
108where �i = 8>>>>>>>><>>>>>>>>: �i=c if i � n and �i � 0��i�n=c if n < i � 2n and �i�n < 01� 1c Pi j�ij if i = 2n+ 10 otherwise.Note that for each i, �i is nonnegative, and thatPi �i = 1. Choose g2LINEAR(n;M; c); ~x2[0;M ]n. Let ~� be the coe�cient vector of g, I+ = fi : �i > 0g and I� = fi : �i � 0g. Wehave (g)(�(~x)) = 0@Xi2I+ �i(xi + M)2cM 1A+ 0@Xi2I� ��i(�xi +M)2cM 1A + 12  1� 1cXi j�ij!=  12cM nXi=1 �ixi!+  Xi j�ij2c !+ 12  1� 1cXi j�ij!= g(~x)2cM + 1=2:Thus there is a 2cM -reduction from LINEAR(n;M; c) to WA(2n + 1; 1; 0). The theoremnow follows immediately from Theorem 81. The �rst bound can be proved by giving anM -reduction from WA(n;M; �) to WA(n; 1; �) along the lines of the reduction given above.The details are omitted. 2



1071Xt=1( (f)(�(xt))� �t � k� )p = 1Xt=1(f(xt)� k� � �t � k� )p= 1=�p 1Xt=1(f(xt)� �t)p= N=�pwe have 1Xt=1(�t � �t � k� )p �  Lp(A;G; N=�p):Hence, 1Xt=1((��t + k)� �t)p = �p 1Xt=1(�t � �t � k� )p� �p  Lp(A;G; N=�p):The theorem follows from the fact that S was chosen arbitrarily. 2This theorem is applied in the following section.C.1 Proof of Theorem 8We will prove only the second bound. The �rst can be proved analogously.Choose n;M; c appropriately. We present a 2cM -reduction from LINEAR(n;M; c) toWA(2n+ 1; 1; 0). The theorem then follows immediately from Theorem 81 and Theorem 7.De�ne the instance transformation � : [0;M ]n ! [0; 1]2n+1 by�(~x) = �x1 + M2M ; :::; xn +M2M ; �x1 + M2M ; :::;�xn + M2M ; 12�and de�ne  : LINEAR(n;M; c) ! WA(2n + 1; 1; 0) as follows. If g 2 LINEAR(n;M; c) isde�ned by g(~x) = nXi=1 �ixi;then let  (g) = f , where f is de�ned byf(~x) = 2n+1Xi=1 �ixi;



106Appendix C. Reductions between real-valued learningproblemsIn this section, we describe a notion of reductions between real-valued learning prob-lems. These transformations generalize the prediction preserving reductions that havebeen used in a similar manner in the learning of f0; 1g-valued functions [Haussler, 1989b][Littlestone, 1988] [Kearns et al., 1987] [Pitt and Warmuth, 1990].We will need the following de�nition. Let X and Y be sets, and let F and G befamilies of real-valued functions de�ned on X and Y respectively. Let � � 0. We saythat F �-reduces to G if and only if there is a function � : X ! Y , called an instancetransformation, a function  : F ! G, called a target transformation, and k 2 R such thatfor all x 2 X; f 2 F , f(x) = � (f)(�(x)) + k:We are now ready for the following theorem, which gives loss bounds for a class offunctions in terms of those for a class to which the function can be �-reduced.Theorem 81: Let X and Y be sets, and let F and G be families of real-valued functionsde�ned on X and Y respectively. Let A be an algorithm for Y . Choose p; �;N � 0. Thenif F �-reduces to G, there exists an algorithm B for X, such that Lp(B;F ; N)� �p  Lp(A;G; N=�p):Proof: De�ne B as follows. Given an instance x, B feeds �(x) to A, and if A predicts �,B returns ��+ k. Then, when B gets � as a reinforcement, it feeds (�� k)=� to A.Choose f 2 F , and let S = h(xt; �t)it2N be a sequence of example-reinforcement pairs.Let h�tit2N be the sequence of predictions made by A on h(�(xt); (�t� k)=�)it2N. LetN = 1Xt=1(f(xt)� �t)p:Then since



105since vk > 0; xk = 1; xi < 1; and � < 1.Assume as a second case that xi = 1. In this case,lim!0 1=q = lim!0Pnj=1 vj � (1+)(1��t+)(�t+) � xj1+2vi �(1+)(1��t+)(�t+) � 11+2= lim!0Pj:xj=1 vjvi + lim!0 Xj:xj<1 vjvi �(1 + )(1� �t + )(�t + ) �xj�11+2= Pj:xj=1 vjvi :Combining this with (B.2) and (B.1) yields the desired result. 2Now we are ready for the main result of this appendix.Theorem 80: Choose m 2 N; ~x1; :::; ~xm 2 [0; 1]n, and �1; :::; �m 2 [0; 1] such that there isa ~� 2 [0; 1]n whose components sum to 1 such that for all t � m, �t = ~� � ~xt. The sequence~v1; :::; ~vm of vectors obtained though the update rule for A0 is well-de�ned, and �nite.Proof: The proof proceeds by induction on the trial t with an induction hypothesisconsisting of the statement of the theorem, restricted to a speci�c trial t, together withthe fact that for each i � n, if vt;i = 0 then �i = 0.The induction hypothesis is trivially satis�ed for ~v1 = (1=n; :::; 1=n).For the induction step, choose t � 1. Assuming the induction hypothesis holds for t, wewish to establish that it holds for t+ 1. The case in which �t = �t and that in which �t < 1and �t > 0 are both trivial. The case in which �t = 1 and �t < 1 is handled easily usingLemma 79, since in that case, xt;i < 1 implies that �i = 0. Finally, assume �t = 0. In thiscase, for each i such that �i 6= 0, we have vt;i 6= 0 (the induction hypothesis), and for eachi such that vt;i 6= 0, we have xt;i = 0 (since �t = 0). Thus for each i such that �i 6= 0, wehave xt;i = 0, which implies that �t = 0. The theorem follows trivially when �t = �t.This completes the proof. 2



104Appendix B. The �niteness of A0's weightsIn this section, we prove that the updatevt+1;i = lim!0 vt;i �(�t+)(1��t+)(�t+)(1��t+)� xt;i1+2Pnj=1 vt;j � (�t+)(1��t+)(�t+)(1��t+)� xt;j1+2used by A0 preserves the �niteness of A0's weights if there is a probability vector ~� suchthat for all t; �t = ~� � ~xt. We begin with the following lemma.Lemma 79: Let ~v 2 [0; 1] have components which sum to 1. If 0 � � < 1; ~x 2 [0; 1]n aresuch that is a ~� 2 [0; 1]n whose components sum to 1 such that ~� � ~x = 1 and for whichvi = 0 only if �i = 0, then for each i 2 N; i � nlim!0 vi � (1+)(1��t+)(�t+)(+) � xi1+2Pnj=1 vj � (1+)(1��t+)(�t+) � xj1+2 = 8>><>>: viPj:xj=1 vj if xi = 10 otherwise.Proof: Choose i � N. Assume without loss of generality that vi > 0. Since ~x 2 [0; 1]n,and ~� 2 [0; 1]n has components which sum to 1, and ~� � ~x = 1, there exists a k such thatxk = 1 and �k > 0. Therefore, by assumption, vk > 0 as well. For each  > 0, letq = vi � (1+)(1��t+)(�t+) � xi1+2Pnj=1 vj � (1+)(1��t+)(�t+) � xj1+2 :Then lim!0 q = 1lim!0 1=q : (B:1)Assume as a �rst case that xi < 1. Thenlim!0 1=q = lim!0 Pnj=1 vj � (1+)(1��t+)(�t+) � xj1+2vi � (1+)(1��t+)(�t+) � xi1+2� lim!0 vk �(1+)(1��t+)(�t+) � xk1+2vi � (1+)(1��t+)(�t+) � xi1+2= lim!0 vkvi �(1 + )(1� �t + )(�t + ) �xk�xi1+2= 1 (B.2)



103x = y , d(x; y) = 0d(x; y) = d(y; x)d(x; z) � d(x; y) + d(y; z):In this case, we say (S; d) is a metric space. Let T � S. We say T is bounded ifsupfd(x; y) : x; y 2 Tg is �nite.



102Appendix A. Mathematical PreliminariesThroughout, we let R represent the real numbers, R+ represent the positive reals, Qrepresent the rationals, N represent the positive integers, Z denote the integers, and Z+represent the nonnegative integers. Also, log always represents the base 2 logarithm, andln represents the natural logarithm.For ~x = (x1; :::; xn) 2 Rn, and p 2 N,jj~xjjp =  nXi=1 jxijp!1=p :In particular, jj~xjj1 = nXi=1 jxijjj~xjj2 = vuut nXi=1 x2i = px � x:Also, jj~xjj1 = maxi xi:Recall that for a function f : [0; 1] ! R, and q � 1, the q-norm of f , denoted by jjf jjq,is de�ned to be �Z 1x=0 jf(x)jqdx�1=q ;and jjf jj1 = limq!1 jjf jjq:If X is a set, and D is a probability distribution on X , and if �(x) is some mathematicalstatement containing x as a free variable, de�ne Prx2D(�(x)) as D(fx 2 X : �(x)g).De�ne Ex2D similarly for expectations of random variables de�ned on X . We will drop thesubscripts where there is no possibility of confusion.Now, let S be a set. Let d : S � S ! R+. We say that d is a metric on S if for allx; y; z 2 S,
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97and instead of wanting to make the probability of mistake small, we want to make theexpectation of the absolute value of the di�erence between our prediction and the truthsmall. In place of an algorithm for minimizing disagreements, we require an algorithm forminimizing the sum of absolute errors on a sample. It would be interesting to obtain resultsfor more general loss functions, e.g. the square loss. Also, we have no general lower boundsfor the tracking of real valued functions.Other natural problems include: optimizing the constants and removing the 1= ln 1� gapbetween our bounds on �.



96to determine when an adjustment is required. It is often infeasible to inspect each itemproduced as the inspection process might be very expensive or even destroy the good. Thusa more complicated inspection plan indicating when to inspect and how to evaluate theinspection results is needed. The results in Section 7.2 are applicable to this problem.Intuitively, the following approach seems as if it should lead to improved trackingalgorithms. Instead of simply minimizing the number of disagreements with a su�x of theprevious examples, an algorithm might weight previous examples with gradually decreasingnonnegative weights which sum to one. Then for each hypothesis h in the target class,the algorithm might use the sum of the weights of the examples with which h disagrees asthe estimate of the probability that it will make a mistake on the next trial, then use thehypothesis which minimizes this, possibly more accurate, estimate. One wonders whethersuch an algorithm might signi�cantly improve on the simple \minimize disagreements"algorithm analyzed in this chapter.It is easy to see how to alter our arguments to obtain results in a related model (oftencalled \agnostic learning") in which the algorithm doesn't know a priori a class whichcontains each of the sequence of targets, and tries to predict nearly as well as possibleusing hypotheses in a certain class F . More formally, suppose for a worst case sequence ofconcepts f1; f2; ::: (not necessarily in the hypothesis class F), for each t we de�ned �t tobe minh2F Pr(h(x) 6= ft(x)). It can be shown by modifying the proofs of Section 7.2, thatfor � � c�3=(d ln(1=�)), an algorithm can achieve probability of mistake at most �t + � forall large enough t [Helmbold and Long, 1991]. One wonders whether these results can beimproved.Haussler [Haussler, 1991] has generalized the results of [Blumer et al., 1989] to applyto learning in many frameworks, one of which is the learning of real valued functions.Using Haussler's results, the techniques of Section 7.2 can trivially be extended to applyto uniformly bounded classes of real valued functions (e.g., feed forward neural networksof a particular architecture which has one output node), where, in place of the Vapnik-Chervonenkis dimension, we use Pollard's pseudo-dimension [Pollard, 1984,Haussler, 1991],



95Theorem 78: For all � < 1=e2 and n 2 N, HALFSPACESn is not (�;�)-trackable when� > e4�2=n, and BOXESn is not (�;�)-trackable when � > e4�2=2n.This theorem, along with the facts that the VC dimension of HALFSPACESn is n + 1and that of and BOXESn is 2n, establishes that the general purpose algorithm described inSection 7.2 is within a constant times a log factor of optimal for these two natural conceptclasses.7.5 DiscussionIn this chapter, we have de�ned a learning model in which the target concept is allowedto change over time and discovered a general-purpose algorithm whose performance nearlymatches our lower bounds (on at least two natural target classes). However this algorithmrelies on a potentially expensive subroutine for minimizing disagreements within a constantfactor. To combat this di�culty, we have found an e�cient way to approximately minimizedisagreements to within a factor that depends (linearly) on the VC-dimension. This givesus a second generic algorithm which, although not proven able to tolerate quite as muchdrift, is more likely to be computationally e�cient (as it is for halfspaces, hyperrectangles,and any other target class which is properly PAC learnable).Our algorithms are robust in the sense that they don't need to know the rate of drift� ahead of time, although attempting to achieve an accuracy � amounts to an implicitassumption of an upper bound on �.Although our results have usually been stated in terms of how much target motion can betolerated, they can viewed in other ways. Bounds like \all � < c�2=(d2 ln �) are tolerated"are easily converted to \the error rate, �, is at most c�d�1=(2��) for arbitrarily small �."Also, our bounds indicate how frequently one must sample to achieve a desired accuracywhen given a bound on the continuous rate of target drift. This interpretation may be themore useful one.Consider an assembly line process where the machines slowly drift out of alignment,gradually increasing the defect rate. One wants to sample the �nished products in order



94since, when given E, it is equally likely that f�z;t(xm) is 0 or 1, independent of the previousexamples. Now,Pr(E) = Pr�xm � bnxmcn � t�n & 80 < i < t; xm�t+i 62 �bnxmcn ; bnxmcn + i�n ��= t� t�1Yi=1(1� �in )� t� t�1Yi=1 exp ��in1� �in != t� exp t�1Xi=1 ��in1� �in !� t� exp  ��n1� �tn ! t22 !� t� exp � e2(e� 1) t2�n ! (since t � n=(e�))� 23pn� exp�� e2(e� 1)� (since 23pn=� � t � pn=�)Noting that 23 exp �� e2(e�1)� > 2e2 yieldsPr(mistake) > pn�e2> �:Since Pr(�x;�z;�)2Um+1�U 0�U (mistake(�z; �x; �)) > �;there is a �z for which Pr(�x;�)2Um+1�U(mistake(�z; �x; �)) > �;contradicting the assumption that that A (�;�)-tracks BASICn.2Recall the de�nitions of HALFSPACESn and BOXESn from the previous section.The following theorem follows from the bounds for BASICn via a trivial embedding ofBASICn into HALFSPACESn and a similar embedding of BASIC2n into BOXESn using asimpli�ed version of prediction preserving reductions [Pitt and Warmuth, 1990]. The sameembeddings were employed in [Haussler et al., 1990]. The details are omitted.



93Theorem 77: For all n 2 N, BASICn is not (�;�)-trackable if � � 1=e2 and � � e4�2=n.Proof: By contradiction. Assume that tracking strategy A (�;�)-tracks BASICn forsome 0 < � � 1=e2, n 2 N, and � � e4�2=n. Thus after seeing at least m0 examplesdrawn from distribution D and labeled by any (�; D)-admissible sequence of targets, theprobability that A makes a mistake on the next example is at most �.Without loss of generality, set � = e4�2=n. With the restriction on �, � � 1=n (andn � 1=�). Also, since no non-degenerate class is (�;�)-trackable if � > � and � � 1=3, wemay assume that � � 1=e2.Let t = bpn=�c. Since e � pe2n � pn=�, we get 23pn=� � t � pn=� andet � n=�. These inequalities will be used at the end of the proof.For each �z 2 f0; 1gn and 0 � i � t, de�ne f�z;i 2 BASICn as the indicator function for[nj=1[j=n; (j + i�zj)=n):Since t � 1=� (using n � 1=�), every interval in the union has length at most 1=n.Note that f�z;0 is the function mapping everything to 0. Choose m such that m � t + 1and m � m0. Let S(�z) be the sequence of m elements of BASICn de�ned by S(�z) =(f�z;0; f�z;0; . . . ; f�z;0; f�z;1; f�z;2; . . . ; f�z;t). Let U be the uniform distribution on X = [0; 1]. Onecan easily verify that for all �z 2 f0; 1gn, S(�z) is (�; U)-admissible.Let E be the event that for a random �x 2 [0; 1]m, xm is the �rst \passed" point inits subinterval. More formally, xm � bnxmcn � t�n and for all 0 < i < t, xm�t+i 62�bnxmcn ; bnxmcn + i�n �.For each �z 2 f0; 1gn; �x 2 [0; 1]m, � 2 �, let mistake(�z; �x; �) be the event thatA(samm�1(S(�z); �x); xm; �) 6= f�z;t(xm);i.e. that strategy A incorrectly predicts the label of the mth example where � represents thestrategy's internal randomization. Finally, let U 0 be the uniform distribution over f0; 1gn.We have Pr(�x;�z;�)2Um�U 0�U (mistake(�z; �x; �))� Pr(mistake(�z; �x; �)jE)Pr(E) = 12Pr(E)



927.4 Upper bounds on the tolerable amount of driftIn this section we prove upper bounds on the tolerable amount of drift for two commonlystudied concept classes: halfspaces and axis-aligned rectangles. Our upper bounds show thatthe algorithm of Section 7.2 is within a log times a constant factor of optimal for each ofthese classes.First, we will prove an upper bound for BASICn, the class of indicator functions for thefollowing family of subsets of the unit interval:f[ni=1[i=n; (i+ ai)=n) : �a 2 [0; 1]ng:This class can be viewed as dividing the unit interval into n subintervals of equal length.Every concept in the class is the union of an initial segment from each of the subintervals.It is easy to see that VCdim(BASICn) = n.Our argument for the upper bound on BASICn uses ideas from earlier arguments givinglower bounds on the probability of a mistake when predicting a stationary target function[Ehrenfeucht et al., 1989] [Haussler et al., 1990].The intuition behind the argument is as follows. Suppose there is a water truck rollingdown a section of dusty road at 10 kilometers per hour. Either the truck is empty or it isspraying water (unknown to us, but both possibilities are equally likely). Each minute apoint on the road is picked at random and we predict whether or not the point is wet beforelooking at it. If the point has not yet been passed by the water truck, then we can safelypredict that it is dry. If a previously picked point had already been passed by the watertruck when it was picked, then we know whether or not the truck is spraying water and canalways predict correctly. However, our prediction always has a 1/2 chance of being wrongthe �rst time we see a point that the water truck has passed. This idea can be extended toto n watertrucks (each of which is independently spraying or empty) on n di�erent roads.Whenever a point on road i that has been passed by truck i is picked, and none of theprevious points had been passed by truck i when they were picked, we will make a mistakewith probability 1/2.



91Theorem 73 ([Pitt and Valiant, 1988]): If F � [n2Qn is properly PAC learnable, thenthere is a randomized polynomial time algorithm which solves the consistency problem forF .Theorem 74 ([Blumer et al., 1989]): If F = [nFn, where Fn � Qn is properly PAClearnable, then there is a polynomial p such that for all n 2 N, VCdim(Fn) � p(n).Combining these with Corollary 72 we obtain the following.Corollary 75: Let F be a strati�ed tracking problem. Then if the corresponding learningproblem is properly PAC learnable, F is e�ciently trackable.Combining Corollary 72 with Theorem 69, we obtain the following result for halfspacesand hyperrectangles in particular. Let HALFSPACESn be the set of indicator functions forthe following sets: ff~x 2 Qn : ~a � ~x � bg : ~a 2 Qn; b 2 Qg:Let BOXESn be the set of indicator functions for the set of axis parallel hyperrectangles inn-dimensional space, i.e. f nYi=1[ai; bi] : ~a;~b 2 Qng:Corollary 76: There is a constant c > 0 and there are e�cient tracking algorithms foreach of fHALFSPACESn : n 2 Ng and fBOXESn : n 2 Ng that (�;�)-track these classesfor � � c�2n2 log(1=�) :Finally, Kearns and Li [Kearns and Li, 1988] showed that, loosely speaking, signi�cantlyimproving the factor of approximation of our algorithm for minimizing disagreements forhyperrectangles (in particular, removing the dependence on d) would lead to correspondingimprovements on the approximation algorithm for set cover, which has not been signi�cantlyimproved since the 1970's. Nevertheless, it remains possible that, via other methods, onemight obtain e�cient algorithms that tracks this class at rates closer to optimal.



90� 2q � 12 exp� �opt sm� opt�� 2q � 12 exp� �optm� opt� exp��d ln em2d �� 2q � 12 e�1= � 2dem� d :Thus, the probability that the hypothesis returned after l iterations has more than (+1)optdisagreements with S is at most 1� 2q � 12e1= � 2dem� d!l � exp �l2q � 12e1= � 2dem� d!This completes the proof. 2By appropriate choice of  and l, we obtain the following.Corollary 72: If  = d and l � e1+1=dmd(2q�1) ln 1� then with probability at least 1� � AlgorithmMin-Disagreements returns a hypothesis consistent with all but ( + 1)opt of the examplesin S.Proof: If opt = 0, then the corollary is trivial. Assume opt � 1. ThenPr(algorithm fails) � exp �l2q � 12e1= � 2dem� d!= exp��ld 2q � 1me1+1=d�� �:This completes the proof. 2Note that if d and m grow polynomially with n, then the number l of iterations requiredby the algorithm in the previous corollary is also polynomial in n.We may similarly show that, in fact, that for any c > 0, we can approximately minimizedisagreements to within a factor of cVCdim(Fn) + 1 in poly(m;n)1=c time, if there is apolynomial time randomized algorithm for F 's consistency problem and VCdim(Fn) growspolynomially in n.We can now take advantage of the following two theorems, which address learning inValiant's PAC model [Valiant, 1984].



89Consider the stage of the algorithm where dopt = opt and a particular iteration j ofthe inner loop where A produces hypothesis h0. Let clean be the event that none of theexamples sampled during iteration j are in bad and consist be the event that h0 is consistentwith the subsample. By applying a standard approximation, we havePr(clean and consist) � q(1� opt=m)s� q exp� �opt sm� opt� :Now de�ne close to be the event that h0 agrees with all but  opt of the examples inS � bad, i.e. Prz2D0(h0(z) 6= hopt(z)) �  opt=(m� opt). (Note that when close occurs, h0agrees with all but ( + 1)opt of the examples in S.) We havePr(S0;�)2Ds�U (close j clean and consist)= Pr(S0;�)2(D0)s�U (close j consist) (7:2)since the distribution obtained by conditioning Ds on clean is (D0)s (recall that U is theuniform distribution over sequences of bits, so that � represents the randomization ofconsistency algorithm A). Note that if both clean and consist occur then h0 and hoptagree with the examples in the subsample. Thus,Pr(S0 ;�)2Ds�U(close j clean and consist)� Pr(S0;�)2(D0)s�U (close and consist)=Pr(consist)� 1qPr(S0;�)2(D0)s�U (Prz2D0(h0(z) 6= hopt(z)) >  opt=(m� opt)and 8(x; y) 2 S 0; h0(x) = hopt(x))� 1=2q; (7:3)where the last inequality follows from Theorems 32 and 70 and the algorithm's choice of s.Thus, Pr(S0;�)2Ds�U (close j clean and consist) � (2q � 1)=2q:Now we can bound the probability of close.Pr(S0 ;�)2Ds�U(close) � Pr(close and clean and consist)= Pr(close j clean and consist)Pr(clean and consist)



88Algorithm Min-DisagreementsInputs: a sample S of m examples; l, the number of iterations to run; d = VCdim(Fn);and desired approximation factor  > 1.Uses: A randomized algorithm A for the consistency problem associated with Fn.choose an h 2 Fn arbitrarilyfor j := 1 to ld dorun A on S 0 obtaining hypothesis h0;if h0 is consistent with S then stop and return h0end for;for dopt := 1 to m= dos := l(d(m�dopt)=dopt) ln em2d )mfor j := 1 to l dodraw S 0, an s-element subsample of S uniformly at random with replacement;run A on S 0 obtaining hypothesis h0;if h0 has fewer disagreements with S than h, set h := h0;end for;end for;return h; Figure 7.1: Algorithm Min-Disagreementsthe minimum possible number of disagreements between the sample and an h 2 F . Wefocus our attention on the case where opt < m=( + 1), since otherwise the theorem istrivial as any hypothesis is consistent with all but ( + 1)opt examples of S.Choose hopt from among those hypotheses in Fn which have opt disagreements with S.Let bad � S be the subset of the examples in S with which hopt disagrees. Let D be theuniform distribution over S, and let D0 be the uniform distribution over S � bad.



87First, we will make use of the following observation of Vapnik's [Vapnik, 1982].Theorem 70 ([Vapnik, 1982]): Let X be a set and let F be a �nite concept class over X.Let D be a probability distribution over X. Choose f 2 F and � < 1=2. Then if s � ln(jFj=2)� ,Pr~x2Ds(9h 2 F : 8i; h(xi) = f(xi) and Pry2D(h(y) 6= f(y)) � �) � 1=2:Now, we turn to the main result of this section. If F = [nFn is a strati�ed trackingproblem, then the consistency problem associated with F is as follows:Given a sample in 2Qn�f0;1g, �nd any hypothesis in Fn consistent with thesample if there is one, otherwise return any h 2 Fn.A randomized polynomial time algorithm for the consistency problem returns, in timepolynomial in n and the size of the sample, an h in Fn. If the sample is consistent withsome hypothesis in Fn then, with probability q > 1=2, the returned h will be consistentwith the sample. Note that by repeatedly running such an algorithm (and checking eachresult against the sample) an arbitrarily high con�dence can be acheived.Algorithm Min-Disagreements (see Figure 7.1) uses a randomized polynomial time algo-rithm for the consistency problem to approximately minimize the number of disagreements.It should be obvious that if A runs in randomized polynomial time then the algorithmMin-Disagreements runs in time polynomial in n,d, l and m.Theorem 71: For any n 2 N, Fn � 2Qn of VC-dimension d, and set of m examples S, ifA solves Fn's consistency problem with probability q > 1=2 and there is an element of Fnconsistent with all but opt of the examples in S, then Algorithm Min-Disagreements withinputs S,m,l,d, �nds a hypothesis consistent with all but ( + 1)opt examples in S withprobability at least 1� exp �l2q � 12e1= � 2dem� d! :Proof: Choose m 2 N and let S = f(xi; yi) : 1 � i � mg be a sample. Letopt = minfjfi : h(xi) 6= yigj : h 2 Fg;



86the �rst m trials to within a factor of k. Choose � and m as in Theorem 67. Then if� � �12k(m+1), the probability that A makes a mistake on the (m + 1)st trial of a (�; D)-admissible sequence of functions is at most �.Note that by ignoring (not counting disagreements with) examples beyond a certainpoint in the past we can, loosely speaking, make any later trial \look like" the (m + 1)sttrial. This observation leads to the following Corollary.Corollary 69: Let X be a domain, and F be a class of concepts over X of VC-dimensiond. Assume A is a randomized algorithm which with probability 1� �=6 �nds an h 2 F whichapproximates, to within a constant factor k, the minimum number of disagreements on asample. Let A0 be the tracking algorithm which predicts using the hypothesis produced by Afrom the most recent m = d(c1d=�) log(1=�)e examples, where c1 > 0 depends on k. Thereis a positive constant c2, depending only on k, such that for any 0 < � < � where� � c2�2d log 1� ;strategy A0 (�;�)-tracks F .7.3 E�ciently approximately minimizing disagreementsIn this section we discuss the application of the techniques of [Kearns and Li, 1988] tothe problem of approximately minimizing disagreements from among the hypotheses in aclass F , showing that if there is an e�cient algorithm which returns a hypothesis with nodisagreements if there is one, then there is an e�cient randomized algorithm which withhigh probability returns a hypothesis that minimizes disagreements to within a factor ofa constant times the VC-dimension of F . Results very similar to those described hereare implicit in the work of Kearns and Li (Theorems 12 and 16), although some minormodi�cations are necessary.3 Also, we make use of the techniques of [Kearns and Li, 1988]in our proof.3The di�erence between the result trivially obtainable by combining Theorems 12 and 16 of[Kearns and Li, 1988] and our result is that in the former, the sample is restricted to have the same numberof positive and negative examples.



85If mistake is the event that A makes a mistake on trial m+ 1, we havePr(�x;y;�)2Dm�D�U (mistake) � Pr(mistake \ �E) + Pr(mistake\ E)� Pr(mistake \ �E) + Pr(E)� Pr(mistake \ �E) + �=3� Pr(mistake \ �E \ G) + Pr(mistake \ �E \ �G) + �=3� Pr( �E \G) + 2�=3: (7.1)Next, we havePr( �E \ G) = Pr erfm+1(h�x;�) > �=3 and 1m mXi=1 l(fi(xi); fm+1(xi)) � �=(12k)and h�x;� 2 mindis(�x))� Pr erfm+1(h�x;�) > �=3 and 1m mXi=1 l(fi(xi); fm+1(xi)) � �=(12k)and 1m mXi=1 l(fi(xi); h�x;�(xi)) � �=12!since fm+1 2 F and h�x;� 2 mindis(�x) implies that h�x;� has at most k times as manydisagreements as fm+1. Recalling that k � 1 and applying the triangle inequality for l, wehavePr( �E \ G) � Pr erfm+1(h�x;�) > �=3 and 1m mXi=1 l(h�x;�(xi); fm+1(xi)) � �=6!� �=3by Lemma 66, since m � 192d� ln 192� . Plugging in to (7.1) yields the desired result. 2If hfii is a (�; D)-admissible sequence of functions, then Prx2D(fi(x) 6= fm+1(x)) �(m� i+ 1)�, and mXi=1Prx2D(fi(x) 6= fm+1(x)) � m(m+ 1)�=2:Thus we obtain the following corollary.Corollary 68: Let A be a tracking strategy that predicts using a randomly chosen hypothesiswhich, with probability 1 � �=6, approximately minimizes the number of disagreements on



84Theorem 67: Let (X;F) be a tracking problem, d = VCdim(F), and choose � > 0.Suppose A is a randomized tracking algorithm which, with probability at least 1 � �=6,predicts using an h 2 F having at most k times the minimum number of disagreementson the previous trials. Choose a distribution D on X andm � max�192d� ln 192� ; 72k� ln 6�� :Then if the sequence of targets from F , S = hfiii2N, satis�es Pmi=1Prx2D(fi(x) 6=fm+1(x)) � m�=(24k), the probability that A makes a mistake on the (m + 1)st trial isat most �.Proof: Fix m and k. For each �x 2 Xm, let mindis(�x) be the set of all hypotheses in Fwhich approximately minimize disagreements with samm(S; �x) to within a factor of k.De�ne F to be the event that the hypothesis chosen by A is not in mindis(�x).De�ne F 0 to be the event that there are more than twice the expected number ofdisagreements between the previous trials and fm+1, i.e.,F 0 = f�x 2 Xm : mXi=1 l(fi(xi); fm+1(xi)) > m�=(12k)g:Applying Lemma 65 (with � = 1), we havePr�x2Dm(F 0) � e�m�=(72k) � �=6;since m � 72k� ln 6� .De�ne E = F [ F 0. Then Pr(E) � �=3.For each �x 2 Xm; � 2 �, let h�x;� be A's hypothesis after seeing the sequence(x1; f1(x1)); :::; (xm; fm(xm))of examples and the random sequence �. LetG = f(�x; �) 2 Xm � � : erfm+1(h�x;�) > �=3g;be the set of sequences of points and random bits that cause A to produce an inaccuratehypothesis.



83probability that there exists a hypothesis h in class F such that the estimate of h's error issmall but the true probability that h will yield an incorrect prediction is large.We will make use of the standard Cherno� bounds, which we state here.Lemma 65 ([Angluin and Valiant, 1979,Littlestone, 1989b]): Let t 2 N, and letr1; :::; rt be independent f0; 1g-valued random variables. Choose �; 0 < � � 1. Let� = Pti=1Pr(ri = 1). Then Pr tXi=1 ri � (1 + �)�! � e��2�=3:For each h 2 F , f 2 F , m 2 N, �x 2 Xm, de�neerf (h) = Prx2D(h(x) 6= f(x));(D is to be understood from context), and de�neêrf(h; �x) = 1m mXi=1 l(h(xi); f(xi));where l(u; v) is the discrete loss function, i.e. l(u; v) is 1 if u = v and 0 otherwise. Notethat êrf is the empirical estimate of the error of h obtained when the (unchanging) targetconcept is f .Our �rst lemma follows immediately from the results of [Blumer et al., 1989, TheoremA3.1].Lemma 66: For any set X and concept class F over X, for any distribution D on X, forany f 2 F , for all 0 < � � 1=2, if m � 64d� ln 64� , where d is the VC-dimension of F , thenPrx2Dm(9h 2 F : erf (h) � �; êrf (h) < �=2) � �:We are now ready to present the main result of this section. The following theoremshows that if a randomized tracking strategy is likely to predict with a hypothesis thatapproximately minimizes disagreements on the previous examples, then the probabilitythat the algorithm makes a mistake on the next example is small.



82We say that F is (�;�)-trackable if there is a tracking strategy which (�;�)-tracks F .To discuss issues of computational e�ciency, we will need the following de�nitions. Wesay that F = fFn : n 2 Ng is a strati�ed tracking problem if for each n 2 N, (Qn;Fn) isa tracking problem.2 An algorithm for a strati�ed tracking problem consists of a trackingalgorithm An for each n. We assume that the random bits are presented on an auxiliarytape, and thus accessing the next random bit in the sequence takes unit time.We say that A = fAng e�ciently tracks F if there is a polynomial p and positiveconstants c and k such that for all relevant �; n,� each prediction is computed in time bounded by p(1=�; n; b), where b is the number ofbits needed to encode the \largest" example seen.� at most p(1=�; n; b) space is required to store information between trials,� if � < c(�=n)k, An (�;�)-tracks Fn.Note that the bound on the space required is not allowed to grow with the number oftrials. Thus an e�cient tracking algorithm may not, in general, keep all previously seenexamples.7.2 Increasingly unreliable evidence and hypothesis evaluationIn this section we analyze a simple tracking algorithm which ignores all examples beyondsome time in the past and uses the hypothesis which disagrees with the fewest remainingexamples for prediction. The results of this section, together with those of Section 7.4,show that this apparently naive algorithm is within a constant times a log factor of optimalfor the classes of halfspaces and hyperrectangles. We also show that it is su�cient to onlyapproximately minimize disagreements to within a constant factor.As discussed in the introduction, the fraction of the considered examples disagreeingwith a hypothesis can be viewed as an estimate of the probability that the hypothesis willmake a mistake on the next example. In the following series of lemmas we bound the2We assume rationals are encoded by encoding both the numerator and the denominator in binary.



81generated.Aldous and Vazirani [Aldous and Vazirani, 1990] studied a di�erent version of learningin a changing environment. In their model the target concept is �xed, but the examples aregenerated by a Markov process rather then from a �xed distribution.7.1 Notation and some de�nitionsA tracking problem, (X;F) consists of a set (or domain) X and a family F of f0; 1g-valued functions de�ned on X , called the target class. A f0; 1g valued function de�ned onX is called a concept. We will speak of a concept and the subset of X on which it takesvalue 1 interchangeably. An example is an element of X � f0; 1g, and a sample is a �nitesequence of examples. A function h agrees (resp. disagrees) with an example (x; �) whenh(x) = � (resp. h(x) 6= �). A function is consistent with a sample if it agrees with allexamples in the sample. We often use the discrete loss function, l(�; �), de�ned to be 0when � = � and 1 otherwise, to count numbers of disagreements.Let � be the set of all in�nite sequences of bits, and U be the distribution which sets eachbit in the sequence independently with probability 1=2. A (randomized) tracking strategyis a mapping from ([m(X � f0; 1g)m)�X � � to f0; 1g.If S = hftit2N is a sequence of concepts and �x 2 Xn with n � m, the m-sample of Sgenerated by �x, written samm(S; �x), is the sequence of pairs h(x1; f1(x1)); :::; (xm; fm(xm))i.Informally, samm(S; �x) is simply the �rst m examples which are used by a tracking strategyto predict fm+1(xm+1).Let D be a probability distribution over X . If � � 0, a sequence hftit2N of concepts iscalled (�; D)-admissible if for each t 2 N, Prx2D(ft(x) 6= ft+1(x)) � �.Let A be a tracking strategy. We say that A (�;�)-tracks F if there is an m0 2 N suchthat for all m � m0, for all probability distributions D on X , and for all (�; D)-admissiblesequences S = hftit2N of functions in F ,Pr�x2Dm+1;�2U(A(samm(S; �x); xm+1; �) 6= fm+1(xm+1)) � �:



80within a log factor of optimal for halfspaces and hyperrectangles. A slightly modi�edanalysis holds for the case in which the tracking algorithm uses a hypothesis which onlyapproximately minimizes disagreements with a su�x of the examples.In Section 7.3, we give a general purpose algorithmic transformation turning a random-ized polynomial time hypothesis �nder A [Blumer et al., 1989] which, with high probability,returns a hypothesis consistent with an input sample, into an algorithm which e�cientlyapproximately minimizes disagreements to within a factor of cd + 1, where d is the VC-dimension of the target class, and c is any constant. We use a technique due to Kearns andLi [Kearns and Li, 1988], working in stages, where at each stage, we subsample accordingto the distribution which is uniform over the sample, hoping to get a subsample for whichthere is a consistent hypothesis, so that we can successfully apply A. We then return thebest hypothesis of those produced by A during the various stages. We use an observationof Vapnik's [Vapnik, 1982] to argue that with high probability, a hypothesis consistent withthe subsample can't be too bad on the whole sample.There is little previous work on slowly drifting concepts. Littlestone and Warmuth[Littlestone and Warmuth, 1989] describe a variant of the weighted majority algorithmwhere the weights are kept above some lower limit. This allows the weighted majorityalgorithm to recover and adapt to changes in the target. However, if the target changes ktimes, then their mistake bound for the weighted majority algorithm goes up by about afactor of k. It is di�cult to translate these bounds into our model as our targets potentiallychange with each example.In work independent with ours, Kuh, Petsche and Rivest [Kuh et al., 1991] studied avariety of models in which the target drifts slowly. In their paper, they concentrated onobtaining upper bounds on the tolerable rate of drift (or, equivalently, lower bounds on theprobability of a mistake, given that the target is drifting at a certain rate) for the case inwhich the sequence of targets is produced by an adversary which at each time has accessto the earlier random examples seen by the tracking algorithm. In contrast, we assumethat the sequence of targets is chosen by an adversary before any random examples are



79to predict the label of the next point. To analyze such algorithms, one might imagine apply-ing the results of Vapnik and Chervonenkis [Vapnik and Chervonenkis, 1971] to show that iffor each hypothesis h in the class, we estimate the probability that h will make a mistake onthe next trial by considering the fraction of the last t trials on which h made a mistake, noneof these estimates will be very far from the true estimated probabilities. The movement ofthe target prevents us from simply applying the results of [Vapnik and Chervonenkis, 1971].To remedy this, we �rst bound the probability that for any hypothesis h, the estimate weobtain is very far from the estimate we would have obtained, had the target not beenmoving. Then we are ready to apply uniform convergence results.If we now apply the results of [Vapnik and Chervonenkis, 1971], however, our analysisindicates that these algorithms are more than a factor of � from the best upper bounds wecan prove on the maximum tolerable rate of drift. In the case of learning stationary targets,it has been observed [Vapnik, 1982] [Blumer et al., 1989] that uniformly good estimates ofthe quality of hypotheses were not required for learning in the PAC-model [Valiant, 1984].Instead, one only needed to bound the probability that an \�-bad" hypothesis was consistentwith a sequence of examples. They were then able to shave a factor of 1=� o� the bound onthe number of examples required for learning with accuracy � obtained by simply applyingthe results of [Vapnik and Chervonenkis, 1971]. However, in our case, there may not be anyhypothesis consistent with more than a few of the most recent examples. Nevertheless, givenreasonable restrictions on the rate of drift there is, with high probability, some hypothesishaving very few disagreements with a reasonable sized su�x of a random sequence ofexamples. Thus, we are able to apply another of the results of [Blumer et al., 1989], whichbounds the probability that any �-bad hypothesis is consistent with all but a fraction �=2 ofthe examples. The number of examples required to bound this \�-bad but highly consistent"probability by � is within a constant of that for the completely consistent case. Thus,ignoring constants, the factor of 1=� savings is retained, reducing our tracking bounds by afactor of �.The result of this analysis is a simple \minimize disagreements" algorithm which is



78precise in Section 7.1.Many readers will notice the similarity of our model to the prediction model studied in[Haussler et al., 1988] and elsewhere. The key di�erence is that in our model there is nosingle target function, but rather a succession of related target functions. Since the learnermay receive only a single example before the target changes, it is unreasonable to expectthat the hypotheses converge to a target. However, it is possible to bound the probabilityof a mistake on a trial in terms of how much the target is allowed to change between trialsand the complexity of F .Our results include:� a general-purpose algorithm which tolerates target movement rates up to c1�2=(d ln 1� )(Theorem 67 and Corollary 69),� a possibly more computationally e�cient variant of this algorithm which toleratestarget movements of up to c2�2=(d2 ln 1� ) (Theorem 71), and� bounds for the classes of halfspaces and axis-aligned hyperrectangles showing that forall n and � < 1=12, no algorithm can tolerate target movement greater than c3�2=n,where n is the dimension of the space from which examples are drawn (Theorem 78).1In the above, the ci's are constants, � denotes the desired probability of error, and d isthe VC-dimension of F . The �rst general-purpose algorithm above is computationallye�cient whenever the problem of �nding a member of F which minimizes the number ofdisagreements with a set of examples can be solved e�ciently. Its variant is computationallye�cient whenever the problem of �nding an element of F consistent with a set of examplescan be solved e�ciently, as is the case with both halfspaces and hyperrectangles.Our algorithms use only the most recent t examples (rather than the entire sequence) tomake their predictions. They work by either minimizing or approximately minimizing thenumber of disagreements with the most recent examples, and using the resulting hypothesis1Since, in both the case of halfspaces and that of hyperrectangles in n-dimensional space, the �rstalgorithm above tolerates drift rates up to a constant times �2=(n ln 1� ), these bounds establish the fact thatthe �rst algorithm is within a constant times a log factor of optimal.



777. Tracking Drifting ConceptsIn the fairy tale, Rip van Winkle slept for 20 years and when he �nally woke up, hediscovered that he was out of step with the world. Presumably, Rip would have been muchbetter o� if he woke up every day. However, if he woke for only one day each week or monthor year, how comfortable would Rip be with the world after his 20 year slumber? This leadsto the question \How long can one nap before losing touch with the world?" which is thesubject of this chapter.More formally, let D be a probability distribution on some set X and F be a class off0; 1g-valued functions de�ned on X . In the sleeper example, each f 2 F represents apossible state of the world. When Rip van Winkle wakes for the tth time, the world is insome state ft 2 F . Rip gets xt, a randomly drawn (w.r.t. D) element of X , and is askedfor the value of ft(xt). One interpretation is that xt is a possible course of action, andft(xt) = 1 when xt is appropriate in the current world state. Just before Rip goes back tosleep, he is told the value of ft(xt).In other words, given (x1; f1(x1)), (x2; f2(x2)), . . ., (xt�1; ft�1(xt�1)), and a point xt,Rip is asked to predict the value of ft(xt). If Rip's prediction is incorrect we say that hemakes a mistake on xt. If Rip rarely makes mistakes, then he successfully tracks the stateof the world. In our model, an adversary chooses the probability distribution D and thesequence of functions ahead of time, before the xt's are generated.The sequence of examples could be uninformative for two di�erent reasons. First, x1through xt�1 may come from an uninteresting part of the domain. Any learning algorithmusing randomly drawn examples must deal with this potential di�culty. A more severeproblem is that the ft chosen by the adversary may be unrelated to the previous fi's. If theadversary randomly chooses ft to be either the constant function 1 or the constant function0, then no algorithm can expect to predict ft(xt) correctly more than half the time. Wedeal with this problem with an assumption that the state of world evolves slowly. Thus theadversary must choose sequences of functions where each ft is \close" to ft�1. This is made



76characterization of the learnability of classes of real-valued functions, although a detaileddiscussion of this belief is beyond the scope of this thesis. At the time of this writing, Alon,Ben-David, Cesa-Bianchi, and Haussler were making signi�cant progress on this problem.



756.4 DiscussionIn this chapter, we have given tight bounds on the cardinality of a subset of Qif0; :::; rigof a certain dimension for two generalizations of the VC-dimension: namely the pseudodimension discussed by Pollard [Pollard, 1984] and the graph dimension introduced byNatarajan [Natarajan, 1989]. We also have used a similar technique obtain tighter boundsfor another generalization of the VC-dimension introduced by Natarajan, which we havecalled the Natarajan dimension. The problem of obtaining tight bounds for the Natarajandimension remains open.In addition, we have applied this result to bound the rate of convergence of empiricalestimates of the expectations of a sequence of random variables to their true expectations,obtaining bounds similar to those already derived in [Pollard, 1984] [Haussler, 1991]. Theseresults can be extended to bound the sample size required for learning under the computa-tional model of learnability discussed in [Haussler, 1991].An interesting question may be asked about generalizations of bounds like those of thischapter for families 	 of functions from f0; :::; ng to f0; 1; �g that are not distinguishers. Inparticular, we are interested in obtaining bounds on jSj that grow polynomially in m. Asin Theorem 47, we can see that such bounds are impossible if 	 is not a distinguisher, sinceif 	 fails to distinguish a1; a2 2 f0; :::; rg, clearly the set S = fa1; a2gm has 	-dimension 0,yet has 2m elements. In the simplest case, n = 2 and 	 = f g, where (a) = 8><>: a if a 6= 2* otherwise;so that 	 fails to distinguish (0; 2) and (1; 2). However, if we say ~x; ~y 2 f0; :::; rgm are	-separated if there exists i such that 	 distinguishes xi and yi, we may ask: Whatis the largest subset of f0; :::; rgm of 	-dimension at most d such that its elements arepairwise 	-separated? By the above results, it is already known that for those 	 whichare distinguishers, the size of the largest such set grows polynomially in m. We conjecturethat this holds for all 	. We believe that the proof of this would result in a pleasant



74Taking logs and rearranging terms yields the following equivalent expression:�m2k � d�lnm+ ln ked �+ ln 4=�: (6:2)Since by the preceding lemma for any � 2 R; 0 < � < 1,lnm � ���kd�m+ �ln kd��e� ;the following is su�cient to guarantee Inequality (6.2):�m2k � d���kdm+ ln kd��e + ln ked �+ ln 4=�= ��k m+ d ln k2�� + ln 4=�:Solving for m yields m � 2k�(1� 2�) �2d ln kp�� + ln 4��and resubstituting k = 4�� givesm � 8�2�(1� 2�) �2d ln 4��p�� + ln 4�� :We choose � = 1=18 for readability, yieldingm � 9�2� �2d ln 17(�p�)� + ln 4��which is the desired bound. 2For comparison, we give the following theorem from [Haussler, 1991], which was obtainedusing a completely di�erent technique, due to Pollard [Pollard, 1990].Theorem 64: Let F be a set of random variables on 
 taking values in [0; 1]. Assume0 < � � 4=d, 0 < � < 1 and m � 1. Suppose that ~� is generated by m independent randomdraws according to the �xed measure D on 
. Suppose also that P-dim(F ) � d. ThenPrn9f 2 F : d�(Ê~�(f); E(f))> �o � 8�16e�� ln 16e�� �d e��2�m=8:Moreover, for m � 8�2� �2d ln 8e�� + ln 8�� ;this probability is less than �.



73Theorem 63: Let F be a set of random variables on 
 taking values in [0; 1]. Assume� > 0, 0 < � < 1 and m � 1. Suppose that ~� is generated by m independent random drawsaccording to the �xed measure D on 
. Suppose also that P-dim(F ) � d. ThenPrn9f 2 F : d�(Ê~�(f); E(f))> �o � 4� 4���d �emd �d e��2�m=8:Moreover, for m � 9�2� �2d ln 17(�p�)� + ln 4�� ;this probability is less than �.Proof: First, from Corollary 61, we have thatN (��=8; Fj�� ; dL1) � dXi=0 mi !� 4�� �i :Using the well known combinatorial identity thatdXi=0  mi ! � (em=d)dand substituting � 4���dfor each � 4�� �i ;we get N (��=8; Fj�� ; dL1) � � 4���d �emd �d :Applying Theorem 59 yields the �rst result.Now, we wish to determine a lower bound on m which guarantees that4� 4���d �emd �d e��2�m=8 � �:Set k = 4�� . Then the above expression simpli�es to4kd �emd �d e��m2k � �:



72Corollary 61: Let m 2 Z+. Let F � [0; 1]m be such that P-dim(F ) � d. Let � 2 R+.Then N (�; F; dL1) � dXi=0 mi !�� 12���iProof: As discussed above N (�; F; dL1) � N (�; F; dL1):The corollary then follows from the previous lemma. 2The technique by which we obtain bounds on the sample size necessary for the uni-form convergence of estimates to true means for a sequence of random variables has ele-ments which are similar to that used to in [Anthony et al., 1990] improve the bounds of[Blumer et al., 1989]. The following approximation is useful in this derivation.Lemma 62 ([Anthony et al., 1990]): Let x; y 2 R+. Thenln x � xy � ln ey:Proof: Fix y 2 R+. Consider f : R+ ! R de�ned byf(x) = xy � ln exy:Then f 0(x) = y � 1=x:Clearly, f 0(x) is positive when x > 1=y and negative when x < 1=y and f is continuous anddi�erentiable over its domain, so f assumes its minimum at 1=y andf(1=y) = y(1=y)� ln ey(1=y) = 0:So f(x) � 0 for all x 2 R+, which yields the desired result. 2Finally, we are ready to bound the sample size necessary to ensure that with highprobability an empirical estimate of the expected value of a random variable chosen from aset of a small P-dimension is accurate.



71Next, we wish to show that P-dim(T ) � d. Let ~{ = (i1; :::; ik) be shattered by T and let( P;y1 ; :::;  P;yk)witness this shattering. We claim that 2�~y witnesses F 's shattering of fi1; :::; ikg. Choose~b 2 f0; 1gk. Let ~t 2 T satisfy ~b. Choose ~f 2 F , such that �(~f) = ~t.If bj = 1, we have tij � yj which is equivalent to�fij2� � � yjwhich implies fij2� � yjsince x � bxc for all x 2 R. Finally, the previous inequality impliesfij � 2�yj :So if bj = 1, fij � 2�yj .Suppose bj = 0 and fij � 2�yj . This implies fij=2� � yj , which in turn impliestij = �fij2� � � yj ;since yj 2 Z. But this is a contradiction, since tij < yj , which holds because bj = 0 and ~tsatis�es ~b. So if bj = 0, we have fij < 2�yj .In the preceding two paragraphs we have established that for all j; 1 � j � k, wehave fij � 2�yj if and only if bj = 1, and thereby that ~f satis�es ~b. Since ~b waschosen arbitrarily, fi1; :::; ikg is shattered by F . Since (i1; :::; ik) was chosen arbitrarily,P-dim(T ) � P-dim(F ) = d.Now, by Corollary 50, jT j � dXi=0 mi !� 12��i :Since H is an �-cover of F and jT j = jH j, we haveN (�; F; dL1) � dXi=0 mi !� 12��i ;which completes the proof. 2



70we have f0; 1gk � ~ (FjI ):Here we say that ~y (rather than ~ , to save notation) witnesses F 's RP -shattering of I andthat f 2 F satis�es ~b 2 f0; 1gk if and only if ~ (fjI) = ~b. The RP -dimension of F is thecardinality of the largest subset of X shattered by F .Note that an element of [0; 1]m may be viewed as a function from [m] to [0; 1], so wemay naturally intepret the de�nition of RP-dimension as applying to subsets of [0; 1]m aswell.Now we wish to show that if a subset of a product of closed intervals of R has smallRP-dimension, then it has a small �-cover in the dL1 metric.Lemma 60: Let m 2 Z+. Let F � [0; 1]m have RP-dimension at most d. Let � 2 R+.Then N (�; F; dL1) � dXi=0  mi !� 12��iProof: De�ne � : [0; 1]m ! f0; :::; j 12�kgm by �(~s) = ~t, where ti = j fi2�k for all i; 1 � i � m.Let T = �(F ). Let H = f2�~t+ (�; �; :::; �) : ~t 2 Tg:First, we claim thatH is an �-cover for F with respect to the dL1 metric. Choose ~f 2 F .Let ~h = 2��(~f) + (�; �; :::; �). Choose i; 1 � i � m. Then we havejfi � hij = ����fi � �2� � fi2�� + ������= 2� ���� fi2� � � fi2��� 12 ����� �:Since i was chosen arbitrarily,dL1(f; h) = maxfjfi � hij : 1 � i � mg � �:Since ~f 2 F was chosen arbitrarily, H is an �-cover for F .



69Denote by N (�; Fj�� ; dL1) the size of the smallest �-cover of Fj�� in the dL1 metric byelements of Rm. Since clearly for all ~x; ~y 2 Rm, dL1(~x; ~y) � dL1(~x; ~y), any �-cover in thedL1 metric also serves as a �-cover in the dL1 metric, which impliesN (�; Fj�� ; dL1) � N (�; Fj�� ; dL1):We are now ready for the following theorem. Similar results are given in [Dudley, 1984][Pollard, 1984] [Vapnik, 1982]. In general, these theorems bound deviation of estimatesÊ~�(f) from true means E(f) for functions f in F in terms of sizes of �-covers for Fj~� .Theorem 59 ([Haussler, 1991]): Let F be a set of random variables on 
 taking valuesin [0; 1]. Assume � > 0, 0 < � < 1 and m � 1. Suppose that ~� 2 
m is generated by mindependent random draws according to the �xed measure D on 
. Letp(�; �;m) = Prn9f 2 F : d�(Ê~�(f); E(f))> �o :Then p(�; �;m) � 2E �min(2N (��=8; Fj~�; dL1)e��2�m=8; 1)� :Let us generalize the de�nition of the P -dimension given earlier for sets of integer vectorsto sets of real valued functions, and let us call the resulting notion that RP -dimension. LetRP = f RP;y : y 2 Rg, where, again RP;y(x) = 8><>: 1 if x � y0 otherwise.Let F be a set of real valued functions de�ned on some linearly ordered domain X . LetI = fx1; :::; xkg � X , with x1 < x2 < � � � < xk. For f 2 F , letfjI = (f(x1); :::; f(xk)):De�ne FjI = ffjI : f 2 Fg:We say that I is RP -shattered by F if there exists ~y 2 Rk such that if~ = ( RP;y1 ; :::;  RP;yk);



68�-cover for each � 2 R+. In this case, we let N (�; T; d) denote the cardinality of the smallest�-cover of T (w.r.t. S and d).Now, we de�ne the metric relative to which we prove uniform convergence results inthis section. This metric was introduced and its utility as a measure of accuracy for anapproximation of a function was discussed in [Haussler, 1991]. For each � 2 R+, de�ned� : R+ �R+ ! R+ by d�(r; s) = jr � sj� + r + s:It is straightforward but tedious to verify that for all � 2 R+, d� is a metric on R+.Let (
;B; D) be probability space with D a probability measure on the set 
, and Bsome appropriate �-algebra on 
. Let F be a set of random variables on 
. For m � 1,denote by 
m the m-fold product space with the usual product probability measure. Forany ~� = (�1; :::; �m) 2 
mand f 2 F , let Ê~�(f) = 1m mXi=1 f(�i):and Fj~� = f(f(�1); :::; f(�m)) : f 2 Fg:We can view Fj�� as a subspace of the metric space (Rm; dL1), where dL1 is the usual L1metric, i.e., for any ~x = (x1; :::; xm) and ~y = (y1; :::; ym) in Rm,dL1(~x; ~y) = 1m mXi=1 jxi � yij:Also, we denote by N (�; Fj�� ; dL1) the size of the smallest �-cover of Fj�� in the dL1 metricby elements of Rm.Similary, we can view Fj�� as a subspace of (Rm; dL1), where dL1 is de�ned as follows.For ~x = (x1; :::; xm) and ~y = (y1; :::; ym) in Rm,dL1(~x; ~y) = maxfjxi � yij : 1 � i � mg:



67jSj � 24 dXi=0 XS2�(m�1);i Yk2S rk + 12 !35+  rm + 12 ! d�1Xi=0 XS2�(m�1);i Yk2S  rk + 12 != 24 dXi=0 XS2�(m�1);i Yk2S rk + 12 !35+ d�1Xi=0 XS2�(m�1);i Yk2S[fmg rk + 12 != 241 + dXi=1 XS2�(m�1);i Yk2S  rk + 12 !35+ dXi=1 XS2�(m�1);(i�1) Yk2S[fmg rk + 12 != 1 + dXi=18<:24 XS2�(m�1);i Yk2S  rk + 12 !35+ 24 XS2�(m�1);(i�1) Yk2S[fmg rk + 12 !359=;= 1 + dXi=18<:24 XS2�m;i;m62S Yk2S rk + 12 !35+ 24 XS2�m;i;m2S Yk2S  rk + 12 !359=;= dXi=0 XS2�m;i Yk2S  rk + 12 !which completes the induction. 2Theorem 51 can now easily be established.6.3 An applicationIn this section, we give an application of Corollary 50, bounding the sample size necessaryto obtain uniformly good empirical estimates for the expectations of all random variables ofa given class S in terms of a generalization of the de�nition of P-dimension given above toclasses of real valued functions, in this case, random variables. We will measure the deviationof the estimates from the true expectations using a metric introduced in [Haussler, 1991].These results can be extended to bound the sample size necessary for learning accordingto the computational model of learning discussed in [Haussler, 1991], an extension of thatintroduced in [Valiant, 1984] which incorporates additional methods from previous work inPattern Recognition.We begin with some de�nitions. Let (T; d) be a bounded metric space (see Appendix Afor a de�nition). For any � 2 R+, a �nite set N is an �-cover for T if and only if for allx 2 T , there exists y 2 N with d(x; y) � �. We say T is totally bounded if T has a �nite



66Since each of the above sets are disjoint and their union is all of S, we havejSj = jS�j+ rm�1Xu=0 rmXv=u+1 jSuvj:Using the same argument as in the previous lemma, under the inductive hypothesis thatthe lemma holds for all sets S of vectors of m� 1 elements, we havejS�j � dXi=0 XS2�(m�1);i Yk2S rk + 12 !:Now, we wish to establish the following claim under the same inductive hypothesis.Claim 58: For all u; v 2N; 0 � u < v � rm, we havejSuvj � d�1Xi=0 XS2�(m�1);i Yk2S  rk + 12 !:Proof (of Claim): Choose u; v 2 N; 0 � u < v � rm. We will show that the N-dimension ofSuv is at most d� 1. The claim then follows by an argument similar to that of Claim 55.Let ~{ = (i1; :::; il) be a sequence of indices shattered by Suv .Now we show that (i1; :::; il; m) is shattered by S. Let ( N;y1;z1 ; :::;  N;yl;zl) be witnessof Suv 's N-shattering of ~{.We claim that ( N;y1;z1 ; :::;  N;yl;zl ;  N;u;v) witnesses S's N-shattering of (i1; :::; il; m).Choose ~b 2 f0; 1gl+1. Let ~s 2 Suv satisfy (b1; :::; bl) (with respect to ~{).If bl+1 = 1, then ~s satis�es ~b, and if bl+1 = 0, then(s1; :::; sm�1; �(s1; :::; sm�1)) = (s1; :::; sm�1; u)satis�es ~b. Since ~b was chosen arbitrarily, (i1; :::; il; m) is N-shattered by S. Since byassumption the N-dimension of S is no greater than d, we have l � d � 1. Since ~{ waschosen arbitrarily, the N-dimension of Suv is no greater than d � 1, which completes ourproof of this claim, by the discussion above. 2From the previous two claims, we have that



65This completes the induction. 2Theorem 49 easily follows from the previous lemmas together with the discussion relatingGPmax to Gmax and Pmax.Next, we turn to Theorem 51. The lower bound was established in Lemma 53. Weobtain the upper bound with the following lemma, the proof of which is similar to that ofLemma 54.Lemma 57: Let d;m 2 Z+; r1; :::; rm 2 N be such that d � m. LetS � X = mYi=1f0; :::; rigbe such that N-dim(S) � d. ThenjSj � dXi=0 XS2�m;i Yk2S  rk + 12 !:Proof: As before, our proof is by double induction on m and d.Using the same argument as the previous lemma, we can establish this lemma for thecase d = 0.Next, suppose that d = m. By partitioning the elements of the domain as discussedabove, we can see that jX j � mXi=0 XS2�m;i Yk2S rk� mXi=0 XS2�m;i Yk2S  rk + 12 !so since S � X , certainly jSj � mXi=0 XS2�m;i Yk2S  rk + 12 !:Now, choose d;m 2 Z+ such that 0 < d < m. De�ne � and S� as in the previous lemmaand for each pair of distinct elements u; v 2 N; 0 � u < v � rm, de�neSuv = f~s 2 S � S� : sm = v; �(s1; :::; sm�1) = ug:



64Claim 56: For all n 2 N; 1 � n � rm,jSnj � d�1Xi=0 XS2�(m�1);i Yk2S rk:Proof (of Claim 56): Choose n 2 f1; :::; rmg. We will show that the GP-dimension of Sn isat most d� 1. The claim then follows by an argument similar to that of the previous claim.Let ~{ = (i1; :::; il) be a sequence of indices GP-shattered by Sn. Note that m 62 fi1; :::; ilg,since sm = n for all ~s 2 Sn.Now we show that (i1; :::; il; m) is GP-shattered by S. Let ( GP;y1 ; :::;  GP;yl) be thewitness of Sn's GP-shattering of~{. Consider ( GP;y1 ; :::;  GP;yl;  GP;n). Choose~b 2 f0; 1gl+1.Let ~s 2 Sn satisfy (b1; :::; bl) (with respect to ~{).If bl+1 = 1, then ~s satis�es ~b, and if bl+1 = 0, then(s1; :::; sm�1; �(s1; :::; sm�1))satis�es ~b. Since ~b was chosen arbitrarily, (i1; :::; il; m) is GP-shattered by S. Since byassumption the GP-dimension of S is no greater than d, we have l � d � 1. Since ~{ waschosen arbitrarily, the GP-dimension of Sn is no greater than d � 1, which is su�cient toprove this claim, as discussed above. 2From the previous two claims, we have thatjSj � 24 dXi=0 XS2�(m�1);i Yk2S rk35+ rm d�1Xi=0 XS2�(m�1);i Yk2S rk= 24 dXi=0 XS2�(m�1);i Yk2S rk35+ d�1Xi=0 XS2�(m�1);i Yk2S[fmg rk= 241 + dXi=1 XS2�(m�1);i Yk2S rk35+ dXi=1 XS2�(m�1);(i�1) Yk2S[fmg rk= 1 + dXi=18<:24 XS2�(m�1);i Yk2S rk35+ 24 XS2�(m�1);(i�1) Yk2S[fmg rk359=;= 1 + dXi=18<:24 XS2�m;i;m62S Yk2S rk35+ 24 XS2�m;i;m2S Yk2S rk359=;= dXi=0 XS2�m;i Yk2S rk:



63establishing the result in this case.Now, choose d;m 2 Z+ such that 0 < d < m. De�ne � : X ! Qm�1i=1 f0; :::; rig by�(~s) = (s1; :::; sm�1):De�ne � : �(S)! f0; :::; rmgby �(w1; :::; wm�1) = minfv : (w1; :::; wm�1; v) 2 SgDe�ne S� = f(s1; :::; sm�1; �(s1; :::; sm�1)) : ~s 2 Sgand for each n 2 N; 1 � n � rm, de�neSn = f~s 2 S � S� : sm = ng:Since the above sets are disjoint and their union is all of S, we havejSj = jS�j+ rmXn=1 jSnj:Let us make the inductive assumption that the bound (6.1) holds for all sets S of vectorsof m� 1 elements. We claim that this implies the following.Claim 55: jS�j � dXi=0 XS2�(m�1);i Yk2S rk:Proof (of Claim 55): The restriction of � to S� is 1-1 by construction of S�. The set �(S�)has GP-dimension no greater than d since any set of indices shattered by �(S�) is alsoshattered by S�, and therefore by S. By the induction hypothesis,j�(S�)j � dXi=0 XS2�(m�1);i Yk2S rk;so since �'s restriction to S� is 1-1, the claim is veri�ed. 2Next, under the same induction hypothesis, we make the following claim.



62We can see that the G-, P-, GP- and N-dimensions of S are all no less than d, since foreach of the de�nitions of shattering, any sequence consisting of d distinct elements of [m]is shattered, since it is trivially N-shattered (taking ~y = (0; 0; :::; 0) , ~z = (1; 1; :::; 1), forinstance), and as discussed previously, the N-shattering of a sequence implies its G-, P- andGP-shattering.We can see that S's cardinality is as given in the lemma by breaking the elements of Sup into subsets consisting of the elements with exactly i non-zero elements, 0 � i � d, andfor each i further breaking these up according to which i elements are nonzero. 2For our next lemma, we give an upper bound on the cardinality of sets of a givenGP-dimension, and thereby that of sets of a given G- or P-dimension. Our argumentis a generalization of that given by Sauer in [Sauer, 1972], and is similar to Natarajan'sgeneralization of this argument in [Natarajan, 1989].Lemma 54: Let d;m 2 Z+; r1; :::; rm 2 N be such that d � m. LetS � X = mYi=1f0; :::; rigbe such that GP-dim(S) � d. ThenjSj � dXi=0 XS2�m;i Yk2S rk: (6:1)Proof: Our proof is by double induction on m and d.First we consider the case in which d = 0. Here, the bound (6.1) reduces to jSj � 1. IfjSj > 1, then S must have two distinct elements ~s and ~t. Let i be an index on whose entry~s and ~t di�er. Then fig is shattered by S, so the GP-dimension of S is at least 1, whichcontradicts the assumption that d = 0, so jSj � 1 and the lemma holds.Next, suppose that d = m. By partitioning the elements of the domain as discussedabove, we can see that jX j � mXi=0 XS2�m;i Yk2S rk:so since S � X , certainly jSj � mXi=0 XS2�m;i Yk2S rk;



616.2 Proofs of the resultsWe begin by exhibiting large sets of a given G-, P-, GP-, and N-dimension.Lemma 53: Let d;m 2 Z+; r1; :::; rm 2 N be such that d � m. Then there existsS � X = mYi=1f0; :::; rigsuch that S has G-, P-, GP-, and N-dimension d andjSj = dXi=0 XS2�m;i Yk2S rk:Proof: De�ne S to be all the elements of X with at most d nonzero entries. We claim Shas G-, P-, GP- and N-dimension d, and jSj is as given above.To prove that the G-, P-, GP- and N-dimensions of S are all no greater than d, it issu�cient to prove that G-dim(S) � d and P-dim(S) � d, since as discussed aboveN-dim(S) � GP-dim(S)GP-dim(S) � P-dim(S)GP-dim(S) � G-dim(S):First, we show that G-dim(S) � d. Assume G-dim(S) > d for contradiction. Let( G;y1 ; :::;  G;yk) witness S's G-shattering of (i1; :::; ik), where k > d. Form ~b 2 f0; 1gk bybi = 8><>: 0 if yi = 01 otherwise :Let ~s 2 S satisfy ~b. Let ~t = ~sj~{ . By de�nition of G-shattering, we have ti 6= yi if yi = 0 andti = yi if yi 6= 0, so ti 6= 0 for all i, which implies sij 6= 0 for all j � k which contradicts thede�nition of S, since k > d.Next, we need to show that P-dim(S) � d. Again, assume P-dim(S) > d for contra-diction. Let ( P;y1 ; :::;  P;yk) witness S's P-shattering of (i1; :::; ik), where again k > d.Let ~s 2 S satisfy (0; 0; :::; 0). Since yj > sij for all j; 1 � j � k, we have yj > 0 for allj; 1 � j � k. Let ~t 2 S satisfy (1; 1; :::; 1). Since tij � yj for all j; 1 � j � k, we have tij > 0for all j; 1 � j � k, which again contradicts the de�nition of S.



60Theorem 49: For all d;m 2 Z+; r1; :::; rm 2 N such that d � m,Gmax(d;m; r1; :::; rm) =Pmax(d;m; r1; :::; rm) =GPmax(d;m; r1; :::; rm) = dXi=0 XS2�m;i Yk2S rk:When there is an r 2 N such that ri = r for all i; 1 � i � m, we obtain the followingcorollary, which is useful for obtaining learning results such as those in [Haussler, 1991].Corollary 50: Let d;m 2 Z+; r 2 N be such that d � m. LetS � f0; :::; rgmsuch that S has G-, P- or GP-dimension no greater than d. ThenjSj � dXi=0 mi !ri:Proof: Follows from Theorem 49 by substituting r for each rk and collecting terms. 2Using similar techniques, we can establish the following.Theorem 51: For all d;m 2 Z+; r1; :::; rm 2 N such that d � m,dXi=0 XS2�m;i Yk2S rk � Nmax(d;m; r1; :::; rm)� dXi=0 XS2�m;i Yk2S  rk + 12 !:This gives the following improvement to Theorem 38.Corollary 52: Let d;m 2 Z+; r 2 N be such that d � m. LetS � f0; :::; rgmsuch that S has N-dimension no greater than d. ThenjSj � dXi=0 mi ! r + 12 !iNote that both Corollary 50 and Corollary 52 give Sauer's result (Theorem 32) in thecase r = 1.



59 GP;k(i) = 8>>>>><>>>>>: 1 if i = k0 if i < k? if i > k;with a corresponding de�nition of the GP-dimension. The pseudo-dimension of S is denotedby P-dim(S), its Graph-dimension by G-dim(S), its GP-dimension by GP-dim(S) and itsNatarajan dimension by N-dim(S).De�ne Pmax(d;m; r1; :::; rm) = maxfjSj : S � mYi=1f0; :::; rig;P-dim(S) � dgGmax(d;m; r1; :::; rm) = maxfjSj : S � mYi=1f0; :::; rig;G-dim(S) � dgGPmax(d;m; r1; :::; rm) = maxfjSj : S � mYi=1f0; :::; rig;GP-dim(S) � dgNmax(d;m; r1; :::; rm) = maxfjSj : S � mYi=1f0; :::; rig;N-dim(S) � dg:It is easily veri�ed that if a set S N-shatters a set, it also GP-shatters it, and if SGP-shatters a set, it also G-shatters it and P-shatters it. This implies thatN-dim(S) � GP-dim(S)GP-dim(S) � P-dim(S)GP-dim(S) � G-dim(S)which in turn implies thatPmax(d;m; r1; :::; rm) � GPmax(d;m; r1; :::; rm)Gmax(d;m; r1; :::; rm) � GPmax(d;m; r1; :::; rm)GPmax(d;m; r1; :::; rm) � Nmax(d;m; r1; :::; rm)for all relevant d;m 2 Z+; r1; :::; rm 2 N.Our main result is stated below, and will be proved in the following section. In thefollowing, for each i;m 2 Z+, let �m;i � 2[m] be de�ned by�m;i = fS � [m] : jSj = ig:



586. A Generalization of Sauer's LemmaIn this chapter, we improve the bounds of Theorem 38, and prove bounds of a similaravor for other generalizations of the VC-dimension, including Natarajan's graph dimension[Natarajan, 1989] and Pollard's pseudo-dimension [Pollard, 1990]. In the latter two cases,we provide matching lower bounds. Next, we apply these bounds to the problem ofbounding the uniform rate of convergence of empirical estimates to true means for familiesof (continuous-valued) random variables.6.1 Statement of resultsLet [0] = ; and for each m 2 N, let [m] be the set f1; :::; mg.Following [Bondy, 1972], let (m; k) ! (n; l) denote the statement: If S � f0; 1gm,jSj = k, then there exists ~q 2 f0; 1gm such that ~q has n 1's andjf~s ^ ~q : ~s 2 Sgj � l;where ^ is the \bitwise AND" operation. Sauer's result can now be stated as m; 1 + d�1Xi=0  mi !!! (d; 2d):Proofs of other statements of the form (m; k) ! (n; l) and related results are given in[Anstee, 1985] [Anstee, 1991] [Anstee and Furedi, 1986] [Bondy, 1972] [Frankl et al., 1987][Frankl, 1983] [Tomasta, 1981].Let m 2 Z+. Let ri 2 N; 1 � i � m. LetS � X = mYi=1f0; :::; rig:For ~s 2 X , denote by si the ith component of ~s, and similarly for all cartesian productsused in the chapter.For the purpose of bounding the cardinality of sets of a given pseudo-dimension, and ofa given Graph dimension, we de�ne GP = f GP;k : k 2 Ng, and



57a 2 f0; :::; rg, l(a; a) = 0, and if a; b 2 f0; :::; rg satisfy a 6= b, then l(a; b) > 0. Then wemight ask that a learning strategy return a hypothesis h 2 F such that the expected valueof l(h(x); y) is with high probability at most � greater than the minimum of this expectationfor all f 2 F . Note that the results of this paper can be described in this form using ldiscretewhere ldiscrete(a; b) is de�ned to be 0 when a = b and 1 otherwise. For �xed r, the domain ofany loss function l is �nite. This implies that any loss function l satisfying the restrictionsdescribed above is always within a constant of ldiscrete. This observation may be turnedinto a proof that F is learnable with respect to l in the aforementioned sense exactly whenF is learnable with respect to ldiscrete.We may apply this observation to add the statement \F is uniformly convergent" to thelist of equivalencies in Theorem 45. First, if F is uniformly convergent, it is learnable withrespect to the loss function labs de�ned by labs(a; b) = ja � bj, by the results of Haussler[Haussler, 1991], and therefore it is learnable in the sense of this paper. Also, if F has �niteP dimension, F is uniformly convergent, by the results of Pollard [Pollard, 1984].Finally, the results of this section may be generalized to the \agnostic" generalizationof this learning model (c.f., [Haussler, 1991]), where it is not assumed that the (x; y) pairsseen by the learner always satisfy y = f(x), and the goal of the learner is to model thestochastic relationship between randomly drawn elements X and f0; :::; rg nearly as well aspossible, using functions in F .



56Say that a family 	 of functions from f0; :::; rg to f0; 1; �g provides a characterizationof learnability if and only if for any family F of f0; :::; rg-valued functions the learnabilityof F is equivalent to the �niteness of either its 	-dimension or its uniform 	-dimension.Theorem 47: A family 	 of functions from f0; :::; rg to f0; 1; �g provides a characteriza-tion of learnability if and only if 	 is a distinguisher.Proof: Follows immediately from Theorem 45 and Lemma 46. 2Finally, we relate the learnability of f0; :::; rg-valued functions to the learnability off0; 1g-valued functions. Intuitively, the problem of learning a class of f0; :::; rg valuedfunctions reduces to r + 1 problems of learning f0; 1g-valued functions as follows. Fork = 0; . . . ; r de�ne Ck = fcf;k : f 2 Fg as the class of f0; 1g-valued functions on X de�nedby cf;k(x) = 8><>: 1 if f(x) = k0 otherwise.We can easily relate the learnability of F to the learnability of the Ck's as follows.Theorem 48: F is learnable if and only if Ck is learnable for each k � f0; :::; rg.Proof: We claim that the uniform G-dimension of F is �nite if and only if the VC-dimensionof Ck is �nite for all k. Suppose that F uniformly G-shatters a sequence ~x using  k, thenCk clearly VC-shatters the same sequence.The converse is also easily seen to hold. Since F can uniformly shatter a sequence ifthere exists at least a  k such that the sequence is shattered using  k, then a sequence isuniformly 	-shattered by F if and only if there exists at least a k such that the sequenceis VC-shattered by Ck. This proves the claim.By the results of [Blumer et al., 1989,Haussler, 1991], for each k, Ck is learnable exactlywhen is has �nite VC-dimension. This completes the proof. 2Note that the results of this section can be trivially applied to obtain results in amore general model, in which certain errors are more serious than others. Suppose wede�ned a loss function l from f0; :::; rg� f0; :::; rg to the nonnegative reals such that for all



55Since we require that the same M is su�cient for all distributions P , this is sometimescalled distribution free uniform convergence.Now we are ready for our main result which shows a variety of ways in which learnabilitycan be characterized.Theorem 45: For any distinguisher 	, the following are equivalent:1. The 	-dimension of F is �nite.2. The uniform 	-dimension of F is �nite.3. LF is uniformly convergent.4. The VC-dimension of LF is �nite.5. F is learnable.Proof: Corollary 41 implies that (1. , 2.). Theorem 43 implies that (5. ) 1.). Lemma 44and Corollary 41 imply that (1. , 4.). The implication (4. ) 3.) is an immediateconsequence of the results in [Vapnik and Chervonenkis, 1971] and the implication (3. )5.) is a special case of [Haussler, 1991, Lemma 1, p. 20]. This completes the proof. 2The concept of distinguisher is a kind of metacharacterization, as it characterizes those 	which in turn characterize learnability, both through the �niteness of the 	-dimension, andthrough the �niteness of the uniform 	-dimension. To see this, all that remains is to showthat for any family 	 of functions from f0; :::; rg to f0; 1; �g which is not a distinguisher,neither the 	-dimension nor the uniform 	-dimension characterizes learnability.Lemma 46: If 	 is a family of functions from f0; :::; rg to f0; 1; �g which is not a distin-guisher, and if X is in�nite, then there is a family F of functions from X to f0; :::; rg whichhas 	-dimension 0 and has uniform 	-dimension 0, but which is not learnable.Proof: Suppose 	 fails to distinguish a1; a2 2 f0; :::; rg. Then the set of all functions fromX to fa1; a2g trivially has 	-dimension and uniform 	-dimension 0. However, this class istrivially isomorphic to the set of all f0; 1g-valued functions de�ned on X , which was shownin [Blumer et al., 1989] to not be PAC-learnable if X is in�nite, so this class is trivially notlearnable in this stronger setting. 2



54Proof: Suppose the sequence x1; :::; xk of elements of X are G shattered by F . Let 1; :::;  k 2 G be such thatf( 1(f(x1)); :::; ( k(f(xk)))g = f0; 1gk:Let a1; :::; ak 2 f0; :::; rg be such that for all j; 1 � j � k,  j is de�ned by j(b) = 8><>: 1 if b = aj0 otherwise.Such a sequence a1; :::; ak exists due to the de�nition of G-shattering. We claim that thesequence (x1; a1); :::; (xk; ak) of elements of X � f0; :::; rg is (VC) shattered by LF . Choose~b 2 f0; 1gk. Let f 2 F be such that~b = ( 1(f(x1)); :::;  k(f(xk))):Since, by de�nition, for all j; 1 � j � k, lf (xj ; aj) =  j(f(xj)), we have~b = (lf(x1; a1); :::; lf(xk; ak)):Since ~b was chosen arbitrarily, LF shatters (x1; a1); :::; (xk; ak). Thus, the VC-dimension ofLF is at least the graph dimension of F .Now, assume that a sequence (x1; a1); :::; (xk; ak) of elements ofX�f0; :::; rg is shatteredby LF . We claim that x1; :::; xk is G-shattered by F . De�ne  1; :::;  k 2 G, by j(b) = 8><>: 1 if b = aj0 otherwise.Applying the fact that for all j; 1 � j � k, lf(xj ; aj) =  j(f(xj)), in a similar manner to theabove veri�es that x1; :::; xk is G-shattered by F , and therefore that the graph dimensionof F is at least the VC-dimension of LF . This completes the proof. 2We say that LF is uniformly convergent if for all � > 0, there is an M 2 N such that forall m �M , for all probability measures P over X � f0; :::; rg,Pm8<:((x1; a1); . . . ; (xm; am)) : 9f 2 F ; ��� 1m mXj=1 lf(xj ; aj)� Pf(x; a) : f(x) 6= ag��� � �9=; � �:



534. The uniform �-dimension of F is in�nite.We make use of the following theorem of Natarajan, obtained trivially from a result ofEhrenfeucht, Haussler, Kearns and Valiant.Theorem 42 ([Ehrenfeucht et al., 1989,Natarajan, 1989]): If the Natarajan dimen-sion of F is in�nite then F is not learnable.Combining Theorem 42 with Corollary 41, we obtain the following.Theorem 43: Let 	 be a distinguisher. If F has in�nite 	-dimension, then F is notlearnable.Proof: By Corollary 41, if F has in�nite 	-dimension, F has in�nite Natarajan dimension.Applying Corollary 42 gives the desired result. 2Note that due to the correspondence between the indices of the vectors in Fj~x andelements of the domain X , the following de�nition of the 	-dimension of F is equivalentto that given at the beginning of this section. We say that a �nite sequence x1; :::; xk ofelements of X is 	-shattered if there is a sequence  1; :::;  k of elements of 	 such thatf( 1(f(x1)); :::;  k(f(xk))) : f 2 Fg � f0; 1gkand let the 	-dimension of F be the length of the longest �nite sequence shattered by F , orin�nity if arbitrarily long sequences of elements of X are shattered. We may also make thecorresponding alteration to the de�nition of the uniform 	-dimension of F . In the followinglemma, we will �nd it convenient to use the altered de�nitions.If f is a function from X to f0; :::; rg, de�ne the function lf from X�f0; :::; rg to f0; 1gby lf(x; a) = 8><>: 1 if f(x) = a0 otherwise.De�ne LF = flf : f 2 Fg.Lemma 44: The VC-dimension of LF equals the graph dimension of F .



52(2. ) 4.): This follows immediately from (1. ) 3.).Finally, (3. ) 1.) and (4. ) 2.) follow immediately from Lemma 33. This completesthe proof. 25.2 Applications to learningIn this section, we describe applications of the results of the previous section to learning.Choose a set X , a positive integer r and a family F of f0; :::; rg-valued functions de�nedon X . For a probability measure P over X we de�ne the error of h with respect to f withrespect to P , denoted by erf;P (h) to bePfx : f(x) 6= h(x)g:A learning strategy for F is a mapping from �nite sequences of elements of X�f0; :::; rgto F . We say that F is learnable if there exists a learning strategy A and an integer-valuedfunction m("; �) such that for any "; � > 0, for any probability measure P over X , and forany f 2 F , the probability that for ~v 2 Xm(";�) drawn according to Pm(";�) thaterf;P (A((v1; f(v1)); :::; (vm; f(vm)))) � "is at most �. This de�nition of learnability is essentially that studied by Natarajan[Natarajan, 1989], and is based on Valiant's PAC model [Valiant, 1984]. We refer the inter-ested reader to these papers for motivation.Recall that at the end of Chaper 4, we extended the de�nition of 	-dimension from setsof vectors to sets of functions.The results of the previous section immediately yield the following.Corollary 41: Choose distinguishers 	 and �. Then the following are equivalent:1. The 	-dimension of F is in�nite.2. The �-dimension of F is in�nite.3. The uniform 	-dimension of F is in�nite.



51We are now ready for the main result of this section. It follows relatively straightfor-wardly from Lemma 33, Corollary 36 and Theorem 39.Theorem 40: Choose distinguishers 	 and �. Then the following are equivalent:1. The 	-dimension of S is in�nite.2. The �-dimension of S is in�nite.3. The uniform 	-dimension of S is in�nite.4. The uniform �-dimension of S is in�nite.Proof: (1. ) 2.): Assume for contradiction that the 	-dimension S is in�nite and the�-dimension is �nite. Let d be the �-dimension of S. Choose k such thatk2 log(r + 1) + log k > d:Let m1 and ~{ = (i1; :::; im1) be such that that �-dimension of Sj~{ is d. Let m2 and ~| =(j1; :::; jm2) be such that that 	-dimension of Sj~| is at least k. Let ~z = (i1; :::; im1; j1; :::; jm2).Let S = Sj~z . Trivially, the �-dimension of S is d and the 	-dimension d0 of S satis�esd02 log(r + 1) + log d0 > d: (5:1)Let dN be the Natarajan dimension of S and let dB be the B-dimension of S. ApplyingCorollary 36, we have that dB2 log(r + 1) + log dB > dN ;but by Theorem 39, this is a contradiction.(2. ) 1.): This follows from (1. ) 2.) by symmetry.(1. ) 3.): Assume for contradiction that the 	-dimension S is in�nite and the uniform	-dimension is �nite. Let d be the uniform 	-dimension of S. Let m1 and ~{ = (i1; :::; im1)be such that that uniform 	-dimension of Sj~{ is d. Let m2 and ~| = (j1; :::; jm2) be such thatthat 	-dimension of Sj~| is greater than j	jd. Let ~z = (i1; :::; im1; j1; :::; jm2). Let S = Sj~z .Again, trivially, the uniform 	-dimension of S is d and the 	-dimension of S is greater thatj	jd, which is a contradiction.



50Theorem 37: Choose a set 	 of functions from f0; :::; rg to f0; 1; �g. If S has uniform	-dimension at most d, then it has 	-dimension at most dj	j.Proof: Suppose that the 	-dimension d0 of S is greater than dj	j. Let ~{ = (i1; :::; id0) be asequence shattered by S, and let ~ = ( 1; :::;  d0), be such thatf0; 1gd0 � Sj~{ :By the pigeonhole principle, since d0 > dj	j, there exists a subsequence (ij1 ; . . . ; ijd+1) of ~{such that for all 1 � k; l � d+1,  jk =  jl . Therefore, S uniformly 	-shatters (ij1 ; . . . ; ijd+1),contradicting the assumption that the uniform 	-dimension of S is at most d. 2We will make use of a theorem of Natarajan.3Theorem 38 ([Natarajan, 1989]): If the Natarajan dimension of S is at most d, thenjSj � md(r+ 1)2d:We may apply this theorem to obtain lower bounds on the Natarajan dimension in termsof the B-dimension.Theorem 39: Let S � f0; :::; rgm. Let dN be the Natarajan dimension of S and dB be theB-dimension of S. Then, dN � dB2 log(r + 1) + log dB :Proof: Let ~{ = (i1; :::; idB) be a sequence of indices B-shattered by S. Let T = Sj~{ . Sincethere exists  2 B such that f0; 1gdB �  (T );we have that jT j � 2dB . From Theorem 38, we may conclude that jT j � ddNB (r + 1)2dN .Thus, ddNB (r + 1)2dN � 2dB :Taking logs and solving for dN yields the desired result.23The bounds of this theorem are improved in Chapter 6, but Natarajan's result is su�cient for thepurposes of this chapter.



49Thus S �-shatters ~{. The uniform case follows analogously. 2Let 	 be a family of functions from f0; :::; rg to f0; 1; �g. We say that a pair a; b ofdistinct elements in f0; :::; rg is 	-distinguishable if there exists  2 	 such that  (a) = 0and  (b) = 1 or vice versa. We say 	 is a distinguisher if each pair a; b 2 f0; :::; rgis 	-distinguishable. It is easy to see that in the case r = 1, for any distinguisher 	, thede�nitions of the 	-dimension and the uniform 	-dimension are equivalent to the de�nitionof the VC-dimension.Next, we describe a certain sense in which B is the maximum of the set of 	's whichare distinguishers and N is the minimum.Theorem 35: Choose a distinguisher 	. Choose S 2 f0; :::; rgm, and choose ~{ 2f1; :::; mgk.� If S N -shatters ~{, then S 	-shatters ~{.� If S 	-shatters ~{, then S B-shatters ~{.� If S uniformly N -shatters ~{, then S uniformly 	-shatters ~{.� If S uniformly 	-shatters ~{, then S uniformly B-shatters ~{.Proof: Follows immediately from Lemma 34 and the de�nition of a distinguisher. 2This theorem trivially yields the following Corollary about the 	-dimension and theuniform 	-dimension for various 	.Corollary 36: Choose a distinguisher 	 and S 2 f0; :::; rgm.� The Natarajan dimension of S is at most the 	-dimension of S.� The 	-dimension of S is at most the B-dimension of S.� The uniform Natarajan dimension of S is at most the uniform 	-dimension of S.� The uniform 	-dimension of S is at most the uniform B-dimension of S.Next, a simple pigeonhole argument establishes the following bound on the uniform	-dimension of S in terms of its 	-dimension, for any 	.



485.1 Generalizations of the VC-dimensionSince in this chapter, we will be concerned with learning f0; :::; rg-valued functionsfor �xed r, we will restrict our attention in this section to the 	-dimension of subsets off0; :::; rgm, retreating a little from the generality of the introduction. Note that when we�x r, instead of considering classes 	 of functions from N to f0; 1; �g, we may restrict ourattention to classes of functions from f0; :::; rg to f0; 1; �g, since the behavior of functions in	 outside f0; :::; rg does not a�ect the 	-dimension of a given subset of f0; :::; rgm. For thespeci�c notions of dimension described in the introduction, we obtain identical de�nitionsby simply restricting the functions in 	 to f0; :::; rg.We begin by describing a su�cient condition for 	-shattering to imply �-shattering.2Lemma 34: Let 	;� be classes of functions from f0; :::; rg to f0; 1; �g such that for all 2 	 there exists � 2 �, such that  �1(0) � ��1(b) and  �1(1) � ��1(1 � b) holds forb either 0 or 1. Then for all S � f0; :::; rgm, ~{ 2 f1; :::; mgk, if S 	-shatters ~{, then S�-shatters ~{, and if S uniformly 	-shatters ~{, then S uniformly �-shatters ~{.Proof: Assume that for all  2 	, there is a � 2 � such that  �1(0) � ��1(0) and �1(1) � ��1(1) (the case in which for all  2 	, there is a � 2 � such that  �1(0) � ��1(1)and  �1(1) � ��1(0) can be handled analogously). Choose S � f0; :::; rgm, ~{ 2 f1; :::;mgksuch that S 	-shatters ~{. Choose ~ 2 	k such thatf0; 1gk � ~ (Sj~{):For each j; 1 � j � k, let �j be such that  �1j (0) � ��1j (0) and  �1j (1) � ��1j (1). Let~� = (�1; :::; �k).We claim that f0; 1gk � ~�(Sj~{). Choose ~b = (b1; :::; bk) 2 f0; 1gk. Let ~q 2 Sj~{ be suchthat ~ (~q) = ~b. Choose j 2 f1; :::; kg. Since  �1j (0) � ��1j (0), and  �1j (1) � ��1j (1), andbj 2 f0; 1g, �j(qj) =  j(qj). Since j was chosen arbitrarily, ~�(~q) = ~ (~q) = ~b. Therefore,since ~b was chosen arbitrarily, f0; 1gk � ~�(Sj~{):2The de�nition of 	-shattering is given at the beginning of this part.



475. Characterizations of Learnability for Classes ofMany-valued FunctionsA central task in the theory of computational learning is to provide a simple mathemati-cal characterization of the classes of concepts that are learnable under some formal model oflearning. An example along these lines is the characterization of Valiant's PAC-learnabilityof binary functions in terms of the Vapnik-Chervonenkis dimension1 proved by Blumer,Ehrenfeucht, Haussler and Warmuth [Blumer et al., 1989].A natural way to extend that model is to consider the learning of many-valued (insteadof binary) functions. A characterization of PAC-learnability for classes of many-valuedfunctions has been obtained by Natarajan in terms of a particular generalization of theVC-dimension which we will call the Natarajan dimension [Natarajan, 1989].In this chapter we introduce a general scheme for extending the VC-dimension to classesof f0; :::; rg-valued functions. This scheme gives rise to a wide family of notions of thedimension of a class of functions. Our family of generalizations of the VC-dimension in-cludes as special cases the Natarajan dimension [Natarajan, 1989], the graph dimension[Dudley, 1987,Natarajan, 1989], Pollard's pseudo-dimension [Pollard, 1984,Pollard, 1990,Haussler, 1991], and a generalization proposed by Vapnik (see, e.g. [Vapnik, 1989]).By establishing the existence of a minimum and a maximum in the family of general-izations and proving that the �niteness of both these dimensions is equivalent, we obtaina variety of clear combinatorial characterizations of PAC-learnability for classes of multi-valued functions.This research provides more exible tools for determining whether a class of f0; :::; rg-valued functions is learnable, and enhances the understanding of why the �niteness of thepreviously studied generalizations of the VC-dimension characterize learnability.1De�ned by Vapnik and Chervonenkis [Vapnik and Chervonenkis, 1971].



46The Natarajan dimension [Natarajan, 1989] is the N -dimension where N = f N;k;l :k; l 2 N; k 6= lg and  N;k;l is de�ned by N;k;l(a) = 8>>>>><>>>>>: 1 if a = k0 if a = l* otherwise.Finally, let B be the set of all functions from N to f0; 1g and de�ne the B-dimensionaccordingly.Note that the graph dimension, the Natarajan dimension and the B-dimension do notmake use of the natural ordering on f0; :::; rg and could just as easily be de�ned for abstract�nite sets.For any (possibly in�nite) set X , r � 1, any class 	 of functions from f0; :::; rg tof0; 1; �g, and any class F of functions from X to f0; :::; rg, de�ne the 	-dimension of F tobe maximum, over all �nite sequences x1; :::; xm of elements of X , of the 	-dimension off(f(x1); :::; f(xm)) : f 2 Fg;if such a maximum exists, and in�nity otherwise.



45We say ~{ is 	-shattered by S if there exists ~ 2 	k such thatf0; 1gk � ~ (Sj~{):We say that ~ witnesses this shattering. Furthermore, for any ~b 2 f0; 1gk, an ~s 2 S forwhich ~ (si1 ; :::; sik) = ~b is said to satisfy~b (with respect to~{; we will often let~{ be understoodfrom context).In the case in which there exists such a ~ which in addition has  1 =  2 = � � � =  k, wesay that ~{ is uniformly 	-shattered by S.Let the 	-dimension of S be the maximum d for which there exists a sequence~{ 2 f1; :::;mgd of indices shattered by S, and let the uniform 	-dimension of S be thecorresponding de�nition for uniform shattering.1We will make use of the following observation.Lemma 33: For any set 	 of functions from f0; :::; rg to f0; 1; �g, and any S � f0; :::; rgm,the uniform 	-dimension of S is at most the 	-dimension of S.Several previously de�ned notions of dimension correspond to particular choices of theset 	 as shown in the following list.Pollard's pseudo-dimension [Pollard, 1990] is the P -dimension, where P = f P;k : k 2Ng, and  P;k is de�ned by  P;k(a) = 8><>: 1 if a � k0 otherwise.Vapnik [Vapnik, 1989] describes a generalization of the VC-dimension which is equivalentto the uniform P -dimension.The graph dimension [Dudley, 1987,Natarajan, 1989] is the G-dimension, where G =f G;k : k 2 Ng, and  G;k is de�ned by G;k(a) = 8><>: 1 if a = k0 otherwise.1Notice that these de�nitions are the same as we would obtain if we insisted that the shattered indicessatisfy 1 � i1 < i2 < � � � < ik �m, which is perhaps the easiest way to think of this de�nition.



44The VC-dimension of S is the length of the longest �nite sequence of indices VC-shatteredby S.The following Theorem, often called Sauer's Lemma, will play a central role in this part.Vapnik and Chervonenkis independently proved a similar lemma.Theorem 32 ([Sauer, 1972,Vapnik and Chervonenkis, 1971]): Let S � f0; 1gm. Ifthe VC-dimension of S is d, thenjSj � dXi=0 mi ! � (em=d)dand the �rst bound is tight; i.e., for all d;m 2 Z+; d � m, there exists S � f0; 1gm ofVC-dimension d that meets that upper bound.Now, let us return to the more general case in which the ri's may be greater than 1. Anatural way to extend the above de�nition of shattering is to say that S shatters ~{ if andonly if Sj~{ = kYj=1f0; :::; rijgand de�ne a notion of dimension as we did with the VC-shattering. Generalizationsof Sauer's Lemma using this extension of the de�nition of shattering were described in[Alon, 1983] [Karpovsky and Milman, 1978] [Steele, 1978] [Anstee, 1988]. Unfortunately,using this latter de�nition, the cardinality of the largest subset of Qml=1f0; :::; rlg of a givendimension grows like 2m, whereas slower (e.g., polynomial) growth is desirable for learningresults, as we will see in Chapter 6.To de�ne generalizations that yield bounds polynomial in m, we look for a \translation"of multi-valued vectors into binary vectors. This is done by considering mappings  fromNto f0; 1; �g (� will be thought of as a null element) which we will apply to the componentsof elements of S.Let 	 be a family of functions fromN to f0; 1; �g. For ~u 2 f0; :::; rgm, ~ = ( 1; :::;  m) 2	m, denote ( 1(u1); :::;  m(um)) by ~ (~u). For a set U � f0; :::; rgm, de�ne ~ (U) = f~ (~u) :~u 2 Ug.



43functions in an extension of Valiant's model proposed by Haussler [Haussler, 1991].In Chapter 7, we examine a variant of this model in which it is assumed that learningis an \on-line," never-ending process. Further, we assume that the function to be learnedis ever changing, however slowly. Examples of natural functions which change slowly overtime are \stylish clothing" (f(x) = 1 if x represents a \stylish" article of clothing), \politeconversation," and \obscene books." We prove upper and lower bounds on rate of changethat a learner can tolerate in terms of the accuracy required of the learner's hypotheses,and we describe e�cient algorithms for the learner in this setting for two commonly studiedexamples of classes F assumed to contain the hidden functions.4.1 Some de�nitionsOnce again, basic mathematical de�nitions and notation are given in Appendix A.After Vapnik [Vapnik, 1989], we will adopt a naive attitude toward measurability, as-suming that every set is measurable, and simply speak of probability distributions on sets.The Vapnik-Chervonenkis (VC) dimension [Vapnik and Chervonenkis, 1971], and gen-eralizations thereof, have been invaluable in analyzing the ability of computers to learn in arandom environment (c.f., [Blumer et al., 1989] [Haussler et al., 1990]). We de�ne the VC-dimension and some of its generalizations formally here, as they will be useful throughoutthis part.Choose m; r1; :::; rm 2 N. Let S � Qml=1f0; :::; rlg.For a sequence ~{ = (i1; :::; ik) of indices, where 1 � ij � m for each 1 � j � k, de�neSj~{ � Qkj=1f0; :::; rijg by Sj~{ = f(si1 ; :::; sik) : ~s 2 Sg:Suppose for a moment that r1 = � � �= rm = 1. In such a case, we say that S VC-shattersa �nite sequence ~{ = (i1; :::; ik) of indices if and only ifSj~{ = f0; 1gk:



424. IntroductionIn this chapter, we will consider two models of learning in which probabilistic assump-tions are made about the environment of the learner. Both are variants of Valiant's PAC(\Probably Approximately Correct") model [Valiant, 1984].In Valiant's model, it is assumed that a f0; 1g-valued function f is hidden from thelearner, and that the learner know of a class F containing the hidden function f . Thelearner receives several examples (x1; f(x1)); :::; (xm; f(xm)) of the behavior of the hiddenfunction f , and uses these examples to construct a hypothesis h, which it hopes is agood approximation to f . It is further assumed that an arbitrary, unknown probabilitydistribution D on the domain of f was used to independently, randomly generate the xi's.The inaccuracy of the learner's hypothesis h is then measured by the probability, accordingtoD, that f and h yield di�erent values when applied to yet another element of their domaingenerated according to D. This model demands that with high probability, with respectto the random xi's, the learner's hypothesis obtained from those xi's is very accurate. Itfurther demands that the learner compute its hypothesis e�ciently.In Chapter 5, we consider a variant of Valiant's model in which the function to belearned may be many-valued. We unify several previous results which described simpletests to determine whether a class F of such many-valued functions is \learnable" or notwith respect to a cousin of Valiant's PAC model, in which the computational e�ort expendedby the learner is ignored. We can see these tests as special cases of a \testing scheme,"which includes many more tests. Thus, the results of Chapter 5 provide additional toolsfor understanding the basics of learning many-valued functions, and we hope they aidunderstanding of the previously developed tools.In Chapter 6, we generalize a well-known combinatorial theorem, often called \Sauer'sLemma." Sauer's Lemma has often been applied to problems of learning f0; 1g-valuedfunctions [Blumer et al., 1989,Haussler et al., 1990,Haussler et al., 1991]. We show how ourgeneralization may be applied to obtain results concerning the learning of real-valued
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Part IILearning in a Random Environment



40Theorem 31: Let � = hxti1�t�m be any sequence of m elements of [0; 1], and let f 2 F2.Then L1(LININT; f; �) � e(2 + logm2 ):We have so far been unable to obtain matching lower bounds.



39Both proofs make use of the following inequality, which follows immediately by thestandard convexity argument.Lemma 29: For any n 2 N; p > 1; ~x 2 Rn,jj~xjj1 � n1�1=pjj~xjjp:We begin with F1.Theorem 30: Choose m � 3. Let � = hxti1�t�m be any sequence m examples elements of[0; 1], and choose f 2 F1. Let A be the \nearest neighbor" algorithm. Then,L1(A; f; �)� e(1 + logm2 ):Proof: Let �1; :::; �m be the sequence of A's predictions. Let ~r 2 Rm be de�ned by~r = (j�1� f(x1)j; :::; j�m� f(xm)j):Choose p > 1. By Theorem 27, we havejj~rjjp � �1 + 12p � 2�1=p :Applying Lemma 29, we havejj~rjj1 � m1�1=p �1 + 12p � 2�1=p :Suppose p = (lnm)=(lnm� 1). Thenjj~rjj1 � m1� lnm�1lnm �1 + 12(lnm)=(lnm�1) � 2� lnm�1lnm= e "1 + 12  1exp( ln 2lnm�1)� 1!#1�1= lnm� e(1 + 12  1exp( ln 2lnm)� 1!)� e(1 + lnm2 ln 2) (Lemma 26)= e(1 + logm2 )This completes the proof. 2With minor modi�cations, the above argument, together with Theorem 28, yields thefollowing.



38by (3.8). Also, Xt>1:et>dt ept � Xt>1:et>dt et (Since et � 1)< Xt>1:et>dt et(et=dt)= Xt>1:et>dt e2t =dt� 1;by (3.7). Combining with (3.9) yields the �rst inequality. The second follows immediatelyfrom Lemma 26. 23.5 Bounded-length trial sequencesIn Section 3.2, we showed that LC1(F1) = LC1(F2) = 1. In other words, we showedthat �nite bounds on the sum of absolute di�erences between predictions and true valuescould not be obtained for any algorithm using only the assumption that the hidden functionwas in F1, and therefore, for any algorithm using only the weaker assumption that thehidden function was in F2. Our adversaries used many trials, forcing small errors oneach trial. The fact that LC2 < 1 for both these classes suggests that this behaviorwas necessary, since, as the error on a trial approaches 1, squaring the error has no e�ect.If, in fact, any adversary which forces in�nite cumulative error for algorithms learningF1 must force small errors on each trial, this is good news for the learner, since, even ifone's total error is unbounded, if it is accumulating slowly, nontrivial learning is takingplace.In this section, we show that, indeed, the \nearest neighbor" algorithm studied in theprevious section accumulates error slowly while learning F1. We show that on any sequenceofm trials consistent with a function in F1, the sum of unsquared errors made by the nearestneighbor algorithm is O(logm). We also show that the \linear interpolation" algorithmstudied in Section 3.3 achieves the same bound on its cumulative (unsquared) error on anysequence of m trials consistent with a function in F2.



37Proof: Consider the algorithm A which simply predicts with the function value at thenearest previously seen point (and arbitrarily on the �rst trial). Choose a sequence x1; :::; xmof elements of [0; 1] and f 2 F1. Let �2; :::; �m be the predictions of this \nearest neighbor"algorithm on trials 2 through m. We havemXt=2 j�t � f(xt)jp � mXt=2(mini<t jxi � xtj)p (Lemma 25)� 1 + 12p � 2 (Lemma 24)completing the proof of the �rst inequality of the theorem. The second follows immediatelyfrom Lemma 26. 2Next, we prove a very similar bound on LCp(F2).Theorem 28: If p > 1,LCp(F2) � 2 + 12p � 2 � 2 + 1(2 ln 2)(p� 1) :Proof: Choose p > 1. Choose a sequence x1; :::; xm of elements of [0; 1] and f 2 F1.Let �2; :::; �m be the predictions of LININT on trials 2 through m, and for each t > 1, letdt = mini<t jxi�xtj, and let et = j�t�f(xt)j. Applying Lemma 20, we have that the actionof LININT's hypothesis increases by at least e2t =dt on each trial. By Lemma 19, the actionof LININT's hypothesis is always at most 1. Thus,mXt=2 e2t =dt � 1: (3:7)Since, by Lemma 24, we have mXt=2 dpt � 1 + 12p � 2 ; (3:8)our analysis proceeds by breaking up the trials, and applying (3.7) to those trials where dtis relatively small, and (3.8) to the trials where dt is relatively large.More speci�cally, we have Xt>1:et�dt ept � Xt>1:et�dt dpt� 1 + 12p � 2 ; (3.9)



36By di�erentiating, we may easily see that this expression, as a function of a, is decreasingwhen a; dt > 0. Thus, it is maximized, subject to a � 2dt, when a = 2dt. Since(2� 2p)dpt < 0, this yields Ht �Ht�1 � (2� 2p)dpt :Since, trivially, 0 � Ht � 1 for all t, and Ht never increases (on any trial), we have (3.6).Combining (3.5) and (3.6) yields the desired bound. 2We begin with F1. We will make use of the following simple lemma, whose proof isomitted. It establishes the fact that functions in F1 satisfy a Lipschitz condition.Lemma 25: If f 2 F1, then for all x; y 2 [0; 1], we havejf(x)� f(y)j � jx� yj:We will also make use of the following approximation.Lemma 26: For all real x, 1e1=x � 1 � x:Proof: We have e1=x � 1 + 1=xe1=x � 1 � 1=x1e1=x � 1 � x:This completes the proof. 2A bound on LCp(F1) follows immediately.Theorem 27: If p > 1,LCp(F1) � 1 + 12p � 2 � 1 + 1(2 ln 2)(p� 1) :



35Lemma 24: Choose a sequence x1; x2; ::: of elements of [0; 1]. For each t > 1, letdt = mini<t jxt � xij:If p > 1, 1Xt=1 dpt � 1 + 1=(2p � 2):Proof: Choose a sequence x1; x2; ::: of elements of [0; 1]. Assume without loss of generalitythat the xi's are distinct. For each t 2 N, letSt = fxi : i � tg = fui;t : i � tg;where u1;t < u2;t < � � �ut;t (the ui;t's are fx1; :::; xtg in sorted order). For each t, letst = ut;t � u1;t, and Ht = up1;t + (1� ut;t)p + t�1Xi=1(ui+1;t � ui;t)p:First, we claim that Xt>1:xt 62[u1;t�1;ut�1;t�1 ] dpt � 1: (3:5)Choose a trial t for which xt < u1;t�1. In such a case, we havest � st�1 = dt � dptsince dt � 1 and p > 1. Similarly, if xt > ut�1;t�1, then st � st�1 � dpt . Since, trivially, stnever decreases, and 0 � st � 1, we have (3.5).Next, we claim that Xt:xt2[u1;t�1;ut�1;t�1 ] dpt � 1=(2p � 2): (3:6)Choose a trial t for which xt 2 [u1;t�1; ut�1;t�1]. Let i be such that xt 2 (ui;t�1; ui+1;t�1).Let a = ui+1;t�1 � ui;t�1. Assume, as a �rst case, that xt is closest to ui;t�1 (the other casemay be handled similarly). Then dt = xt � ui;t�1 � a=2. We haveHt �Ht�1 = dpt + (a� dt)p � ap:



34We may apply this result to obtain an alternative proof of a result of Faber and Mycielski[Faber and Mycielski, 1991], who analyzed another, more complicated, algorithm for theirupper bounds.Theorem 22 ([Faber and Mycielski, 1991]):LC2(F2) = 1:Proof: The previous theorem implies that LC2(F2) � 1. To see that LC2(F2) � 1, consideran adversary which gives a �rst example of (0; 0), and a second example of (1;�1), dependingon whether an algorithm's prediction is positive or negative. This completes the proof. 2As discussed in the introduction, the fact that F1 � F2, together with the sameadversary argument as above, trivially yields the following.Corollary 23: LC2(F1) = 1.This corollary tells us that, with respect to worst-case cumulative squared error, theassumption that the derivative of a hidden function is never more than 1 doesn't give thelearner any more power than the assumption that the average value of the square of thederivative is at most one.33.4 More general loss functionsRecall that in Section 3.3, we proved that LC2(F1) = LC2(F2) = 1, and in Section 3.2,we proved that LC1(F1) = LC1(F2) =1. This brings up a natural question: For which pare LCp(F1) and LCp(F2) �nite? This question is resolved in this section: we show thatLCp(F1) and LCp(F2) are �nite whenever p > 1.The following lemma will be useful in both analyses.3It would appear that the assumption that f 2 F1 amounts to the slightly weaker assumption that themeasure of fx : f 0(x) > 1g is zero. However, it is easy to see that the lower bound also applies to the smallerclass of twice di�erentiable functions for which f 0 � 1 (indeed, to the extremely simple class consisting onlyof f(x) = x and g(x) = �x). Thus, the square loss learning complexity of this class is the same as that ofF2.



33
a

b

e

cFigure 3.1: Change in JNow we are ready for the learning result. Consider the learning algorithm LININTde�ned by LININT(;; x1) = 0and �t = LININT(((x1; y1); :::; (xt�1; yt�1)); xt)= ff(x1;y1);:::;(xt�1;yt�1)g(xt)for t > 1. That is, LININT linearly interpolates between previously seen points, andextrapolates using the value of the hidden function at the nearest previously seen elementof the domain. Note that before each trial t, LININT can be thought of as formulating thehypothesis ff(x1;y1);:::;(xt�1;yt�1)g.Theorem 21: L2(LININT;F2) � 1:Proof: Choose a target function f 2 F2 and a sequence x1; x2; ::: of elements of [0; 1].Assume without loss of generality that the xt's are distinct.By Lemma 20, we have that the action of the algorithm's hypothesis increases by atleast (�t � f(xt))2 on each trial t > 1.Since the function hypothesized after trial 1 is constant, and therefore has action 0, andsince, by Lemma 19, the action of LININT's hypothesis is always at most that of the targetfunction, which in turn is at most 1, we may conclude that Pt>1(�t � f(xt))2 � 1. 2



32Note that jjf 0jj2 � 1 exactly when J [f ] � 1, and therefore that F2 can also be thoughtof as the set of functions whose action is at most 1. The following lemma concerning thefunction of minimum action subject to certain constraints is well known, and can be provedfairly easily, for instance, through application of an elementary result from the Calculus ofVariations (c.f., [Leitmann, 1981, Theorem 2.2]2).Lemma 19: Choose m 2 N. Let (u1; v1); :::; (um; vm) be a sample. Let S = f(ui; vi) : 1 �i � mg. If f is a well-behaved function consistent with (u1; v1); :::; (um; vm), thenJ [f ] � J [fS ]:The following lemma concerns the change in the action of fS when we add an exampleto S.Lemma 20: Choose m 2 N. Let (u1; v1); :::; (um; vm) be a sample with 0 � u1 < u2 <� � � < um � 1. Let S = f(ui; vi) : 1 � i � mg. Choose an example (x; y) 2 [0; 1]�R. ThenJ [fS[f(x;y)g] � J [fS ] + (y � fS(x))2mini jx� uij� J [fS ] + (y � fS(x))2:Proof: The lemma is trivial if x < u1 or x > um, and if there is a j for which x = uj .Assume that there is a j such that uj < x < uj+1.If a = uj+1�uj ; b = f(uj+1)�f(uj); c = xt�uj , and e = (fS(xt)�f(xt)) = (�t�f(xt))(see Figure 3.1), we can easily see thatJ [fS[f(xt;f(xt))g]� J [fS ]= [ ( bca +e)2c + (b�( bca +e))2a�c ]� b2a= ae2c(a�c)= ae2minfc;a�cgmaxfc;a�cg� e2minfc;a�cg ;completing the proof. 22For those familiar with the Calculus of Variations, the Euler-Lagrange equation in this case is f 00(x) = 0.



31Theorem 18: If p 2 R; p � 1, LCp(F1) =1.Proof: The class F1 includes all continuous twice di�erentiable increasing functions withf(0) = 0 and f(1) = 1, since for such functions,Z 10 jf 0(x)jdx = Z 10 f 0(x)dx = f(1)� f(0) = 1:The adversary picks x1 = 1=2 and then chooses f(x1) = 0 or f(x1) = 1, whichever givesgreater error. Suppose f(x1) = 1. Then the adversary picks x2 = 1=4, and continues thesame scheme. If f(x1) = 0, the adversary picks x2 = 3=4 and repeats, et cetera. At eachtrial the loss is at least 1=2p and there are in�nitely many trials. 23.3 Some positive resultsIn this section we prove that a very simple algorithm performs optimally with respectto sums of squared errors when the hidden function is in F2, establishing an alternativeproof that LC2(F2) = 1. Loosely speaking, this result implies that the assumption that theaverage value of the square of the target function's derivative is at most 1 is strong enoughfor an algorithm to obtain �nite worst case bounds on its cumulative squared error. Weshowed in Section 3.2 that LC2(F1) =1.Suppose S = f(ui; vi) : 1 � i � mg is a �nite subset of [0; 1]�R such thatu1 < u2 < � � � < um:De�ne fS : [0; 1]! R as follows: for all x; f;(x) = 0, andfS(x) = 8>>>>><>>>>>: v1 if x � u1vi + (x�ui)(vi+1�vi)ui+1�ui if x 2 (ui; ui+1]vm if x > umif jSj � 1.For f : [0; 1]! R, de�ne the action of f , denoted by J [f ], to beJ [f ] = Z 10 f 0(x)2dx: (3:4)



30By iterating (3.2), concentrating on the second part, we getLC1(Ga;b) � jb2 + jXi=1 LC1(Ga=2i;0):Applying Lemma 13, we getLC1(Ga;b) � jb2 +0@ jXi=1 a=2i1ALC1(G1;0)= jb2 + (a� b)LC1(G1;0):This completes the proof. 2Now we are ready to prove the in�nite lower bound on LC1(F1).Theorem 16: LC1(F1) =1.Proof: We will show that even for G1;0 � F1, LC1(G1;0) =1.The adversary chooses b = 2�(j+1) for some j 2 N. The adversary then queries the pointx1 = 1=2 and chooses y1 = b or y1 = �b, whichever gives greater error (easily maintainingconsistency with a function in G1;0). Then, by Lemma 14, we get two subproblems of G1=2;b.So LC1(G1;0)� b+ 2LC1(G 12 ;b)� b+ 2[j b2 + (12 � b)LC1(G1;0)] (Lemma 15)� b+ jb+ (1� 2b)LC1(G1;0):We can now solve this for LC1(G1;0) to getLC1(G1;0) � (j + 1)=2: (3:3)Since LC1(F1) � LC1(G1;0) and j was chosen arbitrarily, LC1(F1) =1. 2As discussed earlier, since F1 � Fq, q � 1, this theorem has the following corollary.Corollary 17: LC1(Fq) =1 for all q � 1.We may fairly easily see that the assumption that the average value of the (absolute)slope is at most one is not strong enough for practically any positive results in our model.



29We begin by showing that LC1(F1) =1. In contrast, we will show in Section 3.3 thatLC2(F1) = 1. In our analysis, it will be convenient to consider classes of functions de�nedon [0; a] for a > 0, constrained by the values of the functions at 0 and a.For a; b 2 [0; 1], de�ne Ga;b to be the class of well-behaved functions g de�ned on [0; a]for which g(0) = 0 and g(a) = b, with the further restriction that g0(x) � 1 for all x onwhich g0 is de�ned.The following lemmas may be easily veri�ed, e.g., by using reductions between real-valued learning problems [Littlestone et al., 1991] to scale, translate and reect appropri-ately.Lemma 13: For any a; c > 0;LC1(Gca;0) = cLC1(Ga;0).Lemma 14: Choose a; b; c; d2 R. Let H be the class of well-behaved functions f from [a; b]to R for which f(a) = c and f(b) = d, which also have the property that f 0(x) � 1 whereverf 0 is de�ned. Then LC1(H) = LC1(Gjb�aj;jc�dj):We use these lemmas in the following, in which LC1(Ga;b) is bounded below by a suitablefunction of LC1(G1;0).Lemma 15: For j 2 N and b = 2�ja,LC1(Ga;b) � jb2 + (a� b)LC1(G1;0): (3:1)Proof: First, note that if 0 � b � a=2 thenLC1(Ga;b) � b2 + LC1(Ga2 ;0) + LC1(Ga2 ;b); (3:2)since the adversary may query a=2 and answer with whichever of b or 0 gives greater error,while maintaining consistency with a function in Ga;b, namely the function which linearlyinterpolates. In either case there is an immediate error of at least b=2 and two subproblemsGa=2;0 and Ga=2;b (because of Lemma 14), which the adversary may attack separately.



28in the bound. Our results may also be trivially generalized to functions whose range isvector-valued, by treating each component of the predictions and true values separately.We have stated the results in their present form to facilitate presentation of lower bounds,as well as to cut down on unnecessary notation, as we feel that the essence of the problemsis captured in the simple cases.Faber and Mycielski [Faber and Mycielski, 1991] proved, using a di�erent algorithm,that LC2(F2) � 1. This result amounts to a special case of a beautiful theorem about learn-ing linear functionals de�ned on Hilbert spaces using a generalization of the Widrow-Ho�algorithm [Widrow and Ho�, 1960], and their paper contains numerous other applicationsof their Hilbert space results. Nonetheless, we feel it is interesting that even the very simplelinear interpolation algorithm is optimal for F2 with respect to sums of squared errors.Many statisticians, and, more recently, computational learning theorists (c.f.,[Hardle, 1991] [Barron, 1991] [Haussler, 1989a]) have studied the induction of classes offunctions obtained through smoothness constraints. The spirit of their work di�ers fromours in several ways. First, their theorems usually concern functions of potentially manyreal variables, where ours, at present, apply only to functions of a single real variable. Onthe other hand, the previous work usually involves use of probabilistic assumptions on thegeneration of the xt's, for instance that they are drawn independently from a �xed dis-tribution on whatever domain, whereas our results do not use such assumptions. Theseassumptions have enabled researchers to prove bounds on the expected \loss" on a partic-ular trial. In worst-case models such as that considered here, such \instantaneous" boundsare clearly impossible (c.f., [Littlestone, 1989b]). Finally, in many cases, we are able toobtain upper and lower bounds that match, including constants, which is often not the casefor the previously studied problems.3.2 Some negative resultsIn this section, we describe several settings in which no algorithm can acheive any �nitebound on the cumulative loss.



27the hidden function at the nearest previously seen point.1 We show that the worst-casesum of squared errors made by this algorithm while learning F2 is 1. A trivial lower boundestablishes the fact that this algorithm is optimal for F2 with respect to the worst-case sumof squared errors, and therefore that LC2(F2) = 1.Since, as is easily veri�ed, the 1-norm of a function is at most its 2-norm which is inturn at most its 1-norm, we have that F1 � F2 � F1. Combining the �rst inequality withthe positive result above implies that LC2(F1) � 1. Again, a trivial lower bound showsthat this is the best possible, and therefore that LC2(F1) = 1. Similarly, it follows fromour main negative result that LC1(F1) � LC1(F2) � LC1(F1) = 1. A simple argumentestablishes that LCp(F1) =1 for all p � 1.We next show that LCp(F1) � 1 + 1=(2p � 2) for p > 1. Combining this with theaforementioned results about F1, we may conclude that LCp(F1) < 1 exactly whenp > 1. For this upper bound, we analyze the algorithm which simply predicts with thevalue of the hidden function at the nearest previously seen element of the domain, which,though intuitively worse than the \linear interpolation" algorithm, is easier to analyze. Wealso prove that if p > 1, we have LCp(F2) � 2 + 1=(2p � 2), which implies that LCp(F2) isalso �nite exactly when p > 1.Finally, we describe some preliminary results concerning bounded length sequences oftrials, showing that the sum of (unsquared) errors made by either of the above algorithmslearning F1 and F2 respectively on trial sequences of length m is at most e(1+ (logm)=2).Our analyses can trivially be extended to classes of functions de�ned on an arbitraryinterval, and to classes formed through arbitrary bounds on the various norms of thederivatives. Furthermore, the algorithms we describe do not make use of knowledge ofthe endpoints of the interval, or of knowledge of how steep the target function tends tobe. Therefore, we may even view our upper bounds as applying to arbitrary well-behavedfunctions of the entire real line, where the maximum magnitude of an element of the domainencountered in a sequence of trials, as well as the steepness of the target function, appears1On the very �rst trial, it predicts arbitrarily, say with 0.



263. The Learning Complexity of Smooth Functions of aSingle Variable3.1 IntroductionIn this chapter, we will consider learning functions of a single real variable. We willfurther assume that the domain is simply [0; 1], although we will see later that this restrictionis only for convenience, and meaningful results can be obtained without it. We will alsolimit our attention to continuous functions that are piecewise twice di�erentiable (i.e., twicedi�erentiable except on a �nite set). Let's call such functions well-behaved.We wish to model the intuition that, for many functions encountered in practice, similarinputs tend to yield similar outputs. Toward this end, for q 2 f1; 2;1g, we will study theclass Fq of well-behaved functions whose �rst derivatives have q-norm at most 1. Recallthat, for 1 � q <1, the q-norm of a function f de�ned on [0; 1] is de�ned to be�Z 10 jf(x)jqdx�1=q ;and that the in�nity norm of f is the limit, as q approaches in�nity, of its q-norm. Thein�nity norm roughly corresponds to the maximum value of jf(x)j, and the one-norm, tothe average, while the two-norm lies somewhere in between. Thus, F1 roughly correspondsto the class of functions that are never very steep, and F1 to the class of functions that arenot very steep on average.In this chapter, we determine the value of LCp(Fq) for each (p; q) 2 f1; 2g � f1; 2;1g.Our main negative result is that LC1(F1) = 1. This result, loosely speaking, saysthat even the assumption that the hidden function never has slope greater than one is notsu�ciently strong to enable an algorithm to obtain any �nite bound on the sum of theabsolute values of the di�erences between predictions and true values.Our main positive result concerns the algorithm which at each trial linearly interpolatesbetween previously seen function values, and extrapolates by predicting with the value of



25whether a similar algorithm is optimal for learning the class containing all linear functionscomposed with the standard sigmoid function (1=(1+e�x)). One can trivially obtain boundsfrom our results, but they appear to be suboptimal.



242.5 DiscussionLinear functions are widely used. We expect that our algorithm may become a standardsubmodule for learning more complicated functions or for learning linear combinations ofpreviously learned functions.The fact that our algorithm must know a bound on the sum of the absolute values ofcoe�cients of the target function might make it appear somewhat unattractive to practition-ers. However, this problem may be circumvented by application of the Weighted Majorityalgorithm [Littlestone and Warmuth, 1989] to an pool consisting of algorithms that assumevarious upper bounds on the size of the hidden coe�cient vectors. Nevertheless, to simplifyapplication of our techniques to real-world problems, it would be useful to have a variantof our algorithm for which we can directly obtain bounds similar to our present boundswithout knowing anything about the hidden coe�cients.We also are interested in improving our lower bounds. Is it possible that similar lowerbounds hold even when the algorithm has more information about the hidden coe�cients,or even about the upcoming sequence of examples?We are also investigating the case in which the coe�cient vector changes gradually overtime, corresponding to a case in which some linear combination of the economists is closeto the actual GNP for a certain period, and then in later periods other linear combinationsdo well. The algorithm is to \track" the best linear combination with some additional costthat grows as a function of how much the coe�cient vector changes over time. This wouldgeneralize the methods of [Littlestone and Warmuth, 1989] with which one could track thebest single economist.In addition, it would be interesting to �nd algorithms which are optimal with respect toother natural loss functions, in particular, j�t � �tj. Recently, Bernstein [Bernstein, 1992]has proved a lower bound for this problem whose dependence on n is pn, and has describedan algorithm whose worst-case sum of absolute errors is O(pn logn).Finally, since our algorithms have a similar avor to the linear threshold algorithmsof [Littlestone, 1988] [Littlestone and Warmuth, 1989] [Littlestone, 1989b], one might ask



23For the �rst stage, which consists of n� 1 examples, the tth instance is given byx(t)i = 8><>: M if i = t0 otherwiseand the tth response is always 0. Note that if for each t, v(t) 2 Rn is de�ned byv(t)i = 8><>: c if i = t0 otherwisethen for each t � n� 1, v(t) is consistent with the �rst t� 1 examples, and thus minimizesthe observed loss on these examples. Yet if �(t) is the prediction made using v(t), then foreach t, �(t) = cM , thus n�1Xt=1(�(t)� �(t))2 = (cM)2(n � 1): (2:9)Note that v(n) is consistent with all the examples of the �rst stage.The second stage is virtually identical to the second stage of Theorem 9, replacing(1=2; :::; 1=2) with (0; :::; 0), and responding with whichever of �cM and cM is farthestfrom the algorithm's prediction. One can easily see that, as in Theorem 9, the algorithmcan be forced to have total loss of N in the second stage. Combining this with (2.9) yieldsthe desired result. 2The Widrow-Ho� algorithm predicts using an unnormalized weight vector which isupdated after each trial, i.e. the algorithm's prediction on trial t is ~wt � ~xt, where each~wt = (wt;1; :::; wt;n) is de�ned as follows. The initial weight vector ~w1 is the zero vector, andsubsequent weight vectors are obtained from the examples according to the following rule:~wt+1 = ~wt + (�t � �t) ~xt~xt � ~xt :The following lower bound has been proved for this algorithm.Theorem 12 ([Cesa-Bianchi et al., 1991]): Let W be the Widrow-Ho� algorithm. Foreach n 2N; M; c;N > 0, L2(W; LINEAR(n;M; c); N)� (cM)2n + N:Recall that the total loss of our algorithm was O((cM)2 logn + N).



22computing weighted averages, which is quite surprising. Classes of weighted-average func-tions whose weights have high entropy (which requires many non-zero weights) are easier tolearn. This is in contrast to the case of learning boolean functions, such as boolean linear-threshold functions, where in general (for classes closed under permutation of the attributes)learning gets harder as the number of relevant variables increases [Littlestone, 1988][Littlestone and Warmuth, 1989] [Littlestone, 1989b] [Blum et al., 1991].6 (Some of the up-per bounds of [Littlestone, 1989b] depend on a product of two factors, one of which showsthe same decreasing dependence on entropy observed here; that decrease is typically dwarfedby an increase in the other factor as the number of relevant variables increases.)The following is a straightforward extension of the previous theorem. Its proof istherefore omitted.Corollary 10: We haveLC2(WA(n;M; �); N) 2 
(M2(lnn� �) + N)LC2(LINEAR(n;M; c); N) 2 
((cM)2 ln n + N):By a least squares algorithm, we mean any algorithm which hypothesizes a linearfunction at each trial that minimizes the sum of the squared errors on previous examples.Next, we show that a least squares algorithm can have total loss which depends linearly onthe number of variables n.Theorem 11: For each n 2 N; M; c;N > 0, there exists a least squares algorithm B suchthat  L2(B; LINEAR(n;M; c); N)� (cM)2(n� 1) + N:Proof: Choose n 2 N; M; c;N > 0. As before, after the adversary gives a �rst exampleof ((0; :::; 0); 0), the adversary strategy is broken into two stages. In the �rst stage, theadversary maintains consistency with some element of LINEAR(n;M; c), and in the secondstage, the adversary greedily expends a \noise budget."6For certain especially simple classes mistake bounds can again drop as the number of relevant variablesbecomes a signi�cant fraction of all of the variables.



21In the second stage, which consists of b4Nc+1 trials, each instance is (1=2; 1=2; :::; 1=2),and for the �rst b4Nc trials the adversary simply responds with whichever of 0 or 1 is furtherfrom the algorithm's prediction. On the last trial, if the algorithm's prediction is no morethan 1=2, the adversary responds with 1=2+(1=2)p4N � b4Nc, otherwise he responds with1=2� (1=2)p4N � b4Nc.Let m = l � k + b4Nc+ 1 be the total number of trials of the adversary. Since the factthat ~� � (1=2; :::; 1=2) must equal 1=2 implies that for each t; l� k < t < m,(~� � ~x(t) � �(t))2 = 1=4;we have Xt<m(�(t)� ~� � ~x(t))2 = b4Nc4 :Also, (�(m) � ~� � ~x(t))2 = 4N � b4Nc4 ;so Xt (�(t)� ~� � ~x(t))2 = 4N4 = N:Also, the loss on each trial t of phase two is at least (~� � ~x(t) � �(t))2, thus the total loss ofstage two is at least N .Combining this with (2.8) yields the desired result. 2Note that this argument proves a stronger result than that stated in the theorem, since allof the instances of the sequence of examples, as well as the entropy of the hidden coe�cientvector and the amount of noise, may be given to the algorithm before the �rst predictionis made and adversary can then choose the responses of each example so that the loss ismaximized.Note also that in the case that � = 0, the adversary uses only functions with just onenonzero coe�cient. This, combined with Theorem 7, implies that the inherent complex-ity of the problem of learning functions which simply output a selected component is thesame (at least to within a constant factor) as that of learning the class of all functions



20Using similar techniques, we can easily prove similar theorems for classes formed bylinear combinations of functions taken from some �xed �nite set, e.g. for bounded degreepolynomials.2.4 Lower boundsWe begin by proving a lower bound on LC2(WA(n; 1; �); N). Our more general lowerbounds can be derived from this initial result. For the proof, we will need the followingnotation. For u; v 2 N; v � log u + 1, let bit(u; v) be the vth least signi�cant bit of thebinary representation of u (e.g., bit(6; 1) = 0; bit(6; 2) = 1; bit(6; 3) = 1).Theorem 9: We have LC2(WA(n; 1; �); N)� (lnn� �)4 ln 2 + N � 12 :Proof: Let l = blog nc; k = d�=(ln 2)e. Consider an adversary which adaptively constructs asequence of examples as follows. The adversary's �rst example is ((0; :::; 0); 0). Afterwards,the adversary operates in two stages. In the �rst stage, the adversary maintains consistencywith some function in WA(n; 1; k) � WA(n; 1; �). In the second stage, the adversary greedilyuses up its \noise budget."The instances ~x(1); :::; ~x(l�k) of the �rst stage are constructed as follows: x(t)i = 1 ifbit(i; t) = 1 and i � 2l, otherwise x(t)i = 0. The adversary responds with 1 if the algorithm'sprediction is no more than 1=2, otherwise the adversary responds with 0. Thus the loss ofthe algorithm on each trial of stage one is at least 1=4.De�ne ~� as follows: if i � 2l and for each t � l � k, bit(i; t) = �(t), then let �i = 2�k ,and otherwise, let �i = 0. Since the number of l bit vectors \satisfying" a (l� k)-bit maskis 2k, jj~�jj1 = 1. Also, by construction, the linear function induced by ~� is consistent withthe examples of the �rst phase. Trivially, H(~�) = k ln 2 � �. Since the �rst phase consistsof l � k trials, the total loss of the �rst phase is at least14(blnn=(ln 2)c � d�=(ln 2)e): (2:8)



19bounds given later in this chapter show that tuning � can only yield an improvement of aconstant factor over the choice � = 1=p2.2.2.5 Noise toleranceNote that the smallest we can make the constant on the \noise term" (at the expenseof the term depending on n and H(~�)) by increasing � is 4. However, our analysis issomewhat loose, which leaves open the possibility that our algorithm's loss (or that of arelated algorithm) is bounded by k(ln n�H(~�)) + N(~�) for some constant k.2.3 More general linear functionsIn this section, we describe more general learning results, obtained by applying thereductions between real-valued learning problems described in Appendix C. All proofs ofthis section are relatively straightforward, and may be found in that appendix.For each n 2 N;M; �; c > 0 we will need the following de�nitions. Let WA(n;M; �) bethe set of f : [0;M ]n ! [0;M ] such that there exists ~� 2 [0; 1]n; jj~�jj1 = 1 whose entropyis at least � such that f(~x) = ~� � ~x for all ~x. Let LINEAR(n;M; c) be the set of linearfunctions de�ned on [0;M ]n such that the sum of the absolute values of their coe�cients isat most c. Since the entropy is only de�ned for non-negative coe�cients summing to 1, weomit the entropy parameter from LINEAR.This section's theorem shows that our algorithm may be modi�ed to obtain excellentalgorithms for the classes de�ned above.Theorem 8:LC2(WA(n;M; �); N)�M2LC2(WA(n; 1; �); N=M2) 2 O(M2(lnn � �) + N)LC2(LINEAR(n;M; c); N)� (2cM)2LC2(WA(2n+ 1; 1; 0);N=(2cM)2)2 O((cM)2 lnn + N)Proof: In Appendix C. 2



18Note that exp(�t) = Pni=1 vt;i�x0t;i��0tt ; and therefore that@ exp(�t)@�t = 0 i� �t = ~vt+1 � ~xt and@2 exp(�t)@2�t � 0 when@ exp(�t)@�t = 0 and �t � 0:Thus exp(�t), and therefore �t, has exactly one minimum when �t 2 [0;1]. Denote the�t at the minimum as �t;opt. Now if we updated with �t;opt and fed ~x0t to A� after theupdate was made, the algorithm would predict �t. Thus with the optimum choice for �tthe algorithm is in some sense \corrective."Since we have determined the choice for �t which gives the best bound when �t = ~� � ~xt,why not use it? First, we know no closed form for �t;opt. We can use a number ofheuristics for approximating �t;opt such as gradient descent, Newton's method or binarysearch. Another choice is to iterate the update of A� a number of times with the sameinstance ~xt.However, even if the computational cost of approximating �t;opt is not a deterrent, thereis a second reason for not choosing a �t that is too close to �t;opt. This is illustratedwith the following example. Assume there is a long sequence of examples consistent with~� = (1=2; 1=2) except that the �rst example ((1; 0); 1) is noisy. In this case, in order to beconsistent, we must hypothesize ~v2 = (1; 0), e�ectively choosing �1 = 1. Now all futureupdates cannot correct the second component of the weight vector of ~v2, leading to anunbounded loss on future examples consistent with (1=2; 1=2).So in case of noise it is advantageous to choose �t not too close to �t;opt and insteadmake a less drastic update.2.2.4 Tuning �If one has a prior idea of N(~�) ahead of time, one can tune � to optimize the �rstbound of the preceding theorem. In fact, if N is known, one may calculate the best � usingcalculus. However, the resulting expression, as a function of N and n, is hideous, and lower



172.2.1 Choosing an initial weight vectorIf we choose ~v1 to be something other than (1=n; :::; 1=n), reecting some prior bias onwhich weighted combination of the experts predicts well, then the bounds in the previoustheorem hold if we replace \lnn � H(~�)" by \I(~�jj~v1)". Thus, our algorithm can takeadvantage of increasingly accurate prior beliefs.2.2.2 Trading between �t and entropyThere is a curious trade o� between N(~�) and H(~�) in the upper bound L2(A1=p2; S) � 5:83(lnn + min~� (N(~�)�H(~�))):For example, assume the algorithm receives a single example ((1; 0; � � � ; 0); 1). Since werequire that ~� 2 [0; 1]n and jj~�jj1 = 1, only ~�1 = (1; 0; � � � ; 0) is consistent. The upper boundfor ~� = ~�1 is 5:83 lnn, since N(~�1) = H(~�1) = 0: However for ~� = (1=n; 1=n; � � � ; 1=n) thebound is 5:83, so the minimum in the loss bound is not achieved at the consistent vector~�1.2.2.3 Choosing the base of the exponent in our updateHow did we come up with our choice of �t = �t+��t+� 1��t+�1��t+� as the base of the exponentin our update for the algorithm A�? Consider the upper bound for �t given by theInequality (2.5) for the case when �t = ~� � ~xt:�t � ln(1 + (�t � 1)�0t)� �0t ln �t:Our above choice for �t is obtained by minimizing this upper bound for �t, i.e. we maximizeour bounds on the decrease of I(~�jj~vt) caused by the update in trial t.However, there are better choices for �t for the case when �t = ~� � ~xt. From (2.4) we get�t = ln( nXi=1 vt;i�x0t;it )� �0t ln �t:



16where the minimum is over all ~� 2 [0; 1]n with jj~�jj1 = 1 and for each such ~�, N(~�) isde�ned to be Pmt=1(~� � ~xt � �t)2. In particular, L2(A1=p2; S) � 5:83(lnn + min~� (N(~�)�H(~�))):Further, for any sequence S = h(~xt; �t)i1�t�m of m examples in [0; 1]n � [0; 1] for whichthere exists ~� 2 [0; 1]n; jj~�jj1 = 1 such that for all t; 1 � t � m, ~� � ~xt = �t, we have L2(A0; S) � (lnn�H(~�))2 :Proof: Assume �rst that � > 0. Since I(~�jj~v1) = lnn�H(~�) and and I(~�jjvm+1) � 0,mXt=1 �t = I(~�jjvm+1)� I(~�jj~v1) � � lnn + H(~�):Thus using (2.2), we get:mXt=1� 2(1 + 2�)2 (�t � �t)2 + j�t � ~� � ~xtjj�t� �tj�(1 + �) � � ln n + H(~�):Rewrite the second inequalitymXt=1�  p2j�t � �tj1 + 2� !2 +  p2j�t � �tj1 + 2� ! (1 + 2�)j�t� ~� � ~xtjp2�(1 + �) ! � � lnn + H(~�)and apply Lemma 3, obtainingmXt=1� 1(1 + 2�)2 (�t � �t)2 + (1 + 2�)24�2(1 + �)2 (�t � ~� � ~xt)2 � � lnn + H(~�):Solving for Pmt=1(�t � �t)2 yields the �rst loss bound of the theorem: L2(A�; S) � (1 + 2�)2(ln n�H(~�)) + (1 + 2�)44�2(1 + �)2N(~�):For the second bound, observe that when � = 1=p2,(1 + 2�)2 = (1 + 2�)44�2(1 + �)2 � 5:83:Finally, the third bound may be easily obtained in a similar manner using (2.3).This completes the proof. 2



15�t = nXi=1 �i ln vt;ivt+1;i= nXi=1 �i  lim!0 ln Pnj=1 vt;j�xt;j�xt;i != lim!0 nXi=1 �i  ln Pnj=1 vt;j�xt;j�xt;i !� lim!0�2(�t � �t)2(1 + 2)2 (Using (2.6))= �2(�t � �t)2establishing (2.3).Next, assuming again that � > 0, replacing the second term in (2.6) with its absolutevalue, we obtain: �t � � 2(�0t � �0t)2 + j�t � ~� � ~xtj j ln��j1 + 2� : (2:7)Now, we wish to bound j ln �j. First, let us assume that �t � �t. Let z = �t � �t. Thenln � = ln (�+ z + �)(1� � + �)(�+ �)(1� �� z + �) :Applying Lemmas 4 and 5, we get thatln � � (2� + 1)z�(1 + �) = (2� + 1)(�t� �t)�(1 + �) :By symmetry, when �t � �t, if we let z = �t � �t, we obtainln 1� � (2� + 1)z�(1 + �) = (2� + 1)(�t� �t)�(1 + �) :Hence j ln �j � (2� + 1)z�(1 + �) = (2� + 1)j�t � �tj�(1 + �) :Plugging into (2.7) yields the desired result. 2We can apply the previous lemma to obtain the following loss bounds.Theorem 7: Choose n;m 2 N. Let S = h(~xt; �t)i1�t�m be any sequence of m examples in[0; 1]n � [0; 1]. Then for each � > 0, L2(A�; S) � min~�  (1 + 2�)2(ln n�H(~�)) + (1 + 2�)44�2(1 + �)2N(~�)!



14coe�cient vectors hypothesized by A� and h�tit2N be the sequence of A�'s predictions. Let�t = I(~�jj~vt+1)� I(~�jj~vt) and for z 2 R let z0 denote z+�1+2� . Then for all t, if � > 0,�t � � 2(1 + 2�)2 (�t � �t)2 + j�t � ~� � ~xtjj�t� �tj�(1 + �) : (2:2)If � = 0 and �s = ~� � ~xs for all s � t,�t � �2(�t � �t)2: (2:3)Proof: Choose t. For each � > 0, let�� = ��t + ��t + ���1� �t + �1� �t + �� :Assume for the moment that � > 0. From the de�nition of �t and from Lemma 2 itfollows that �t = nXi=1 �i ln vt;ivt+1;i= nXi=1 �i ln Pnj=1 vt;j�� xt;j1+2��� xt;i1+2�= nXi=1 �i ln Pnj=1 vt;j��x0t;j��x0t;i= ln( nXi=1 vt;i��x0t;i) + nXi=1 �i ln 1��x0t;i (2.4)� ln( nXi=1 vt;i(1 + (�� � 1)x0t;i))� nXi=1 �ix0t;i ln ��= ln(1 + (�� � 1)�0t)� ~� � ~xt + �1 + 2� ln ��= ln(1 + (�� � 1)�0t)� �0t ln �� + �t � ~� � ~xt1 + 2� ln ��: (2.5)Since �� can be written as �0t�0t 1��0t1��0t we can rewrite the last expression as� I((�0t; 1� �0t)jj(�0t; 1� �0t)) + �t � ~� � ~xt1 + 2� ln �� � �2(�t � �t)2(1 + 2�)2 + �t � ~� � ~xt1 + 2� ln ��; (2:6)applying Lemma 1. Since, if � = 0 and �t = ~� � ~x,



13vt+1;i = vt;i � (�t+�)(1��t+�)(�t+�)(1��t+�)� xt;i1+2�Pni=1 vt;i � (�t+�)(1��t+�)(�t+�)(1��t+�)� xt;i1+2�If � = 0, the update is vt+1;i = lim!0 vt;i �(�t+)(1��t+)(�t+)(1��t+)� xt;i1+2Pni=1 vt;i � (�t+)(1��t+)(�t+)(1��t+)� xt;i1+2 (2:1)The algorithm A0 is only intended for use when there is known to be \no noise,"5 i.e.when there is a probability vector ~� such that for all t, �t = ~� � ~xt. In such circumstances, asimple but tedious proof, included in Appendix B establishes that the weights maintainedby A0 are always �nite. If �t < 1 and �t > 0, it is trivial that the above update preservesthe �niteness of the weights, and we may replace the limit above with the simpler update:vt+1;i = vt;i ��t(1��t)�t(1��t)�xt;iPni=1 vt;i ��t(1��t)�t(1��t)�xt;i :In the case that �t = 1, Appendix B contains a proof that the update of (2.1) is equivalentto the following vt+1;i = 8>><>>: vt;iPj:xt;j=1 vt;j if xt;i = 10 otherwise.When �t = 0, Appendix B contains a proof that �t = 0 (again, assuming that there is \nonoise"), and therefore trivially, that using A0, for all i, vt+1;i = vt;i.As in [Littlestone, 1989b] in the case of linear threshold algorithms, we use the relativeentropy between the coe�cient vector ~� of a target function and the coe�cient vector ~vtof the algorithm's hypothesis as a measure of progress. Our key lemma relates the changein this measure of progress on a particular trial to the loss of the algorithm on that trial.Loosely speaking, it says that the algorithm learns a lot when it makes large errors.Lemma 6: Choose � � 0 and n 2 N. Choose ~� 2 [0; 1]n such that jj~�jj1 = 1. Leth(~xt; �t)it2N be a sequence of examples from [0; 1]n � [0; 1]. Let h~vtit2N be the sequence of5Even then, it is not recommended for numerical reasons.



12Lemma 5: For all � > 0, and z such that 0 � z � 1,ln (z + �)(1 + �)�((1 + �)� z) � (2� + 1)z�(1 + �) :Proof: Fix � > 0. De�ne f : [0; 1]! R byf(z) = (2� + 1)z�(1 + �) � ln (z + �)(1 + �)�((1 + �)� z) :We havef 0(z) = 2� + 1�(1 + �) � ��((1 + �)� z)(z + �)(1 + �)���((1 + �)� z)(1 + �) + (z + �)(1 + �)��2(1 + � � z)2 �= 2� + 1�(1 + �) � 2� + 1(z + �)(1 + � � z)� 0:Thus, f is monotonically increasing and is thus minimized when z = 0. The fact thatf(0) = 0 then completes the proof. 22.2 The basic family of learning algorithmsThe basic family of learning algorithms fA� : � � 0g is designed to perform well on theset of linear functions de�ned on [0; 1]n whose coe�cients are nonnegative and sum to 1.These functions can be viewed as computing weighted averages. Intuitively, the larger � isthe more robust the algorithm is against noise, and, correspondingly, the more slowly thealgorithm learns.The Algorithm A� may be stated formally as follows. We maintain a vector of normalizedweights which is updated at the end of each trial. For each t, let ~vt 2 [0; 1]n be thealgorithm's weights before trial t. When given the instance ~xt = (xt;1; :::; xt;n) 2 [0; 1]n attrial t, the algorithm predicts with �t = ~vt � ~xt. Let �t 2 [0; 1] be the response at trial t.We initialize the weight vector to ~v1;i = 1=n for all i. At the end of each trial we updatethe weights as follows:If � > 0, our update is



11The following series of lemmas also give approximations for quantities arising in ouranalysis.Lemma 3: For all x; y 2 R, x(x� y) � 12(x2 � y2):Proof: Suppose x � y. Then x is at least the average of x and y, which is (x+ y)=2. Thus,x(x� y) � 12(x+ y)(x� y) = 12(x2 � y2):Now, suppose x < y. Then x� y < 0, and thus the fact that (x+ y)=2 > x in this caseimplies that x(x� y) > 12(x+ y)(x� y) = 12(x2 � y2);completing the proof. 2Lemma 4: For all z; � and x such that � > 0, 0 < z � 1 and 0 � x � 1� z,ln (x + z + �)(1� x + �)(x + �)(1� x� z + �) � ln (z + �)(1 + �)�(1� z + �) :Proof: Fix z; � > 0. De�ne f : [0; 1� z] ! R byf(x) = ln (x + z + �)(1� x + �)(x + �)(1� x� z + �) :Note that it is su�cient to prove that f is convex over its domain, since the right hand sideof the claimed inequality is f(0) = f(1� z).De�ne g : [0; 1� z] ! R by g(x) = ln x + z + �x + � :Then f(x) = g(x) + g((1� z)� x)f 0(x) = g0(x)� g0((1� z)� x)f 00(x) = g00(x) + g00((1� z)� x):Hence, the result follows from the convexity of g, which is easily veri�ed. 2



10were too large. Of course, these changes are reversed when the aggregate prediction is toosmall.Our algorithms use the above philosophy of updating the weights with the additionalcrucial feature that the smaller the aggregate error, the \gentler" the updates. In particular,if the aggregate prediction is correct, the weights are not changed.As is done in [Littlestone, 1989b] for linear threshold functions, we use the relativeentropy between our weights and a target set of weights as a measure of progress. Therelative entropy is an information theoretic notion normally used to measure the distancebetween probability distributions.2.1 PreliminariesWe will �nd it convenient to discuss sequences ~x1; ~x2; ::: of elements of Rn. In suchcircumstances, we will denote the ith component of ~xt by xt;i.Suppose ~�;~v 2 [0; 1]n are such that jj~�jj1 = jj~vjj1 = 1. We de�ne the entropy of ~� to bePni=1��i ln �i, where 0 ln 0 is taken to be 0, and denote this quantity by H(~�). The relativeentropy between ~v and ~�, denoted by I(~�jj~v), is given byI(~�jj~v) = nXi=1 �i ln �ivi :For any two such ~� and ~v, it is well known that I(~�jj~v) � 0 and that I(~�jj~v) = 0 i� ~� = ~v.We will need the following simple lemmas. The �rst is due to Kullback [Kullback, 1967].Lemma 1 ([Kullback, 1967]): For �; � 2 [0; 1] I((�; 1� �)jj(�; 1� �)) � 2(�� �)2.We will also make use of the following.Lemma 2 ([Littlestone, 1989b]): For all � > 0; x 2 [0; 1],�x � 1 + (� � 1)x;with equality i� x = 0 or x = 1.



9the advisor would be to initially weigh all opinions equally, and adjust the weight assignedto each economist based on her performance.When using a weighted average for prediction, a natural interpretation of the weightsis as the relative \credibilities" of the economists. Given this interpretation, a natu-ral reweighting strategy is to reduce the weights of each economist according to somemonotone function of how far o� her estimate was (e.g., the Weighted Majority algo-rithm [Littlestone and Warmuth, 1989]), and then normalize so that the weights sum toone. In the discrete case this approach can lead to logarithmic total mistake bounds[Littlestone, 1988] [Littlestone, 1989b] [Littlestone and Warmuth, 1989]. Furthermore, itwas shown in [Littlestone and Warmuth, 1989] that in the continuous case the loss of theadvisor is at most O(logn) plus a constant times the least individual loss of any of the neconomists.4However, if one wishes to learn a linear combinations without assuming that any oneeconomist does well individually, then this strategy does not work. Suppose that therewere three economists: one who always wildly overestimated the GNP, one who wildlyunderestimated the GNP, and one who always gave an estimate slightly greater than thecorrect GNP. Suppose further that the average of the estimates of the two wild economistswas always exactly correct, so that there was a weighting with zero total loss. It is easy tosee that in this example the loss of the above strategy is unbounded: the wild economists'contribution will be steadily decreased and in the limit the prediction of the economist whois always slightly o� will dominate.It turns out that the following intuition can be translated into an essentially optimallearning algorithm. If the aggregate opinion was greater than the true GNP, then thosewhose predictions were too small were \pulling" the aggregate in the right direction, andthe marginal e�ect of increasing their weights is to improve the aggregate prediction, evenif their predictions were very inaccurate. Thus one would want to increase the weights ofthose whose predictions were too small, and decrease the weights of those whose predictions4Again, these results are with respect to the loss function j�t � �tj.



8rule including experimental comparisons is given in [Cesa-Bianchi et al., 1991].Our algorithms are motivated by the algorithms of [Littlestone, 1988] [Littlestone, 1989b]for learning simple boolean functions, such as clauses with a small number of literals. Inthat case the predictions and responses are boolean. A mistake occurs when the predic-tion and response disagree, and the loss is taken to be the total number of mistakes in alltrials. Algorithms are given in those papers for learning k-literal clauses whose worst casemistake bounds are at most a constant factor from optimal. We generalize the techniquesdeveloped there to the learning of linear functions de�ned on Rn. Algorithms for a simplecontinuous-valued case which are within a constant factor of optimal have already beengiven in [Littlestone and Warmuth, 1989]. In our notation, this is the case when exactlyone of the hidden �i's is 1 and the rest are 0.3As in [Littlestone, 1988] [Littlestone, 1989b] [Littlestone and Warmuth, 1989] and theWidrow-Ho� rule [Widrow and Ho�, 1960] [Duda and Hart, 1973], our algorithms maintaina vector of n weights that is updated each trial after the response is received. Let ~vtrepresent this weight vector before trial t. Our algorithms always predict with the currentweight vector: i.e., they predict �t = ~vt � ~xt. Note that in the noise-free case it is easy toalways �nd a coe�cient vector v consistent with the previously observed examples, i.e., suchthat for all j less than t, ~v �~xj = �j . However, consistency is neither necessary nor su�cientto obtain the performance we describe. We show that an algorithm that predicts using anarbitrary consistent linear function can have loss of 
(n) (Theorem 11). Our algorithmsdo not necessarily maintain consistency with previously observed examples. Instead, theyare designed so that they \learn a lot" from a large loss, so that the cumulative loss is onlylogarithmic in n instead of linear.To get some intuition about updates of the weights that might achieve the above, let usgo back to our initial example of predicting the GNP. An obvious strategy for the advisorwould be to predict with the average estimate of the economists. Suppose, however, theadvisor notices that some economists are better at predicting the GNP. A good method for3These results are with respect to the loss function j�t � �tj.



7the corresponding weighted average of economists' estimates always equals the actualGNP. For that case, we describe a family fA� : � > 0g of learning algorithms. Weshow that for any �nite sequence of trials and any � > 0, the loss of A� is bounded byO(minflnn � H(~�) + Pmt=1(~� � ~xt � �t)2g), where the minimum1 is over all probabilityvectors ~� 2 [0; 1]n. In particular, this implies that the total loss of A� is O(logn + N),where N is the total loss obtained from the best �xed weight vector. This performance isobtained even though the algorithm is not given any information about future examplesand about the error term (the sum in the above expression). As in the case in which allexamples are consistent with some hidden function, we can show that our algorithms areoptimal to within a constant factor. We can also give algorithms for more general linearfunctions de�ned on more general domains by transforming such problems into the basicproblem discussed above. These transformations resemble those studied in [Haussler, 1989b][Kearns et al., 1987] [Littlestone, 1988] [Pitt and Warmuth, 1990].It was shown in [Cesa-Bianchi et al., 1991] that the worst-case total loss of the Widrow-Ho� rule (also sometimes called the �-rule) [Widrow and Ho�, 1960] [Duda and Hart, 1973]in the setting of this chapter is 
(n + N), where, again, N is the total loss of the best�xed weight vector. This contrasts with the bound of O(logn + N) for our algorithm.On the other hand, techniques due to Mycielski2 [Mycielski, 1988] can also be used toshow that the Widrow-Ho� rule is within a constant factor of optimal for a closely relatedproblem, where, instead of assuming that the hidden weight vector ~� consists of nonnegativecomponents summing to one, one assumes that it has Euclidian length at most one, andinstead of choosing instances ~x1; ~x2; ::: from [0; 1]n, one assumes that the Euclidian lengthof the instances is 1 [Cesa-Bianchi et al., 1991]. The bound of the sum of squared errorsobtained is 2:25(1 + N). A more detailed comparison of our algorithm to the Widrow-Ho�1There is a subtle trade o� between the two summands in the minimum. Even if there is a ~� suchthat �t = ~� � ~xt for all 1 � t � m, the minimum sometimes occurs at a ~�0 with higher entropy for whichPmt=1(~�0 � ~xt � �t)2 > 0.2Mycielski gives worst case bounds on the total loss of the Widrow-Ho� rule. Instead of giving boundsin terms ofPmt=1(~� � ~xt � �t)2, he states his bounds in terms of mmaxt(~� � ~xt � �t)2.



62. On-Line Learning of Linear FunctionsSuppose, for budget purposes, each year each member of a panel of economists predictsthe next year's GNP and an advisor to the president wishes to combine their predictions toobtain a single prediction. If we measure the loss for each year as the square of the di�erencebetween the advisor's prediction and actual GNP, a reasonable goal for the advisor is tominimize the worst case total loss over the years. In this chapter, we present near-optimalstrategies for combining opinions in situations like this, assuming that some �xed weightedaverage of the economists is always reasonably close to the actual GNP, which, for problemslike this, appears reasonable.Let CONVEXn be the class of functions f de�ned on Rn by f(~x) = ~� � ~x, where~� 2 [0; 1]n has components which sum to 1 (let's call such ~� \probability vectors" from hereon). Note that each function in CONVEXn takes a di�erent convex combination (\weightedaverage") of the components of its argument. In this chapter we will concern ourselves withLC2(CONVEXn; N). As we will see later, it is interesting to consider CONVEXn not onlyfor situations like combining the opinions of experts, where it is interesting for its ownsake, but also because the analysis of CONVEXn forms the basis for the analysis of severalnatural, and larger, classes of functions.Let us begin with the case N = 0, i.e., the case in which there is an unknown f 2CONVEXn for which f(~xt) always equals �t. We describe an algorithm A0 for this case,and prove that the worst case sum of squared errors of A0 on any sequence of trials consistentwith an element of CONVEXn is at most (lnn � H(~�))=2 where H(~�) = �Pni=1 �i ln�iis the entropy of the hidden coe�cient vector ~� that de�nes f . Since for all relevant ~�,H(~�) � 0, another upper bound on total loss of A0 is (lnn)=2. Also, as ~� approaches(1=n; 1=n; :::; 1=n), H(~�) approaches ln n, and our bounds approach 0. We show that for allvalues of H(~�), A0 is optimal to within a constant factor. Note that our bounds hold foran arbitrarily large number m of trials.Now, suppose that N > 0, e.g., that there is not any �xed set of weights such that



5Fix X and Y and a learning algorithm A. For a �nite sequence of examples S =h(xt; �t)i1�t�m we then have that the prediction �t of A on the t-th trial satis�es�t = A(((x1; �1); :::; (xt�1; �t�1)); xt):For p � 1, the p-loss of A on S is de�ned as follows: Lp(A; S) = mXt=2 j�t � �tjp:Note that we begin summing on the second trial. This is reasonable, since an algorithm'sprediction on the �rst trial is made without seeing any examples, and is therefore notan indication of learning ability. The upper bounds of Chapter 2 also hold if we beginsumming on the �rst trial, but not those of Chapter 3. The p-loss of A on a particulartrial t is j�t � �tjp. Finally, if F is a class of functions from X to Y , let  Lp(A;F ; N) bethe supremum of  Lp(A; S) over all �nite sequences S = h(xt; �t)i1�t�m of examples (ofunbounded length) such that there exists f 2 F with Pmt=1(f(xt)� �t)p � N .  Lp(A;F ; N)measures the algorithm A's ability to take advantage of the fact that a nearly functionalrelationship from the known class F exists between the xt's, which it uses for prediction, andthe �t's, which it is trying to predict. The parameter N indicates how close to a functionin F this relationship is. The p-learning complexity of F (with N noise) is given byLCp(F ; N) = infA  Lp(A;F ; N):The p-learning complexity is the best \p-performance" that can possibly be obtained for F(and N), and therefore gives us a measure of the power of the assumption that there is afunction in F that (nearly) maps xt's to �t's.Finally, when N = 0, we will drop mention of N from our notation. That is, Lp(A;F ; 0) =  Lp(A;F)LCp(F ; 0) = LCp(F):



4In Chapter 3, we will consider classes of functions of a single variable designed to capturethe intuition that, for many relationships of practical interest, similar inputs tend to yieldsimilar outputs. We show that for several settings of this type, extremely simple algorithmsare optimal.1.1 De�ning adversarial learningSome standard notation and mathematical de�nitions are listed in Appendix A. Wegive more topic-speci�c notation and de�nitions here.Let X be a set, Y � R. We assume that learning takes place in a sequence of trials,where in the tth trial,� The (on-line) learning algorithm receives x 2 X from the environment.� The learning algorithm outputs a prediction �t 2 Y (interpreted as a prediction ofthe upcoming response �t).� The learning algorithm receives a response �t 2 Y .Note that each pair (xt; �t) serves a dual role in this setting. At time t, it is used to test thealgorithm's predictive ability. For trials s > t, it is used by the algorithm to make futurepredictions.In keeping with the second role, we de�ne an example for (X; Y ) to be an element ofX � Y . If (x; �) is an example, call x the instance and � the correct response to x. If f is afunction from X to Y , we say that f is consistent with an example (x; �) if f(x) = �, andthat f is consistent with a sequence S of examples if it is consistent with each example ofS. Each prediction of an on-line learning algorithm (for (X; Y )) is determined by theprevious examples and the current instance. Associated with an on-line learning algorithmA we de�ne a mapping of the same name from (X � Y )��X to Y . Let A(X; Y ) be the setof such mappings corresponding to learning algorithms for (X; Y ).



3[Maass and Turan, 1989] [Maass and Turan, 1990]. We will �nd that several techniquesdeveloped during the study of mistake-bounded learning, especially some of Littlestone's[Littlestone, 1988,Littlestone, 1989b], are useful for the problems addressed in this part.Despite the popularity of the mistake-bound model, perhaps the dominant model oflearning relationships between f0; 1g-valued quantities is Valiant's PAC model[Valiant, 1984], and variants thereof (esp., [Haussler et al., 1990]). This model, which willbe described in more detail in Part II, includes probabilistic assumptions on the learner's en-vironment. Kearns, Li, Pitt, and Valiant [Kearns et al., 1987] and Angluin [Angluin, 1988]independently showed that a \good" learning algorithm in the mistake-bound model canbe transformed into a \good" algorithm in the PAC model, and Haussler [Haussler, 1988]showed that in many cases, no transformation was necessary. Littlestone [Littlestone, 1989a]described a transformation which, in some cases, yielded better PAC learning algorithms.Blum [Blum, 1990c] then showed that no such conversion could exist from the PAC modelto the mistake-bound model, exhibiting a class which was \learnable" in the PAC model,but not in the mistake bound model.Littlestone has sinced generalized his transformation to show that algorithms with goodperformance in the model considered in this part can be transformed to obtain algorithmsthat are very good in random environments, in a natural sense [Littlestone, 1991]. Thus,\worst-case" analyses like those in this part are interesting not only because they can beapplied in a broader variety of circumstances, but also due to their consequences concerninglearning in random environments.In Chapter 2, we will consider learning in this model where it is assumed that themapping to be learned is linear. An intuitively obvious algorithm is to simply hypothesizeat any given time the function which would have yielded the best predictions, had we usedit in the past. We show that this algorithm can perform signi�cantly far from optimal in anatural setting, and describe an algorithm whose performance is within a constant factor ofoptimal. We will see that our results may also be applied when the mapping is a low orderpolynomial.



21. IntroductionIn this part, we will be concerned with situations in which a learner wishes to use thecurrent value of a certain quantity (or quantities) to predict the future value of anotherquantity. Examples include using the barametric pressure to predict rainfall, using theinterest rate to predict changes in the Dow Jones average, or combining the predictionsof several experts (e.g., National Basketball Association scouts) on the future value of anyquantity (say the scoring average during the �rst NBA season of a current college senior).We wish to further focus our attention on problems where the value that was predictedis later received, e.g. through observation or measurement, as is the case in the examplessketched above. Finally, we assume that a (nearly) functional relationship exists betweenthe quantity used for prediction and that predicted, and that the learner knows of a classof functions containing the mapping to be \learned."A main distinguishing feature of the research described in this part is the absence ofprobabilistic assumptions about the learner's environment. Instead, we assume that thelearner's environment is an adversary operating within a certain reasonable constraint.An interpretation of the adversary's constraint is that it enforces that the learner's priorknowledge of the class of functions containing that to be learned is (nearly) accurate. Itis a well-established \pseudo-theorem" that nontrivial learning in the absence of such priorknowledge is impossible.The learning model of this part was introduced by Mycielski [Mycielski, 1988], and in-dependently by Littlestone and Warmuth [Littlestone and Warmuth, 1989].1 It generalizesthe \mistake-bound" model of Angluin [Angluin, 1987] and Littlestone [Littlestone, 1988],in which it is assumed that the quantity to be predicted takes on one of two values.This model and its close relatives have been heavily studied [Angluin, 1988] [Blum, 1990b][Blum, 1990a] [Blum et al., 1991] [Helmbold et al., 1990] [Littlestone, 1988][Littlestone, 1989b] [Littlestone and Warmuth, 1989] [Maass, 1991]1These papers will be discussed further in Chapter 2.
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Towards a MoreComprehensive Theoryof Learning in ComputersPhilip M. LongabstractWe attempt to determine the theoretical boundaries of the ability of computers to learn.We consider several rigorous models of learning, aimed at addressing types of learningproblems excluded from earlier models.In Part I, we consider learning dependencies between real-valued quantities in situationswhere the environment is assumed to be an adversary, operating within constraints thatmodel the prior knowledge of the learner. While our assumptions as to the form of thesedependencies is taken from previous work in statistics, this work is distinguished by the factthat the analysis is worst case.In Part II, we consider learning in situations in which the learner's enviroment is assumedto be at least partially random. We consider methods for extending the tools for learningf0; 1g-valued functions to apply to the learning of many-valued and real-valued functions.We also study the learning of f0; 1g-valued functions in situations in which the relationshipto be learned is gradually changing as learning is taking place.
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