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ABSTRACT
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called routine. This paper describes alternative ways to support this facility in the circumstance
that this code is optimized away.
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1 Introduction

An interactive debugger has the capability of setting a breakpoint in a program. When a breakpoint is
reached and the debugger takes control, presumably the user wishes to examine the state of the program.
Part of the state that the user may wish to examine is the current execution context. Debuggers have the
facility to provide a call-stack trace, which is a list of active routines and their arguments, in reverse order
of invocation.’ This facility relies on information provided by code within each active routine. If this code
i1s eliminated due to optimization, the call-stack trace will contain incorrect and incomplete information,
which may mislead the user. It would be preferable to provide either an admittedly incomplete stack trace
containing only correct information or a stack trace that is identical to that which would be produced if the
optimization had not been performed.

Providing a call-stack trace requires the ability to locate the callers’s stack frame and symbol table
information given the called routine’s stack frame. Typically a call-stack trace displays the arguments of
active routines but does not display local variables. A debugger may also allow the user to change the
apparent context of execution so that any chosen active routine can be treated as the focus of debugging.
The user can request the display or modification of arguments or local variables of the routine that is the
focus of debugging. To fulfill such requests, the debugger needs the same capability that it needs to provide
a call-stack trace: the ability to locate the callers’s stack frame and symbol table information given the called
routine’s stack frame. Subsequently, only providing a correct call-stack trace is discussed. In particular, we
do not further discuss the display of local variables.

This problem has not been not discussed in the literature. [Zel84] provides a solution to the problem of
providing a correct call-stack trace in the presence of procedure integration (inlining).

This paper shows how an optimizing compiler and interactive debugger can cooperate so that the debugger
can provide an accurate call-stack trace while making subroutine calls as inexpensive as possible.

2 The Call-Stack Trace

In order to provide a call-stack trace, a debugger uses information that is provided by the standard code
sequence that implements a subroutine call, termed the calling sequence. In the presence of an optimization
of the calling sequence, some of the information currently used by debuggers will be missing, causing the
debugger to provide an incorrect call-stack trace.

Terminology

At any point in an executing program, some sequence of routines is active. The naming convention used
within this paper for such a sequence is Fy, Fi, ..., I, where Fy is the first routine called and F),; is the
currently executing routine. Thus for an arbitrary active routine Fj, its caller is F;_; and the active routine
that it called is Fi4q.

In the figures, ¢p denotes the instruction pointer register, fp denotes the frame pointer register, and sp
denotes the stack pointer register,

2.1 The Calling Sequence

In a running program, the currently executing routine must have access to its arguments, the return
address, local variables, and compiler temporaries. The standard method in many of today’s machine
architectures for providing such access is to provide storage for each active routine on a procedure call stack.
The storage associated with the routine is known as the routine’s stack frame. A machine register contains

1 Call-stack trace is one of many terms used to describe this list of active routines. Others include stack trace, stack dump,
procedure traceback and backtrace. We have chosen the term call-stack trace in the face of a lack of unanimity of usage.
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a pointer to the base of the currently executing routine’s stack frame, and the arguments and local variables
are accessed as offsets from that pointer. The pointer is called the frame pointer, and the machine register
that by convention contains the frame pointer is called the frame pointer register (this name is sometimes
shortened to frame pointer as well — context is used to distinguish the two).

When one routine F;_; calls another routine F;, F;_; (typically) pushes F;’s arguments on the stack.
The call instruction itself pushes the return address on the stack. Code within F}, called F;’s prologue, gets
the machine ready for the body of F; to execute. This includes (but is not limited to) making space for F;’s
local variables and providing access to F;’s local variables and parameters. Access to F;’s local variables and
parameters is provided by setting the frame pointer register to point to F;’s stack frame. However, after F;
has completed and control has been returned to F;_1, the frame pointer register must contain F;_;’s frame
pointer. F;_1’s frame pointer is therefore saved in Fj’s stack frame prior to modifying the frame pointer
register to point to F;’s stack frame. Space for Fj’s locals is allocated on the stack by adjusting the stack
pointer. Immediately prior to returning, code within F; pops F;_1’s frame pointer from the stack into the
frame pointer register. See Figure 2.1 for an example of a standard calling sequence.

2.2 Optimization of the Calling Sequence

Under some circumstances, the code that pushes F;_;’s frame pointer and sets the frame pointer register
to point to F}’s stack frame i1s unnecessary overhead and can be eliminated. Figure 2.2 gives an example of
a calling sequence upon which this optimization has been performed. If F; is optimized in this manner and
Fitq is not, Fiyq will save F;_1’s frame pointer, not Fj’s as in the unoptimized case. See Figure 2.3 for an
example of such a situation.

This optimization is possible when the frame pointer register is not used in F;’s code. This register is
used for two purposes:

1. to access Fy’s arguments and local variables, and

2. to restore the stack pointer to the position following F;_;’s return address (in preparation for the
execution of F’s return instruction).

Clearly, if Fy has no arguments or local variables, or has them but does not reference them,? it will not use
its frame pointer for the first purpose. Even if F; does reference its locals or arguments, a compiler often
has enough information to reference them through the stack pointer rather than the frame pointer, although
doing so may add to the complexity of the compiler. In addition, a compiler often has enough information
to restore the stack pointer to the position following F;_1’s return address without using the frame pointer.
Correct code for F; can be produced without saving F;_1’s frame pointer unless at some instruction within
Iy, Fy’s frame is not constant in size across all calls to F;. This is infrequent, but happens if the stack
1s used for dynamic allocation or if the stack pointer is modified along one execution path but not along
another.® Note that the compiler cannot reference local variables and arguments through the stack pointer
in the same circumstances that it cannot to restore the stack pointer to the position following F;_1’s return
address without using the frame pointer.

Such optimization of a routine’s prologue and epilogue is most commonly done for routines that have
neither parameters nor local variables, because less analyis is needed on the part of the compiler.

2 A routine may have arguments and/or local variables but not access them due to carelessness, consistency requirements on
a set of routines, or the use of stub routines during the development process.

30One way that the stack pointer can be modified along one execution path but not along another is if parameters are not
popped immediately following a call (a routine may be called on one path and not on another; its parameters affect the size
of the stack). Another way is if storage for a (conditionally executed) local block is allocated when the block is entered but
not deallocated when the block is exited. The stack pointer may not need to be adjusted for each such allocation or set of
parameters because an unoptimized prologue restores the stack pointer by setting it to the value in the frame-pointer register.
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2.3 Debugger Use of Frame Pointers

The frame pointers that have been pushed onto the call stack by calling sequences form a linked list of
pointers to active routine stack frames, with the value in the frame pointer register heading the list. In the
unoptimized case, this list contains a pointer to the frame of every active routine, and the frame-pointer
register points to the frame of the currently executing routine. A pointer to a routine’s frame can be used
to locate and access its arguments.

Given an address within a routine, the debugger can find the name and parameter list of the routine by
looking in the symbol table. The code address used to find the symbol table entry for the currently executing
routine is the address in the instruction pointer when the breakpoint is reached.* The code address used
to find the symbol table entry for each other routine F; is the return address stored in the stack frame of
routine Fjyq.

Let us consider in detail how the debugger will construct the call-stack trace. In following the general
description given here, it may be helpful to refer to the example call stack in Figure 2.1. The debugger begins
with the currently executing routine F,,. An address within F, is available from the instruction pointer.
From that address, the parameter list and name of F}, are retrieved from the symbol table. The values of the
arguments to F), are available through the frame pointer register. They are displayed formatted according
to the type information in the parameter list retrieved from the symbol table.

The return address in F},’s stack frame is an address within the previously invoked routine F,,_1. The
debugger uses that address to retrieve the parameter list and name of Fj,_; from the symbol table. The
stored frame pointer in F},’s stack frame points to F,_1’s stack frame. The values of the arguments to Fj, _
are retrieved by the debugger through this stored frame pointer, formatted appropriately, and displayed.
The debugger repeats this process, using information found in the stack frame of the just-displayed routine
to display that routine’s caller until all routines have been displayed. We will call this the F'chain method.

An algorithm to construct a call-stack trace using the Fchain method is given in Figure 2.4.

3 The Problem

If one or more of the frame pointers have been optimized away, a debugger using the Fchain method will
construct a call-stack trace that is incorrect. If a single frame pointer (for routine F;) has been optimized
away, the debugger will construct a call-stack trace that associates F;’s name with the stack frame of F;_;
(formatting the values found there according to the symbol table entry for F;), and neither F;_;’s name nor
Fi’s arguments will appear. If the frame pointers for routines F; through F;y; have been optimized away,
the debugger will construct a call-stack trace that associates Fiy;’s name with the stack frame of F;_; and
no information about F; through Fjy;_; will appear. Figure 2.3 shows a call stack containing four active
routines, one of which has had this optimization performed on it. The call-stack trace produced by the
Fchain method on this call stack is:

F3’s name(F3’s arguments)
F>’s name(garbage)
Fy’s name(Fy’s arguments)

Although four routines are active, the call-stack trace contains only three entries, one of which is incorrect.

4 Solutions

The general approach to the problem is to have the debugger use an alternative method of constructing
the call-stack trace that does not rely on the frame pointers in the call stack. Several solutions are presented.

4 A debugger saves the values that are in the machine registers when it takes control at a breakpoint, thus when we use the
terms “instruction pointer”, “frame pointer register”, and “stack pointer register” we are actually referring to the debugger’s

copy of the values that were in these registers when the breakpoint was reached.
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4.1 The Debugger Maintains Its Own Frame Pointers

The debugger can maintain its own copy of the information that it currently gets from the call stack. The
debugger uses invisible breakpoints ([Zel84]) to collect the information. A invisible breakpoint is a breakpoint
at which the debugger halts the executing program, takes some action, and continues execution without ever
giving control to the user.

As we have seen, in order to construct the call-stack trace, the debugger needs for each routine F':
e an address of some instruction within /', which it uses to locate the symbol table entry for F', and

e a pointer to the base of F’s stack frame, where it finds F’s arguments.

Recall that the first instruction in a routine’s prologue pushes the caller’s frame pointer into the current
stack frame (following the return address). Once that push has occurred, the stack pointer register points
to the location that by convention is considered the base of the routine’s stack frame. If the debugger were
to take control immediately after the first instruction in the prologue, it could make a copy of the value in
the stack pointer register, which would give it a pointer to the base of the stack frame, and it could make a
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In the following algorithm, ¢p is the instruction pointer register, fp is the frame pointer
register, and we assume the debugger has the following routines available to it:

o get-symbol-table-information, which takes a code address and determines which
symbol table entry corresponds to the routine containing that address, then returns
the name and parameter type list from the symbol table entry,

o display-routine-entry, which takes a routine name, a parameter type list, and a
frame pointer, and finds the arguments in the stack frame pointed to by the frame
pointer, formats them according to the type list, and displays the routine name and
appropriately formatted arguments,

o get-return-address, which takes a frame pointer and returns the return address that
is stored in the stack frame pointed to by that frame pointer, and

e get-frame-pointer, which takes a frame pointer and returns the frame pointer that
is stored in the stack frame pointed to by that frame pointer.

The termination condition given here is somewhat arbitrarily when the “main” routine
(the entry point of the user’s code) has been displayed. Actual termination conditions are
system dependent.

Algorithm F'chain-Call-Trace:

routine-address «— ip

frame-pointer — fp

repeat
name, parameter-types — get-symbol-table-information(routine-address)
display-routine-entry(name, parameter-types, frame-pointer)
routine-address «— get-return-address(frame-pointer)
frame-pointer — get-frame-pointer(frame-pointer)

until name = “main”

Figure 2.4: Debugger Algorithm to Display a Call-Stack Trace using the
Fchain Method

copy of the value in the instruction pointer register, which would give it an address of an instruction within
the routine. By setting an invisible breakpoint at the second instruction in each routine, the debugger can
get the information that it needs for a call-stack trace.

Note that if the debugger set its invisible breakpoint at the first instruction in the prologue, it can still get
the information that it needs for the call-stack trace. As in the above case, the instruction pointer contains
an address within the routine. The stack pointer register contains at this point a value that must be offset
by the size of the frame pointer that is about to be pushed in order to get a pointer to the base of the stack
frame.

This scenario assumes an unoptimized stack frame. We are interested in the optimized case, when the
push of the caller’s frame pointer into the stack frame does not occur. However, we have just seen that
the debugger can get the information it needs by setting its invisible breakpoint at the first instruction in
the prologue. Since the debugger can get this information before the instruction executes, it clearly doesn’t
matter whether that instruction saves the caller’s frame pointer.

The debugger must set a breakpoint at the first instruction of every routine. Each time a routine is
called, the debugger copies two pieces of information into its own workspace. It uses this information rather
than the information that may (not) be stored in the call stack to construct the call-stack trace.

Clearly, for this to be correct, the debugger must also set an invisible breakpoint at the return instruction
of every routine so that it can remove the information for the about-to-return routine from its workspace —
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otherwise, it would be maintaining not a call-stack trace, but a subroutine-call history. That is, the debugger
must store this information in a stack of its own, pushing when a routine is called and popping when the
routine returns. We call the debugger’s stack the dstack. Assuming the debugger correctly maintains its
dstack, 1t can use the information therein just as it would have used the corresponding information that
it would find in the program’s call stack, to examine the symbol table and to access parameters and local
variables. We will call this the Dstack method.

The locations at which invisible breakpoints must be set are call and return instructions. The locations
of the call instructions are available from the symbol table. Either additional compiler support is needed to
ensure that the locations of the return instructions are also placed in the symbol table or the debugger must
scan the executable and locate them before executing the program.

4.2 A Cheaper Method: The Debugger Maintains Only the Missing Frame
Pointers

Subroutine calls are extremely common. The Dstack method has a considerable amount of overhead
with two invisible breakpoints per call — probably an untenable amount of overhead. The Dstack method
and the Fchain method can be combined to bring the overhead down to an acceptable level. The dstack
is entirely redundant if the frame pointer i1s set up by every routine. It 1s partially redundant if the frame
pointer is optimized away by some routines. Redundancy can be limited by only creating entries in the
dstack for routines that do not set up a frame pointer. The compiler can tell the debugger which routines
set up frame pointers. The symbol table entry for a routine must be extended to include a field with a
boolean entry recording the presence or absence of a frame pointer. There is now overhead of two invisible
breakpoints per call only for those routines that do not use a frame pointer.

Even so, the dstack remains partially redundant. It contains only frame-pointers that are not present in
the call stack. But each dstack entry also contains an address. The address in the entry for F; is redundant
with the return address which has been placed in the stack frame of F; 1 by the call instruction. The dstack
can therefore be simplified to contain only frame pointers. We will call this the Dstack/F chain method.

Consider how the debugger will construct the call-stack trace given an optimized call stack and a dstack.
The basic difference is where a pointer to the stack frame of each routine is found. Note that the frame
pointers stored in the call stack still form a linked list, but now they chain only stack frames of routines that
use frame pointers. If F; uses a frame pointer (indicated by F;’s symbol table entry), then either the frame
pointer register or the frame pointer in the stack frame of subsequently called active routine F;;; points to
Fi’s stack frame, where F;; is the next routine that uses a frame pointer. If 3 does not use a frame pointer,
then the dstack contains a pointer to its stack frame.

An algorithm to construct a call-stack trace for an optimized call stack using the Dstack/Fchain method
is given in Figure 4.1.

4.3 Non-Local Gotos

Commonly used procedural languages provide some form of jump from the middle of a routine to the
middle of some other previously invoked active routine, a jump that is not simply a return to the calling
routine. Sometimes this is provided in the language as part of the goto facility (as in Pascal), and it is from
there that the name non-local goto was coined — it is a goto whose target is not local to the routine that the
goto is in. In other languages, such as C, library routines perform the same function (in C, these routines
are setjmp and longjmp). Other languages provide some form of exception handling, which can have the
same effect.

Any of these forms of non-local goto cause difficulties for the Dstack and Dstack/Fchain methods.
In order to maintain correctness in its dstack, the debugger must reach invisible breakpoints at both the
beginning and the end of each routine that does not set up a frame pointer. If a non-local goto occurs, the
end of such an active routine may never be encountered, since the routine does not perform a normal return.
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Algorithm Dstack/Fchain-Call-Trace:
routine-address < ip
call-stack-frame-pointer «— fp
temp-dstack < dstack // copy dstack so pops are not destructive
dstack-frame-pointer «— pop(temp-dstack)
repeat
name, parameter-types — get-symbol-table-information(routine-address)
if (uses-frame-pointer(routine-address))
frame-pointer «— call-stack-frame-pointer
call-stack-frame-pointer — get-frame-pointer(frame-pointer)
else
frame-pointer «— dstack-frame-pointer
dstack-frame-pointer «— pop(temp-dstack)
display-routine-entry(name, parameter-types, frame-pointer)
routine-address — get-return-address(frame-pointer)
until name = “main”

Figure 4.1: Algorithm to Display a Call-Stack Trace in the Occa-
sional Absence of Frame Pointers using the Dstack/F chain Method

Instead, the return is performed for it by restoring the machine to an earlier saved state. There is a problem
only if a routine F; that does not set up a frame pointer has been called and has not returned, and the
target of the goto is code in a routine F;_; called earlier than F;. F; will not return normally, the invisible
breakpoint at F;’s return statement will not be reached, and the debugger will not pop its entry for F; from
the dstack. Let us assume there is a routine F;_;_j that was called earlier than F;_; (thus is active after
the non-local goto) and F;_;_j does not set up a frame pointer. After the non-local goto, the debugger is
asked for a call-stack trace. An example of such a situation is shown in Figure 4.2. The debugger algorithm
displays the call-stack trace entries correctly until it attempts to display F;_;_;. It determines from the
symbol table entry for F;_;_; that F;_;_; has not set up a frame pointer, so it uses the entry on the top
of dstack to continue the construction of the call-stack trace. This, of course, is the wrong entry — it is the
entry for F;. Two solutions to this problem are given below.

One Solution: Cleaning Up the Dstack

If immediately after a non-local goto was executed the debugger took control, it could remove any
inappropriate entries from the top of the dstack. Any entry with a frame pointer pointing higher on the
stack than the value in the stack-pointer register is an entry that should be removed, since such entries must
be for routines that have “returned” via the non-local goto.® The debugger must take this action right away,
since subsequent subroutine calls will cause the stack to grow.

For languages like C, in which non-local gotos are implemented by library routines, the debugger can
set an invisible breakpoint at the library routine that implements the goto, and when 1t reaches such a
breakpoint, the debugger can clean up the dstack. This may work for languages with exception handling as
well.

Languages with direct jumps in the code require some work on the part of the compiler if the invisible
breakpoint cleanup solution is to be used. The debugger must be told where to set its invisible breakpoints,
so the compiler must provide a list of such addresses to the debugger.

50n many architectures the stack grows down, so higher on the stack may mean a lesser value in the frame pointer.
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Another Solution: Leaving Redundancy in the Dstack

In the Dstack method, because the dstack alone is used to construct call-stack traces, each entry must
contain both a frame pointer and a code address. We noted above that when both the call stack and the
dstack are used, the code addresses in the dstack are redundant. This redundancy can be exploited.

In constructing a call-stack trace, when the debugger needs to use a dstack entry, it already has a code
address A within the routine that is to be displayed next (the code address that was the return address
found in the stack frame of the routine that was previously displayed). If the code address in the current
dstack entry and A are not addresses within the same routine, the debugger can simply ignore the dstack
entry and go on to the next entry. Whenever the invisible breakpoint for the return of a routine that does
not use a frame pointer is reached, all dstack entries must be popped until (and including) the entry whose
code address is in the same routine as the return instruction.®

This scheme does not require that the debugger take control immediately after a non-local goto, and thus
does not require any special effort on the part of the compiler. It does increase the expense of constructing
a call-stack trace, since more code addresses must be matched with the routines that contain them.

4.4 A “Free” Method: The Compiler Does the Work

A routine may contain numerous calls to other routines. Assume routine A calls routines B and C'.
The size of A’s stack frame at the point of the call to B may differ from the size of its stack frame at the
point of the call to C'. However, the size of A’s stack frame at the point of the call to B may be the same
every time A is active. If the size of a routine’s frame is constant at the point that it makes a call, the size
can be determined by the compiler. The return address stored in the stack frame of the called routine is a
unique identifier of the call. A table Fsize of </em return address, size of caller’s stack frame at point of
call> pairs can be provided by a compiler. We can use such a table to compute the appropriate position for
each frame pointer without looking in the run-time stack (thus optimization of the calling sequence does no
harm). Assuming a lookup function get-frame-size for this table that takes a return address and returns the
associated stack frame size, and function get-return-address as defined in Figure 2.4, the position F'P; of the
(logical) frame pointer for the 7 function on the stack can be determined by:

FP;, = FPy1 — get— frame—size(get—return—address(F Pit1) (4.1)

The algorithm given in Figure 2.4 can be used to display the call-stack trace if function get-frame-pointer
is redefined to return FP; as defined in equation 4.1.” No invisible breakpoints need to be set by the
debugger. We call this the F'size method. The F'size method is elegant but incomplete:

1. it fails for routines whose stack-frame size is not constant at the point of a call made by the routine,
and

2. 1t fails if the return address of an active routine is not available. Once a frame pointer is available,
the return address of all previously invoked routines can be found. However, if the routine that was
executing when the debugger gained control (hereafter the current routine) does not set up a frame
pointer, the frame-pointer register cannot be used to find the return address of its caller. That return
address is present on the stack, but its location is not exactly identified.

81f an invalid entry is on the top of the dstack when a call-stack trace is being constructed, it can be popped from the dstack
then. However, an entry may be buried on the dstack because subsequent to the non-local goto other routines were called.

"The problem would be much simpler if the size of A’s stack frame were identical for all calls made by A. The stack-frame
size could be included in A’s symbol table entry, eliminating the need for F'size. Unfortunately, if the stack pointer is used to
reference temporaries, fixing the stack frame size would require modification of the stack pointer prior to and following calls,
which would cost more than is saved by optimizing the calling sequence. However, in some architectures, such as Mips, the
stack pointer is not used in this manner, and this approach is taken [Cor91].
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Algorithm Fsize/Fchain-Call-Trace:
routine-address «— ip
call-stack-frame-pointer «— fp
repeat
name, parameter-types — get-symbol-table-information(routine-address)
if (uses-frame-pointer(routine-address))
frame-pointer «— call-stack-frame-pointer
call-stack-frame-pointer — get-frame-pointer(frame-pointer)
else
frame-pointer — frame-pointer - get-frame-size(get-return-address(frame-pointer))
display-routine-entry(name, parameter-types, frame-pointer)
routine-address «— get-return-address(frame-pointer)
until name = “main”

Figure 4.3: Algorithm to Display a Call-Stack Trace in the Occa-
sional Absence of Frame Pointers using the F'size/Fchain Method

When the Frame Size Varies

If the size of a routine’s stack frame at the point of a particular call is not constant, the caller’s frame
pointer must be saved, that is, the prologue and epilogue of the called function must not be optimized. The
chain of frame pointers stored in the stack can be used to locate stack frames of such routines while the
F'size table can be used to locate stack frames of routines that do not save the frame-pointer register. We
call this the F'size/Fchain method, and it is the solution that we implemented.

An algorithm to construct a call-stack trace for an optimized call stack using the F'size/Fchain method
is given in Figure 4.3.

When the Current Routine Has No Frame Pointer

If the current routine does not set up a frame pointer, the location of the return address of its caller is
not exactly identified. One option is to search the stack for the return address. The search is bounded on
one side by the value in the stack pointer register and on the other by the value in the frame pointer register.
The stack search may be complex (it may have to be done more than once, starting at different alignments),
but the return address is guaranteed to be on the stack. There is a chance of finding a value in the stack
that matches an F'size return-address entry but is not the caller’s return address. This chance is probably
fairly small (unless the program is a compiler or debugger), but is nonzero. The probability of such an error
can be decreased by augmenting F'size with a third field containing the name of the called function.

Fsize would then consist of <caller’s return address, caller’s framesize, callee’s name> triples. If a value
that matches the first field is found in the stack, the current function’s name can be tested against F'size’s
third field. We call this the Fsize+/Fchain method. Tt is still not foolproof: assume A is the current
function, called by B with return address R, and also somewhere in the code there is a call of A by C' with
return address P. If a value equal to P happens to be on the relevant portion of the stack above R, the
wrong F'size entry will be used. However, this is considerably less likely than the previous error probability.

The callee’s name may not be known (the call may be through an address passed in to the caller). For
such calls, the third field in F'size may be left null. A null F'size entry could be considered to match any
routine name. Alternatively, the compiler could put out a table 7" of routines whose addresses have been
taken; a null F'size entry could be considered to match only entries in 7. This opens the door to error in
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Total Compilation Time | Sum of Object Module Sizes

Fchain 804.3 seconds 490987
Fsize/Fchain 825.4 seconds 589113
increase 2.5 per cent 20 per cent

Table 5.1: Compilation times and object module sizes for the Fchain and Fsize/Fchain methods.
A compiler benchmark consisting of 44 source files containing a total of 13,511 lines of C code was
compiled.

the other direction, where the actual return address is rejected because it is a call of a routine that is not in
T3

A simpler alternative is to just provide truthful behavior if the active function has an optimized prologue:
give its name, state that the stack trace may be missing some functions, and start the trace at the function
whose frame is pointed to by the frame-pointer register.

5 Implementation

We have a prototype implementation of the Fsize/Fchain method using MetaWare Incorporated’s
High C compiler and The Free Software Foundation’s gdb debugger, running on an MC68000 based Sun
workstation.

Compiler modifications involved adding approximately 50 lines of code spread across seven source files,
none of it inside loops. The ‘pushes fp’ bit was integrated into the existing symbol table format at no space
cost. F'size takes eight bytes per call (four bytes for the return address, four bytes for the frame size)
plus four bytes per file (to record the number of entries). We used compiler benchmarks to compare
compilation times and object module sizes for the Fchain and F'size/Fchain methods. Table 5.1 gives the
time to compile one benchmark program consisting of 13,511 lines of C code (in 44 source files), using each
method. The table also gives the sum of the sizes of the object modules produced. For both compilation
time and object module size, the increase due to the F'size/Fchain method is given as a percentage of the
time or size associated with the Fchain method. Individual object-module size increases varied from less
than one per cent to 34 per cent. The object module size increases would be larger for the Fsize+/Fchain
method. No attempt was made to optimize for space.’

Debugger modifications involved adding approximately 150 lines of code spread across five source files.
The time the modified debugger spent on call-stack traces was not perceptibly different from the time spent
by an unmodified debugger.

6 Solution Summary and Comparison

The enabling technology for producing an accurate call-stack trace in the occasional absence of frame
pointers is either the dstack or Fsize. In this section we summarize and compare the Dstack/Fchain
and Fsize+/Fchain methods. First we break the methods down by what is required of the compiler and
debugger. We include the effect on the symbol table format, because it is often the limiting factor in what
information is passed from the compiler to the debugger.

8For example, on some systems interrupt handlers are placed in constant locations. These routines would not be in T'.

9There is considerable potential for space optimization in F'size, at the cost of added complexity in reading the table. The
return address could be entered as an offset from the function entry point. Typical stack frame sizes can be expressed in a few
bits rather than four bytes. If F'size were optimized for space, the F'size+ version with the caller’s name could probably be
implemented in half the space of our existing implementation that does not include the caller’s name.
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e Dstack/Fchain
The debugger must be able to determine where the first instruction in each routine is located, and where
the routine exits (return instructions) are located. The debugger could determine this information by
scanning the executable code. This would slow debugger start-up, but would allow this method to
be used with no compiler support. We assume, however, that the task of producing this information
would fall to the compiler. In addition, the debugger must be able to determine whether a routine’s
prologue pushes a copy of the frame pointer register. As before, while the debugger could determine
this information by scanning the executable code, we assume that the compiler will be responsible for
supplying the information to the debugger.
— Symbol Table Format
The symbol table already has a place for the location of the first instruction in a routine. It
must be augmented to include the routine exit locations, and to include a ‘pushes fp’ bit encoding
whether a routine’s prologue pushes a copy of the frame pointer register.
— Compiler
The compiler must set the ‘pushes fp’ bit and record each routine exit location in the augmented
symbol table.

— Debugger
The debugger must read the augmented symbol table and place invisible breakpoints at the entry
and exit of each routine whose ‘pushes fp’ bit is off, prior to running the target program. On
reaching an invisible breakpoint at routine entry, the debugger must push the stack pointer onto
the dstack; on reaching an invisible breakpoint at routine exit, the debugger must pop the dstack.
The debugger must use dstack entries to locate frames of these routines, and use frame pointers
saved in the call stack to locate frames of other routines.

o [I'size+/Fchain

— Symbol Table Format
The symbol table must be augmented to include the F'size table of <return address, frame-
size, name> triples. It must also include the ‘pushes fp’ bit in the entry for a routine, as above.

— Compiler
For each call, the compiler must record the caller’s framesize at the point of the call instruction
along with the address of the following instruction and the name of the called routine in F'size.
For each routine, the compiler must set the ‘pushes fp’ bit in the routine’s symbol table entry.

— Debugger
The debugger must use F'size entries instead of frame pointers saved in the call stack to locate
frames of routines whose ‘pushes fp’ bit is off. The debugger must use frame pointers saved in
the call stack to locate frames of other routines. Because F'size 1s indexed by return addresses, if
the current routine’s ‘pushes fp’ bit 1s off, the debugger must either
1. print its name only, warn the user that the stack trace may be incomplete, and provide a stack
trace beginning with the routine whose frame is pointed to by the frame-pointer register, or

2. search the stack for a return address that appears in the first field of some F'size entry whose
third field is the name of the current routine; the debugger must use that Fsize entry to
locate the current routine’s stack frame.

Next we summarize the advantages and disadvantages of these method relative to each other.

e Dstack/Fchain
— Disadvantages
This method requires additional complexity in the debugger. When invisible breakpoints are set,
the Dstack method has an overhead of hundreds of instructions per call of routines that do not
save frame pointers in their stack frame. When invisible breakpoints are not set, the Dstack
method has no run-time overhead. The symbol table entry for every routine must be read, and
the invisible breakpoints set, before the Dstack method can be used. This can cause a significant
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delay in debugger start-up. The location of routine exits must be available to the debugger. This
either adds to the complexity of the symbol table and the compiler and to the size of the object
modules and executable (typically 4 bytes per routine for the routine exit and one ‘pushes fp’ bit
per routine) or adds to the start-up time and complexity of the debugger.

— Advantages
The Dstack/Fchain method can be implemented in a debugger without a dependence on compiler
support. It can always provide a correct call-stack trace.

o [I'size+/Fchain

— Disadvantages
This method requires additional complexity in the symbol table, the compiler, and the debugger.
The size of the object modules and executable increases significantly. Compilation time increases
a little, as does the time required to read the symbol table. In the case that the current routine
does not save the frame-pointer register, the method is either incomplete or may be incorrect.

— Advantages
The time cost to the debugger of a larger symbol table is more than offset by the ability to read the
table on demand: unlike the Dstack/F chain method, the F'size/Fchain method only requires
the symbol table entry for a routine to be read if the routine is active when the call-stack trace 1s
performed. The method has no run-time overhead.

7 Conclusion

The method used today by interactive debuggers to provide a call-stack trace relies on a frame pointer
being set up within the stack frame of each active subroutine. This paper gives several methods that support
a debugger’s call-stack trace facility in the circumstance that, due to optimization, some routines do not set
up a frame pointer. These methods vary in their costs: there is a trade-off between run-time overhead for
the debugger and required symbol table and compiler support.
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