
A Further Note on Hennessy's\Symbolic Debugging ofOptimized Code"Max CoppermanCharles E. McDowellUCSC-CRL-92-24Supersedes UCSC-CRL-91-04April 1992Board of Studies in Computer and Information SciencesUniversity of California at Santa CruzSanta Cruz, CA 95064abstractWhen attempting to debug optimized programs, most debuggers may give misleading informationabout the value of variables at breakpoints. Hennessy proposed a set of algorithms for generatingoptimized code and determining when, in the generated code, the reported values would be mislead-ing, and under certain circumstances actually recovering the \expected" value of the variable (i.e.,one that would not be misleading). We point out where the assumptions made by Hennessy needto be revised due to advances in compiler and debugger technology, and give references for currentwork on this revised problem.



1. Introduction 11 IntroductionHennessy's paper \Symbolic Debugging of Optimized Code" [Hen82] discusses one of the problems ofsource-level debugging of optimized code: how to provide information about the value of a variable that hasbeen a�ected by optimization without confusing or misleading the user. When the debugger gains controldue to a program trap or breakpoint, it should provide values that are consistent with the order of evaluationand assignment in the source program, which corresponds to the the order of evaluation and assignment inan unoptimized version of the program. Unfortunately, this is not always possible, because various kinds ofoptimizations may cause a variable to have a value that has been assigned earlier or later than in the source(or unoptimized) code. Such a variable is termed noncurrent at points in optimized code where its valuedi�ers from its value at corresponding points in the source or unoptimized code and current at points whereits value is the same.The bulk of Hennessy's paper deals with problems that arise from local optimization. He describesinformation to be used to determine which variables are noncurrent in the presence of local optimizationsand algorithms that use that information to make the determination and, if possible, recover the correctvalues of such variables. Wall et al [WST85] describes errors in Hennessy's algorithms and gives correctedalgorithms.The code generation algorithm used in Hennessy's work (a standard algorithm from Aho and Ullman[AU77], [AU73], [AU72]) generates code that contains only one assignment to any variable within a basicblock. In the next section, we show how Hennessy's algorithms (and the modi�ed algorithms of [WST85])are dependent on this characteristic.Due to a decade's progress in computer architecture and compiler technology, highly optimized codemay contain more than one assignment to a given variable within a basic block. At one time registers wereexpensive and variables were assumed to reside in memory; if a variable could be kept in a register for itsentire lifetime, it was considered to have been `optimized away'. Many architectures today provide enoughregisters that many variables never need to be stored in memory. Symbol table formats recognize this factby allowing a variable to be mapped to a register; debuggers will retrieve the value in the register whenqueried about the variable. In fact, it is becoming more and more common to allow a variable to be mappedto a number of locations over its lifetime [CMR88], [Str91], [Wan91], [Sil92].Assume that in some source code, a variable V is assigned into more than once in a basic block. Assumingthat V is used after each such assignment, the code generation technique used by Hennessy would usetemporaries (registers) for all but the last such assignment. Under the old assumption that V is stored inmemory and has a single location known to the debugger, this is an optimization that eliminates memoryreferences and thereby speeds up the program, at the cost of making the value of V noncurrent betweenthe �rst and last assignments into V in the block. With current compiler and debugger technology, eachtemporary is an alias for V (over the appropriate range of code), and V is current throughout the block.The machine code that is produced by the code generation algorithm used by Hennessy contains morethan one assignment into a variable V within a single block B if



2 2. The Problemx = a*b+c;d = e*x;f = sqrt(x);g = (h*x)/i;x = j*k;Figure 1.1: In the above code for a basic block, the �rst assignment to x must take place becausex is used within the block. The second assignment to x must take place because x must have thecorrect value on block exit.� the source code contains more than one assignment into V within B,� the result of some such assignment other than the last one is used within B, and� each temporary into which such a result is computed is considered to be an alias for V over theappropriate range of code addresses (and the debugger is so informed).1Figure 1 comprises a block in which two assignments are made to variable x.2 The ProblemThe algorithms given by Hennessy for determining whether a variable V is current at a breakpoint donot give correct results when there are multiple assignments into V in a block, that is, when what wereonce considered unavailable compiler temporaries are considered to be aliases for V . Hennessy's algorithmswill report that x is noncurrent at a breakpoint reached between the two assignments to x within the blockshown in Figure 1.Hennessy's debugger algorithms take as input an augmented expression dag. A normal expression daghas a variable name (or several) optionally labeling each node, indicating that the value of that node shouldbe assigned to that variable when the value is computed. If a variable V is assigned at more than one node,as the dag is constructed the label is moved to the latest node at which V is assigned, so that subsequentuses of V within the dag refer to the node containing the correct value of V. Thus there is only one instanceof any given variable label in the dag. Hennessy augments the dag in a number of ways, only one of whichis germane here: rather than moving labels, a �eld is added to distinguish between old and current labels.In the dag construction algorithm, the node representing the last value assigned to a variable within a basicblock is given a \current" label for that variable. Nodes corresponding to previous values assigned to thesame variable within the basic block are given an \old" label for that variable. By construction, there isonly one current label for each variable assigned to within the dag.In Hennessy's paper, an old label represents an assignment in the unoptimized version that is not presentin the optimized version, and a current label represents an assignment that appears in both unoptimizedand optimized versions.1Coutant et al [CMR88], Streepy [Str91], and the DWARF standardization e�ort [Sil92] discuss di�erent formats whereby adebugger can be informed of such aliases.



3. Examples 3When what were once considered compiler temporaries are considered valid locations for variables, thisconstruction produces assignments with old labels that appear in both unoptimized and optimized versions,contrary to the intended meaning of the old label.2Due to this construction, Hennessy's algorithms for determining whether a variable is current (and themodi�ed versions of Wall et al [WST85]) will provide all current variables in programs that either:� contain no old labels, or� contain old labels, but due to optimization do not perform the assignments represented by those labels(even into temporaries),that is, programs that do not perform more than one assignment to any variable within a basic block.These algorithms will fail to provide some available current values in programs that perform more than oneassignment to any variable within a basic block.These algorithms cannot provide all current variables for highly optimized code. It clearly follows that thealgorithms cannot provide all current variables for partially optimized code, which in addition may containdead stores to variables subsequently assigned within a block. A general solution must work not only onhighly optimized code, but on partially optimized and unoptimized code as well.33 ExamplesFigure 3.1 is a reproduction of Figure 7 fromHennessy's paper.4 In this example, if execution is suspendedat instruction 20 then F is noncurrent because the code that should have assigned into F has been eliminatedand D is noncurrent because the code that assigns intoD has been executed earlier than in the unoptimizedcode.Figure 3.2 is a modi�ed version of the same example. A use of F has been inserted between the �rst andsecond assignments into F, thus code must be generated for the �rst assignment into F: F is assigned intotwice in the same basic block. If execution is suspended at the corresponding point in this example (nowinstruction 30 rather than 20 due to the presence of the additional assignment), F is current. F has the samevalue at that point in the optimized and unoptimized code. However, the augmented dag for this modi�edexample contains an old label for F at node 1, just as in the case when no code was generated for the node.Algorithm 1 from Wall et al [WST85], shown in Figure 3.4, therefore reports F as being noncurrent (torelate this example to Algorithm 1, let L be the label on node 1: nodepointer of L < 4 (the node number ofthe breakpoint location), L is an old label, and F is not in Fixed).52It should be noted that this will occur independently of the compiler's choice for the location of the temporary { it willhappen even if the compiler chooses the storage location of the variable as the `temporary' location. It was once safe to assumethat this would not occur, because variables were located in memory, but today variables may be located in registers, and thecompiler may well choose the same location for the `temporary' and `permanent' variable locations.3Compilers routinely o�er partial optimization in the form of optimization levels. These typically allow a trade-o� betweenspeed of compilation and completeness of optimization.4A typographical error in the original �gure has been corrected: the roll forward variable (RFV) is F, as is clear from thecode and the text, but is shown in the original �gure as A.5The problem addressed by Wall et al in [WST85] is orthogonal to the problem introduced by our new interpretation of the



4 3. Examples

1oldF 5F4A4D curcur cur
30. F := E Noncurrent VariablesOptimized CodeUnoptimized Code 20. A := B + C10. D := B4. F := E3. D := B2. A := B + C1. F := DRoot Order1 < 4 < 5 code start (2) < code start (4) < code start (5)Code Order

5 E1 D 2 3 CB +4
FDRBV RFV

Figure 3.1: An Example (Figure 7) from Hennessy's PaperThe problem results from the fact that a current variable corresponds to a node labelled old. It shouldbe possible to modify the expression dag construction algorithm to allow multiple current labels, so thatevery assignment into a variable within a block is labelled current, and a node labelled old truly representsan eliminated assignment. However, Hennessy's algorithms assume that there is only one current labelfor a variable in a block. This can be seen by examining Figure 3.3, which is a further modi�ed versionof the example. The label on node 1 is current because the assignment does take place. A dead storeinto F has been added (statement 5, node 6) and eliminated by optimization. If execution is suspendedat statement 50 (corresponding to statement 6 in the unoptimized code), F is noncurrent because of theeliminated assignment. However, Algorithm 1 reports F as current because the current label of F on nodemachine code { Hennessy's original Algorithm 1 also reports F as being noncurrent.



3. Examples 5
40. G := F + A4. G := F + A RFVRBVVariables Reported as NoncurrentOptimized CodeUnoptimized Code 30. A := B + C20. D := B10. F := D3. D := B2. A := B + C1. F := D D FCode Ordercode start (1) < code start (2) < code start (4) < code start (5) < code start (6)1 < 4 < 5 < 6Root Order5. F := E 50. F := E

5
F4D curcur

5
ECB2D1 4 + 3curA 4 6

G cur+ 61oldF
Figure 3.2: A Modi�ed Example on which Hennessy's Algorithms Are Conservative



6 3. Examples
1 < 4 < 5 < 7

cur 77 EH old
40. G := F + A4. G := F + A RFVRBVVariables Reported as NoncurrentOptimized CodeUnoptimized Code 30. A := B + C20. D := B10. F := D3. D := B2. A := B + C1. F := D DCode Ordercode start (1) < code start (2) < code start (4) < code start (5) < code start (7)Root Order 5

4D cur
5

CB2D1 4 + 3curA 4G cur+1F
50. F := E5. F := H6. F := E

6 6F F cur
Figure 3.3: A Further Modi�ed Example: if multiple current labels are allowed for a single variablein a block (here F), Hennessy's algorithms will give incorrect results.



4. Related Work 7Input: A dag D and a node d that is the error or breakpoint location.Output: The sets RFV and RBV.Method:RFV := ;; RBV := ;;f First pass: �nd the identi�ers that were stored into gFixed := fvjv is a current label on some node n with codestart(n) < codestart(d)gfor each label L in D do beginn := the node labeled by L;v := the variable in the label L;if (nodepointer of L < d)f i.e., the assignment should have been done gand ((codestart(n) > codestart(d))f but was not because of code motion gor (L is an old label) and (v is not in Fixed))f or because of a deleted store whose absence is not made irrelevant by alater store that is actually executed gthen RFV := RFV [fvg;f compute the RBV set gif (L is current) and (codestart(n) < codestart(d))f i.e., the assignment was executed gand (nodepointer of L � d)f but should not have been executed yet gthen RBV := RBV [fvg;end Figure 3.4: Algorithm 1 from Wall et al1 causes F to be placed in the set Fixed; when subsequently the old label on node 6 is examined, F isrejected from membership in the RFV (Roll Forward Variable) set because F is in Fixed. Note also thatin the computation of the RBV (Roll Backward Variable) set, if an assignment to a variable V and thecorresponding uses of V are moved up (occur earlier in the optimized code than in the unoptimized code) sothat they cross both the breakpoint and another (current) assignment to V , V will be incorrectly placed inRBV. Algorithm 2 also relies upon the assumption that there is a single current label for a variable in thedag, particularly in the function Available.4 Related WorkSince Hennessy's paper, several groups have worked on this or related problems. Coutant et al [CMR88]describes a compiler/debugger pair modi�ed to allow source-level debugging of optimized code. The part oftheir work relevant to this discussion is that the debugger reports when variables have been made noncurrentdue to instruction scheduling within a basic block. The compiler tracks stores to user variables that havebeen moved across statement boundaries. As of the 1990 implementation, a variable was reported to benoncurrent after its last use, although it may still be available in a register or in memory [Mel90]. Streepy



8 5. Summary[Str91] describes a rich compiler/debugger interface designed to allow source-level debugging of optimizedcode. The interface de�nes source units beyond subroutines and statements (it includes loops, blocks, andexpressions) and includes a source range table mapping between source units and sequences of object codegenerated from them. This provides su�cient information to determine whether a variable is current at abreakpoint when local optimizations have been performed: within a basic block, there is a total order onsource statements and a total order on object code addresses, and the source range table gives a mappingbetween them, allowing di�erences in order to be determined.6 Across basic blocks, the orderings on sourcestatements and object code addresses are partial orders, thus the source range table does not provide su�cientinformation to determine whether a variable is current at a breakpoint: when global optimizations have beenperformed, data ow information is needed.Data ow techniques have been successfully applied to problem of currentness determination in the pres-ence of both local and global optimization by Copperman and McDowell [Cop92], [CM91] and independentlyby Bemmerl and Wismueller [BW92]. Reaching de�nitions are computed before optimization is performed.In Copperman and McDowell's work, a second reaching de�nitions computation is done after optimizationis performed, and a comparison of the de�nitions of a variable that reach a breakpoint before and afteroptimization is used to determine if the variable is current at the breakpoint. In Bemmerl and Wismueller'swork, each de�nition of a variable found to reach a breakpoint before optimization is tested to determinewhether it is killed along any path along which it is `supposed' to reach the breakpoint.5 SummaryMany debuggers occasionally give misleading information about the value of a variable at a breakpointin an optimized program. Hennessy's algorithms for determining when a reported value would be misleadingdue to local optimizations assume that optimized code contains only one assignment to any variable within abasic block. This assumption was valid when he made it, but is now overly restrictive: compiler and debuggertechnology has progressed so that what were once considered compiler temporaries are now considered aliasesfor variables, thus there may be more than one assignment to a variable within a block. The problem ofcurrentness determination is more general than the problem that Hennessy solved. Several groups haveworked on the more general problem with some success.References[AU77] Aho, A.V. and Ullman, J.D. Principles of Compiler Design, Addison Wesley, Menlo Park, CA, 1977.[AU73] Aho, A.V. and Ullman, J.D. The Theory of Parsing, Translation, and Compiling, Prentice Hall,Englewood Cli�s, N.J., 1973.6The information is su�cient provided that assignment is considered to be an expression, and thus a mapping betweenassignment operators and the object code that sets the variable (the store into memory, computation into a register, or registercopy operation) is provided. It is not clear from Streepy's paper that this is the case, but if not, it is clearly possible to extendthe interface in this direction.



References 9[AU72] Aho, A.V. and Ullman, J.D. \Optimization of Straightline Code," Siam J. Comput. 1, 1(Jan. 1972),1-19.[Cop92] M.Copperman, \DebuggingOptimizedCodeWithoutBeingMisled,"UCSCTechnicalReportUCSC-CRL-92-01,January 1992. Submitted for publication toACMTransactions onProgrammingLanguagesand Systems.[CM91] Copperman,M.,McDowell, C. \DebuggingOptimizedCodeWithout Surprises (ExtendedAbstract),"Proceedings of the Supercomputer Debugging Workshop, Albuquerque NM, November 1991[CMR88] D. Coutant, S. Meloy, M. Ruscetta \DOC: a Practical Approach to Source-Level Debugging ofGlobally Optimized Code," Proceedings of the SIGPLAN `88 Conference on Programming LanguageDesign and Implementation, pp. 125-134, 1988.[Sil92] Personal Communication, J. Silverstein, ed., \DWARF Debugging Information Format," ProposedStandard, UNIX International Programming Languages Special Interest Group, April 1992.[Hen82] Hennessy, J. \Symbolic Debugging of Optimized Code," ACM Transactions on Programming Lan-guages and Systems, Vol. 4, No. 3, pp. 323-344, 1982[Mel90] Personal Communication, Meloy, S., Hewlett-Packard, 3345 Mount Pleasant Rd., Lincoln, CA[Hen90] Personal Communication,Hennessy, J., Center for Integrated Systems, Stanford University, Stanford,CA[Str91] L. Streepy, \CXdb A New View On Optimization," Proceedings of the Supercomputer DebuggingWorkshop , Albuquerque, November 1991.[Wan91] Personal Communication regarding Microtec Research's Xray Debugger, Wang, F., Microtec Re-search, Inc., Santa Clara, CA, January 1992[Wis92] Personal Communication,Wismueller, R., Institut fur Informatik, Technische Universitat Munchen,Munich, Germany, March 1992[BW92] T. Bemmerl, R. Wismueller, "Quellcode-Debugging von global optimierten Programmen", Proceed-ings of the GI-ITG Workshop "Parallelrechner und Programmiersprachen", Schloss Dagstuhl, Ger-many, Feb. 1992[WST85] D.Wall, A. Srivastava, R. Templin, \A note on Hennessy's Symbolic Debugging of Optimized Code,"ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, pp. 176-181, Jan. 1985.


