this result is
inconclusive.

Figure 17 shows the overall latency for each protocol. Since the probability of meeting the reply count
is quite high, the values for successful operations predominate in these graphs. However, it is worth noting
that even with a high probability of success, the low failure latency of count makes it the fastest of the
three quorum multicast protocols, consistently faster even than naive. Reschedule has the highest latency
of the three for all values of d. Retry is better than naive or reschedule for values of d less than about
0:6. This is the reverse of their positions for successful operations. The latency of the quorum multicast

16



algorithms increases approximately linearly as d increases. The overall measurement results are consistent
with simulation results since the overall success rate was in excess of 95%, despite the differences in failure
behavior.

4 Bandwidth

While latency and packet loss are most important for communicating with directory services, available
throughput or bandwidth is most important when transferring large amounts of information from a storage
server. In this section I will present the results of an experiment to measure effective bandwidth between
sites, and to determine if bandwidth can be predicted.

The experiment consisted of a program that sent 1 000 000 bytes to the discard daemon on a remote site
using TCP. The discard daemon, which normally listens on port 9, will receive any data and immediately
discard it. Since TCP is a reliable stream protocol, the sender can estimate the bandwidth by measuring the
time it takes to send the data.

This estimation will not be completely accurate. The TCP protocol dynamically adjusts its window size
and timeout values, and these values might not stabilize. The measurement program also cannot directly
measure the transmission time; instead, it can only measure the rate at which the local kernel or TCP
implementation accepts information. It seems unlikely that the TCP implementation will be able to buffer
more than a tenth of a megabyte, so the accepted bandwidth is not likely to be more than 10% greater than
the actual bandwidth.

As inaccurate as this estimation of network bandwidth is, it is still arguably the right measure. An
application is concerned with the actual end-to-end bandwidth, not with the maximum effective bandwidth.
Factors such as kernel buffering and dynamic TCP behavior should be considered. In at least one storage
system objects transferred in bulk are between one-half and two megabytes. I believe that the numbers
measured here are useful.

Table ?? summarizes the experiment. The measurement program ran at four sites: oak.ucsc.edu,
a SparcStation 2, manray.berkeley.edu, a SparcStation 1, beowulf.ucsd.edu, a SparcStation 1, and
slice.ooc.uva.nl, a SparcStation 1. These four sites polled thirteen sites, including each other. The
measurement program run for the month of March 1992, polling once every four hours. The times were
adjusted so that no two sites were polling simultaneously.

The table lists the mean bandwidth observed and its variance. As expected, communication within one
machine is more than an order of magnitude faster than sending packets on a network. Few of the other
results were surprising: where there were low-capacity links (such as to Canada or Australia) very little
bandwidth was available; sites connected close to the NSFnet backbone (Cornell and MIT) did much better.
The variance, however, was much higher than expected, and dims the prospect for accurate prediction.

Figures 18 through 26 show the bandwidth distribution for several different hosts, presented in roughly
increasing order of “distance.” All these were measured from beowulf.ucsd.edu, but the results are similar
to those observed from other hosts. The figures show the bandwidth for varying fractions of the samples.
Accordingly, horizontal segments reflect large numbers of samples with similar bandwidth. in general, the
more horizontal, the more consistent the samples.

Figure 18 shows the distribution when beowulf is communicating with itself. There are a number of
steps in the graph, indicating that many samples showed the same bandwidth.

Figures 19 and 20 show connections from beowulf to hosts on the BARRnet. Both these sites show
a few fast connections, as evidenced by the more vertical tail on the right, and a few slow connections,
as shown by the left-hand end. The remainder of the samples are fairly uniformly distributed between 10
and 35 Kbytes/sec (for manray) or 20 and 50 kbytes/sec (for oak). The samples appear not to have an
exploitable central tendency.

17



TABLE 5: Mean bandwidth, sampled from four sites.

oak manray beowulf slicex � x � x � x �
oak.ucsc.edu 1208899 184077 26778 14503 34931 14710 3425 1387

manray.berkeley.edu 18517 10943 703491 111866 25144 9565 3193 1378
beowulf.ucsd.edu 16906 9409 23520 11637 717695 237711 3209 1377

slice.ooc.uva.nl 3380 1626 3613 1939 4236 2075 636399 155168
cc.mcgill.ca 1776 2314 1699 2377 2905 3168 2237 1519
cs.wwu.edu 4874 1321 5259 1043 5459 1009 2787 1269

gvax.cs.cornell.edu 16693 5800 16022 5642 18465 4495 5791 1086
ifi.uio.no 1778 1219 1625 1120 1955 1339 5590 1039

inria.inria.fr 3050 1904 3395 2377 4186 2618 4432 1410
lcs.mit.edu 12060 6210 14410 7294 15699 8674 4446 1152

syd.dit.csiro.au 2477 809 2872 891 3042 1018 1466 652
top.cs.vu.nl 4844 2518 4693 2863 5745 2959 6609 302

uhunix.uhcc.hawaii.edu 13362 6800 20641 7165 18730 5585 3522 1289

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1e+06

0 0.2 0.4 0.6 0.8 1

B
an

dw
id

th
 (

by
te

s/
se

c)

Sample fraction

FIGURE 18: Bandwidth distribution from beowulf to itself.

18



5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

0 0.2 0.4 0.6 0.8 1

B
an

dw
id

th
 (

by
te

s/
se

c)

Sample fraction

FIGURE 19: Bandwidth distribution from beowulf to manray.

0

10000

20000

30000

40000

50000

60000

70000

80000

0 0.2 0.4 0.6 0.8 1

B
an

dw
id

th
 (

by
te

s/
se

c)

Sample fraction

FIGURE 20: Bandwidth distribution from beowulf to oak.

19



0

5000

10000

15000

20000

25000

30000

0 0.2 0.4 0.6 0.8 1

B
an

dw
id

th
 (

by
te

s/
se

c)

Sample fraction

FIGURE 21: Bandwidth distribution from beowulf to hawaii.

0

5000

10000

15000

20000

25000

30000

35000

40000

0 0.2 0.4 0.6 0.8 1

B
an

dw
id

th
 (

by
te

s/
se

c)

Sample fraction

FIGURE 22: Bandwidth distribution from beowulf to mit.

20



1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

0 0.2 0.4 0.6 0.8 1

B
an

dw
id

th
 (

by
te

s/
se

c)

Sample fraction

FIGURE 23: Bandwidth distribution from beowulf to wwu.

Figures 21, 22, and 23 show samples taken to other US sites. The site in Hawaii is connected through
NASA Ames, and exhibits the best performance of the three. The site at MIT is near an NSFnet gateway,
but shows almost an almost uniform bandwidth distribution with a low near zero, excepting a slight spike
at around 20 kbytes/sec. The site in Washington is connected using a low-speed modem to NorthWestNet,
and provides bandwidth between 5 and 6 kbytes/sec about 80% of the time.

The final three figures show connections outside the US. Figure 24 shows samples for McGill University,
which uses a nearly-saturated 56 kbit/sec link to the US. The saturation is evident from graph: most of the
samples show little bandwidth is available, but there is the occasional sample many times larger. This link
is heavily used by the archie resource-location service. Figure 25 shows traffic to the Netherlands, and
Figure 26 shows traffic to Australia. Both of these use low-speed transoceanic cables; performance is much
lower than for most North American sites. However, the links do not appear to be saturated.

4.1 Predicting bandwidth

Bandwidth prediction is primarily useful on the Internet for ranking sites. One site will often have a choice
of several others from which it can transfer some information, and it should be able to determine which site
will provide the fastest service.

This kind of prediction is not generally useful for multimedia applications, which need guaranteed
performance. The Internet as currently built does not provide these guarantees, and the kind of performance
prediction discussed in this paper does not provide a mechanism for them.

As with latency, I have used moving averages of recent measurements as a predictor. I performed two
variations on the analysis: a “cold start” evaluation that started all estimates at zero, and a “warm start”
evaluation that first found the mean of all samples, then used that as an initial estimate. The former analysis
should show how accurate the predictor is for the first several samples; the latter should show how the
system behaves once it has reached a steady state.

Tables 6 and 7 show how accurate this is. For these measures, I computed the absolute error between

21



0

2000

4000

6000

8000

10000

12000

14000

0 0.2 0.4 0.6 0.8 1

B
an

dw
id

th
 (

by
te

s/
se

c)

Sample fraction

FIGURE 24: Bandwidth distribution from beowulf to mcgill.

0

1000

2000

3000

4000

5000

6000

7000

0 0.2 0.4 0.6 0.8 1

B
an

dw
id

th
 (

by
te

s/
se

c)

Sample fraction

FIGURE 25: Bandwidth distribution from beowulf to slice.

22



0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 0.2 0.4 0.6 0.8 1

B
an

dw
id

th
 (

by
te

s/
se

c)

Sample fraction

FIGURE 26: Bandwidth distribution from beowulf to csiro (Australia).

each sample and the moving-average prediction, and report the mean error and its deviation. The moving
average used a weight of � = 0:9; so it responds slowly to changes.

It appears that the moving average is not a particularly good predictor. The mean error for most sites
is between 30 and 50% of the mean bandwidth, and the variance is high. The warm-start error is generally
lower than the cold-start error, but the difference is not necessarily statistically significant. This indicates
that either the moving average converges quickly, or the variability of bandwidth measurements is such that
this predictor will not work well. I suspect the latter from the sample variance. A conditional autocorrelation
of bandwidth samples should give some insight into the usability of this sort of predictor, by showing how
much short-term and long-term variation is in the samples.

A site will often need only to be able to rank sites, rather than determine accurately the real available
bandwidth. This is a somewhat simpler problem, since it may be less sensitive to short-term performance
variations.

Table 8 shows how well moving-average predictions can be used to order sites. The table reports how
much lower observed bandwidth is than the optimal, when moving averages are used to rank one, two, or
three sites from the four measured. There is fairly high variance in this difference. The observed bandwidth
from one site to another single best site is, on the average, less than ideal by a few kilobytes per second;
however, this value is often 20–30% of the mean bandwidth measured from that site. This indicates that
prediction is not working especially well, and that it behaves very badly at times. This is not surprising,
given the variance in actual measured bandwidth.

4.2 Static prediction

The dynamic prediction mechanism discussed in the last section only responds to changes when communi-
cation has been attempted. It can only work well when communication is frequent. If a site is ranked as
undesirable, or if a new site becomes available, there may be no up-to-date prediction information available.
To remedy this, a site must be polled proactively to obtain the needed information.

23



TABLE 6: Mean error in “cold start” bandwidth prediction, in bytes per second, using a moving average with
parameter � = 0:9 and an initial value of zero.

oak manray beowulf slicex � x � x � x �
oak.ucsc.edu 233701 266734 11923 10407 12941 11505 1263 935

manray.berkeley.edu 7614 8967 135152 162386 8863 7578 1235 946
beowulf.ucsd.edu 7253 7439 9812 8618 220178 178106 1155 909

slice.ooc.uva.nl 1418 1038 1723 1047 1864 1199 160777 156185
cc.mcgill.ca 1511 1632 1482 1719 2458 2199 1311 828
cs.wwu.edu 1279 1122 1228 1169 1104 1113 1109 767

gvax.cs.cornell.edu 5505 4497 5604 4137 4348 3726 1244 1304
ifi.uio.no 953 873 846 834 1009 988 1258 1236

inria.inria.fr 1574 1295 2027 1397 2430 1497 1406 1151
lcs.mit.edu 5032 4298 6277 4021 7894 5855 1193 1013

syd.dit.csiro.au 825 636 970 737 1068 753 578 503
top.cs.vu.nl 2194 1726 2467 1711 2727 1486 899 1406

uhunix.uhcc.hawaii.edu 5877 4841 6431 5599 5213 4062 1170 880

TABLE 7: Mean error in “warm start” bandwidth prediction, in bytes per second, using a moving average with
parameter � = 0:9 and an initial value of x.

oak manray beowulf slicex � x � x � x �
oak.ucsc.edu 123840 142136 11143 9906 11691 8229 1083 766

manray.berkeley.edu 7282 8510 65539 95656 7838 6017 1092 744
beowulf.ucsd.edu 6940 6323 9472 6911 195946 138013 1060 773

slice.ooc.uva.nl 1287 855 1607 947 1754 967 108590 119251
cc.mcgill.ca 1566 1565 1545 1661 2549 2018 1276 708
cs.wwu.edu 994 867 732 767 736 705 956 686

gvax.cs.cornell.edu 4589 3251 4507 3071 3469 2497 793 793
ifi.uio.no 925 750 865 675 997 855 799 703

inria.inria.fr 1473 1102 1915 1246 2232 1331 1222 745
lcs.mit.edu 4504 3694 5480 3528 7042 4362 911 677

syd.dit.csiro.au 596 465 743 515 856 583 526 385
top.cs.vu.nl 2097 1319 2256 1499 2503 1366 234 207

uhunix.uhcc.hawaii.edu 5288 4701 5938 4021 4483 3152 969 701

24



TABLE 8: Loss of aggregate bandwidth from one, two, and three sites selected using moving average predictions.

One site Two sites Three sitesx � x � x �
oak.ucsc.edu 0 0 3637 7563 0 0

manray.berkeley.edu 0 0 2444 6031 0 0
beowulf.ucsd.edu 163 1475 2257 5763 0 0

slice.ooc.uva.nl 0 0 1128 1526 1203 1460
cc.mcgill.ca 1960 2562 1740 2801 1256 2050
cs.wwu.edu 460 811 536 989 158 457

gvax.cs.cornell.edu 3047 3895 3029 3848 79 440
ifi.uio.no 22 129 575 778 497 708

inria.inria.fr 1429 1835 1591 1967 1151 1342
lcs.mit.edu 3745 5187 3782 5023 330 864

syd.dit.csiro.au 521 784 549 737 149 395
top.cs.vu.nl 1394 1489 1707 1905 1550 1727

uhunix.uhcc.hawaii.edu 3557 4775 2244 4958 0 0

One solution is to pool measurements from everywhere on the Internet to generate global,static prediction
information. Global information has the advantage of being centrally computable, and not requiring large
amounts of proactive sampling. It can also be adjusted according to network-wide policies to, say, favor
communication between sites in the same country.

I have investigated one such measure for predicting bandwidth between two sites, a and b. If the Internet
consisted of an infinite-bandwidth backbone to which all sites were connected, then the bandwidth between
any two sites would be the lesser of the bandwidths of the two connections to the backbone. Except for the
site with the fastest connection, the bandwidth of a backbone connection would be equal to the maximum
bandwidth observed between that site and any other site. If the bandwidth observed between two sites is
denoted B(a; b); the estimated bandwidth isB̂(a; b) = min[maxc6=a;b(B(a; c)); maxc6=a;b(B(b; c))]:

Table 9 shows the estimated bandwidth calculated for each of the four polling sites. This is always
a poor estimator for communicating within a machine, since sending packets on a network always takes
longer than simply buffering them internally. Between different machines, however, the estimator seems to
reflect reality. These estimations can be averaged to give a single global measure. This is shown in the last
row of Table 9.

The estimator is to be used to rank sites according to predicted available bandwidth. If this is a good
estimator, it should always select the site with the greatest available bandwidth. Different estimation
methods can be compared by computing how close they come to the best possible selection.

Table 10 shows this comparison. Each of the thirteen sites measured are assumed to be repeatedly
attempting to communicate with the four polling sites, and must select the best one, two, or three sites. The
table compares the global static measure just described with a dynamic moving-average estimator and with
random selection. The bandwidth obtained using each of these estimators is compared to the optimal, and
the table shows the overall difference.

A dynamic moving-average selection appears to be the best selection method. It almost always gives
a better selection than static selection, and when it does not the difference is minimal. Dynamic selection
also properly handles cases where a host can communicate with itself, which the static measure does not.

25



TABLE 9: Transitive bandwidth estimations B̂(a; b); and the global static measures derived from it.

oak manray beowulf slice
Predict Actual Predict Actual Predict Actual Predict Actual

oak 18517 1208899 16906 26778 18517 34931 5791 3425
manray 16906 18517 26778 703491 26778 25144 5791 3193

beowulf 18517 16906 26778 23520 34931 717695 5791 3209
slice 5791 3380 5791 3613 5791 4236 6609 636399

Metric 13738 16492 17029 5791

TABLE 10: Comparison of the aggregate bandwidth loss from one, two, and three sites selected using either dynamic
(moving-average) or static estimations.

One site Two sites Three sites
Stat Dyn Rand Stat Dyn Rand Stat Dyn Rand

oak.ucsc.edu 1175960 0 892056 1188259 3637 611790 0 0 315587
manray.berkeley.edu 674748 0 513407 2444 2444 354510 0 0 183415

beowulf.ucsd.edu 163 163 531820 2257 2257 365556 0 0 188656
slice.ooc.uva.nl 637264 0 478300 639073 1128 320508 639397 1203 161097

cc.mcgill.ca 1713 1960 2455 2105 1740 2401 1628 1256 1536
cs.wwu.edu 427 460 1288 516 536 2026 158 158 1970

gvax.cs.cornell.edu 3227 3047 7377 4030 3029 10033 79 79 8602
ifi.uio.no 3673 22 2904 4514 575 2606 4485 497 1602

inria.inria.fr 1658 1429 2072 2553 1591 2576 2458 1151 1770
lcs.mit.edu 4161 3745 8276 3392 3782 10235 330 330 7550

syd.dit.csiro.au 447 521 1029 480 549 1462 149 149 1143
top.cs.vu.nl 2072 1394 2386 3386 1707 2954 3269 1550 2172

uhunix.uhcc.hawaii.edu 5398 3557 10049 2244 2244 13518 0 0 10556

26



Both these methods are noticeably better than a random selection of a single site, but random selection gets
better as the number of sites selected increases. When three of the four sites are to be selected, random is
often better than the static selection.

In general, it appears that the global static estimator does not work as well as a local dynamic estimator.

5 Future directions

These measurements represent only a preliminary look at end-to-end performance prediction. There are
several improvements to be made to these analyses.

All of the measurements can be improved by increasing the amount of data. The latency measurements
only cover one week for a select few hosts; a longitudinal study, covering more hosts, will allow a real
analysis of the long-term stability of predictions and of the way the predictions respond to changes in the
network.

The bandwidth measurements likewise suffer from lack of data, and could be improved by obtaining
more samples, between more hosts, and at finer resolution. Diurnal effects are currently invisible. These
measurements could also collect routing information so that possible relations between bandwidth and
number of hops could be evaluated. A conditional autocorrelation may show interesting relationships
between one measurement and future measures for bandwidth, errors, and latency.

It is likely that performance prediction need not be done on an individual host-to-host basis. Instead,
a body of predictions can probably be shared among all the hosts in an organization. It seems likely that
most hosts will be on one or a few LANs and will share a few common routes to the rest of the Internet.
One would expect that all the hosts would therefore show similar communication behavior. Sharing the
prediction information should improve the quality of predictions, by making more data available, and
should reduce the frequency with which a prediction system should need to proactively collect performance
information.

At present it appears that static quality-of-service measures do not work well. This is unfortunate, since
it means sites can only use information they have collected, and may have to proactively collect to determine
what sites are distant. These effects can be mitigated somewhat by sharing a prediction database within an
organization.

Acknowledgments

This work was motivated by discussions with Alan Emtage and Peter Deutsch of McGill University. Matthew
Lewis (Universiteit van Amsterdam), Eric Allman (Mammoth Project, UC Berkeley), Fred Korz (Columbia
University), and Darrell Long (UC Santa Cruz) helped provide accounts for running the measurements.
George Neville-Neil provided encouragement, proofreading, and helpful discussion.

References

[Emtage92] Alan Emtage and Peter Deutsch. archie – an electronic directory service for the Internet.
Proceedings of Winter 1992 Usenix Conference (San Francisco, 24–24 January 1992), pages
93–110 (January 1992).

[Golding91] Richard A. Golding. Accessing replicated data in a large-scale distributed systems. Mas-
ter’s thesis; published as Technical report UCSC–CRL–91–18 (June 1991). Computer and
Information Sciences Board, University of California at Santa Cruz.

27



[Golding92] Richard A. Golding and Darrell D. E. Long. Quorum-oriented multicast protocols for data
replication. Proceedings of 8th International Conference on Data Engineering (Tempe,
Arizona, February 1992), pages 490–7 (February 1992). IEEE Computer Society Press.

[Jacobson88] Van Jacobson. Congestion avoidance and control. Proceedings of SIGCOMM ’88, pages
314–29 (1988).

28


