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1. Introduction 11 IntroductionAn interactive debugger has the capability of setting a breakpoint in a program. When a breakpoint isreached and the debugger takes control, presumably the user wishes to examine the state of the program.Part of the state that the user may wish to examine is the current execution context. Debuggers have thefacility to provide a call-stack trace, which is a list of active routines and their arguments, in reverse orderof invocation.1 This facility relies on information provided by code within each active routine. If this codeis eliminated due to optimization, the call-stack trace will contain incorrect and incomplete information,which may mislead the user. It would be preferable to provide either an admittedly incomplete stack tracecontaining only correct information or a stack trace that is identical to that which would be produced if theoptimization had not been performed.Providing a call-stack trace requires the ability to locate the callers's stack frame and symbol tableinformation given the called routine's stack frame. Typically a call-stack trace displays the arguments ofactive routines but does not display local variables. A debugger may also allow the user to change theapparent context of execution so that any chosen active routine can be treated as the focus of debugging.The user can request the display or modi�cation of arguments or local variables of the routine that is thefocus of debugging. To ful�ll such requests, the debugger needs the same capability that it needs to providea call-stack trace: the ability to locate the callers's stack frame and symbol table information given the calledroutine's stack frame. Subsequently, only providing a correct call-stack trace is discussed. In particular, wedo not further discuss the display of local variables.This problem has not been not discussed in the literature. [Zel84] provides a solution to the problem ofproviding a correct call-stack trace in the presence of procedure integration (inlining).This paper shows how an optimizing compiler and interactive debugger can cooperate so that the debuggercan provide an accurate call-stack trace while making subroutine calls as inexpensive as possible.2 The Call-Stack TraceIn order to provide a call-stack trace, a debugger uses information that is provided by the standard codesequence that implements a subroutine call, termed the calling sequence. In the presence of an optimizationof the calling sequence, some of the information currently used by debuggers will be missing, causing thedebugger to provide an incorrect call-stack trace.TerminologyAt any point in an executing program, some sequence of routines is active. The naming convention usedwithin this paper for such a sequence is F0, F1, : : :, Fn where F0 is the �rst routine called and Fn is thecurrently executing routine. Thus for an arbitrary active routine Fi, its caller is Fi�1 and the active routinethat it called is Fi+1.In the �gures, ip denotes the instruction pointer register, fp denotes the frame pointer register, and spdenotes the stack pointer register,2.1 The Calling SequenceIn a running program, the currently executing routine must have access to its arguments, the returnaddress, local variables, and compiler temporaries. The standard method in many of today's machinearchitectures for providing such access is to provide storage for each active routine on a procedure call stack.The storage associated with the routine is known as the routine's stack frame. A machine register contains1Call-stack trace is one of many terms used to describe this list of active routines. Others include stack trace, stack dump,procedure traceback and backtrace. We have chosen the term call-stack trace in the face of a lack of unanimity of usage.



2 2. The Call-Stack Tracea pointer to the base of the currently executing routine's stack frame, and the arguments and local variablesare accessed as o�sets from that pointer. The pointer is called the frame pointer, and the machine registerthat by convention contains the frame pointer is called the frame pointer register (this name is sometimesshortened to frame pointer as well { context is used to distinguish the two).When one routine Fi�1 calls another routine Fi, Fi�1 (typically) pushes Fi's arguments on the stack.The call instruction itself pushes the return address on the stack. Code within Fi, called Fi's prologue, getsthe machine ready for the body of Fi to execute. This includes (but is not limited to) making space for Fi'slocal variables and providing access to Fi's local variables and parameters. Access to Fi's local variables andparameters is provided by setting the frame pointer register to point to Fi's stack frame. However, after Fihas completed and control has been returned to Fi�1, the frame pointer register must contain Fi�1's framepointer. Fi�1's frame pointer is therefore saved in Fi's stack frame prior to modifying the frame pointerregister to point to Fi's stack frame. Space for Fi's locals is allocated on the stack by adjusting the stackpointer. Immediately prior to returning, code within Fi pops Fi�1's frame pointer from the stack into theframe pointer register. See Figure 2.1 for an example of a standard calling sequence.2.2 Optimization of the Calling SequenceUnder some circumstances, the code that pushes Fi�1's frame pointer and sets the frame pointer registerto point to Fi's stack frame is unnecessary overhead and can be eliminated. Figure 2.2 gives an example ofa calling sequence upon which this optimization has been performed. If Fi is optimized in this manner andFi+1 is not, Fi+1 will save Fi�1's frame pointer, not Fi's as in the unoptimized case. See Figure 2.3 for anexample of such a situation.This optimization is possible when the frame pointer register is not used in Fi's code. This register isused for two purposes:1. to access Fi's arguments and local variables, and2. to restore the stack pointer to the position following Fi�1's return address (in preparation for theexecution of Fi's return instruction).Clearly, if Fi has no arguments or local variables, or has them but does not reference them,2 it will not useits frame pointer for the �rst purpose. Even if Fi does reference its locals or arguments, a compiler oftenhas enough information to reference them through the stack pointer rather than the frame pointer, althoughdoing so may add to the complexity of the compiler. In addition, a compiler often has enough informationto restore the stack pointer to the position following Fi�1's return address without using the frame pointer.Correct code for Fi can be produced without saving Fi�1's frame pointer unless at some instruction withinFi, Fi's frame is not constant in size across all calls to Fi. This is infrequent, but happens if the stackis used for dynamic allocation or if the stack pointer is modi�ed along one execution path but not alonganother.3 Note that the compiler cannot reference local variables and arguments through the stack pointerin the same circumstances that it cannot to restore the stack pointer to the position following Fi�1's returnaddress without using the frame pointer.Such optimization of a routine's prologue and epilogue is most commonly done for routines that haveneither parameters nor local variables, because less analyis is needed on the part of the compiler.2A routine may have arguments and/or local variables but not access them due to carelessness, consistency requirements ona set of routines, or the use of stub routines during the development process.3One way that the stack pointer can be modi�ed along one execution path but not along another is if parameters are notpopped immediately following a call (a routine may be called on one path and not on another; its parameters a�ect the sizeof the stack). Another way is if storage for a (conditionally executed) local block is allocated when the block is entered butnot deallocated when the block is exited. The stack pointer may not need to be adjusted for each such allocation or set ofparameters because an unoptimized prologue restores the stack pointer by setting it to the value in the frame-pointer register.
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4 2. The Call-Stack Trace
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3. The Problem 52.3 Debugger Use of Frame PointersThe frame pointers that have been pushed onto the call stack by calling sequences form a linked list ofpointers to active routine stack frames, with the value in the frame pointer register heading the list. In theunoptimized case, this list contains a pointer to the frame of every active routine, and the frame-pointerregister points to the frame of the currently executing routine. A pointer to a routine's frame can be usedto locate and access its arguments.Given an address within a routine, the debugger can �nd the name and parameter list of the routine bylooking in the symbol table. The code address used to �nd the symbol table entry for the currently executingroutine is the address in the instruction pointer when the breakpoint is reached.4 The code address usedto �nd the symbol table entry for each other routine Fi is the return address stored in the stack frame ofroutine Fi+1.Let us consider in detail how the debugger will construct the call-stack trace. In following the generaldescription given here, it may be helpful to refer to the example call stack in Figure 2.1. The debugger beginswith the currently executing routine Fn. An address within Fn is available from the instruction pointer.From that address, the parameter list and name of Fn are retrieved from the symbol table. The values of thearguments to Fn are available through the frame pointer register. They are displayed formatted accordingto the type information in the parameter list retrieved from the symbol table.The return address in Fn's stack frame is an address within the previously invoked routine Fn�1. Thedebugger uses that address to retrieve the parameter list and name of Fn�1 from the symbol table. Thestored frame pointer in Fn's stack frame points to Fn�1's stack frame. The values of the arguments to Fn�1are retrieved by the debugger through this stored frame pointer, formatted appropriately, and displayed.The debugger repeats this process, using information found in the stack frame of the just-displayed routineto display that routine's caller until all routines have been displayed. We will call this the Fchain method.An algorithm to construct a call-stack trace using the Fchain method is given in Figure 2.4.3 The ProblemIf one or more of the frame pointers have been optimized away, a debugger using the Fchain method willconstruct a call-stack trace that is incorrect. If a single frame pointer (for routine Fi) has been optimizedaway, the debugger will construct a call-stack trace that associates Fi's name with the stack frame of Fi�1(formatting the values found there according to the symbol table entry for Fi), and neither Fi�1's name norFi's arguments will appear. If the frame pointers for routines Fi through Fi+j have been optimized away,the debugger will construct a call-stack trace that associates Fi+j 's name with the stack frame of Fi�1 andno information about Fi through Fi+j�1 will appear. Figure 2.3 shows a call stack containing four activeroutines, one of which has had this optimization performed on it. The call-stack trace produced by theFchain method on this call stack is: F3's name(F3's arguments)F2's name(garbage)F0's name(F0's arguments)Although four routines are active, the call-stack trace contains only three entries, one of which is incorrect.4 SolutionsThe general approach to the problem is to have the debugger use an alternative method of constructingthe call-stack trace that does not rely on the frame pointers in the call stack. Several solutions are presented.4A debugger saves the values that are in the machine registers when it takes control at a breakpoint, thus when we use theterms \instruction pointer", \frame pointer register", and \stack pointer register" we are actually referring to the debugger'scopy of the values that were in these registers when the breakpoint was reached.



6 4. Solutions
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F2F3Figure 2.3: Optimized Call-Stack4.1 The Debugger Maintains Its Own Frame PointersThe debugger can maintain its own copy of the information that it currently gets from the call stack. Thedebugger uses invisible breakpoints ([Zel84]) to collect the information. A invisible breakpoint is a breakpointat which the debugger halts the executing program, takes some action, and continues execution without evergiving control to the user.As we have seen, in order to construct the call-stack trace, the debugger needs for each routine F :� an address of some instruction within F , which it uses to locate the symbol table entry for F , and� a pointer to the base of F 's stack frame, where it �nds F 's arguments.Recall that the �rst instruction in a routine's prologue pushes the caller's frame pointer into the currentstack frame (following the return address). Once that push has occurred, the stack pointer register pointsto the location that by convention is considered the base of the routine's stack frame. If the debugger wereto take control immediately after the �rst instruction in the prologue, it could make a copy of the value inthe stack pointer register, which would give it a pointer to the base of the stack frame, and it could make a



4. Solutions 7In the following algorithm, ip is the instruction pointer register, fp is the frame pointerregister, and we assume the debugger has the following routines available to it:� get-symbol-table-information, which takes a code address and determines whichsymbol table entry corresponds to the routine containing that address, then returnsthe name and parameter type list from the symbol table entry,� display-routine-entry, which takes a routine name, a parameter type list, and aframe pointer, and �nds the arguments in the stack frame pointed to by the framepointer, formats them according to the type list, and displays the routine name andappropriately formatted arguments,� get-return-address, which takes a frame pointer and returns the return address thatis stored in the stack frame pointed to by that frame pointer, and� get-frame-pointer, which takes a frame pointer and returns the frame pointer thatis stored in the stack frame pointed to by that frame pointer.The termination condition given here is somewhat arbitrarily when the \main" routine(the entry point of the user's code) has been displayed. Actual termination conditions aresystem dependent.Algorithm Fchain-Call-Trace:routine-address  ipframe-pointer  fprepeatname, parameter-types  get-symbol-table-information(routine-address)display-routine-entry(name, parameter-types, frame-pointer)routine-address  get-return-address(frame-pointer)frame-pointer  get-frame-pointer(frame-pointer)until name = \main"Figure 2.4: Debugger Algorithm to Display a Call-Stack Trace using theFchain Methodcopy of the value in the instruction pointer register, which would give it an address of an instruction withinthe routine. By setting an invisible breakpoint at the second instruction in each routine, the debugger canget the information that it needs for a call-stack trace.Note that if the debugger set its invisible breakpoint at the �rst instruction in the prologue, it can still getthe information that it needs for the call-stack trace. As in the above case, the instruction pointer containsan address within the routine. The stack pointer register contains at this point a value that must be o�setby the size of the frame pointer that is about to be pushed in order to get a pointer to the base of the stackframe.This scenario assumes an unoptimized stack frame. We are interested in the optimized case, when thepush of the caller's frame pointer into the stack frame does not occur. However, we have just seen thatthe debugger can get the information it needs by setting its invisible breakpoint at the �rst instruction inthe prologue. Since the debugger can get this information before the instruction executes, it clearly doesn'tmatter whether that instruction saves the caller's frame pointer.The debugger must set a breakpoint at the �rst instruction of every routine. Each time a routine iscalled, the debugger copies two pieces of information into its own workspace. It uses this information ratherthan the information that may (not) be stored in the call stack to construct the call-stack trace.Clearly, for this to be correct, the debugger must also set an invisible breakpoint at the return instructionof every routine so that it can remove the information for the about-to-return routine from its workspace {



8 4. Solutionsotherwise, it would be maintaining not a call-stack trace, but a subroutine-call history. That is, the debuggermust store this information in a stack of its own, pushing when a routine is called and popping when theroutine returns. We call the debugger's stack the dstack. Assuming the debugger correctly maintains itsdstack, it can use the information therein just as it would have used the corresponding information thatit would �nd in the program's call stack, to examine the symbol table and to access parameters and localvariables. We will call this the Dstack method.The locations at which invisible breakpoints must be set are call and return instructions. The locationsof the call instructions are available from the symbol table. Either additional compiler support is needed toensure that the locations of the return instructions are also placed in the symbol table or the debugger mustscan the executable and locate them before executing the program.4.2 A Cheaper Method: The Debugger Maintains Only the Missing FramePointersSubroutine calls are extremely common. The Dstack method has a considerable amount of overheadwith two invisible breakpoints per call { probably an untenable amount of overhead. The Dstack methodand the Fchain method can be combined to bring the overhead down to an acceptable level. The dstackis entirely redundant if the frame pointer is set up by every routine. It is partially redundant if the framepointer is optimized away by some routines. Redundancy can be limited by only creating entries in thedstack for routines that do not set up a frame pointer. The compiler can tell the debugger which routinesset up frame pointers. The symbol table entry for a routine must be extended to include a �eld with aboolean entry recording the presence or absence of a frame pointer. There is now overhead of two invisiblebreakpoints per call only for those routines that do not use a frame pointer.Even so, the dstack remains partially redundant. It contains only frame-pointers that are not present inthe call stack. But each dstack entry also contains an address. The address in the entry for Fi is redundantwith the return address which has been placed in the stack frame of Fi+1 by the call instruction. The dstackcan therefore be simpli�ed to contain only frame pointers. We will call this the Dstack/Fchain method.Consider how the debugger will construct the call-stack trace given an optimized call stack and a dstack.The basic di�erence is where a pointer to the stack frame of each routine is found. Note that the framepointers stored in the call stack still form a linked list, but now they chain only stack frames of routines thatuse frame pointers. If Fi uses a frame pointer (indicated by Fi's symbol table entry), then either the framepointer register or the frame pointer in the stack frame of subsequently called active routine Fi+j points toFi's stack frame, where Fi+j is the next routine that uses a frame pointer. If Fi does not use a frame pointer,then the dstack contains a pointer to its stack frame.An algorithm to construct a call-stack trace for an optimized call stack using the Dstack/Fchain methodis given in Figure 4.1.4.3 Non-Local GotosCommonly used procedural languages provide some form of jump from the middle of a routine to themiddle of some other previously invoked active routine, a jump that is not simply a return to the callingroutine. Sometimes this is provided in the language as part of the goto facility (as in Pascal), and it is fromthere that the name non-local goto was coined { it is a goto whose target is not local to the routine that thegoto is in. In other languages, such as C, library routines perform the same function (in C, these routinesare setjmp and longjmp). Other languages provide some form of exception handling, which can have thesame e�ect.Any of these forms of non-local goto cause di�culties for the Dstack and Dstack/Fchain methods.In order to maintain correctness in its dstack, the debugger must reach invisible breakpoints at both thebeginning and the end of each routine that does not set up a frame pointer. If a non-local goto occurs, theend of such an active routine may never be encountered, since the routine does not perform a normal return.



4. Solutions 9Algorithm Dstack/Fchain-Call-Trace:routine-address  ipcall-stack-frame-pointer  fptemp-dstack  dstack // copy dstack so pops are not destructivedstack-frame-pointer  pop(temp-dstack)repeatname, parameter-types  get-symbol-table-information(routine-address)if (uses-frame-pointer(routine-address))frame-pointer  call-stack-frame-pointercall-stack-frame-pointer  get-frame-pointer(frame-pointer)else frame-pointer  dstack-frame-pointerdstack-frame-pointer  pop(temp-dstack)display-routine-entry(name, parameter-types, frame-pointer)routine-address  get-return-address(frame-pointer)until name = \main"Figure 4.1: Algorithm to Display a Call-Stack Trace in the Occa-sional Absence of Frame Pointers using the Dstack/FchainMethodInstead, the return is performed for it by restoring the machine to an earlier saved state. There is a problemonly if a routine Fi that does not set up a frame pointer has been called and has not returned, and thetarget of the goto is code in a routine Fi�j called earlier than Fi. Fi will not return normally, the invisiblebreakpoint at Fi's return statement will not be reached, and the debugger will not pop its entry for Fi fromthe dstack. Let us assume there is a routine Fi�j�k that was called earlier than Fi�j (thus is active afterthe non-local goto) and Fi�j�k does not set up a frame pointer. After the non-local goto, the debugger isasked for a call-stack trace. An example of such a situation is shown in Figure 4.2. The debugger algorithmdisplays the call-stack trace entries correctly until it attempts to display Fi�j�k. It determines from thesymbol table entry for Fi�j�k that Fi�j�k has not set up a frame pointer, so it uses the entry on the topof dstack to continue the construction of the call-stack trace. This, of course, is the wrong entry { it is theentry for Fi. Two solutions to this problem are given below.One Solution: Cleaning Up the DstackIf immediately after a non-local goto was executed the debugger took control, it could remove anyinappropriate entries from the top of the dstack. Any entry with a frame pointer pointing higher on thestack than the value in the stack-pointer register is an entry that should be removed, since such entries mustbe for routines that have \returned" via the non-local goto.5 The debugger must take this action right away,since subsequent subroutine calls will cause the stack to grow.For languages like C, in which non-local gotos are implemented by library routines, the debugger canset an invisible breakpoint at the library routine that implements the goto, and when it reaches such abreakpoint, the debugger can clean up the dstack. This may work for languages with exception handling aswell.Languages with direct jumps in the code require some work on the part of the compiler if the invisiblebreakpoint cleanup solution is to be used. The debugger must be told where to set its invisible breakpoints,so the compiler must provide a list of such addresses to the debugger.5On many architectures the stack grows down, so higher on the stack may mean a lesser value in the frame pointer.
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4. Solutions 11Another Solution: Leaving Redundancy in the DstackIn the Dstack method, because the dstack alone is used to construct call-stack traces, each entry mustcontain both a frame pointer and a code address. We noted above that when both the call stack and thedstack are used, the code addresses in the dstack are redundant. This redundancy can be exploited.In constructing a call-stack trace, when the debugger needs to use a dstack entry, it already has a codeaddress A within the routine that is to be displayed next (the code address that was the return addressfound in the stack frame of the routine that was previously displayed). If the code address in the currentdstack entry and A are not addresses within the same routine, the debugger can simply ignore the dstackentry and go on to the next entry. Whenever the invisible breakpoint for the return of a routine that doesnot use a frame pointer is reached, all dstack entries must be popped until (and including) the entry whosecode address is in the same routine as the return instruction.6This scheme does not require that the debugger take control immediately after a non-local goto, and thusdoes not require any special e�ort on the part of the compiler. It does increase the expense of constructinga call-stack trace, since more code addresses must be matched with the routines that contain them.4.4 A \Free" Method: The Compiler Does the WorkA routine may contain numerous calls to other routines. Assume routine A calls routines B and C.The size of A's stack frame at the point of the call to B may di�er from the size of its stack frame at thepoint of the call to C. However, the size of A's stack frame at the point of the call to B may be the sameevery time A is active. If the size of a routine's frame is constant at the point that it makes a call, the sizecan be determined by the compiler. The return address stored in the stack frame of the called routine is aunique identi�er of the call. A table Fsize of </em return address, size of caller's stack frame at point ofcall> pairs can be provided by a compiler. We can use such a table to compute the appropriate position foreach frame pointer without looking in the run-time stack (thus optimization of the calling sequence does noharm). Assuming a lookup function get-frame-size for this table that takes a return address and returns theassociated stack frame size, and function get-return-address as de�ned in Figure 2.4, the position FPi of the(logical) frame pointer for the ith function on the stack can be determined by:FPi = FPi+1 � get�frame�size(get�return�address(FPi+1) (4:1)The algorithm given in Figure 2.4 can be used to display the call-stack trace if function get-frame-pointeris rede�ned to return FPi as de�ned in equation 4.1.7 No invisible breakpoints need to be set by thedebugger. We call this the Fsize method. The Fsize method is elegant but incomplete:1. it fails for routines whose stack-frame size is not constant at the point of a call made by the routine,and2. it fails if the return address of an active routine is not available. Once a frame pointer is available,the return address of all previously invoked routines can be found. However, if the routine that wasexecuting when the debugger gained control (hereafter the current routine) does not set up a framepointer, the frame-pointer register cannot be used to �nd the return address of its caller. That returnaddress is present on the stack, but its location is not exactly identi�ed.6If an invalid entry is on the top of the dstack when a call-stack trace is being constructed, it can be popped from the dstackthen. However, an entry may be buried on the dstack because subsequent to the non-local goto other routines were called.7The problem would be much simpler if the size of A's stack frame were identical for all calls made by A. The stack-framesize could be included in A's symbol table entry, eliminating the need for Fsize. Unfortunately, if the stack pointer is used toreference temporaries, �xing the stack frame size would require modi�cation of the stack pointer prior to and following calls,which would cost more than is saved by optimizing the calling sequence. However, in some architectures, such as Mips, thestack pointer is not used in this manner, and this approach is taken [Cor91].



12 4. SolutionsAlgorithm Fsize/Fchain-Call-Trace:routine-address  ipcall-stack-frame-pointer  fprepeatname, parameter-types  get-symbol-table-information(routine-address)if (uses-frame-pointer(routine-address))frame-pointer  call-stack-frame-pointercall-stack-frame-pointer  get-frame-pointer(frame-pointer)else frame-pointer  frame-pointer - get-frame-size(get-return-address(frame-pointer))display-routine-entry(name, parameter-types, frame-pointer)routine-address  get-return-address(frame-pointer)until name = \main"Figure 4.3: Algorithm to Display a Call-Stack Trace in the Occa-sional Absence of Frame Pointers using the Fsize/Fchain MethodWhen the Frame Size VariesIf the size of a routine's stack frame at the point of a particular call is not constant, the caller's framepointer must be saved, that is, the prologue and epilogue of the called function must not be optimized. Thechain of frame pointers stored in the stack can be used to locate stack frames of such routines while theFsize table can be used to locate stack frames of routines that do not save the frame-pointer register. Wecall this the Fsize/Fchain method, and it is the solution that we implemented.An algorithm to construct a call-stack trace for an optimized call stack using the Fsize/Fchain methodis given in Figure 4.3.When the Current Routine Has No Frame PointerIf the current routine does not set up a frame pointer, the location of the return address of its caller isnot exactly identi�ed. One option is to search the stack for the return address. The search is bounded onone side by the value in the stack pointer register and on the other by the value in the frame pointer register.The stack search may be complex (it may have to be done more than once, starting at di�erent alignments),but the return address is guaranteed to be on the stack. There is a chance of �nding a value in the stackthat matches an Fsize return-address entry but is not the caller's return address. This chance is probablyfairly small (unless the program is a compiler or debugger), but is nonzero. The probability of such an errorcan be decreased by augmenting Fsize with a third �eld containing the name of the called function.Fsize would then consist of <caller's return address, caller's framesize, callee's name> triples. If a valuethat matches the �rst �eld is found in the stack, the current function's name can be tested against Fsize'sthird �eld. We call this the Fsize+/Fchain method. It is still not foolproof: assume A is the currentfunction, called by B with return address R, and also somewhere in the code there is a call of A by C withreturn address P . If a value equal to P happens to be on the relevant portion of the stack above R, thewrong Fsize entry will be used. However, this is considerably less likely than the previous error probability.The callee's name may not be known (the call may be through an address passed in to the caller). Forsuch calls, the third �eld in Fsize may be left null. A null Fsize entry could be considered to match anyroutine name. Alternatively, the compiler could put out a table T of routines whose addresses have beentaken; a null Fsize entry could be considered to match only entries in T . This opens the door to error in



5. Implementation 13Total Compilation Time Sum of Object Module SizesFchain 804.3 seconds 490987Fsize/Fchain 825.4 seconds 589113increase 2.5 per cent 20 per centTable 5.1: Compilation times and object module sizes for the Fchain and Fsize/Fchain methods.A compiler benchmark consisting of 44 source �les containing a total of 13,511 lines of C code wascompiled.the other direction, where the actual return address is rejected because it is a call of a routine that is not inT .8A simpler alternative is to just provide truthful behavior if the active function has an optimized prologue:give its name, state that the stack trace may be missing some functions, and start the trace at the functionwhose frame is pointed to by the frame-pointer register.5 ImplementationWe have a prototype implementation of the Fsize/Fchain method using MetaWare Incorporated'sHigh C compiler and The Free Software Foundation's gdb debugger, running on an MC68000 based Sunworkstation.Compiler modi�cations involved adding approximately 50 lines of code spread across seven source �les,none of it inside loops. The `pushes fp' bit was integrated into the existing symbol table format at no spacecost. Fsize takes eight bytes per call (four bytes for the return address, four bytes for the frame size)plus four bytes per �le (to record the number of entries). We used compiler benchmarks to comparecompilation times and object module sizes for the Fchain and Fsize/Fchain methods. Table 5.1 gives thetime to compile one benchmark program consisting of 13,511 lines of C code (in 44 source �les), using eachmethod. The table also gives the sum of the sizes of the object modules produced. For both compilationtime and object module size, the increase due to the Fsize/Fchain method is given as a percentage of thetime or size associated with the Fchain method. Individual object-module size increases varied from lessthan one per cent to 34 per cent. The object module size increases would be larger for the Fsize+/Fchainmethod. No attempt was made to optimize for space.9Debugger modi�cations involved adding approximately 150 lines of code spread across �ve source �les.The time the modi�ed debugger spent on call-stack traces was not perceptibly di�erent from the time spentby an unmodi�ed debugger.6 Solution Summary and ComparisonThe enabling technology for producing an accurate call-stack trace in the occasional absence of framepointers is either the dstack or Fsize. In this section we summarize and compare the Dstack/Fchainand Fsize+/Fchain methods. First we break the methods down by what is required of the compiler anddebugger. We include the e�ect on the symbol table format, because it is often the limiting factor in whatinformation is passed from the compiler to the debugger.8For example, on some systems interrupt handlers are placed in constant locations. These routines would not be in T .9There is considerable potential for space optimization in Fsize, at the cost of added complexity in reading the table. Thereturn address could be entered as an o�set from the function entry point. Typical stack frame sizes can be expressed in a fewbits rather than four bytes. If Fsize were optimized for space, the Fsize+ version with the caller's name could probably beimplemented in half the space of our existing implementation that does not include the caller's name.



14 6. Solution Summary and Comparison� Dstack/FchainThe debugger must be able to determine where the �rst instruction in each routine is located, and wherethe routine exits (return instructions) are located. The debugger could determine this information byscanning the executable code. This would slow debugger start-up, but would allow this method tobe used with no compiler support. We assume, however, that the task of producing this informationwould fall to the compiler. In addition, the debugger must be able to determine whether a routine'sprologue pushes a copy of the frame pointer register. As before, while the debugger could determinethis information by scanning the executable code, we assume that the compiler will be responsible forsupplying the information to the debugger.{ Symbol Table FormatThe symbol table already has a place for the location of the �rst instruction in a routine. Itmust be augmented to include the routine exit locations, and to include a `pushes fp' bit encodingwhether a routine's prologue pushes a copy of the frame pointer register.{ CompilerThe compiler must set the `pushes fp' bit and record each routine exit location in the augmentedsymbol table.{ DebuggerThe debugger must read the augmented symbol table and place invisible breakpoints at the entryand exit of each routine whose `pushes fp' bit is o�, prior to running the target program. Onreaching an invisible breakpoint at routine entry, the debugger must push the stack pointer ontothe dstack; on reaching an invisible breakpoint at routine exit, the debugger must pop the dstack.The debugger must use dstack entries to locate frames of these routines, and use frame pointerssaved in the call stack to locate frames of other routines.� Fsize+/Fchain{ Symbol Table FormatThe symbol table must be augmented to include the Fsize table of <return address, frame-size, name> triples. It must also include the `pushes fp' bit in the entry for a routine, as above.{ CompilerFor each call, the compiler must record the caller's framesize at the point of the call instructionalong with the address of the following instruction and the name of the called routine in Fsize.For each routine, the compiler must set the `pushes fp' bit in the routine's symbol table entry.{ DebuggerThe debugger must use Fsize entries instead of frame pointers saved in the call stack to locateframes of routines whose `pushes fp' bit is o�. The debugger must use frame pointers saved inthe call stack to locate frames of other routines. Because Fsize is indexed by return addresses, ifthe current routine's `pushes fp' bit is o�, the debugger must either1. print its name only, warn the user that the stack trace may be incomplete, and provide a stacktrace beginning with the routine whose frame is pointed to by the frame-pointer register, or2. search the stack for a return address that appears in the �rst �eld of some Fsize entry whosethird �eld is the name of the current routine; the debugger must use that Fsize entry tolocate the current routine's stack frame.Next we summarize the advantages and disadvantages of these method relative to each other.� Dstack/Fchain{ DisadvantagesThis method requires additional complexity in the debugger. When invisible breakpoints are set,the Dstack method has an overhead of hundreds of instructions per call of routines that do notsave frame pointers in their stack frame. When invisible breakpoints are not set, the Dstackmethod has no run-time overhead. The symbol table entry for every routine must be read, andthe invisible breakpoints set, before the Dstack method can be used. This can cause a signi�cant



7. Conclusion 15delay in debugger start-up. The location of routine exits must be available to the debugger. Thiseither adds to the complexity of the symbol table and the compiler and to the size of the objectmodules and executable (typically 4 bytes per routine for the routine exit and one `pushes fp' bitper routine) or adds to the start-up time and complexity of the debugger.{ AdvantagesThe Dstack/Fchainmethod can be implemented in a debugger without a dependence on compilersupport. It can always provide a correct call-stack trace.� Fsize+/Fchain{ DisadvantagesThis method requires additional complexity in the symbol table, the compiler, and the debugger.The size of the object modules and executable increases signi�cantly. Compilation time increasesa little, as does the time required to read the symbol table. In the case that the current routinedoes not save the frame-pointer register, the method is either incomplete or may be incorrect.{ AdvantagesThe time cost to the debugger of a larger symbol table is more than o�set by the ability to read thetable on demand: unlike the Dstack/Fchain method, the Fsize/Fchain method only requiresthe symbol table entry for a routine to be read if the routine is active when the call-stack trace isperformed. The method has no run-time overhead.7 ConclusionThe method used today by interactive debuggers to provide a call-stack trace relies on a frame pointerbeing set up within the stack frame of each active subroutine. This paper gives several methods that supporta debugger's call-stack trace facility in the circumstance that, due to optimization, some routines do not setup a frame pointer. These methods vary in their costs: there is a trade-o� between run-time overhead forthe debugger and required symbol table and compiler support.
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