108

where

Wil ifi<nand g; >0

—i—n]C if n<i<2nand p_, <0
v; =

-1l ifi=2n+1

0 otherwise.
Note that for each ¢, v; is nonnegative, and that 3. v; = 1. Choose g€ LINEAR(n, M, ¢),¥€

[0, M]". Let [be the coefficient vector of g, IT = {i : u; > 0} and I~ = {i : u; < 0}. We

have
V@) = (Z %) . (Z W) #5 (- 23 m)
eI+ el— i
= (201]\/[Z:um) + (Z |gé|) + % (1 - %Z |Mz’|)
9(%)
el +1/2.

Thus there is a 2¢M-reduction from LINEAR(n, M, c) to WA(2n + 1,1,0). The theorem
now follows immediately from Theorem 81. The first bound can be proved by giving an

M -reduction from WA(n, M,) to WA(n, 1, k) along the lines of the reduction given above.

The details are omitted. O

107

t=1 « t=1 « «
= 1/af Z(f(xt) - Pt)p
t=1
= N/o?
we have
Z(At - k)p < Lp(Av g, N/ap)'
t=1
Hence,

o0

SRR RS S

aPL,(A,G,N/aP).

pt—k

)p

t

IN

The theorem follows from the fact that .5 was chosen arbitrarily. O

This theorem is applied in the following section.

C.1 Proof of Theorem 8

We will prove only the second bound. The first can be proved analogously.

Choose n, M, ¢ appropriately. We present a 2¢M-reduction from LINEAR(n, M, c) to
WA(2n+1,1,0). The theorem then follows immediately from Theorem 81 and Theorem 7.

Define the instance transformation ¢ : [0, M]™ — [0, 1]*"! by

(b(ﬁ)_(xl—l—M T+ M —21+ M -z, + M 1)
DT\ ToM T oM T oM YT oM 02

and define ¢ : LINEAR(n, M,c) — WA(2n + 1,1,0) as follows. If ¢ € LINEAR(n, M, ¢) is
defined by

9(¥) = Z;Mm',
then let ¢(g) = f, where f is defined by .

2n+1

f(f) = Z Vi,
=1

106
Appendix C. Reductions between real-valued learning

problems

In this section, we describe a notion of reductions between real-valued learning prob-
lems. These transformations generalize the prediction preserving reductions that have
been used in a similar manner in the learning of {0, 1}-valued functions [Haussler, 1989b]
[Littlestone, 1988] [Kearns et al., 1987] [Pitt and Warmuth, 1990].

We will need the following definition. Let X and Y be sets, and let F and G be
families of real-valued functions defined on X and Y respectively. Let o > 0. We say
that F a-reduces to G if and only if there is a function ¢ : X — Y, called an instance

transformation, a function ¥ : F — G, called a target transformation, and k € R such that

forallz € X, fe F,

We are now ready for the following theorem, which gives loss bounds for a class of

functions in terms of those for a class to which the function can be a-reduced.

Theorem 81: Let X and Y be sets, and let F and G be families of real-valued functions
defined on X and Y respectively. Let A be an algorithm for Y. Choose p,a, N > 0. Then

if F a-reduces to G, there exists an algorithm B for X, such that
Ly(B,F,N)<aPL,(A,G,N/aP).

Proof: Define B as follows. Given an instance z, B feeds ¢(z) to A, and if A predicts A,
B returns aX + k. Then, when B gets p as a reinforcement, it feeds (p — k)/a to A.

Choose f € F, and let S = {(24, pt));eN be a sequence of example-reinforcement pairs.

Let (Ar);eN be the sequence of predictions made by A on {((¢(zy), (pr — k)/@))1en- Let

o0

N = Z_:(f(xt) —po)’.

Then since

105

since vp > 0,2 = 1,2; < 1, and A < 1.

Assume as a second case that x; = 1. In this case,

Sy v (Ao s

lim 1/¢, = lim ety /
" 0 (s Y
! Qi)
ay—1
= lim Ljiay=1 % + lim Y v ((1 +)1 =N+ 7)) TF2
~—0 v; =0 v; (At + 7)'}/
Juy<1
_ i
= =

Combining this with (B.2) and (B.1) yields the desired result. O

Now we are ready for the main result of this appendix.

Theorem 80: Choose m € N, Zy, ..., %, € [0,1]7, and py, ..., pm € [0, 1] such that there is
a [I € [0,1]" whose components sum to 1 such that for allt < m, p; = i - &;. The sequence

U1y .nny U Of vectors obtained though the update rule for Ag is well-defined, and finite.

Proof: The proof proceeds by induction on the trial ¢ with an induction hypothesis
consisting of the statement of the theorem, restricted to a specific trial ¢, together with
the fact that for each ¢« <n, if v;; = 0 then pu; = 0.

The induction hypothesis is trivially satisfied for #; = (1/n,...,1/n).

For the induction step, choose ¢t > 1. Assuming the induction hypothesis holds for ¢, we
wish to establish that it holds for t + 1. The case in which A; = p; and that in which p; < 1
and A; > 0 are both trivial. The case in which p; = 1 and A; < 1 is handled easily using
Lemma 79, since in that case, z;; < 1 implies that p; = 0. Finally, assume A; = 0. In this
case, for each 7 such that p; # 0, we have v;; # 0 (the induction hypothesis), and for each
¢ such that v, ; # 0, we have z;; = 0 (since Ay = 0). Thus for each 7 such that p; # 0, we
have z;; = 0, which implies that p; = 0. The theorem follows trivially when A; = py.

This completes the proof. O

104

Appendix B. The finiteness of A4,’s weights

In this section, we prove that the update
ST T4
— A+ (I—pitv)
Vi1, = UM

Tt,g
~—0 Zn o ({pt-l-w){l—/\t‘l'ﬂ) T+2~
J=1 76\ (Aet) (T=pety)

used by Ag preserves the finiteness of Ag’s weights if there is a probability vector @ such

that for all ¢, p, = i - &;,. We begin with the following lemma.

Lemma 79: Let ¥ € [0, 1] have components which sum to 1. If 0 < XA < 1,7 € [0,1]" are
such that is a [€ [0,1]" whose components sum to 1 such that [i- ¥ = 1 and for which

v; = 0 only if u; = 0, then for eachi € N,i <n

(L1dt)) 5 o= 1
v, | et T if o, =
lim i ((A7) (+7) _ Z]:%:l v, KT
=0 _ L .

> =10 (K—M—MZA:I_W;;-M) 12y 0 otherwise.

Proof: Choose i < N. Assume without loss of generality that »; > 0. Since & € [0, 1],
and I € [0,1]" has components which sum to 1, and - Z = 1, there exists a k such that
xr = 1 and pp > 0. Therefore, by assumption, vy > 0 as well. For each v > 0, let

(=Nt | T
v ()

fr] .
Zn v (!1+’Y)!1_/\t+7))1+27
=17 (Ae+v)y

9y =

Then

1
lim ¢, = ———— (B.1)

~v—0 v hmw_@ 1/Q’7

Asgsume as a first case that 2; < 1. Then

73
n (A4 =Aity) Y TH2y
Zj:l ?]]

lim 1/¢, = lim (Aet)y 7
7—0 7—0 , ((1+w)(1—/\t+w)) 27
i (Ae+7)
Tk
1+ 1 A 1+2
. Vg (W/\H—w t+7)) +2v
> lim =
v—0 ((A4y)(1=Xet))1+27
(Aet)y

o (L= A) T
o ((Ae+7)y)
= o™ (B.2)

v—0 v;

dlz,z) < d(z,y)+d(y,=z).

In this case, we say (9,d) is a metric space. Let 7' C S. We say 7T is bounded if
sup{d(z,y): z,y € T} is finite.

102

Appendix A. Mathematical Preliminaries

Throughout, we let R represent the real numbers, RT represent the positive reals, Q
represent the rationals, N represent the positive integers, Z denote the integers, and Z+
represent the nonnegative integers. Also, log always represents the base 2 logarithm, and

In represents the natural logarithm.

For & = (21, ...,2,) € R", and p € N,

n 1/p
|121], = (leilp) :
=1

In particular,

12 = el
=1
n
k= |Set=vew
=1

Also,

||Z]]|0 = max z;.
1

Recall that for a function f:[0,1] — R, and ¢ > 1, the ¢g-norm of f, denoted by || f||,,

(' 1)

[lloo = Tim [1.f]lg-

is defined to be

and

If X is a set, and D is a probability distribution on X, and if ¢(2) is some mathematical
statement containing x as a free variable, define Pr.cp(¢(z)) as D({z € X : ¢(z)}).
Define E,¢p similarly for expectations of random variables defined on X. We will drop the
subscripts where there is no possibility of confusion.

Now, let S be a set. Let d : S x § — RT. We say that d is a metric on § if for all

$7y7ZES7

101

[Maass and Turan, 1989] W. Maass and G. Turan. On the complexity of learning from
counterexamples. Proceedings of the 30th Annual Symposium on the Foundations of
Computer Science, 1989.

[Maass and Turan, 1990] W. Maass and G. Turan. On the complexity of learning from
counterexamples and membership queries. Proceedings of the 31st Annual Symposium on
the Foundations of Computer Science, 1990.

[Maass, 1991] W. Maass. On-line learning with an oblivious environment and the power of
randomization. The 1991 Workshop on Computational Learning Theory, pages 167-175,
1991.

[Mycielski, 1988] J. Mycielski. A learning algorithm for linear operators. Proceedings of the
American Mathematical Society, 103(2):547-550, 1988.

[Natarajan, 1989] B.K. Natarajan. On learning sets and functions. Machine Learning,
4:67-97, 1989.

[Pitt and Valiant, 1988] L. Pitt and L.G. Valiant. Computational limitations on learning
from examples. Journal of the Association for Computing Machinery, 35(4):965-984,
1988.

[Pitt and Warmuth, 1990] L. Pitt and M.K. Warmuth. Prediction preserving reducibility.
Journal of Computer and System Sciences, 41(3), 1990.

[Pollard, 1984] D. Pollard. Convergence of Stochastic Processes. Springer Verlag, 1984.

[Pollard, 1990] D. Pollard. FEmpirical Processes : Theory and Applications. Institute of
Mathematical Statistics, 1990.

[Sauer, 1972] N. Sauer. On the density of families of sets. J. Combinatorial Theory (A),
13:145-147, 1972.

[Steele, 1978] J.M. Steele. Existence of submatrices with all possible columns. Journal of
Combinatorial Theory, Series A, 24:84-88, 1978.

[Tomasta, 1981] P. Tomasta. Dart calculus of induced subsets. Discrete Mathematics,
34:195-198, 1981.

[Valiant, 1984] L.G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134-1142, 1984.

[Vapnik and Chervonenkis, 1971] V.N. Vapnik and A.Y. Chervonenkis. On the uniform
convergence of relative frequencies of events to their probabilities. Theory of Probability
and its Applications, 16(2):264-280, 1971.

[Vapnik, 1982] V.N. Vapnik. Estimation of Dependencies based on Empirical Data. Springer
Verlag, 1982.

[Vapnik, 1989] V.N. Vapnik. Inductive principles of the search for empirical dependences
(methods based on weak convergence of probability measures). The 1989 Workshop on
Computational Learning Theory, 1989.

[Widrow and Hoff, 1960] B. Widrow and M.E. Hoff. Adaptive switching circuits. 1960 IRF
WESCON Conv. Record, pages 96-104, 1960.

100

[Haussler, 1989b] D. Haussler. Learning conjunctive concepts in structural domains. Ma-
chine Learning, 4(1):7-40, 1989.
[Haussler, 1991] D. Haussler. Decision theoretic generalizations of the PAC model for neural

net and other learning applications. Technical Report UCSC-CRL-91-02, University of
California at Santa Cruz, 1991.

[Helmbold and Long, 1991] D.P. Helmbold and P.M. Long. Tracking drifting concepts using
random examples. The 1991 Workshop on Computational Learning Theory, pages 13-23,
1991.

[Helmbold et al., 1990] D. Helmbold, R. Sloan, and M.K. Warmuth. Learning integer
lattices. The 1990 Workshop on Computational Learning Theory, pages 288-302, 1990.

[Karpovsky and Milman, 1978] M.G. Karpovsky and V.D. Milman. Coordinate density of
sets of vectors. Discrete Mathematics, 24:177-184, 1978.

[Kearns and Li, 1988] M. Kearns and M. Li. Learning in the presence of malicious errors.
Proceedings of the 20th ACM Symposium on the Theory of Computation, pages 267-279,
1988.

[Kearns et al., 1987] M. Kearns, M. Li, L. Pitt, and L.G. Valiant. On the learnability
of boolean formulae. Proceedings of the 19th Annual Symposium on the Theory of
Computation, pages 285-295, 1987.

[Kimber and Long, 1992] D. Kimber and P.M. Long. The learning complexity of smooth
functions of a single variable. To appear, The 1992 Workshop on Computational Learning
Theory, 1992.

[Kuh et al., 1991] A. Kuh, T. Pesche, and R. Rivest. Lower bounds on mistake rates for
incremental learning algorithms when concepts drift. Unpublished manuscript, 1991.

[Kullback, 1967] S. Kullback. A lower bound for discrimination in terms of variation. [FEF
transactions on Information Theory, 13:126-127, 1967.

[Leitmann, 1981] G. Leitmann. The Calculus of Variations and Optimal Control. Plenum
Press, 1981.

[Littlestone and Warmuth, 1989] N. Littlestone and M.K. Warmuth. The weighted major-
ity algorithm. Proceedings of the 30th Annual Symposium on the Foundations of Com-
puter Science, 1989.

[Littlestone et al., 1991] N. Littlestone, P.M. Long, and M.K. Warmuth. On-line learning of
linear functions. Proceedings of the 23rd ACM Symposium on the Theory of Computation,
pages 465-475, 1991.

[Littlestone, 1988] N. Littlestone. Learning quickly when irrelevant attributes abound: a
new linear-threshold algorithm. Machine Learning, 2:285-318, 1988.

[Littlestone, 1989a] N. Littlestone. From on-line to batch learning. The 1989 Workshop on
Computational Learning Theory, pages 269-284, 1989.

[Littlestone, 1989b] N. Littlestone. Mistake Bounds and Logarithmic Linear-threshold
Learning Algorithms. PhD thesis, UC Santa Cruz, 1989.

[Littlestone, 1991] N. Littlestone, 1991. Personal communication.

99

[Blum, 1990c] A. Blum. Separating PAC and mistake-bound learning models over the
boolean domain. Proceedings of the 31st Annual Symposium on the Foundations of
Computer Science, 1990.

[Blumer et al., 1989] A. Blumer, A. Ehrenfeucht, D. Haussler, and M.K. Warmuth. Learn-
ability and the Vapnik-Chervonenkis dimension. JACM, 36(4):929-965, 1989.

[Bondy, 1972] J.A. Bondy. Induced subsets. Journal of Combinatorial Theory (B), 12:201—
202, 1972.

[Cesa-Bianchi et al., 1991] N. Cesa-Bianchi, P.M. Long, and M.K. Warmuth. A comparison
of on-line algorithms for learning linear functions. Manuscript, 1991.

[Duda and Hart, 1973] R.O. Duda and P.E. Hart. Pattern Recognition and Scene Analysis.
John Wiley and Sons, 1973.

[Dudley, 1984] R.M. Dudley. A course on empirical processes. Lecture notes in mathematics,
1097:2-142, 1984.

[Dudley, 1987] R.M. Dudley. Universal donsker classes and metric entropy. Ann. Prob.,
15(4):1306-1326, 1987.

[Ehrenfeucht et al., 1989] A. Ehrenfeucht, D. Haussler, M. Kearns, and L.G. Valiant. A
general lower bound on the number of examples needed for learning. Information and
Computation, 82(3):247-251, 1989.

Faber and Mycielski, 1991] V. Faber and J. Mycielski. Applications of learning theorems.

g
Fundamenta Informaticae, 15(2):145-167, 1991.

[Frankl et al., 1987] P. Frankl, Z. Furedi, and J. Pach. Bounding one-way differences.

Furopean Journal of Combinatorics, 3:341-347, 1987.

[Frankl, 1983] P. Frankl. On the trace of finite sets. Journal of Combinatorial Theory (A),
34:41-45, 1983.

[Hardle, 1991] W. Hardle. Smoothing Techniques. Springer Verlag, 1991.

[Haussler and Long, 1990] D. Haussler and P.M. Long. A generalization of Sauer’s lemma.
Technical Report UCSC-CRL-90-15, University of California at Santa Cruz, 1990.

[Haussler et al., 1988] D. Haussler, N. Littlestone, and M.K. Warmuth. Predicting {0, 1}
functions on randomly drawn points. Proceedings of the 29th Annual Symposium on the
Foundations of Computer Science, pages 100-109, 1988.

[Haussler et al., 1990] D. Haussler, N. Littlestone, and M.K. Warmuth. Predicting {0, 1}
functions on randomly drawn points. Technical report, University of California at Santa
Cruz, 1990.

[Haussler et al., 1991] D. Haussler, M. Kearns, and R. Schapire. Bounds on the sample
complexity of bayesian learning using information theory and the VC-dimension. The
1991 Workshop on Computational Learning Theory, pages 61-74, 1991.

[Haussler, 1988] D. Haussler. Space efficient learning algorithms. Technical report, UC
Santa Cruz, 1988.

[Haussler, 1989a] D. Haussler. Generalizing the PAC model: sample size bounds from
metric dimension-based uniform convergence results. Proceedings of the 30th Annual
Symposium on the Foundations of Computer Science, 1989.

98

References

[Aldous and Vazirani, 1990] D. Aldous and U. Vazirani. A Markovian extension of Valiant’s
learning model. Proceedings of the 31st Annual Symposium on the Foundations of Com-
puter Science, pages 392-396, 1990.

[Alon, 1983] N. Alon. On the density of sets of vectors. Discrete Mathematics, 24:177—184,
1983.

[Angluin and Valiant, 1979] D. Angluin and L. Valiant. Fast probabilistic algorithms
for Hamiltonion circuits and matchings. Journal of Computer and System Sciences,
18(2):155-193, 1979.

[Angluin, 1987] D. Angluin. Learning regular sets from queries and counterexamples. In-
formation and Computation, 75:87-106, 1987.

[Angluin, 1988] D. Angluin. Queries and concept learning. Machine Learning, 2:319-342,
1988.

[Anstee and Furedi, 1986] R.P. Anstee and Z. Furedi. Forbidden submatrices. Discrete
Math, 62:225-243, 1986.

[Anstee, 1985] R.P. Anstee. General forbidden configuration theorems. Journal of Combi-
natorial Theory (A), 40:108-124, 1985.

[Anstee, 1988] R.P. Anstee. A forbidden configuration theorem of Alon. Journal of Com-
binatorial Theory (A), 47:16-27, 1988.

[Anstee, 1991] R.P. Anstee. On a conjecture concerning forbidden submatrices. Unpub-
lished manuscript, 1991.

[Anthony et al., 1990] M. Anthony, N. Biggs, and J. Shawe-Taylor. The learnability of
formal concepts. The 1990 Workshop on Computational Learning Theory, pages 246—
257, 1990.

[Barron, 1991] A. Barron. Approximation and estimation bounds for artificial neural net-
works. The 1991 Workshop on Computational Learning Theory, 1991.

[Ben-David et al., 1992] S. Ben-David, N. Cesa-Bianchi, and P.M. Long. Characterizations
of learnability for classes of {0,...,n}-valued functions. To appear, The 1992 Workshop
on Computational Learning Theory, 1992.

[Bernstein, 1992] E.J. Bernstein. Absolute error bounds for learning linear functions on
line. To appear in the Proceedings of the 1992 Workshop on Computational Learning
Theory, 1992.

[Blum et al., 1991] A. Blum, L. Hellerstein, and N. Littlestone. Learning in the presence
of finitely many or infinitely many irrelevant attributes. The 1991 Workshop on Compu-
tational Learning Theory, 1991.

[Blum, 1990a] A. Blum. Learning boolean functions in an infinite attribute space. Proceed-
ings of the 22nd ACM Symposium on the Theory of Computation, 1990.

[Blum, 1990b] A. Blum. Separating PAC and mistake-bound learning models over the
boolean domain. Proceedings of the 31st Annual Symposium on the Foundations of
Computer Science, 1990.

97

and instead of wanting to make the probability of mistake small, we want to make the
expectation of the absolute value of the difference between our prediction and the truth
small. In place of an algorithm for minimizing disagreements, we require an algorithm for
minimizing the sum of absolute errors on a sample. It would be interesting to obtain results
for more general loss functions, e.g. the square loss. Also, we have no general lower bounds
for the tracking of real valued functions.

Other natural problems include: optimizing the constants and removing the 1/1n % gap

between our bounds on A.

96

to determine when an adjustment is required. It is often infeasible to inspect each item
produced as the inspection process might be very expensive or even destroy the good. Thus
a more complicated inspection plan indicating when to inspect and how to evaluate the
inspection results is needed. The results in Section 7.2 are applicable to this problem.

Intuitively, the following approach seems as if it should lead to improved tracking
algorithms. Instead of simply minimizing the number of disagreements with a suffix of the
previous examples, an algorithm might weight previous examples with gradually decreasing
nonnegative weights which sum to one. Then for each hypothesis h in the target class,
the algorithm might use the sum of the weights of the examples with which h disagrees as
the estimate of the probability that it will make a mistake on the next trial, then use the
hypothesis which minimizes this, possibly more accurate, estimate. One wonders whether
such an algorithm might significantly improve on the simple “minimize disagreements”
algorithm analyzed in this chapter.

It is easy to see how to alter our arguments to obtain results in a related model (often
called “agnostic learning”) in which the algorithm doesn’t know a priori a class which
contains each of the sequence of targets, and tries to predict nearly as well as possible
using hypotheses in a certain class F. More formally, suppose for a worst case sequence of
concepts fi, fa,... (not necessarily in the hypothesis class F), for each ¢ we defined x; to
be minyer Pr(h(z) # fi(x)). It can be shown by modifying the proofs of Section 7.2, that
for A < ¢e?/(dIn(1/€)), an algorithm can achieve probability of mistake at most ; + € for
all large enough t [Helmbold and Long, 1991]. One wonders whether these results can be
improved.

Haussler [Haussler, 1991] has generalized the results of [Blumer et al., 1989] to apply
to learning in many frameworks, one of which is the learning of real valued functions.
Using Haussler’s results, the techniques of Section 7.2 can trivially be extended to apply
to uniformly bounded classes of real valued functions (e.g., feed forward neural networks
of a particular architecture which has one output node), where, in place of the Vapnik-

Chervonenkis dimension, we use Pollard’s pseudo-dimension [Pollard, 1984,Haussler, 1991],

95

Theorem 78: For all e < 1/€* and n € N, HALFSPACES, is not (e, A)-trackable when
A > e*é?/n, and BOXES,, is not (¢, A)-trackable when A > e*e*[2n.

This theorem, along with the facts that the VC dimension of HALFSPACES,, is n + 1
and that of and BOXES,, is 2n, establishes that the general purpose algorithm described in
Section 7.2 is within a constant times a log factor of optimal for these two natural concept

classes.

7.5 Discussion

In this chapter, we have defined a learning model in which the target concept is allowed
to change over time and discovered a general-purpose algorithm whose performance nearly
matches our lower bounds (on at least two natural target classes). However this algorithm
relies on a potentially expensive subroutine for minimizing disagreements within a constant
factor. To combat this difficulty, we have found an efficient way to approximately minimize
disagreements to within a factor that depends (linearly) on the VC-dimension. This gives
us a second generic algorithm which, although not proven able to tolerate quite as much
drift, is more likely to be computationally efficient (as it is for halfspaces, hyperrectangles,
and any other target class which is properly PAC learnable).

Our algorithms are robust in the sense that they don’t need to know the rate of drift
A ahead of time, although attempting to achieve an accuracy € amounts to an implicit
assumption of an upper bound on A.

Although our results have usually been stated in terms of how much target motion can be
tolerated, they can viewed in other ways. Bounds like “all A < ce?/(d*1In €) are tolerated”
are easily converted to “the error rate, €, is at most c¢,dAY/(2=9) for arbitrarily small a.”
Also, our bounds indicate how frequently one must sample to achieve a desired accuracy
when given a bound on the continuous rate of target drift. This interpretation may be the
more useful one.

Consider an assembly line process where the machines slowly drift out of alignment,

gradually increasing the defect rate. One wants to sample the finished products in order

94

since, when given F, it is equally likely that fz:(z,,)is 0 or 1, independent of the previous

examples. Now,

PI‘(E) = Pr <$m — anmJ < % &V0 << tvxm—t—l—i Q/ anmJ : anmJ + %])
-1 .
Av
= A0 -—)
=1
-1 N
> tAHeXp (n Z)
=1 1- n
-1 Ag
= tAexp (Z n Z)
=1 L= n
_A t?
> A n i
- ((1 - 2)
2A
> tAexp (—72(‘ 1)—) (since t < n/(eA))
e— n

> % nA exp (—ﬁ) (since 2¢/nfA <t < \/n/A)

Noting that %exp (— 2(:_1)) > 6% yields

VA

Pr(mistake) > =

Since

Pr(; z syevmtixuxu(mistake(z, 7, 0)) > ¢,

there is a z for which

Pr; oyeum+ixy(mistake(z,7,0)) > ¢,

contradicting the assumption that that A (¢, A)-tracks BASIC,,.0

Recall the definitions of HALFSPACES,, and BOXES,, from the previous section.

The following theorem follows from the bounds for BASIC,, via a trivial embedding of
BASIC,, into HALFSPACES,, and a similar embedding of BASIC,,, into BOXES,, using a
simplified version of prediction preserving reductions [Pitt and Warmuth, 1990]. The same

embeddings were employed in [Haussler et al., 1990]. The details are omitted.

93

Theorem 77: For all n € N, BASIC,, is not (¢, A)-trackable if ¢ < 1/e* and A > e*e? [n.

Proof: By contradiction. Assume that tracking strategy A (e, A)-tracks BASIC,, for
some 0 < € < 1/e?, n € N, and A > e*c?/n. Thus after seeing at least mg examples
drawn from distribution D and labeled by any (A, D)-admissible sequence of targets, the
probability that A makes a mistake on the next example is at most e.

Without loss of generality, set A = e*e?/n. With the restriction on ¢, A < 1/n (and
n < 1/A). Also, since no non-degenerate class is (¢, A)-trackable if A > ¢ and € < 1/3, we
may assume that A < 1/€2.

Let t = [/n/A]. Since e < VeZn < /n/A, we get 2VnfA <t < \/n/A and
et < n/A. These inequalities will be used at the end of the proof.

For each z € {0,1}" and 0 < ¢ < ¢, define f5; € BASIC,, as the indicator function for

Uizili/n, (5 4 iAz;)/n).

Since t < 1/A (using n < 1/A), every interval in the union has length at most 1/n.
Note that fso is the function mapping everything to 0. Choose m such that m > ¢ 41
and m > mg. Let S(Z) be the sequence of m elements of BASIC,, defined by S(2) =
(fz0, fz05 -+ 20, 21, fz.2,- - -+ [54). Let U be the uniform distribution on X = [0,1]. One
can easily verify that for all z € {0,1}", 5(2) is (A, U)-admissible.

Let E be the event that for a random z € [0,1]™, x,, is the first “passed” point in
| na, | tA

< — and for all 0 < ¢ < ¢, @p_ty; &
n

its subinterval. More formally, z,, —

(0] Lnan] | iA]

’
n n n

For each z € {0,1}", 2 € [0,1]™, 0 € I, let mistake(Z,Z,0) be the event that

A(samy,—1(5(2),2), ¥m, 0) # fz1(2m),

i.e. that strategy A incorrectly predicts the label of the mth example where o represents the
strategy’s internal randomization. Finally, let U" be the uniform distribution over {0, 1}".
We have

Pr(f,g,a)eUmxU’xu(miStake(gv z,0))

> Pr(mistake(z,7,0)|E)Pr(E) = {Pr(E)

92

7.4 Upper bounds on the tolerable amount of drift

In this section we prove upper bounds on the tolerable amount of drift for two commonly
studied concept classes: halfspaces and axis-aligned rectangles. Qur upper bounds show that
the algorithm of Section 7.2 is within a log times a constant factor of optimal for each of
these classes.

First, we will prove an upper bound for BASIC,,, the class of indicator functions for the

following family of subsets of the unit interval:

{uizili/n, (i+ ai)/n) 2 a € [0,1]"}.

This class can be viewed as dividing the unit interval into n subintervals of equal length.
Every concept in the class is the union of an initial segment from each of the subintervals.
It is easy to see that VCdim(BASIC,,) = n.

Our argument for the upper bound on BASIC,, uses ideas from earlier arguments giving
lower bounds on the probability of a mistake when predicting a stationary target function
[Ehrenfeucht et al., 1989] [Haussler et al., 1990].

The intuition behind the argument is as follows. Suppose there is a water truck rolling
down a section of dusty road at 10 kilometers per hour. Either the truck is empty or it is
spraying water (unknown to us, but both possibilities are equally likely). Each minute a
point on the road is picked at random and we predict whether or not the point is wet before
looking at it. If the point has not yet been passed by the water truck, then we can safely
predict that it is dry. If a previously picked point had already been passed by the water
truck when it was picked, then we know whether or not the truck is spraying water and can
always predict correctly. However, our prediction always has a 1/2 chance of being wrong
the first time we see a point that the water truck has passed. This idea can be extended to
to n watertrucks (each of which is independently spraying or empty) on n different roads.
Whenever a point on road ¢ that has been passed by truck ¢ is picked, and none of the
previous points had been passed by truck ¢ when they were picked, we will make a mistake

with probability 1/2.

91

Theorem 73 ([Pitt and Valiant, 1988]): If F C U,2Q" is properly PAC learnable, then
there is a randomized polynomial time algorithm which solves the consistency problem for

F.

Theorem 74 ([Blumer et al., 1989]): If F = U, F,, where F, C Q" is properly PAC

learnable, then there is a polynomial p such that for all n € N, VCdim(F,) < p(n).
Combining these with Corollary 72 we obtain the following.

Corollary 75: Let F be a stratified tracking problem. Then if the corresponding learning

problem is properly PAC' learnable, F is efficiently trackable.

Combining Corollary 72 with Theorem 69, we obtain the following result for halfspaces
and hyperrectangles in particular. Let HALFSPACES,, be the set of indicator functions for

the following sets:
{Z7eQ":@a-¥>b}:aec Q" be Q}.
Let BOXES,, be the set of indicator functions for the set of axis parallel hyperrectangles in

n-dimensional space, i.e.
n

(Il b : @5 € Q).

=1

Corollary 76: There is a constant ¢ > 0 and there are efficient tracking algorithms for

each of {HALFSPACES, : n € N} and { BOXES,, : n € N} that (e, A)-track these classes
for

C€2

Finally, Kearns and Li [Kearns and Li, 1988] showed that, loosely speaking, significantly
improving the factor of approximation of our algorithm for minimizing disagreements for
hyperrectangles (in particular, removing the dependence on d) would lead to corresponding
improvements on the approximation algorithm for set cover, which has not been significantly
improved since the 1970’s. Nevertheless, it remains possible that, via other methods, one

might obtain eflicient algorithms that tracks this class at rates closer to optimal.

90

2g — 1 (—opts)
> exp
2 m — opt

2g — 1 —opt —d, em
> exp exp| —In —
2 m — opt ~ 2d

da
> 2=l (2_d) T

2 em

Thus, the probability that the hypothesis returned after [iterations has more than (y+1)opt

disagreements with S is at most

l
212] < (20— 1 (2d]
“ 207 \em)) 2o\ 2 (am
This completes the proof. O

By appropriate choice of v and [, we obtain the following.

Gl41/d,,
d(29—1)

Corollary 72: Ify=d and |l > ln% then with probability at least 1 — 6 Algorithm

Min-Disagreements returns a hypothesis consistent with all but (v + 1)opt of the examples
m 5.

Proof: If opt = 0, then the corollary is trivial. Assume opt > 1. Then

d
2 — 1 [/ 2d\~
Pr(algorithm fails) < exp (—l q <_)7)

2¢1/v \em

2g — 1
exp (—ldm)

é.

IN

This completes the proof. O

Note that if d and m grow polynomially with n, then the number [of iterations required
by the algorithm in the previous corollary is also polynomial in n.

We may similarly show that, in fact, that for any ¢ > 0, we can approximately minimize
disagreements to within a factor of ¢ VCdim(F,) + 1 in poly(m,n)'/¢ time, if there is a
polynomial time randomized algorithm for F’s consistency problem and VCdim(F),) grows
polynomially in 7.

We can now take advantage of the following two theorems, which address learning in

Valiant’s PAC model [Valiant, 1984].

89

Consider the stage of the algorithm where gp\t = opt and a particular iteration j of
the inner loop where A produces hypothesis h’. Let clean be the event that none of the
examples sampled during iteration j are in bad and consist be the event that i’ is consistent

with the subsample. By applying a standard approximation, we have

Pr(clean and consist) > q(1— opt/m)?

—opts
> qexp m—opi)

Now define close to be the event that i’ agrees with all but v opt of the examples in
S — bad, i.e. Procp/(h(2) # hop(2)) < v opt/(m — opt). (Note that when close occurs, A’

agrees with all but (v + 1)opt of the examples in 5.) We have

Pr(S/J)Gszu(w | clean and consist) (72)
= Pr(S/J)G(D/)SXM(w | consist)

since the distribution obtained by conditioning D?® on clean is (D')® (recall that ¢/ is the

uniform distribution over sequences of bits, so that o represents the randomization of

consistency algorithm A). Note that if both clean and consist occur then b’ and hgpy

agree with the examples in the subsample. Thus,

Pr(S/J)Gszu(w | clean and consist)
< Pr(S/J)E(D/)SXM(w and consist)/Pr(consist)
< Pr(s oye0next(Proep (W(2) # hop(2)) > 7 opt/(m — opt) (7.3)
and Y(z,y) € ', W (2) = hop(2))
< 1/2q,
where the last inequality follows from Theorems 32 and 70 and the algorithm’s choice of s.
Thus,

Pr(s/ s)epsxulclose| clean and consist) > (2¢ — 1)/2q.
Now we can bound the probability of close.

Pr(s s)epsxulclose) > Pr(close and clean and consist)

= Pr(close| clean and consist)Pr(clean and consist)

88

Algorithm Min-Disagreements
Inputs: a sample S of m examples; [, the number of iterations to run; d = VCdim(F,);
and desired approximation factor v > 1.

Uses: A randomized algorithm A for the consistency problem associated with F,.

choose an h € F,, arbitrarily
for j:=1to ld do
run A on S’ obtaining hypothesis h’;
if b’ is consistent with S then stop and return A’
end for;
for opt := 1 to m/v do
s 1= [(d(m ~ opt) [y opt) In 23|
for j:=1tol do
draw 5’, an s-element subsample of S uniformly at random with replacement;
run A on S’ obtaining hypothesis h';
if b’ has fewer disagreements with S than h, set h := h/;
end for;
end for;

return h;

Figure 7.1: Algorithm Min-Disagreements

the minimum possible number of disagreements between the sample and an h € F. We
focus our attention on the case where opt < m/(y + 1), since otherwise the theorem is
trivial as any hypothesis is consistent with all but (v + 1)opt examples of 9.

Choose h,,; from among those hypotheses in F,, which have opt disagreements with 5.
Let bad C S be the subset of the examples in 5 with which h,,; disagrees. Let D be the

uniform distribution over S, and let D’ be the uniform distribution over S — bad.

87
First, we will make use of the following observation of Vapnik’s [Vapnik, 1982].

Theorem 70 ([Vapnik, 1982]): Let X be a set and let F be a finite concept class over X .
In(|71/2)

€)

Let D be a probability distribution over X. Choose f € F ande < 1/2. Then if s >

Przcp:(3h € F : Vi, h(x;) = f(z;) and Pryep(h(y) # f(y)) > €) < 1/2.

Now, we turn to the main result of this section. If F = U,F, is a stratified tracking

problem, then the consistency problem associated with F is as follows:

Given a sample in 2Q"*{01} find any hypothesis in F, consistent with the

sample if there is one, otherwise return any h € F,.

A randomized polynomial time algorithm for the consistency problem returns, in time
polynomial in n and the size of the sample, an h in F,. If the sample is consistent with
some hypothesis in F,, then, with probability ¢ > 1/2, the returned h will be consistent
with the sample. Note that by repeatedly running such an algorithm (and checking each
result against the sample) an arbitrarily high confidence can be acheived.

Algorithm Min-Disagreements (see Figure 7.1) uses a randomized polynomial time algo-

rithm for the consistency problem to approximately minimize the number of disagreements.

It should be obvious that if A runs in randomized polynomial time then the algorithm

Min-Disagreements runs in time polynomial in n,d, [and m.

Theorem 71: For any n € N, F, C 29" of VC-dimension d, and set of m examples S, if
A solves F,’s consistency problem with probability ¢ > 1/2 and there is an element of F,
consistent with all but opt of the examples in S, then Algorithm Min-Disagreements with

inputs S,m,l,d,y finds a hypothesis consistent with all but (v + 1)opt examples in S with

) 20— 1 (2d]
P\ T \em))

Proof: Choose m € N and let 5 = {(2;,¥;) : 1 <¢ < m} be a sample. Let

probability at least

opt = min{|{i : h(z;) # yi}| : h € F},

86

the first m trials to within a factor of k. Choose ¢ and m as in Theorem 67. Then if
A< m, the probability that A makes a mistake on the (m + 1)st trial of a (A, D)-
admissible sequence of functions is at most €.

Note that by ignoring (not counting disagreements with) examples beyond a certain

point in the past we can, loosely speaking, make any later trial “look like” the (m + 1)st

trial. This observation leads to the following Corollary.

Corollary 69: Let X be a domain, and F be a class of concepts over X of VC-dimension
d. Assume A is a randomized algorithm which with probability 1 —€/6 finds an h € F which
approzimates, to within a constant factor k, the minimum number of disagreements on a
sample. Let A’ be the tracking algorithm which predicts using the hypothesis produced by A
from the most recent m = [(c1d/e)log(1/€)] examples, where ¢4 > 0 depends on k. There

s a positive constant co, depending only on k, such that for any 0 < A < € where

0262

A< ———
- dlog%

strategy A’ (e, A)-tracks F.

7.3 Efficiently approximately minimizing disagreements

In this section we discuss the application of the techniques of [Kearns and Li, 1988] to
the problem of approximately minimizing disagreements from among the hypotheses in a
class F, showing that if there is an efficient algorithm which returns a hypothesis with no
disagreements if there is one, then there is an efficient randomized algorithm which with
high probability returns a hypothesis that minimizes disagreements to within a factor of
a constant times the VC-dimension of F. Results very similar to those described here
are implicit in the work of Kearns and Li (Theorems 12 and 16), although some minor
modifications are necessary.® Also, we make use of the techniques of [Kearns and Li, 1988]

in our proof.

The difference between the result trivially obtainable by combining Theorems 12 and 16 of
[Kearns and Li, 1988] and our result is that in the former, the sample is restricted to have the same number

of positive and negative examples.

85

If mistake is the event that A makes a mistake on trial m + 1, we have

Pr(zy o epmxpxul(mistake) < Pr(mistake N E) + Pr(mistaken E)
< Pr(mistaken F) + Pr(E)
< Pr(mistaken E) + ¢/3
< Pr(mistaken EN G) + Pr(mistake N ENG) + ¢/3
< Pr(ENG)+2¢/3. (7.1)

Next, we have

Pr(ENG) = Pr (erferl(hLU) > ¢/3 and %il(fz(xz),fmﬂ(xz)) < €/(12k)
and bz, € min(ii:sl(f))

Pr (erfm+1(hw) > ¢/3 and %inﬁ(wi),f%l(wi)) < ¢/(12k)

=1

IN

and %im(@),hw(m) < 6/12)

since f41 € F and hz, € mindis(Z) implies that hz, has at most k times as many
disagreements as f,,+1. Recalling that k£ > 1 and applying the triangle inequality for I, we

have

Pr(ENG) < Pr (erferl(hLU) > ¢/3 and %il(hl’7g($i)7'fm+l($i)) < 6/6)

=1
< €/3
by Lemma 66, since m > 196—251111 leﬂ. Plugging in to (7.1) yields the desired result. O
If (fi) is a (A, D)-admissible sequence of functions, then Pryep(fi(z) # famt1(2)) <

(m—1i+4+ 1)A, and

S Proen(f(e) £ fua(2)) < m(m + DA/2.

=1

Thus we obtain the following corollary.

Corollary 68: Let A be a tracking strategy that predicts using a randomly chosen hypothesis

which, with probability 1 — €/6, approzimately minimizes the number of disagreements on

84

Theorem 67: Let (X,F) be a tracking problem, d = VCdim(F), and choose ¢ > 0.
Suppose A is a randomized tracking algorithm which, with probability at least 1 — €/6,
predicts using an h € F having at most k times the minimum number of disagreements

on the previous trials. Choose a distribution D on X and

n—,—In-

192d . 192 72k 6
m > max (1 1) .
€ € € €

Then if the sequence of targets from F, S = (fi);eN, satisfies Y /o Proep(fi(z) #
fmy1(x)) < me/(24k), the probability that A makes a mistake on the (m + 1)st trial is

at most €.

Proof: Fix m and k. For each € X™, let mindis(%) be the set of all hypotheses in F

which approximately minimize disagreements with sam,,(.9, %) to within a factor of k.
Define F' to be the event that the hypothesis chosen by A is not in mindis(z).

Define I/ to be the event that there are more than twice the expected number of

disagreements between the previous trials and f,, 41, i.e.,
F={zeX": f:l(fi($i),fm+1($i)) > me/(12k)}.
=1
Applying Lemma 65 (with @ = 1), we have
Procpm(F') < e/ (2R < ¢/,

since m > 72—’“111 %.
Define £ = F'U F’. Then Pr(F£) < ¢/3.

For each z € X™,0 € I', let Iz, be A’s hypothesis after seeing the sequence
(21, f1(21)); ooy (Tas fin(T))
of examples and the random sequence o. Let
G={(z,0)e X" x T :ery (hzo,)>c/3},

be the set of sequences of points and random bits that cause A to produce an inaccurate

hypothesis.

83

probability that there exists a hypothesis h in class F such that the estimate of h’s error is

small but the true probability that h will yield an incorrect prediction is large.

We will make use of the standard Chernoff bounds, which we state here.

Lemma 65 ([Angluin and Valiant, 1979,Littlestone, 1989b]): Let t € N, and let
T1,...,7¢ be independent {0,1}-valued random variables. Choose a, 0 < a < 1. Let

=St Pr(r; =1). Then

¢
Pr (Z ri > (1+ a),u) < e n/3,
=1

Foreach he F, fe F,me N,z € X, define
erj(h) = Proep(h(x) # f(2)),
(D is to be understood from context), and define
ers(h,z) =

where [(u,v) is the discrete loss function, i.e. [(u,v)is 1 if v = v and 0 otherwise. Note
that €ry is the empirical estimate of the error of h obtained when the (unchanging) target
concept is f.

Our first lemma follows immediately from the results of [Blumer et al., 1989, Theorem

A3.1].

Lemma 66: For any set X and concept class F over X, for any distribution D on X, for

any f € F, for all0 < e < 1/2, if m > 6f—dln %, where d is the VC-dimension of F, then
Pryecpn(3h € F rerg(h) > c,ers(h) < ¢/2) < e

We are now ready to present the main result of this section. The following theorem
shows that if a randomized tracking strategy is likely to predict with a hypothesis that
approximately minimizes disagreements on the previous examples, then the probability

that the algorithm makes a mistake on the next example is small.

82

We say that F is (¢, A)-trackable if there is a tracking strategy which (¢, A)-tracks F.

To discuss issues of computational efficiency, we will need the following definitions. We
say that F = {F, : n € N} is a stratified tracking problem if for each n € N, (Q",F,,) is
a tracking problem.? An algorithm for a stratified tracking problem consists of a tracking
algorithm A, for each n. We assume that the random bits are presented on an auxiliary
tape, and thus accessing the next random bit in the sequence takes unit time.

We say that A = {A,} efficiently tracks F if there is a polynomial p and positive

constants ¢ and k such that for all relevant ¢, n,

e cach prediction is computed in time bounded by p(1/e,n,b), where b is the number of

bits needed to encode the “largest” example seen.

e at most p(1/€,n,b) space is required to store information between trials,
o if A <ce/n)k, A, (e, A)-tracks F,.

Note that the bound on the space required is not allowed to grow with the number of
trials. Thus an efficient tracking algorithm may not, in general, keep all previously seen

examples.

7.2 Increasingly unreliable evidence and hypothesis evaluation

In this section we analyze a simple tracking algorithm which ignores all examples beyond
some time in the past and uses the hypothesis which disagrees with the fewest remaining
examples for prediction. The results of this section, together with those of Section 7.4,
show that this apparently naive algorithm is within a constant times a log factor of optimal
for the classes of halfspaces and hyperrectangles. We also show that it is sufficient to only
approximately minimize disagreements to within a constant factor.

As discussed in the introduction, the fraction of the considered examples disagreeing
with a hypothesis can be viewed as an estimate of the probability that the hypothesis will

make a mistake on the next example. In the following series of lemmas we bound the

?We assume rationals are encoded by encoding both the numerator and the denominator in binary.

81

generated.
Aldous and Vazirani [Aldous and Vazirani, 1990] studied a different version of learning
in a changing environment. In their model the target concept is fixed, but the examples are

generated by a Markov process rather then from a fixed distribution.

7.1 Notation and some definitions

A tracking problem, (X, F) consists of a set (or domain) X and a family F of {0, 1}-
valued functions defined on X, called the target class. A {0, 1} valued function defined on
X is called a concept. We will speak of a concept and the subset of X on which it takes
value 1 interchangeably. An example is an element of X x {0, 1}, and a sample is a finite
sequence of examples. A function h agrees (resp. disagrees) with an example (z,p) when
h(z) = p (resp. h(z) # p). A function is consistent with a sample if it agrees with all
examples in the sample. We often use the discrete loss function, I(«a, 3), defined to be 0
when a = # and 1 otherwise, to count numbers of disagreements.

Let I' be the set of all infinite sequences of bits, and I/ be the distribution which sets each
bit in the sequence independently with probability 1/2. A (randomized) tracking strategy
is a mapping from (U, (X x {0,1})™) x X x I' to {0,1}.

If S = (fi)teN is a sequence of concepts and & € X" with n > m, the m-sample of S
generated by x, written sam,, (5, z), is the sequence of pairs ((z1, fi(21)), ..., (Tm, frn(Tm)))-
Informally, sam,, (.5, Z) is simply the first m examples which are used by a tracking strategy
to predict fi41(@my1)-

Let D be a probability distribution over X. If A > 0, a sequence (f;);eN of concepts is
called (A, D)-admissible if for each ¢ € N, Proep(fi(z) # fiq1(2)) < A.

Let A be a tracking strategy. We say that A (e, A)-tracks F if there is an mg € N such
that for all m > my, for all probability distributions D on X, and for all (A, D)-admissible

sequences S = (fi);en of functions in F,

Pricpm+ seu(A(sam,, (5, 2), 2m41,0) # frg1(Tmy1)) < €

80

within a log factor of optimal for halfspaces and hyperrectangles. A slightly modified
analysis holds for the case in which the tracking algorithm uses a hypothesis which only
approximately minimizes disagreements with a suffix of the examples.

In Section 7.3, we give a general purpose algorithmic transformation turning a random-
ized polynomial time hypothesis finder A [Blumer et al., 1989] which, with high probability,
returns a hypothesis consistent with an input sample, into an algorithm which efficiently
approximately minimizes disagreements to within a factor of ¢d + 1, where d is the VC-
dimension of the target class, and ¢ is any constant. We use a technique due to Kearns and
Li [Kearns and Li, 1988], working in stages, where at each stage, we subsample according
to the distribution which is uniform over the sample, hoping to get a subsample for which
there is a consistent hypothesis, so that we can successfully apply A. We then return the
best hypothesis of those produced by A during the various stages. We use an observation
of Vapnik’s [Vapnik, 1982] to argue that with high probability, a hypothesis consistent with
the subsample can’t be too bad on the whole sample.

There is little previous work on slowly drifting concepts. Littlestone and Warmuth
[Littlestone and Warmuth, 1989] describe a variant of the weighted majority algorithm
where the weights are kept above some lower limit. This allows the weighted majority
algorithm to recover and adapt to changes in the target. However, if the target changes k
times, then their mistake bound for the weighted majority algorithm goes up by about a
factor of k. It is difficult to translate these bounds into our model as our targets potentially
change with each example.

In work independent with ours, Kuh, Petsche and Rivest [Kuh et al., 1991] studied a
variety of models in which the target drifts slowly. In their paper, they concentrated on
obtaining upper bounds on the tolerable rate of drift (or, equivalently, lower bounds on the
probability of a mistake, given that the target is drifting at a certain rate) for the case in
which the sequence of targets is produced by an adversary which at each time has access
to the earlier random examples seen by the tracking algorithm. In contrast, we assume

that the sequence of targets is chosen by an adversary before any random examples are

79

to predict the label of the next point. To analyze such algorithms, one might imagine apply-
ing the results of Vapnik and Chervonenkis [Vapnik and Chervonenkis, 1971] to show that if
for each hypothesis & in the class, we estimate the probability that A will make a mistake on
the next trial by considering the fraction of the last ¢ trials on which & made a mistake, none
of these estimates will be very far from the true estimated probabilities. The movement of
the target prevents us from simply applying the results of [Vapnik and Chervonenkis, 1971].
To remedy this, we first bound the probability that for any hypothesis h, the estimate we
obtain is very far from the estimate we would have obtained, had the target not been
moving. Then we are ready to apply uniform convergence results.

If we now apply the results of [Vapnik and Chervonenkis, 1971], however, our analysis
indicates that these algorithms are more than a factor of € from the best upper bounds we
can prove on the maximum tolerable rate of drift. In the case of learning stationary targets,
it has been observed [Vapnik, 1982] [Blumer et al., 1989] that uniformly good estimates of
the quality of hypotheses were not required for learning in the PAC-model [Valiant, 1984].
Instead, one only needed to bound the probability that an “e-bad” hypothesis was consistent
with a sequence of examples. They were then able to shave a factor of 1/¢ off the bound on
the number of examples required for learning with accuracy € obtained by simply applying
the results of [Vapnik and Chervonenkis, 1971]. However, in our case, there may not be any
hypothesis consistent with more than a few of the most recent examples. Nevertheless, given
reasonable restrictions on the rate of drift there is, with high probability, some hypothesis
having very few disagreements with a reasonable sized suffix of a random sequence of
examples. Thus, we are able to apply another of the results of [Blumer et al., 1989], which
bounds the probability that any e-bad hypothesis is consistent with all but a fraction €¢/2 of
the examples. The number of examples required to bound this “e-bad but highly consistent”
probability by 6 is within a constant of that for the completely consistent case. Thus,
ignoring constants, the factor of 1/€ savings is retained, reducing our tracking bounds by a

factor of e.

The result of this analysis is a simple “minimize disagreements” algorithm which is

78

precise in Section 7.1.

Many readers will notice the similarity of our model to the prediction model studied in
[Haussler et al., 1988] and elsewhere. The key difference is that in our model there is no
single target function, but rather a succession of related target functions. Since the learner
may receive only a single example before the target changes, it is unreasonable to expect
that the hypotheses converge to a target. However, it is possible to bound the probability
of a mistake on a trial in terms of how much the target is allowed to change between trials
and the complexity of F.

Our results include:

. . 2 1
e a general-purpose algorithm which tolerates target movement rates up to ¢;€”/(dln)

(Theorem 67 and Corollary 69),

e a possibly more computationally efficient variant of this algorithm which tolerates

target movements of up to cze?/(d*In 1) (Theorem 71), and

e bounds for the classes of halfspaces and axis-aligned hyperrectangles showing that for
all n and € < 1/12, no algorithm can tolerate target movement greater than cze?/n,

where n is the dimension of the space from which examples are drawn (Theorem 78).!

In the above, the ¢;’s are constants, ¢ denotes the desired probability of error, and d is
the VC-dimension of F. The first general-purpose algorithm above is computationally
efficient whenever the problem of finding a member of F which minimizes the number of
disagreements with a set of examples can be solved efficiently. Its variant is computationally
efficient whenever the problem of finding an element of F consistent with a set of examples
can be solved efficiently, as is the case with both halfspaces and hyperrectangles.

Our algorithms use only the most recent ¢ examples (rather than the entire sequence) to
make their predictions. They work by either minimizing or approximately minimizing the

number of disagreements with the most recent examples, and using the resulting hypothesis

!Since, in both the case of halfspaces and that of hyperrectangles in n-dimensional space, the first
algorithm above tolerates drift rates up to a constant times 62/(n In %), these bounds establish the fact that

the first algorithm is within a constant times a log factor of optimal.

7

7. Tracking Drifting Concepts

In the fairy tale, Rip van Winkle slept for 20 years and when he finally woke up, he
discovered that he was out of step with the world. Presumably, Rip would have been much
better off if he woke up every day. However, if he woke for only one day each week or month
or year, how comfortable would Rip be with the world after his 20 year slumber? This leads
to the question “How long can one nap before losing touch with the world?” which is the
subject of this chapter.

More formally, let D be a probability distribution on some set X and F be a class of
{0, 1}-valued functions defined on X. In the sleeper example, each f € F represents a
possible state of the world. When Rip van Winkle wakes for the {th time, the world is in
some state f; € F. Rip gets x4, a randomly drawn (w.r.t. D) element of X, and is asked
for the value of fi(x¢). One interpretation is that x; is a possible course of action, and
fi(zy) = 1 when a, is appropriate in the current world state. Just before Rip goes back to
sleep, he is told the value of fi(x).

In other words, given (x4, fi(x1)), (22, fo(22)), ..., (2i-1, fi—1(2¢—1)), and a point z,
Rip is asked to predict the value of fi(z;). If Rip’s prediction is incorrect we say that he
makes a mistake on x;. If Rip rarely makes mistakes, then he successfully tracks the state
of the world. In our model, an adversary chooses the probability distribution D and the
sequence of functions ahead of time, before the x,’s are generated.

The sequence of examples could be uninformative for two different reasons. First, x4
through z;_; may come from an uninteresting part of the domain. Any learning algorithm
using randomly drawn examples must deal with this potential difficulty. A more severe
problem is that the f; chosen by the adversary may be unrelated to the previous f;’s. If the
adversary randomly chooses f; to be either the constant function 1 or the constant function
0, then no algorithm can expect to predict fi(x;) correctly more than half the time. We
deal with this problem with an assumption that the state of world evolves slowly. Thus the

adversary must choose sequences of functions where each f; is “close” to f;_1. This is made

76

characterization of the learnability of classes of real-valued functions, although a detailed
discussion of this belief is beyond the scope of this thesis. At the time of this writing, Alon,

Ben-David, Cesa-Bianchi, and Haussler were making significant progress on this problem.

75

6.4 Discussion

In this chapter, we have given tight bounds on the cardinality of a subset of [],{0, ..., 7;}
of a certain dimension for two generalizations of the VC-dimension: namely the pseudo
dimension discussed by Pollard [Pollard, 1984] and the graph dimension introduced by
Natarajan [Natarajan, 1989]. We also have used a similar technique obtain tighter bounds
for another generalization of the VC-dimension introduced by Natarajan, which we have
called the Natarajan dimension. The problem of obtaining tight bounds for the Natarajan
dimension remains open.

In addition, we have applied this result to bound the rate of convergence of empirical
estimates of the expectations of a sequence of random variables to their true expectations,
obtaining bounds similar to those already derived in [Pollard, 1984] [Haussler, 1991]. These
results can be extended to bound the sample size required for learning under the computa-
tional model of learnability discussed in [Haussler, 1991].

An interesting question may be asked about generalizations of bounds like those of this
chapter for families ¥ of functions from {0,...,n} to {0, 1, *} that are not distinguishers. In
particular, we are interested in obtaining bounds on |S| that grow polynomially in m. As
in Theorem 47, we can see that such bounds are impossible if ¥ is not a distinguisher, since
if ¥ fails to distinguish ay,as € {0,...,r}, clearly the set S = {ay,a3}™ has ¥-dimension 0,

yet has 2™ elements. In the simplest case, n = 2 and ¥ = {¢}, where

a ifa#2

*

b(a) =

otherwise;

so that ¥ fails to distinguish (0,2) and (1,2). However, if we say Z,7 € {0,...,7}"" are
U-separated if there exists ¢ such that ¥ distinguishes z; and y;, we may ask: What
is the largest subset of {0,...,r}" of ¥-dimension at most d such that its elements are
pairwise W-separated? By the above results, it is already known that for those ¥ which
are distinguishers, the size of the largest such set grows polynomially in m. We conjecture

that this holds for all ¥. We believe that the proof of this would result in a pleasant

74

Taking logs and rearranging terms yields the following equivalent expression:

am ke
&7 s v .
o d(lnm—l—ln d)—l—ln4/6 (6.2)

Since by the preceding lemma for any A € R, 0 < A < 1,

| <</\a) +<1 kd)
BT T M Yae

the following is sufficient to guarantee Inequality (6.2):

am pYe! kd ke
- > = i i
5 2 d(kdm—l—ln/\ —|—lnd)—|—ln4/6
A k2
- ?O‘er dln =+ In4/5.
Solving for m yields
2k k
> ———— [2d1 |
m_a(1—2/\)< n\//_—l—né)
and resubstituting k£ = f—y gives
8 4
> —— [2d1 | .
= a?y(l —2X) (N avy A + ")

We choose A = 1/18 for readability, yielding

9 17 4
> —— [2d1 In =
m a1/< n(a\/a)l/—l_né)

which is the desired bound. O

For comparison, we give the following theorem from [Haussler, 1991], which was obtained

using a completely different technique, due to Pollard [Pollard, 1990].

Theorem 64: Let F be a set of random variables on Q taking values in [0,1]. Assume
0<v<4/d,0<a<1andm > 1. Suppose that 5 1s generated by m independent random

draws according to the fized measure D on Q. Suppose also that P-dim(F) < d. Then

Pr{3f € F:d(EAf), E(f)>a} <8 (ﬁl @) e~ vm/8,

av av

Moreover, for

m > — 8 <2dln8—e—|—ln§),

o2y av

this probability is less than 6.

73

Theorem 63: Let F be a set of random variables on Q taking values in [0,1]. Assume
v>0,0<a<1andm>1. Suppose that 5 1s generated by m independent random draws

according to the fized measure D on Q. Suppose also that P-dim(F') < d. Then

av

Pr{3f € F:d(ELf), B(f))>a} <4 (1)d (%)de_o‘%m/&

Moreover, for

m> <2dln(a\1/7_) +1n 4)

o?

this probability is less than 6.

Proof: First, from Corollary 61, we have that
d i
N(av/8, F|‘f ,drr) §§() { J
Using the well known combinatorial identity that
d
Z () < (em/d)?
=0

and substituting
for each

we get

J\/’(al//8,F|€, ,dpa) < (i)d (%)d.

av

Applying Theorem 59 yields the first result.

Now, we wish to determine a lower bound on m which guarantees that

d d
(L) () oz
av d

Set k = %. Then the above expression simplifies to

d
AR (%) T <6

72

Corollary 61: Let m € ZT. Let F C [0,1]™ be such that P-dim(F) < d. Let ¢ € RY.

N(e, Fydpa) < i (7?) QQ_leD

=0

Then

Proof: As discussed above

N(e, Fodpi) < N(e, Fodp).

The corollary then follows from the previous lemma. O

The technique by which we obtain bounds on the sample size necessary for the uni-
form convergence of estimates to true means for a sequence of random variables has ele-
ments which are similar to that used to in [Anthony et al., 1990] improve the bounds of

[Blumer et al., 1989]. The following approximation is useful in this derivation.

Lemma 62 ([Anthony et al., 1990]): Let x,y € R*. Then
Inz <azy—Iney.
Proof: Fix y € R*. Consider f: RT — R defined by

f(z) =2y —Inexy.
Then
fe)=y—1/z.

Clearly, f'(x) is positive when & > 1/y and negative when = < 1/y and f is continuous and

differentiable over its domain, so f assumes its minimum at 1/y and

f(1/y) =y(1/y) —Iney(1/y) = 0.

So f(z) > 0 for all # € R, which yields the desired result. O
Finally, we are ready to bound the sample size necessary to ensure that with high
probability an empirical estimate of the expected value of a random variable chosen from a

set of a small P-dimension is accurate.

71

Next, we wish to show that P-dim(7") < d. Let 7= (i1, ..., 1) be shattered by 7" and let

(¢P,y1 PERED) ¢P,yk)

witness this shattering. We claim that 2¢y witnesses F’s shattering of {iy,...,i}. Choose
be {0,1}*. Let £ € T satisfy b. Choose f € F, such that ﬁ(f) =1

If b; = 1, we have #;; > y; which is equivalent to
i
CAET I
beJ =

i
> .
2¢ Yi

which implies

since ¢ > |z] for all z € R. Finally, the previous inequality implies

Ji, > 2ey;.

Soif b; =1, fi, > 2ey;.

Suppose b; = 0 and f;, > 2ey;. This implies f;, /2¢ > y;, which in turn implies

i

since y; € Z. But this is a contradiction, since #;, < y;, which holds because b; = 0 and t
satisfies b. So if bj = 0, we have f;, < 2ey;.

In the preceding two paragraphs we have established that for all 7,1 < j < k, we
have f; > Z2ey; if and only if b; = 1, and thereby that f satisfies b. Since b was
chosen arbitrarily, {i1,...,7x} is shattered by F. Since (41, ...,7;) was chosen arbitrarily,
P-dim(7") < P-dim(F') = d.

Now, by Corollary 50,

=37

Since H is an e-cover of F' and |T'| = |H|, we have
4 (m 1]
N(e, Fodr=) < {—J ,
crans3(7)

which completes the proof. O

70

we have

{0,135 € &(8,).
Here we say that 7 (rather than QE, to save notation) witnesses I’s R P-shattering of I and
that f € F satisfies b € {0,1}* if and only if zg(fh) = b. The RP-dimension of F is the
cardinality of the largest subset of X shattered by F.

Note that an element of [0, 1]™ may be viewed as a function from [m] to [0, 1], so we
may naturally intepret the definition of RP-dimension as applying to subsets of [0, 1]™ as
well.

Now we wish to show that if a subset of a product of closed intervals of R has small

RP-dimension, then it has a small e-cover in the dj- metric.

Lemma 60: Let m € ZT. Let F C [0,1]™ have RP-dimension at most d. Let ¢ € RY.

Then

wioran <2 (7) 5]

=0
Proof: Define 3 :[0,1]™ — {0, ..., {iJ}m by B(5) = t, where t; = {%J for all ¢,1 <2 < m.
Let T'= §(F). Let
H = {2l + (¢,¢,....,¢): T € T}.

First, we claim that H is an e-cover for I' with respect to the dy metric. Choose fE F.

—

Let h = 2¢3(f) 4 (€, €,...,€). Choose i,1 < ¢ < m. Then we have

(- (e[

|44

|fi — Rl

IN
-

Since 7 was chosen arbitrarily,
dre(f,h) = max{|fi— hi|: 1 <i<m} <e

Since fE F was chosen arbitrarily, H is an e-cover for F.

69

Denote by N(€’ﬂé ,dr~) the size of the smallest e-cover of F|é in the dre~ metric by
elements of R™. Since clearly for all Z,7 € R™, d1 (%, %) < dp~(Z,¥), any e-cover in the

dye metric also serves as a e-cover in the dy1 metric, which implies
N(G,ﬂé 7dL1) < N(G,ﬂé ,dLoo).

We are now ready for the following theorem. Similar results are given in [Dudley, 1984]
[Pollard, 1984] [Vapnik, 1982]. In general, these theorems bound deviation of estimates

Eg(f) from true means E(f) for functions f in F in terms of sizes of e-covers for F|g'

Theorem 59 ([Haussler, 1991]): Let F' be a set of random variables on § taking values
n [0,1]. Assumev > 0,0 < a <1 and m > 1. Suppose that Ee Q™ s generated by m

independent random draws according to the fized measure D on . Let

pla,v,m) = Pr{Elf €F: dU(Eg(f),E(f)) > a}.
Then
pla,v,m) < 2E (min(QJ\/’(al//E%,ﬂg, dL1)e_a2”m/8, 1)))

Let us generalize the definition of the P-dimension given earlier for sets of integer vectors
to sets of real valued functions, and let us call the resulting notion that R P-dimension. Let

RP = {tYrpy : y € R}, where, again

1 ifz>y
Vrpy(T) =

0 otherwise.

Let I be a set of real valued functions defined on some linearly ordered domain X. Let

I =Azq, .2} C X, with oy <29 <---<ap. For f € F, let

fip = (f@1)s e, flan))

Define
F,o={f,: feF}

We say that I is RP-shattered by F if there exists ¥ € R* such that if

b = (VRPy1» s VRP.y,)

68

e-cover for each € € RT. In this case, we let A'(¢, T, d) denote the cardinality of the smallest
e-cover of T' (w.r.t. S and d).

Now, we define the metric relative to which we prove uniform convergence results in
this section. This metric was introduced and its utility as a measure of accuracy for an

approximation of a function was discussed in [Haussler, 1991]. For each v € R™T, define

d,:RT xRt — Rt by
d,(r,s)= %
It is straightforward but tedious to verify that for all v € R*, d, is a metric on R*.

Let (2,8, D) be probability space with D a probability measure on the set Q, and B

some appropriate g-algebra on Q. Let F' be a set of random variables on Q. For m > 1,

denote by Q™ the m-fold product space with the usual product probability measure. For

any
g: (517 7£m) € Qm
and f € F), let
. 1
EAS) = E;f(&)'
and

k.= {(f(&),...., f(&n)) - f € FI.

¢

We can view F|é as a subspace of the metric space (R™,d1), where dj1 is the usual L!

metric, i.e., for any ¥ = (21,..., %) and ¥ = (y1, ..., ¥m) in R™,
1 m
dp(Z,9) = — Y |2 — yil-
mi:l

Also, we denote by N (e, F|é ,dr1) the size of the smallest e-cover of F|é in the dy1 metric

by elements of R™.

Similary, we can view F|é as a subspace of (R™,dp~), where dp~ is defined as follows.

For @ = (z1,...,2) and ¥ = (y1, ..., ¥m) in R™,

dre(Z,9) = max{|z; — yi| : 1 <i < m}.

67

81 < i > Y%S(”Jl):+(Tmz“)gseg_mg(”;l)
TR (G| 153

i=0 S€l'(1p_1),s kESU{m}

! rp+1 ! rp+1
SRIES SN ol {1 S oD VI | B
L i=1 S€l'(y_1),; KES 1=1 S€L(;m_1),(i1) k€SU{m}
(T
+1 e+ 1
R T N
; { _SGF(Zm:—l),i klgg 2 SEF(E),(i—n kESUl_[{m} 2
e+ 1) (Tk + 1) }
I
o 1)Lz m)

_ Zd: (Tk + 1)
=0 SEFmJ‘ kesS 2

which completes the induction. O

Theorem 51 can now easily be established.

6.3 An application

In this section, we give an application of Corollary 50, bounding the sample size necessary
to obtain uniformly good empirical estimates for the expectations of all random variables of
a given class 5" in terms of a generalization of the definition of P-dimension given above to
classes of real valued functions, in this case, random variables. We will measure the deviation
of the estimates from the true expectations using a metric introduced in [Haussler, 1991].
These results can be extended to bound the sample size necessary for learning according
to the computational model of learning discussed in [Haussler, 1991], an extension of that
introduced in [Valiant, 1984] which incorporates additional methods from previous work in
Pattern Recognition.

We begin with some definitions. Let (7', d) be a bounded metric space (see Appendix A
for a definition). For any ¢ € RT, a finite set N is an e-cover for T if and only if for all

x € T, there exists y € N with d(z,y) < e. We say T is totally bounded if T" has a finite

66

Since each of the above sets are disjoint and their union is all of 5, we have
rm—1 Tm
1ST=15214+ D> > [Swl
u=0 v=u+1
Using the same argument as in the previous lemma, under the inductive hypothesis that
the lemma holds for all sets S of vectors of m — 1 elements, we have
d T+ 1
siey v ("))

=0 S€l(m_1): k€S

Now, we wish to establish the following claim under the same inductive hypothesis.

Claim 58: For all u,v € N,0 < u < v < 1y, we have
d-1
rp+ 1
ERE S o | (]
=0 Ser(m—l),i kesS

Proof (of Claim): Choose u,v € N,0 < u < v < r,,. We will show that the N-dimension of
Suv 18 at most d — 1. The claim then follows by an argument similar to that of Claim 55.
Let 7= (i1, ...,%;) be a sequence of indices shattered by Sy,.

Now we show that (¢1,...,7;,m) is shattered by S. Let (N .y, 21500 ¥Ny,z,) be witness
of 5,,’s N-shattering of 7.

We claim that (YN .y, 2000 UNy20 ONww) Witnesses S’s N-shattering of (¢, ..., 14, m).
Choose b € {0, 1}, Let 5 € S, satisfy (b1, ...,b;) (with respect to 7).

If bj41 = 1, then § satisfies l_;, and if bj41 = 0, then

(815 eeey Sme1, Q815 eeny Se1)) = (S14 eevy Sip—1, U)

satisfies b. Since b was chosen arbitrarily, (¢1,...,2;, m) is N-shattered by S. Since by
assumption the N-dimension of $ is no greater than d, we have [< d — 1. Since ¥ was
chosen arbitrarily, the N-dimension of 9, is no greater than d — 1, which completes our

proof of this claim, by the discussion above. O

From the previous two claims, we have that

65

This completes the induction. O

Theorem 49 easily follows from the previous lemmas together with the discussion relating
G Prax 10 Gmax and Poax.

Next, we turn to Theorem 51. The lower bound was established in Lemma 53. We
obtain the upper bound with the following lemma, the proof of which is similar to that of

Lemma 54.

Lemma 57: Letd,m € Z*,r,...,7, € N be such that d < m. Let

SCX=TJ{0,....r:}
=1

be such that N-dim(S) < d. Then
d T+ 1
sy ¥ ("))
i=0 S€T,, ; keS
Proof: As before, our proof is by double induction on m and d.

Using the same argument as the previous lemma, we can establish this lemma for the

case d = 0.
Next, suppose that d = m. By partitioning the elements of the domain as discussed

above, we can see that

X| < Y II 7+
=0

IA
[
—

I
=
N4
—
~—

so since S C X, certainly

sy ("))

i=0 SELy, ; k€S
Now, choose d, m € Z* such that 0 < d < m. Define @ and S_ as in the previous lemma

and for each pair of distinct elements u,v € N,0 < u < v < ryy, define

Suv = {§€ S—5_: Sm = ?],Oé(Sl, “‘78m_1) = u}

64

Claim 56: For alln e N,1<n <r,,

5] < dz_:l > I

i=0 SET(1n_1), kES

Proof (of Claim 56): Choose n € {1,...,7,,}. We will show that the GP-dimension of .9, is
at most d — 1. The claim then follows by an argument similar to that of the previous claim.
Let 7= (1, ..., %) be a sequence of indices GP-shattered by S,,. Note that m ¢ {i1,..., 4},
since s, = n for all §¢€ 9,.

Now we show that (iy,...,¢, m) is GP-shattered by S. Let (t¥apy,,..., 0gpy,) be the
witness of 5),’s GP-shattering of 2. Consider (¥gpy, ;- ¥GP.y,» YapPn). Choose be {0, 1},
Let 5 € 5, satisfy (by,...,b;) (with respect to 7).

If bj41 = 1, then § satisfies l_;, and if bj41 = 0, then

(815 eees S—1,Q(S1y ooy Sin—1))
satisfies b. Since b was chosen arbitrarily, (¢1,...,%,m) is GP-shattered by 5. Since by
assumption the GP-dimension of 5 is no greater than d, we have [< d — 1. Since 7 was
chosen arbitrarily, the GP-dimension of 5, is no greater than d — 1, which is sufficient to
prove this claim, as discussed above. O
From the previous two claims, we have that

< Y Y Mnl+nmy Y IIn

_i:O SEF(m—1),i keS =0 SEF(m—l),i kesS

[d . d—1
=12 > Imj+2 2 I =
[:=0 S€l (1), k€S | 1=0 S€l'(y_1),; k€SU{m}

SIS SIS I

=1 SEF(m—l),i kes =1 Ser(m—l),(i—l) keSu{m}

. _
=1 | SE€ (m—1),s KES S€l(m—1),(i—1) KESU{m}
. _
=1 LSE€lm « ymgS kES S€l'y ;ymeSkES

’ 1"

d
=0 SEFmJ‘ kesS

63

establishing the result in this case.

Now, choose d,m € Z% such that 0 < d < m. Define 7 : X — [[77{0,...,7} by

T(8) = (81, vy S—1)-
Define
a:m(8)—A{0,....,7r}
by
a(wy, .o, Wy—1) = min{v : (wy, ..., W—1,v) € S}
Define

S_={(s1, s Sm—1,0(51, .., 1)) 1 § € S}

and for each n € N,1 < n < r,,, define
S, =4{5€85—-5_:5,=n}.
Since the above sets are disjoint and their union is all of 5, we have
51=15-1+ 3181

Let us make the inductive assumption that the bound (6.1) holds for all sets S of vectors

of m — 1 elements. We claim that this implies the following.
Claim 55:

d
So<> > I

1=0 SEF(m—l),i kes
Proof (of Claim 55): The restriction of 7 to S_ is 1-1 by construction of S_. The set 7(.5_)
has GP-dimension no greater than d since any set of indices shattered by 7(S_) is also
shattered by S_, and therefore by 5. By the induction hypothesis,

d
msol<>. > Il
1=0 SEF(m—l),i kes

so since 7’s restriction to S_ is 1-1, the claim is verified. O

Next, under the same induction hypothesis, we make the following claim.

62

We can see that the G-, P-; GP- and N-dimensions of 5 are all no less than d, since for
each of the definitions of shattering, any sequence consisting of d distinct elements of [m]
is shattered, since it is trivially N-shattered (taking ¥ = (0,0,...,0) , 7 = (1,1,...,1), for
instance), and as discussed previously, the N-shattering of a sequence implies its G-, P- and
GP-shattering.

We can see that S’s cardinality is as given in the lemma by breaking the elements of 5
up into subsets consisting of the elements with exactly ¢ non-zero elements, 0 < ¢ < d, and
for each ¢ further breaking these up according to which ¢ elements are nonzero. O

For our next lemma, we give an upper bound on the cardinality of sets of a given
GP-dimension, and thereby that of sets of a given G- or P-dimension. QOur argument
is a generalization of that given by Sauer in [Sauer, 1972], and is similar to Natarajan’s

generalization of this argument in [Natarajan, 1989].

Lemma 54: Let d,m € Zt,ry,...,7,, € N be such that d < m. Let

SCX=TJ{0,....r:}
=1

be such that GP-dim(S) < d. Then
d
1S1<> > TL (6.1)
i=0 SET', ; kES
Proof: Our proof is by double induction on m and d.

First we consider the case in which d = 0. Here, the bound (6.1) reduces to [S| < 1. If
|S] > 1, then S must have two distinct elements 5 and #. Let ¢ be an index on whose entry
5 and { differ. Then {i} is shattered by S, so the GP-dimension of § is at least 1, which
contradicts the assumption that d = 0, so |S| < 1 and the lemma holds.

Next, suppose that d = m. By partitioning the elements of the domain as discussed

above, we can see that
m
(X< > IIm
=0 SEFmJ‘ kesS
so since S C X, certainly

S1<3 Y e

=0 SEFmJ‘ kesS

61

6.2 Proofs of the results

We begin by exhibiting large sets of a given G-, P-, GP-, and N-dimension.

Lemma 53: Let d,m € ZT,r,....,7,, € N be such that d < m. Then there exists

SCX=TJ{0,....r:}
=1

such that S has G-, P-, GP-, and N-dimension d and
d
S1=2>2 > Il
=0 SEFmJ‘ kesS
Proof: Define S to be all the elements of X with at most d nonzero entries. We claim 5
has G-, P-, GP- and N-dimension d, and |S| is as given above.
To prove that the G-, P-, GP- and N-dimensions of S are all no greater than d, it is

sufficient to prove that G-dim(.5) < d and P-dim(5) < d, since as discussed above

N-dim($5) < GP-dim(5)
GP-dim(5) < P-dim(59)

GP-dim($) < G-dim(S).

First, we show that G-dim(5) < d. Assume G-dim(S) > d for contradiction. Let

Gy s oees WG witness 5’s G-shattering of (i1, ...,7;), where k > d. Form be{0,1}*b
2Y1 ? 'Yk g 9 9 9 9 y

0 ify; =0
b; = Y

1 otherwise

Let 5 € 5 satisfy b. Let I = 5),- By definition of G-shattering, we have t; # y; if y; = 0 and
t; = y; if y; # 0,50 ¢; # 0 for all 4, which implies s; # 0 for all j < k which contradicts the
definition of 5, since k > d.

Next, we need to show that P-dim(5) < d. Again, assume P-dim(.$) > d for contra-
diction. Let (¥py,,..., Py,) witness S’s P-shattering of (i1, ..., %), where again k > d.
Let 5 € § satisfy (0,0,...,0). Since y; > s;, for all j,1 < j <k, we have y; > 0 for all
4,1 <j <k. Let €8 satisfy (1,1,...,1). Since ty; > yj forall j,1 <j <k, wehavet; >0

for all j,1 < j <k, which again contradicts the definition of 5.

60
Theorem 49: For all d,m € Z%,rq,...,r,, € N such that d < m,

Gmax(dvmvrlv"'vrm) =

Pmax(dvmvrlv"'vrm) =

S Y I

i=0 SEl,, ; k€S

G Pax(d,m, 1, .y 7))

When there is an r € N such that r; = r for all ¢,1 < ¢ < m, we obtain the following

corollary, which is useful for obtaining learning results such as those in [Haussler, 1991].

Corollary 50: Let d,m € Zt,r € N be such that d < m. Let

S CA{o,...,r}"

such that S has G-, P- or GP-dimension no greater than d. Then

d
my
|9] < Z (2)7‘ .
1=0
Proof: Follows from Theorem 49 by substituting r for each r; and collecting terms. O

Using similar techniques, we can establish the following.

Theorem 51: For all d,m € Z*,rq,...,7,, € N such that d < m,

S Y I

=0 SEFmJ‘ kesS

IN

Nmax(d7 My T1y .. Tm)

IN

> s ("))
i=0 SElyy, ; kES 2

This gives the following improvement to Theorem 38.

Corollary 52: Letd,m € Z*,r € N be such that d < m. Let
Sc{o,..r"
such that S has N-dimension no greater than d. Then

=5 (7))

Note that both Corollary 50 and Corollary 52 give Sauer’s result (Theorem 32) in the

case r = 1.

59

1 ife=k
Yapp(i) =< 0 ifi<k
* if ¢ >k,
with a corresponding definition of the GP-dimension. The pseudo-dimension of 5 is denoted
by P-dim(5), its Graph-dimension by G-dim($), its GP-dimension by GP-dim(S) and its
Natarajan dimension by N-dim(5).
Define
Prax(d,m, 71, ..0yr) = max{]S]: 5 C ﬁ{O, e Ti}, P-dim(9) < d}
=1

Gmax(d,m,r1, 000y r) = max{|5]: 5 C H{O, e Ti}, G-dim(5) < d}
=1
G Ppax(d,m, 71, ...yr) = max{]S]: 5 C H{O, ey Ti}, GP-dim(5) < d}
=1
Npax(d,m, 71, cc0yry) = max{|9]: 95 C H{O, e Ti}, N-dim(\9) < d}.
=1

It is easily verified that if a set S N-shatters a set, it also GP-shatters it, and if 5

GP-shatters a set, it also G-shatters it and P-shatters it. This implies that

N-dim($5) < GP-dim(5)
GP-dim($5) < P-dim(59)
GP-dim(S) < G-dim(S)
which in turn implies that
Poax(d,m,r1, 1) <0 G Paax(dym, 71, ey 1)
Gmax(d,m, 71, i) < GPhax(d,m,ry, oo, m)
G Pax(d,m, 1, 1) < Npax(d,m,r1, e,)

for all relevant d,m € Z%,rq,...,7,, € N.

Our main result is stated below, and will be proved in the following section. In the

following, for each 7,m € Z*,let ?,,; C 2["] he defined by

2 = {5 C [m]: |S] = i}.

58

6. A Generalization of Sauer’s Lemma

In this chapter, we improve the bounds of Theorem 38, and prove bounds of a similar
flavor for other generalizations of the VC-dimension, including Natarajan’s graph dimension
[Natarajan, 1989] and Pollard’s pseudo-dimension [Pollard, 1990]. In the latter two cases,
we provide matching lower bounds. Next, we apply these bounds to the problem of
bounding the uniform rate of convergence of empirical estimates to true means for families

of (continuous-valued) random variables.

6.1 Statement of results

Let [0] = 0 and for each m € N, let [m] be the set {1,...,m}.
Following [Bondy, 1972], let (m,k) — (n,l) denote the statement: If 5 C {0,1}™,

|| = k, then there exists ¢ € {0,1}™ such that ¢ has n 1’s and
{sAng:5€ S} > 1,

where A is the “bitwise AND” operation. Sauer’s result can now be stated as

(m, 1+ dz_:l (7?)) — (d,29).

Proofs of other statements of the form (m,k) — (n,l) and related results are given in
[Anstee, 1985] [Anstee, 1991] [Anstee and Furedi, 1986] [Bondy, 1972] [Frankl et al., 1987]
[Frankl, 1983] [Tomasta, 1981].

Let m € ZT. Let r; € N, 1 < i < m. Let

S CX=]J{0,....r:}.
=1

For 8 € X, denote by s; the ith component of 5, and similarly for all cartesian products
used in the chapter.
For the purpose of bounding the cardinality of sets of a given pseudo-dimension, and of

a given Graph dimension, we define GP = {¢¥gpy : k € N}, and

57

a € {0,....,m}, l(a,a) = 0, and if a,b € {0,...,7} satisfy a # b, then {(a,b) > 0. Then we
might ask that a learning strategy return a hypothesis h € F such that the expected value
of [(h(x),y) is with high probability at most € greater than the minimum of this expectation
for all f € F. Note that the results of this paper can be described in this form using !iscrete
where lgiscrete(a, b) is defined to be 0 when ¢ = b and 1 otherwise. For fixed r, the domain of
any loss function [is finite. This implies that any loss function [satisfying the restrictions
described above is always within a constant of lj;ccrete- 1his observation may be turned
into a proof that F is learnable with respect to [in the aforementioned sense exactly when
F is learnable with respect t0 {gigcrete-

We may apply this observation to add the statement “F is uniformly convergent” to the
list of equivalencies in Theorem 45. First, if F is uniformly convergent, it is learnable with
respect to the loss function labs defined by labs(a,b) = |a — b|, by the results of Haussler
[Haussler, 1991], and therefore it is learnable in the sense of this paper. Also, if F has finite
P dimension, F is uniformly convergent, by the results of Pollard [Pollard, 1984].

Finally, the results of this section may be generalized to the “agnostic” generalization
of this learning model (c.f., [Haussler, 1991]), where it is not assumed that the (z,y) pairs
seen by the learner always satisfy y = f(z), and the goal of the learner is to model the
stochastic relationship between randomly drawn elements X and {0,...,7} nearly as well as

possible, using functions in F.

56

Say that a family ¥ of functions from {0,...,7} to {0, 1,*} provides a characterization
of learnability if and only if for any family F of {0, ..., 7}-valued functions the learnability

of F is equivalent to the finiteness of either its W-dimension or its uniform W-dimension.

Theorem 47: A family ¥ of functions from {0,....,r} to {0,1, %} provides a characteriza-

tion of learnability if and only if ¥ is a distinguisher.

Proof: Follows immediately from Theorem 45 and Lemma 46. O
Finally, we relate the learnability of {0,...,r}-valued functions to the learnability of

{0, 1}-valued functions. Intuitively, the problem of learning a class of {0,...,r} valued
functions reduces to r + 1 problems of learning {0, 1}-valued functions as follows. For
k=0,...,rdefine Cx = {csr : f € F} as the class of {0, 1}-valued functions on X defined
by

1 if f(a)=k

crp(e) =
0 otherwise.

We can easily relate the learnability of F to the learnability of the C’s as follows.
Theorem 48: F is learnable if and only if Cy is learnable for each k C {0,...,r}.

Proof: We claim that the uniform G-dimension of F is finite if and only if the VC-dimension
of Cy is finite for all k. Suppose that F uniformly G-shatters a sequence ¥ using 1y, then
Cr clearly VC-shatters the same sequence.

The converse is also easily seen to hold. Since F can uniformly shatter a sequence if
there exists at least a 1 such that the sequence is shattered using 1, then a sequence is
uniformly W-shattered by F if and only if there exists at least a k such that the sequence
is VC-shattered by Ci. This proves the claim.

By the results of [Blumer et al., 1989,Haussler, 1991], for each k, Cy is learnable exactly
when is has finite VC-dimension. This completes the proof. O

Note that the results of this section can be trivially applied to obtain results in a
more general model, in which certain errors are more serious than others. Suppose we

defined a loss function [from {0, ...,7} x {0, ..., 7} to the nonnegative reals such that for all

55

Since we require that the same M is sufficient for all distributions P, this is sometimes
called distribution free uniform convergence.
Now we are ready for our main result which shows a variety of ways in which learnability

can be characterized.
Theorem 45: For any distinguisher ¥, the following are equivalent:

1. The V-dimension of F is finite.

2. The uniform V-dimension of F is finite.
3. Lr is uniformly convergent.

4. The VC-dimension of L is finite.

5. F is learnable.

Proof: Corollary 41 implies that (1. < 2.). Theorem 43 implies that (5. = 1.). Lemma 44
and Corollary 41 imply that (1. < 4.). The implication (4. = 3.) is an immediate
consequence of the results in [Vapnik and Chervonenkis, 1971] and the implication (3. =
5.) is a special case of [Haussler, 1991, Lemma 1, p. 20]. This completes the proof. O

The concept of distinguisher is a kind of metacharacterization, as it characterizes those ¥
which in turn characterize learnability, both through the finiteness of the W-dimension, and
through the finiteness of the uniform W-dimension. To see this, all that remains is to show
that for any family ¥ of functions from {0,...,7} to {0, 1,*} which is not a distinguisher,

neither the ¥-dimension nor the uniform W¥-dimension characterizes learnability.

Lemma 46: If ¥ is a family of functions from {0,....,r} to {0, 1,*} which is not a distin-
guisher, and if X is infinite, then there is a family F of functions from X to {0, ...,r} which

has V-dimension 0 and has uniform V-dimension 0, but which is not learnable.

Proof: Suppose ¥ fails to distinguish ay,as € {0,...,7}. Then the set of all functions from
X to {ay,as} trivially has ¥-dimension and uniform ¥-dimension 0. However, this class is
trivially isomorphic to the set of all {0, 1}-valued functions defined on X, which was shown
in [Blumer et al., 1989] to not be PAC-learnable if X is infinite, so this class is trivially not

learnable in this stronger setting. O

54

Proof: Suppose the sequence zq,...,x; of elements of X are G shattered by F. Let
1, ..., ¥ € G be such that

{1 (1)), o (Da(f(20)))} = {0, 1},

Let ay,...,ax € {0,...,7} be such that for all j,1 < j <k, v; is defined by

1 ifb=aq;
() =
0 otherwise.
Such a sequence aq, ..., aj exists due to the definition of G-shattering. We claim that the

sequence (21,a1), ..., (¢k, ar) of elements of X x{0,...,7}is (VC) shattered by L. Choose
be {0,1}*. Let f € F be such that

b= (01(f(21)), oo Bl f(21))).

Since, by definition, for all 7,1 < j <k, l¢(2;,a;) = ¥;(f(z;)), we have

b= (Ij(21,a1)s s (g, ar)).

Since b was chosen arbitrarily, Lz shatters (z1,a1), ..., (&g, ar). Thus, the VC-dimension of
L is at least the graph dimension of F.

Now, assume that a sequence (21, ay), ..., (@, ai) of elements of X x{0,...,r} is shattered

by Lr. We claim that zq, ..., 2y is G-shattered by F. Define i, ...,9; € G, by

1 ifb=aq;
¥;(b) =

0 otherwise.
Applying the fact that for all j,1 < j <k, lf(z;,a;) = ¥;(f(2;)), in a similar manner to the
above verifies that zq,..., 2} is G-shattered by F, and therefore that the graph dimension
of F is at least the VC-dimension of Lz. This completes the proof. O
We say that L is uniformly convergent if for all € > 0, there is an M € N such that for

all m > M, for all probability measures P over X x {0, ...,7},

rm {((wl,al),...,(xm,am)) cdferF, %ilf(xj,aj) — P{(z,a): f(z) # a}‘ > 6} <e

53

4. The uniform ®-dimension of F is infinite.

We make use of the following theorem of Natarajan, obtained trivially from a result of

Ehrenfeucht, Haussler, Kearns and Valiant.

Theorem 42 ([Ehrenfeucht et al., 1989 ,Natarajan, 1989)]): If the Natarajan dimen-

ston of F is infinite then F is not learnable.
Combining Theorem 42 with Corollary 41, we obtain the following.

Theorem 43: Let ¥ be a distinguisher. If F has infinite V-dimension, then F is not

learnable.

Proof: By Corollary 41, if F has infinite W-dimension, F has infinite Natarajan dimension.
Applying Corollary 42 gives the desired result. O

Note that due to the correspondence between the indices of the vectors in JF|. and
elements of the domain X, the following definition of the ¥-dimension of F is equivalent
to that given at the beginning of this section. We say that a finite sequence 1, ...,z of

elements of X is W-shattered if there is a sequence 1, ..., % of elements of ¥ such that

{(@1(f(21)), s 0l fl2r)) : f € FY 2{0, 1}

and let the W-dimension of F be the length of the longest finite sequence shattered by F, or
infinity if arbitrarily long sequences of elements of X are shattered. We may also make the
corresponding alteration to the definition of the uniform ¥-dimension of F. In the following
lemma, we will find it convenient to use the altered definitions.

If f is a function from X to {0,...,7}, define the function /¢ from X x {0,...,7} to {0,1}

by
1 if fla)=ua

le(z,a) =
0 otherwise.

Define Ly = {ly: f € F}.

Lemma 44: The VC-dimension of Lr equals the graph dimension of F.

52

(2. = 4.): This follows immediately from (1. = 3.).

Finally, (3. = 1.) and (4. = 2.) follow immediately from Lemma 33. This completes

the proof. O

5.2 Applications to learning

In this section, we describe applications of the results of the previous section to learning.

Choose a set X, a positive integer r and a family F of {0, ..., r}-valued functions defined
on X. For a probability measure P over X we define the error of h with respect to f with

respect to P, denoted by ery p(h) to be
Pla: f(x) # h(z)}.

A learning strategy for F is a mapping from finite sequences of elements of X x {0, ..., 7}
to F. We say that F is learnable if there exists a learning strategy A and an integer-valued
function m(e, ¢) such that for any ¢, > 0, for any probability measure P over X, and for

any f € F, the probability that for € X™(=%) drawn according to P(=9) that

ery p(A((v1, f(v1)); s (U, f(0m))) < €

is at most 6. This definition of learnability is essentially that studied by Natarajan
[Natarajan, 1989], and is based on Valiant’s PAC model [Valiant, 1984]. We refer the inter-
ested reader to these papers for motivation.

Recall that at the end of Chaper 4, we extended the definition of ¥-dimension from sets
of vectors to sets of functions.

The results of the previous section immediately yield the following.

Corollary 41: Choose distinguishers ¥ and ®. Then the following are equivalent:
1. The V-dimension of F is infinite.
2. The ®-dimension of F is infinite.

3. The uniform V-dimension of F is infinite.

51

We are now ready for the main result of this section. It follows relatively straightfor-

wardly from Lemma 33, Corollary 36 and Theorem 39.
Theorem 40: Choose distinguishers ¥ and ®. Then the following are equivalent:
1. The V-dimension of S is infinite.
2. The ®-dimension of § is infinite.
3. The uniform V-dimension of S is infinite.
4. The uniform ®-dimension of S is infinite.

Proof: (1. = 2.): Assume for contradiction that the W-dimension $ is infinite and the

®-dimension is finite. Let d be the ®-dimension of 5. Choose k such that

K > d
2log(r + 1) + log k)

Let my and 7 = (41,...,%m,) be such that that ®-dimension of S), is d. Let my and J =
(j1s---s Jm,) be such that that ¥-dimension of 5),1s at least k. Let 7= (F15 eees Trmgs J1» oves Jrmp)-
Let S = 5).. Trivially, the ®-dimension of 5" is d and the ¥-dimension d' of S satisfies

d/

d. 1
2log(r + 1) + logd’ > (5.1)

Let dy be the Natarajan dimension of 5 and let dg be the B-dimension of 5. Applying

Corollary 36, we have that
dp

d
2log(r + 1) +logdp > &N,

but by Theorem 39, this is a contradiction.

(2. = 1.): This follows from (1. = 2.) by symmetry.

(1. = 3.): Assume for contradiction that the U-dimension S is infinite and the uniform
U-dimension is finite. Let d be the uniform W-dimension of S. Let mq and ¥= (41, ..., %,)
be such that that uniform ¥-dimension of 5| is d. Let my and 7= (ji, ..., jm,) be such that
that V-dimension of 9y is greater than |W[d. Let 2= (1, ey bmyy 1y -er Jmy)- Let S = 5.
Again, trivially, the uniform ¥-dimension of 5 is d and the ¥-dimension of 5 is greater that

|W|d, which is a contradiction.

50

Theorem 37: Choose a set ¥ of functions from {0,....,r} to {0,1,%}. If S has uniform

V-dimension at most d, then it has V-dimension at most d|V]|.

Proof: Suppose that the U-dimension d’ of 5 is greater than d|¥|. Let 7= (iy,...,74) be a

sequence shattered by §, and let ¢ = (11, ...,%a), be such that

{07 1}d/ C S|T

—

By the pigeonhole principle, since d’ > d|¥], there exists a subsequence (ij,,...,;,,,) of 7
such that forall 1 < k,1 < d+1,1;, = 1;,. Therefore, S uniformly W-shatters (7j,,...,;,,,),
contradicting the assumption that the uniform ¥-dimension of S is at most d. O

We will make use of a theorem of Natarajan.?

Theorem 38 ([Natarajan, 1989]): If the Natarajan dimension of S is at most d, then
15] < mi(r 4+ 1)%2

We may apply this theorem to obtain lower bounds on the Natarajan dimension in terms

of the B-dimension.

Theorem 39: Let S C {0,....,r}". Let dy be the Natarajan dimension of S and dg be the

B-dimension of S. Then,
dp
dy > .
N = 2log(r+ 1)+ logdp

Proof: Let 7= (1,...,i4,) be a sequence of indices B-shattered by 5. Let T"= 5. Since
there exists @ € B such that

{0,137 C (1),
we have that |T| > 295. From Theorem 38, we may conclude that |T] < d%N(r + 1)%w,

Thus,

A (1 4 1)%v > 248,

Taking logs and solving for dy yields the desired result.O

®The bounds of this theorem are improved in Chapter 6, but Natarajan’s result is sufficient for the

purposes of this chapter.

49

Thus 5 ®-shatters 7. The uniform case follows analogously. O

Let ¥ be a family of functions from {0,...,7} to {0,1,*}. We say that a pair a,b of
distinct elements in {0,...,r} is VU-distinguishable if there exists ¢y € ¥ such that ¥(a) = 0
and ¥(b) = 1 or vice versa. We say V is a distinguisher if each pair a,b € {0,...,7}
is W-distinguishable. It is easy to see that in the case r = 1, for any distinguisher ¥, the
definitions of the W-dimension and the uniform ¥-dimension are equivalent to the definition

of the VC-dimension.

Next, we describe a certain sense in which B is the maximum of the set of ¥’s which

are distinguishers and N is the minimum.

Theorem 35: Choose a distinguisher ¥. Choose S € {0,..,7}", and choose T €
{1,...,m}*.

o If S N-shatters 7, then S W-shatters 7.

o If S V-shatters 7, then S B-shatters t.

o If S uniformly N-shatters 7, then S uniformly V-shatters 7.

o If S uniformly V-shatters 7, then S uniformly B-shatters 7.

Proof: Follows immediately from Lemma 34 and the definition of a distinguisher. O

This theorem trivially yields the following Corollary about the W-dimension and the

uniform ¥-dimension for various V.
Corollary 36: Choose a distinguisher ¥ and S € {0,...,r}".

o The Natarajan dimension of S is at most the V-dimension of 5.

o The V-dimension of S is at most the B-dimension of 5.

The uniform Natarajan dimension of S is at most the uniform V-dimension of 5.

The uniform V-dimension of S is at most the uniform B-dimension of 5.

Next, a simple pigeonhole argument establishes the following bound on the uniform

¥-dimension of 5 in terms of its ¥-dimension, for any W.

48

5.1 Generalizations of the VC-dimension

Since in this chapter, we will be concerned with learning {0,...,r}-valued functions
for fixed r, we will restrict our attention in this section to the ¥-dimension of subsets of
{0,...,7}", retreating a little from the generality of the introduction. Note that when we
fix r, instead of considering classes ¥ of functions from N to {0, 1, *}, we may restrict our
attention to classes of functions from {0, ...,7} to {0, 1, %}, since the behavior of functions in
VU outside {0, ...,7} does not affect the U-dimension of a given subset of {0, ...,7}". For the
specific notions of dimension described in the introduction, we obtain identical definitions
by simply restricting the functions in ¥ to {0,...,7}.

We begin by describing a sufficient condition for W-shattering to imply ®-shattering.?

Lemma 34: Let ¥, ® be classes of functions from {0,...,r} to {0,1,*} such that for all
Y € VU there exists ¢ € ®, such that v~1(0) C ¢~ 1(b) and v~(1) C ¢~ (1 — b) holds for
b either 0 or 1. Then for all § C {0,...,7}", 7€ {1,...,m}*, if § W-shatters 7, then S

®-shatters v, and if S uniformly V-shatters v, then S uniformly ®-shatters 7.

Proof: Assume that for all ¢» € ¥, there is a ¢ € @ such that ¢ =1(0) C ¢71(0) and
¥71(1) C ¢7*(1) (the case in which for all ¢» € W, thereis a ¢ € ® such that ¢=1(0) C ¢7*(1)
and ¢ ~1(1) C ¢~1(0) can be handled analogously). Choose S C {0,...,7}", 7€ {1,...,m}*

such that § W-shatters 7. Choose 1E € U* such that

For each j,1 < j < k, let ¢; be such that ¢;1(0) - (/5]_1(0) and ¢;1(1) - (/5]_1(1) Let
G = (D1, e SR

We claim that {0,1}* C qg(SH). Choose b = (by,...,bg) € {0,1}. Let 7€ S|, be such
that ¢(7) = b. Choose j € {1,...,k}. Since ¥7'(0) C ¢;'(0), and ¥; (1) C ¢;'(1), and
b; € {0,1}, ¢;(q;) = ;(¢;). Since j was chosen arbitrarily, qg((f) = 15((7) = b. Therefore,

since b was chosen arbitrarily,

{07 1}k - (E(Sh*)

2The definition of W-shattering is given at the beginning of this part.

47
5. Characterizations of Learnability for Classes of

Many-valued Functions

A central task in the theory of computational learning is to provide a simple mathemati-
cal characterization of the classes of concepts that are learnable under some formal model of
learning. An example along these lines is the characterization of Valiant’s PAC-learnability
of binary functions in terms of the Vapnik-Chervonenkis dimension! proved by Blumer,
Ehrenfeucht, Haussler and Warmuth [Blumer et al., 1989].

A natural way to extend that model is to consider the learning of many-valued (instead
of binary) functions. A characterization of PAC-learnability for classes of many-valued
functions has been obtained by Natarajan in terms of a particular generalization of the
VC-dimension which we will call the Natarajan dimension [Natarajan, 1989].

In this chapter we introduce a general scheme for extending the VC-dimension to classes
of {0,...,r}-valued functions. This scheme gives rise to a wide family of notions of the
dimension of a class of functions. Our family of generalizations of the VC-dimension in-
cludes as special cases the Natarajan dimension [Natarajan, 1989], the graph dimension
[Dudley, 1987, Natarajan, 1989], Pollard’s pseudo-dimension [Pollard, 1984,Pollard, 1990,
Haussler, 1991], and a generalization proposed by Vapnik (see, e.g. [Vapnik, 1989]).

By establishing the existence of a minimum and a maximum in the family of general-
izations and proving that the finiteness of both these dimensions is equivalent, we obtain
a variety of clear combinatorial characterizations of PAC-learnability for classes of multi-
valued functions.

This research provides more flexible tools for determining whether a class of {0,...,r}-
valued functions is learnable, and enhances the understanding of why the finiteness of the

previously studied generalizations of the VC-dimension characterize learnability.

!Defined by Vapnik and Chervonenkis [Vapnik and Chervonenkis, 1971].

46

The Natarajan dimension [Natarajan, 1989] is the N-dimension where N = {n 1, :

k,l e N,k # 1} and ¢y, is defined by

1 fa=k
Yngi(a)=¢ 0 ifa=1

* otherwise.

Finally, let B be the set of all functions from N to {0,1} and define the B-dimension
accordingly.

Note that the graph dimension, the Natarajan dimension and the B-dimension do not
make use of the natural ordering on {0, ...,7} and could just as easily be defined for abstract

finite sets.

For any (possibly infinite) set X, r > 1, any class ¥ of functions from {0,...,7} to
{0,1,*}, and any class F of functions from X to {0,...,r}, define the ¥-dimension of F to

be maximum, over all finite sequences 1, ..., x,, of elements of X, of the ¥-dimension of

{(f($1)7 7f($m)) : f € f}v

if such a maximum exists, and infinity otherwise.

45

We say 7is W-shattered by 5 if there exists 1E € U* such that

{07 1}k - %(Sh*)

We say that QE witnesses this shattering. Furthermore, for any b e {0,1}*, an € § for
which 1;(82'1, vy 84,) = bis said to satisfy E(With respect to 7 we will often let 7 be understood
from context).

In the case in which there exists such a QE which in addition has ¥y = 19 = - - - = 9, we
say that ©is uniformly W-shattered by 5.

Let the W-dimension of S be the maximum d for which there exists a sequence
7 € {1,....,m}? of indices shattered by S, and let the uniform V¥-dimension of S be the
corresponding definition for uniform shattering.!

We will make use of the following observation.

Lemma 33: For any set ¥ of functions from {0, ...,7} to {0,1,*}, and any S C {0, ...,r}",

the uniform V-dimension of S is at most the V-dimension of 5.

Several previously defined notions of dimension correspond to particular choices of the
set ¥ as shown in the following list.
Pollard’s pseudo-dimension [Pollard, 1990] is the P-dimension, where P = {¢p : k €

N}, and ¢py is defined by
1 ifa>k
bpila) =
0 otherwise.
Vapnik [Vapnik, 1989] describes a generalization of the VC-dimension which is equivalent
to the uniform P-dimension.
The graph dimension [Dudley, 1987 ,Natarajan, 1989] is the G-dimension, where G =
{Ygr : k € N}, and g is defined by
1 ifa=k
bax(a) =

0 otherwise.

!Notice that these definitions are the same as we would obtain if we insisted that the shattered indices

satisfy 1 <41 <12 < --- < 1xp < m, which is perhaps the easiest way to think of this definition.

44

The VC-dimension of S is the length of the longest finite sequence of indices VC-shattered
by 5.
The following Theorem, often called Sauer’s Lemma, will play a central role in this part.

Vapnik and Chervonenkis independently proved a similar lemma.

Theorem 32 ([Sauer, 1972,Vapnik and Chervonenkis, 1971]): Let S C {0,1}™. If
the VC-dimension of S is d, then

d
EESY (”Z) < (em/d)"

and the first bound is tight; i.e., for all d,m € Z*,d < m, there exists S C {0,1} of

VC-dimension d that meets that upper bound.

Now, let us return to the more general case in which the r;’s may be greater than 1. A
natural way to extend the above definition of shattering is to say that S shatters 7' if and
only if

k
S|, = H{O, . 7‘2']}
7=1

and define a notion of dimension as we did with the VC-shattering. Generalizations
of Sauer’s Lemma using this extension of the definition of shattering were described in
[Alon, 1983] [Karpovsky and Milman, 1978] [Steele, 1978] [Anstee, 1988]. Unfortunately,
using this latter definition, the cardinality of the largest subset of [[}2;{0, ..., 7} of a given
dimension grows like 2™, whereas slower (e.g., polynomial) growth is desirable for learning
results, as we will see in Chapter 6.

To define generalizations that yield bounds polynomial in m, we look for a “translation”
of multi-valued vectors into binary vectors. This is done by considering mappings ¥ from N
to {0, 1,#*} (* will be thought of as a null element) which we will apply to the components
of elements of 5.

Let ¥ be a family of functions from N to {0, 1, «}. For @ € {0, ...,r}"™, V= (1, .y V) €
U™ denote (¢1(ty), o, Yt) by (). For a set U C {0, ...,7}™, define ¢(U) = {4(i) :
ZeU}.

43

functions in an extension of Valiant’s model proposed by Haussler [Haussler, 1991].
In Chapter 7, we examine a variant of this model in which it is assumed that learning

is an “on-line,”

never-ending process. Further, we assume that the function to be learned
is ever changing, however slowly. Examples of natural functions which change slowly over
time are “stylish clothing” (f(z) = 1if = represents a “stylish” article of clothing), “polite

conversation,”

and “obscene books.” We prove upper and lower bounds on rate of change
that a learner can tolerate in terms of the accuracy required of the learner’s hypotheses,
and we describe efficient algorithms for the learner in this setting for two commonly studied

examples of classes F assumed to contain the hidden functions.

4.1 Some definitions

Once again, basic mathematical definitions and notation are given in Appendix A.

After Vapnik [Vapnik, 1989], we will adopt a naive attitude toward measurability, as-
suming that every set is measurable, and simply speak of probability distributions on sets.

The Vapnik-Chervonenkis (VC) dimension [Vapnik and Chervonenkis, 1971], and gen-
eralizations thereof, have been invaluable in analyzing the ability of computers to learn in a
random environment (c.f., [Blumer et al., 1989] [Haussler et al., 1990]). We define the VC-
dimension and some of its generalizations formally here, as they will be useful throughout
this part.

Choose m, ry,...,7, € N. Let S C []%,40, ..., 7}

For a sequence ¥’ = (i1, ..., %) of indices, where 1 < i; < m for each 1 < j < k, define
S, € H§:1{07 s Tiy} by

S|, = {(si,-.8i,) 1 §€ 5.

Suppose for a moment that vy = --- = r,,, = 1. In such a case, we say that 5 VC-shatters

a finite sequence 7= (i1, ..., %) of indices if and only if

S|r =0, 1}k.

42

4. Introduction

In this chapter, we will consider two models of learning in which probabilistic assump-
tions are made about the environment of the learner. Both are variants of Valiant’s PAC
(“Probably Approximately Correct”) model [Valiant, 1984].

In Valiant’s model, it is assumed that a {0,1}-valued function f is hidden from the
learner, and that the learner know of a class F containing the hidden function f. The
learner receives several examples (21, f(21)), ..., (@m, f(2)) of the behavior of the hidden
function f, and uses these examples to construct a hypothesis h, which it hopes is a
good approximation to f. It is further assumed that an arbitrary, unknown probability
distribution D on the domain of f was used to independently, randomly generate the x;’s.
The inaccuracy of the learner’s hypothesis h is then measured by the probability, according
to D, that f and & yield different values when applied to yet another element of their domain
generated according to D. This model demands that with high probability, with respect
to the random =z;’s, the learner’s hypothesis obtained from those z;’s is very accurate. It
further demands that the learner compute its hypothesis efficiently.

In Chapter 5, we consider a variant of Valiant’s model in which the function to be
learned may be many-valued. We unify several previous results which described simple
tests to determine whether a class F of such many-valued functions is “learnable” or not
with respect to a cousin of Valiant’s PAC model, in which the computational effort expended
by the learner is ignored. We can see these tests as special cases of a “testing scheme,”
which includes many more tests. Thus, the results of Chapter 5 provide additional tools
for understanding the basics of learning many-valued functions, and we hope they aid
understanding of the previously developed tools.

In Chapter 6, we generalize a well-known combinatorial theorem, often called “Sauer’s
Lemma.” Sauer’s Lemma has often been applied to problems of learning {0, 1}-valued
functions [Blumer et al., 1989,Haussler et al., 1990,Haussler et al., 1991]. We show how our

generalization may be applied to obtain results concerning the learning of real-valued

41

Part 11

Learning in a Random Environment

40

Theorem 31: Let 0 = (24)1<i<m be any sequence of m elements of [0,1], and let f € F;.

Then
log m)
5)

Li(LININT, f,0) < e(2 +

We have so far been unable to obtain matching lower bounds.

39
Both proofs make use of the following inequality, which follows immediately by the
standard convexity argument.

Lemma 29: Foranyn € N,p> 1,7 € R",

1211 < o' =),

We begin with F.
Theorem 30: Choose m > 3. Let 0 = <xt>15t5m be any sequence m examples elements of

[0, 1], and choose f € F.,. Let A be the “nearest neighbor” algorithm. Then,

log m

LI(A,f,U)§€(1—|—)

Proof: Let Ay, ..., A,, be the sequence of A’s predictions. Let ¥ € R™ be defined by

= (|/\1 - f($1)|7) |’\m - f(xm)D

Choose p > 1. By Theorem 27, we have

1 14r
il < [1+ 575 -

Applying Lemma 29, we have

1 1\/e
1-1/p
il < =t {1
Suppose p = (Inm)/(Inm — 1). Then

In m—1
1— In m—1

Il < w1 ! |
o(lnm)/(Inm-1) _ 9

l1+ 1 (1)‘|1—1/lnm
= ¢ —
2 eXp(lanI;Lzl) -1

< el)

e e

- 2 exp(lllfﬂi)—l
Inm

<

< 6(1—|—21n2) (Lemma 26)
1

. og;m)

This completes the proof. O

With minor modifications, the above argument, together with Theorem 28, yields the

following.

38

by (3.8). Also,

Z el < Z e (Since e, < 1)
t>1:e:>dy t>1:e:>dy
< Z et(et/dt)
t>1:e:>dy
= Z €$/dt
t>1:e:>dy
< 1,

by (3.7). Combining with (3.9) yields the first inequality. The second follows immediately

from Lemma 26. O

3.5 Bounded-length trial sequences

In Section 3.2, we showed that LCy(Fs) = LC;(F;) = oo. In other words, we showed
that finite bounds on the sum of absolute differences between predictions and true values
could not be obtained for any algorithm using only the assumption that the hidden function
was in F.,, and therefore, for any algorithm using only the weaker assumption that the
hidden function was in F3. QOur adversaries used many trials, forcing small errors on
each trial. The fact that LCy; < oo for both these classes suggests that this behavior
was necessary, since, as the error on a trial approaches 1, squaring the error has no effect.

If, in fact, any adversary which forces infinite cumulative error for algorithms learning
Foo must force small errors on each trial, this is good news for the learner, since, even if
one’s total error is unbounded, if it is accumulating slowly, nontrivial learning is taking
place.

In this section, we show that, indeed, the “nearest neighbor” algorithm studied in the
previous section accumulates error slowly while learning F.,. We show that on any sequence
of m trials consistent with a function in F., the sum of unsquared errors made by the nearest
neighbor algorithm is O(logm). We also show that the “linear interpolation” algorithm
studied in Section 3.3 achieves the same bound on its cumulative (unsquared) error on any

sequence of m trials consistent with a function in F5.

37

Proof: Consider the algorithm A which simply predicts with the function value at the
nearest previously seen point (and arbitrarily on the first trial). Choose a sequence z1, ..., 2,
of elements of [0, 1] and f € F... Let Ay, ..., A, be the predictions of this “nearest neighbor”

algorithm on trials 2 through m. We have

Z At — f(z)]P < Z(m<111;1 |#; — 24])" (Lemma 25)
t=2 t=2 ¢

1
20 — 2

< 14 (Lemma 24)

completing the proof of the first inequality of the theorem. The second follows immediately

from Lemma 26. O

Next, we prove a very similar bound on LC,(F3).

Theorem 28: Ifp > 1,

1

LC)(F2) S 24 g <

P Ene -

Proof: Choose p > 1. Choose a sequence zq,...,2,, of elements of [0,1] and f € F.
Let Ag, ..., A, be the predictions of LININT on trials 2 through m, and for each ¢ > 1, let
d; = min;« |z; — 4|, and let e, = |\, — f(2;)|. Applying Lemma 20, we have that the action
of LININT’s hypothesis increases by at least €?/d; on each trial. By Lemma 19, the action

of LININT’s hypothesis is always at most 1. Thus,

> effdy < 1. (3.7)
=2
Since, by Lemma 24, we have
= 1
d¥ <1 3.8
; <t 5 (3.8)

our analysis proceeds by breaking up the trials, and applying (3.7) to those trials where d;

is relatively small, and (3.8) to the trials where d; is relatively large.

More specifically, we have

> <)4
t>1:6t5dt t>1:6t5dt
1
< 14 (3.9)

= 2]7_27

36

By differentiating, we may easily see that this expression, as a function of a, is decreasing
when a,d; > 0. Thus, it is maximized, subject to ¢ > 2d;, when ¢ = 2d;. Since
(2 —2P)d} < 0, this yields

Hy— Hioq < (2-2P)d7.

Since, trivially, 0 < H; < 1 for all ¢, and H; never increases (on any trial), we have (3.6).
Combining (3.5) and (3.6) yields the desired bound. O
We begin with F.. We will make use of the following simple lemma, whose proof is

omitted. It establishes the fact that functions in F, satisfy a Lipschitz condition.

Lemma 25: If f € F.,, then for all x,y € [0, 1], we have
[f(2) = f(y)l < |z —yl.

We will also make use of the following approximation.

Lemma 26: For all real z,

— < z.
el/lz — 1 — v
Proof: We have
elle > 141/
lr_1 > 1/a
1 <
ellz —1 — v

This completes the proof. O

A bound on LC,(F) follows immediately.

Theorem 27: Ifp > 1,

1
< — < —_.
LG(Fe) s 1t gpg s 14 (2In2)(p—1)

35

Lemma 24: Choose a sequence x1,x3, ... of elements of [0,1]. For each t > 1, let
d; = min |y — 24
1<t

Ifp>1,

S dl <141/(20 - 2).
t=1

Proof: Choose a sequence z1, x5, ... of elements of [0, 1]. Assume without loss of generality

that the z;’s are distinct. For each t € N, let
Sp=Az; 0 <t} ={ur 11 < t},

where uy ¢ < ugy < ---ugy (the w;y’s are {21,...,2¢} in sorted order). For each ¢, let
St = Ut — UL, and
t—1
_ P . .
Hy =y, + (1 —ue)? + g (wig1,e — wig)”.
=1

First, we claim that

> d? < 1. (3.5)

t>1wedur —1,u—1,0—1]

Choose a trial ¢ for which z; < uy¢—;. In such a case, we have
S¢— 841 =dy > df

since d¢ < 1 and p > 1. Similarly, if z¢ > w141, then s, — 5,1 > dV. Since, trivially, s,
never decreases, and 0 < s; < 1, we have (3.5).

Next, we claim that

> d? < 1/(2F - 2). (3.6)

e €lug ro1,us—1,e—1]

Choose a trial ¢ for which z; € [u3 ¢—1,us—1¢—1]. Let ¢ be such that z¢ € (u;+—1, uiq14-1)-
Let @ = w41 ,4—1 — w;—1. Assume, as a first case, that 24 is closest to u; ;1 (the other case

may be handled similarly). Then d; = 2y — u;+—1 < a/2. We have

Ht—Ht_lzdf—l—(a—dt)p—ap.

34

We may apply this result to obtain an alternative proof of a result of Faber and Mycielski
[Faber and Mycielski, 1991], who analyzed another, more complicated, algorithm for their

upper bounds.
Theorem 22 ([Faber and Mycielski, 1991]):

LOy(Fy) = 1.

Proof: The previous theorem implies that LCy(F3) < 1. To see that LCy(F3) > 1, consider

an adversary which gives a first example of (0,0), and a second example of (1, £1), depending

on whether an algorithm’s prediction is positive or negative. This completes the proof. O
As discussed in the introduction, the fact that F., C F3, together with the same

adversary argument as above, trivially yields the following.
Corollary 23: LCy(Fy) = 1.

This corollary tells us that, with respect to worst-case cumulative squared error, the
assumption that the derivative of a hidden function is never more than 1 doesn’t give the
learner any more power than the assumption that the average value of the square of the

derivative is at most one.?

3.4 More general loss functions

Recall that in Section 3.3, we proved that LCy(Fs) = LC3(F2) = 1, and in Section 3.2,
we proved that LCq(F.) = LC1(F2) = co. This brings up a natural question: For which p
are LC,(Fs) and LC,(F;) finite? This question is resolved in this section: we show that

LC,(Fs) and LC,(F;) are finite whenever p > 1.

The following lemma will be useful in both analyses.

It would appear that the assumption that f € F., amounts to the slightly weaker assumption that the
measure of {z : f'(z) > 1} is zero. However, it is easy to see that the lower bound also applies to the smaller
class of twice differentiable functions for which f’ < 1 (indeed, to the extremely simple class consisting only
of f(z) = = and g(z) = —=z). Thus, the square loss learning complexity of this class is the same as that of

Fo.

33

Figure 3.1: Change in J

Now we are ready for the learning result. Consider the learning algorithm LININT
defined by
LININT(§,21) =0
and
At = LININT(((21,91)5--or (41, Y1), 2¢)
RACTRT N EARE (€2
for t > 1. That is, LININT linearly interpolates between previously seen points, and
extrapolates using the value of the hidden function at the nearest previously seen element
of the domain. Note that before each trial ¢, LININT can be thought of as formulating the

hypothesis fi(z; y1),..(@i1,pe1))-

Theorem 21:

Ly(LININT, F) < 1.

Proof: Choose a target function f € F, and a sequence zy,xs,... of elements of [0, 1].
Assume without loss of generality that the z;’s are distinct.

By Lemma 20, we have that the action of the algorithm’s hypothesis increases by at
least (A; — f(2¢))? on each trial ¢ > 1.

Since the function hypothesized after trial 1 is constant, and therefore has action 0, and
since, by Lemma 19, the action of LININT s hypothesis is always at most that of the target

function, which in turn is at most 1, we may conclude that 3~,<;(A¢ — f(z)<1. 0

32

Note that ||f'|]2 < 1 exactly when J[f] < 1, and therefore that 7, can also be thought
of as the set of functions whose action is at most 1. The following lemma concerning the
function of minimum action subject to certain constraints is well known, and can be proved

fairly easily, for instance, through application of an elementary result from the Calculus of

Variations (c.f., [Leitmann, 1981, Theorem 2.2]?).

Lemma 19: Choose m € N. Let (u1,v1), ..., (Um, v) be a sample. Let S = {(u;,v;): 1 <

i <m}. If fis a well-behaved function consistent with (u1,v1), ..., (Um, V), then

JIf] = J[fs]-

The following lemma concerns the change in the action of fg when we add an example

to S.

Lemma 20: Choose m € N. Let (u1,v1), ..., (Um, vm) be a sample with 0 < uy < ug <

s <y < 1. Let S = {(ug,vi) 1 1 <@ < m}. Choose an example (z,y) € [0,1] x R. Then

_ 2
Jfsuotean] 2 JUSH%

> J[fs] 4 (y - fs(z))%

Proof: The lemma is trivial if # < u; or @ > w,,, and if there is a j for which z = u;.

Assume that there is a j such that u; <z < ujyq.

Ifa=ujp1—uj, b= fluje1) = f(uj),c = x—uj, and e = (fs(ze) = f(ze)) = (A= f(@r))

(see Figure 3.1), we can easily see that

I su{(@e,f @] — JL1fs]

be c)2? — (ke 1e))2 2
:[(a‘l’) _I_(b (aa_l‘))]_b_

ae2

= c(a—c)

_ ae?

~ min{c,a—c} max{c,a—c}
2

> €

min{c,a—c}”’

completing the proof. O

2For those familiar with the Calculus of Variations, the Euler-Lagrange equation in this case is F(z)=0.

31

Theorem 18: Ifpe R,p> 1, LC,(F;) = oc.

Proof: The class F; includes all continuous twice differentiable increasing functions with

f(0)=0and f(1)=1, since for such functions,
1 1
/ /()] da :/ Fa)dz = f(1) — £(0) = 1.
0 0

The adversary picks 21 = 1/2 and then chooses f(z1) = 0 or f(21) = 1, whichever gives
greater error. Suppose f(x1) = 1. Then the adversary picks z2 = 1/4, and continues the
same scheme. If f(21) = 0, the adversary picks z2 = 3/4 and repeats, et cetera. At each

trial the loss is at least 1/2P and there are infinitely many trials. O

3.3 Some positive results

In this section we prove that a very simple algorithm performs optimally with respect
to sums of squared errors when the hidden function is in JF5, establishing an alternative
proof that LC3(F2) = 1. Loosely speaking, this result implies that the assumption that the
average value of the square of the target function’s derivative is at most 1 is strong enough
for an algorithm to obtain finite worst case bounds on its cumulative squared error. We
showed in Section 3.2 that LCy(F;) = oo.

Suppose S = {(u;,v;) : 1 <i < m} is a finite subset of [0, 1] x R such that
U1 < Ug <+ < Uy«

Define fs:[0,1] — R as follows: for all z, fy(z) = 0, and

1 if 2 <y
fs(@) =13 v+ W—’_ﬁl_v’) if @ € (u;, uiy1]
VU if @ > u,,

if 9] > 1.

For f:]0,1] — R, define the action of f, denoted by J[f], to be

1] = /01 () da. (3.4)

30

By iterating (3.2), concentrating on the second part, we get

b 7
LC1(Gap) > ‘% + > LC1(Gapaip)-
=1

Applying Lemma 13, we get

v

LCl(ga,b)

7b g i
E + ZQ/Q LCl(gl,O)
=1
b
— ‘% + (a — b)LCl(gl,O)-

This completes the proof. O

Now we are ready to prove the infinite lower bound on LC;(F).
Theorem 16: L(j(Fy) = oo.

Proof: We will show that even for Gy o C Foo, LC1(G10) = 0.
The adversary chooses b = 2011 for some j € N. The adversary then queries the point
x1 = 1/2 and chooses y; = b or y; = —b, whichever gives greater error (easily maintaining

consistency with a function in Gy o). Then, by Lemma 14, we get two subproblems of Gi/2,-

So
LC1(Gi0)

Z b + QLCI(g%J))
> b+ 202 + (3 - 5)LCi(Gi)] (Lemma 15)
> b+ jb+ (1 —2b)LC1(G1,0).

We can now solve this for LC1(G) to get
LC(Gro) 2 (7 + /2. (33)

Since LCy(Fs) > LC1(G10) and j was chosen arbitrarily, LCy(Fs) = 00. O
As discussed earlier, since Fo, € F,, ¢ > 1, this theorem has the following corollary.

Corollary 17: LCi(F,) = oo for all ¢ > 1.

We may fairly easily see that the assumption that the average value of the (absolute)

slope is at most one is not strong enough for practically any positive results in our model.

29

We begin by showing that LCq(Fu) = 0o. In contrast, we will show in Section 3.3 that
LCy(Fs) = 1. In our analysis, it will be convenient to consider classes of functions defined
on [0, a] for a > 0, constrained by the values of the functions at 0 and a.

For a,b € [0,1], define G, to be the class of well-behaved functions ¢ defined on [0, a]
for which ¢(0) = 0 and g(a) = b, with the further restriction that ¢’(2) < 1 for all 2 on
which ¢’ is defined.

The following lemmas may be easily verified, e.g., by using reductions between real-
valued learning problems [Littlestone et al., 1991] to scale, translate and reflect appropri-

ately.
Lemma 13: For any a,¢ > 0, LC1(Geg0) = ¢LCi(Gap)-

Lemma 14: Choose a,b,c,d € R. Let H be the class of well-behaved functions f from [a, b]
to R for which f(a) = ¢ and f(b) = d, which also have the property that f'(x) < 1 wherever
f is defined. Then

LC(H) = LGU(Gp—a),je-d))-

We use these lemmas in the following, in which LC1(G, ;) is bounded below by a suitable
function of LCy(Gy).

Lemma 15: For j € N and b = 277,
jb
LCi(Gap) > 5 +(a—=b)LC1(Grp)- (3.1)
Proof: First, note that if 0 < b < a/2 then
b
LC1(Gup) > 3 + LC1(gg,0) + LCl(g%,b)v (3.2)

since the adversary may query a/2 and answer with whichever of b or 0 gives greater error,
while maintaining consistency with a function in G, 3, namely the function which linearly
interpolates. In either case there is an immediate error of at least /2 and two subproblems

Gaj2,0 and G, /o (because of Lemma 14), which the adversary may attack separately.

28

in the bound. Our results may also be trivially generalized to functions whose range is
vector-valued, by treating each component of the predictions and true values separately.
We have stated the results in their present form to facilitate presentation of lower bounds,
as well as to cut down on unnecessary notation, as we feel that the essence of the problems
is captured in the simple cases.

Faber and Mycielski [Faber and Mycielski, 1991] proved, using a different algorithm,
that LC2(F2) < 1. This result amounts to a special case of a beautiful theorem about learn-
ing linear functionals defined on Hilbert spaces using a generalization of the Widrow-Hoff
algorithm [Widrow and Hoff, 1960], and their paper contains numerous other applications
of their Hilbert space results. Nonetheless, we feel it is interesting that even the very simple
linear interpolation algorithm is optimal for F; with respect to sums of squared errors.

Many statisticians, and, more recently, computational learning theorists (c.f.,
[Hardle, 1991] [Barron, 1991] [Haussler, 1989a]) have studied the induction of classes of
functions obtained through smoothness constraints. The spirit of their work differs from
ours in several ways. First, their theorems usually concern functions of potentially many
real variables, where ours, at present, apply only to functions of a single real variable. On
the other hand, the previous work usually involves use of probabilistic assumptions on the
generation of the z;’s, for instance that they are drawn independently from a fixed dis-
tribution on whatever domain, whereas our results do not use such assumptions. These
assumptions have enabled researchers to prove bounds on the expected “loss” on a partic-
ular trial. In worst-case models such as that considered here, such “instantaneous” bounds
are clearly impossible (c.f., [Littlestone, 1989b]). Finally, in many cases, we are able to
obtain upper and lower bounds that match, including constants, which is often not the case

for the previously studied problems.

3.2 Some negative results

In this section, we describe several settings in which no algorithm can acheive any finite

bound on the cumulative loss.

27

the hidden function at the nearest previously seen point.! We show that the worst-case
sum of squared errors made by this algorithm while learning F; is 1. A trivial lower bound
establishes the fact that this algorithm is optimal for F5 with respect to the worst-case sum
of squared errors, and therefore that LCo(F2) = 1.

Since, as is easily verified, the 1-norm of a function is at most its 2-norm which is in
turn at most its oo-norm, we have that F., C F, C F;. Combining the first inequality with
the positive result above implies that LCy(Fs) < 1. Again, a trivial lower bound shows
that this is the best possible, and therefore that LCy(F.,) = 1. Similarly, it follows from
our main negative result that LC;(Fy) > LCy(F3) > LCi(Fx) = 0o. A simple argument
establishes that LC,(F;) = oo for all p > 1.

We next show that LC,(Fs) < 1+ 1/(2P — 2) for p > 1. Combining this with the
aforementioned results about F.,, we may conclude that LC,(F) < oo exactly when
p > 1. For this upper bound, we analyze the algorithm which simply predicts with the
value of the hidden function at the nearest previously seen element of the domain, which,
though intuitively worse than the “linear interpolation” algorithm, is easier to analyze. We
also prove that if p > 1, we have LC,(F3) < 2+ 1/(2P — 2), which implies that LC,(F3) is
also finite exactly when p > 1.

Finally, we describe some preliminary results concerning bounded length sequences of
trials, showing that the sum of (unsquared) errors made by either of the above algorithms
learning F., and F;, respectively on trial sequences of length m is at most e(1 + (logm)/2).

Our analyses can trivially be extended to classes of functions defined on an arbitrary
interval, and to classes formed through arbitrary bounds on the various norms of the
derivatives. Furthermore, the algorithms we describe do not make use of knowledge of
the endpoints of the interval, or of knowledge of how steep the target function tends to
be. Therefore, we may even view our upper bounds as applying to arbitrary well-behaved
functions of the entire real line, where the maximum magnitude of an element of the domain

encountered in a sequence of trials, as well as the steepness of the target function, appears

1On the very first trial, it predicts arbitrarily, say with 0.

26
3. The Learning Complexity of Smooth Functions of a

Single Variable

3.1 Introduction

In this chapter, we will consider learning functions of a single real variable. We will
further assume that the domain is simply [0, 1], although we will see later that this restriction
is only for convenience, and meaningful results can be obtained without it. We will also
limit our attention to continuous functions that are piecewise twice differentiable (i.e., twice
differentiable except on a finite set). Let’s call such functions well-behaved.

We wish to model the intuition that, for many functions encountered in practice, similar
inputs tend to yield similar outputs. Toward this end, for ¢ € {1,2, 00}, we will study the
class F, of well-behaved functions whose first derivatives have ¢g-norm at most 1. Recall

that, for 1 < ¢ < o0, the g-norm of a function f defined on [0, 1] is defined to be

([If(w)lqdw)l/q ,

and that the infinity norm of f is the limit, as ¢ approaches infinity, of its g-norm. The
infinity norm roughly corresponds to the maximum value of |f(2)|, and the one-norm, to
the average, while the two-norm lies somewhere in between. Thus, F., roughly corresponds
to the class of functions that are never very steep, and F; to the class of functions that are
not very steep on average.

In this chapter, we determine the value of LC,(F,) for each (p,q) € {1,2} x {1,2,00}.

Our main negative result is that LCy(Fs) = oo. This result, loosely speaking, says
that even the assumption that the hidden function never has slope greater than one is not
sufficiently strong to enable an algorithm to obtain any finite bound on the sum of the
absolute values of the differences between predictions and true values.

Our main positive result concerns the algorithm which at each trial linearly interpolates

between previously seen function values, and extrapolates by predicting with the value of

25

whether a similar algorithm is optimal for learning the class containing all linear functions
composed with the standard sigmoid function (1/(14e7%)). One can trivially obtain bounds

from our results, but they appear to be suboptimal.

24

2.5 Discussion

Linear functions are widely used. We expect that our algorithm may become a standard
submodule for learning more complicated functions or for learning linear combinations of
previously learned functions.

The fact that our algorithm must know a bound on the sum of the absolute values of
coeflicients of the target function might make it appear somewhat unattractive to practition-
ers. However, this problem may be circumvented by application of the Weighted Majority
algorithm [Littlestone and Warmuth, 1989] to an pool consisting of algorithms that assume
various upper bounds on the size of the hidden coefficient vectors. Nevertheless, to simplify
application of our techniques to real-world problems, it would be useful to have a variant
of our algorithm for which we can directly obtain bounds similar to our present bounds
without knowing anything about the hidden coefficients.

We also are interested in improving our lower bounds. Is it possible that similar lower
bounds hold even when the algorithm has more information about the hidden coefficients,
or even about the upcoming sequence of examples?

We are also investigating the case in which the coefficient vector changes gradually over
time, corresponding to a case in which some linear combination of the economists is close
to the actual GNP for a certain period, and then in later periods other linear combinations
do well. The algorithm is to “track” the best linear combination with some additional cost
that grows as a function of how much the coeflicient vector changes over time. This would
generalize the methods of [Littlestone and Warmuth, 1989] with which one could track the
best single economist.

In addition, it would be interesting to find algorithms which are optimal with respect to
other natural loss functions, in particular, |A\; — p¢|. Recently, Bernstein [Bernstein, 1992]
has proved a lower bound for this problem whose dependence on n is y/n, and has described
an algorithm whose worst-case sum of absolute errors is O(y/nlogn).

Finally, since our algorithms have a similar flavor to the linear threshold algorithms

of [Littlestone, 1988] [Littlestone and Warmuth, 1989] [Littlestone, 1989b], one might ask

23

For the first stage, which consists of n — 1 examples, the tth instance is given by

0 otherwise

and the ¢th response is always 0. Note that if for each t, v® € R" is defined by

v =
0 otherwise

then for each ¢ < n — 1, v is consistent with the first ¢ — 1 examples, and thus minimizes

the observed loss on these examples. Yet if A(*) is the prediction made using v, then for

each t, \(t) = ¢ M, thus

n—1

SO 5O = (eM)(n 1), (2.9)

t=1

Note that v(" is consistent with all the examples of the first stage.

The second stage is virtually identical to the second stage of Theorem 9, replacing
(1/2,...,1/2) with (0,...,0), and responding with whichever of —cM and ¢M is farthest
from the algorithm’s prediction. One can easily see that, as in Theorem 9, the algorithm
can be forced to have total loss of N in the second stage. Combining this with (2.9) yields
the desired result. O

The Widrow-Hoff algorithm predicts using an unnormalized weight vector which is
updated after each trial, i.e. the algorithm’s prediction on trial ¢ is @, - ¥4, where each
Wy = (w1, ..., wyy,) is defined as follows. The initial weight vector @ is the zero vector, and
subsequent weight vectors are obtained from the examples according to the following rule:

Ty

Wipq = ﬁt‘l‘(pt—/\t)f =
¢ Tt

The following lower bound has been proved for this algorithm.

Theorem 12 ([Cesa-Bianchi et al., 1991]): Let W be the Widrow-Hoff algorithm. For
eachn € N, M,¢, N >0,

Lo(W, LINEAR(n, M, ¢), N) > (¢M)*n + N.

Recall that the total loss of our algorithm was O((cM)?logn + N).

22

computing weighted averages, which is quite surprising. Classes of weighted-average func-
tions whose weights have high entropy (which requires many non-zero weights) are easier to
learn. This is in contrast to the case of learning boolean functions, such as boolean linear-
threshold functions, where in general (for classes closed under permutation of the attributes)
learning gets harder as the number of relevant variables increases [Littlestone, 1988]
[Littlestone and Warmuth, 1989] [Littlestone, 1989b] [Blum et al., 1991].5 (Some of the up-
per bounds of [Littlestone, 1989b] depend on a product of two factors, one of which shows
the same decreasing dependence on entropy observed here; that decrease is typically dwarfed
by an increase in the other factor as the number of relevant variables increases.)

The following is a straightforward extension of the previous theorem. Its proof is

therefore omitted.

Corollary 10: We have

LCy(WA(n, M, k), N) € QM*(lnn—r)+N)

LCy(LINEAR(n, M,c),N) € Q((ecM)*Inn+ N).

By a least squares algorithm, we mean any algorithm which hypothesizes a linear
function at each trial that minimizes the sum of the squared errors on previous examples.
Next, we show that a least squares algorithm can have total loss which depends linearly on

the number of variables n.

Theorem 11: For eachn € N, M,c, N > 0, there exists a least squares algorithm B such
that

Ly(B, LINEAR(n, M,c), N)> (¢cM)*(n — 1) 4+ N.

Proof: Choose n € N, M,c, N > 0. As before, after the adversary gives a first example
of ((0,...,0),0), the adversary strategy is broken into two stages. In the first stage, the
adversary maintains consistency with some element of LINEAR(n, M, ¢), and in the second

stage, the adversary greedily expends a “noise budget.”

5For certain especially simple classes mistake bounds can again drop as the number of relevant variables

becomes a significant fraction of all of the variables.

21

In the second stage, which consists of |4N | 4 1 trials, each instance is (1/2,1/2,...,1/2),
and for the first |4V | trials the adversary simply responds with whichever of 0 or 1 is further
from the algorithm’s prediction. On the last trial, if the algorithm’s prediction is no more
than 1/2, the adversary responds with 1/24(1/2)\/4N — [4N], otherwise he responds with
1/2 = (1/2)/AN — [4N].

Let m=1—Fk+4 |[4N]| + 1 be the total number of trials of the adversary. Since the fact

that @-(1/2,...,1/2) must equal 1/2 implies that for each ¢,{ — k <t < m,

(ji- & —pl)? = 1/4,

we have
S o 4N
S (o) - i 702 = %
t<m
Also,
. 4N — |4N
(pt) — -7 = 4L S
$0
S0y =y

Also, the loss on each trial ¢ of phase two is at least (ji - 7t — p(t))Q, thus the total loss of
stage two is at least V.

Combining this with (2.8) yields the desired result. O

Note that this argument proves a stronger result than that stated in the theorem, since all
of the instances of the sequence of examples, as well as the entropy of the hidden coefficient
vector and the amount of noise, may be given to the algorithm before the first prediction
is made and adversary can then choose the responses of each example so that the loss is
maximized.

Note also that in the case that k = 0, the adversary uses only functions with just one
nonzero coefficient. This, combined with Theorem 7, implies that the inherent complex-
ity of the problem of learning functions which simply output a selected component is the

same (at least to within a constant factor) as that of learning the class of all functions

20

Using similar techniques, we can easily prove similar theorems for classes formed by
linear combinations of functions taken from some fixed finite set, e.g. for bounded degree

polynomials.

2.4 Lower bounds

We begin by proving a lower bound on LC32(WA(n,1,k), N). Our more general lower
bounds can be derived from this initial result. For the proof, we will need the following
notation. For w,v € N,v < logu + 1, let bit(u,v) be the vth least significant bit of the

binary representation of u (e.g., bit(6,1) = 0, bit(6,2) = 1,bit(6,3) = 1).
Theorem 9: We have

(lnn—m)_l_N_l

LCy(WA(n,1 N)> .
02((n7 7"{)7) — 41112 2

Proof: Let [= |logn|,k = [£/(In2)]. Consider an adversary which adaptively constructs a
sequence of examples as follows. The adversary’s first example is ((0,...,0),0). Afterwards,
the adversary operates in two stages. In the first stage, the adversary maintains consistency
with some function in WA(n, 1, k) C WA(n, 1, k). In the second stage, the adversary greedily
uses up its “noise budget.”

1-k)

of the first stage are constructed as follows: «M = 1if

The instances (), ..., & ;

bit(i,t) = 1 and ¢ < 2!, otherwise xgt) = 0. The adversary responds with 1 if the algorithm’s
prediction is no more than 1/2, otherwise the adversary responds with 0. Thus the loss of
the algorithm on each trial of stage one is at least 1/4.

Define i as follows: if 7 < 2! and for each ¢t < I — k, bit(i,t) = p®), then let p; = 275,
and otherwise, let y; = 0. Since the number of [bit vectors “satisfying” a (I — k)-bit mask
is 2%, ||fi]|1 = 1. Also, by construction, the linear function induced by i is consistent with
the examples of the first phase. Trivially, H(f) = kIn2 > k. Since the first phase consists

of [— k trials, the total loss of the first phase is at least

Flnn/(02)] — /(0 2)). (2.8)

19

bounds given later in this chapter show that tuning é can only yield an improvement of a

constant factor over the choice § = 1/v/2.

2.2.5 Noise tolerance

Note that the smallest we can make the constant on the “noise term” (at the expense
of the term depending on n and H(ji)) by increasing 6 is 4. However, our analysis is
somewhat loose, which leaves open the possibility that our algorithm’s loss (or that of a

related algorithm) is bounded by k(Inn — H(ji)) 4+ N(f) for some constant k.

2.3 More general linear functions

In this section, we describe more general learning results, obtained by applying the
reductions between real-valued learning problems described in Appendix C. All proofs of
this section are relatively straightforward, and may be found in that appendix.

For each n € N, M, x,c > 0 we will need the following definitions. Let WA(n, M, x) be
the set of f : [0, M]™ — [0, M] such that there exists @ € [0,1]™,]|f||s = 1 whose entropy
is at least s such that f(Z) = @ - & for all . Let LINEAR(n, M,c) be the set of linear
functions defined on [0, M]" such that the sum of the absolute values of their coefficients is
at most ¢. Since the entropy is only defined for non-negative coefficients summing to 1, we
omit the entropy parameter from LINEAR.

This section’s theorem shows that our algorithm may be modified to obtain excellent
algorithms for the classes defined above.

Theorem 8:
LCy(WA(n, M, k), N) < M?2LCy(WA(n, 1,k), N/M?) € O(M?*(Inn — k) + N)
LCy(LINEAR(n, M, ¢), N) < (2¢M) LCy(WA(2n 4+ 1,1,0), N/(2¢ M)?)
€ O((cM)?Inn+ N)

Proof: In Appendix C. O

18

Note that exp(Ay) =37, vt7iﬁft’i_pt, and therefore that

dexp(A . R o
=0 iff p, = V41 -7 and
0? exp(Ay) dexp(Ay)
——————~ >0 when———~ =0 and > 0.
75 o5, =

Thus exp(A¢), and therefore A, has exactly one minimum when g; € [0, 00]. Denote the
B¢ at the minimum as S . Now if we updated with 3., and fed #} to As after the
update was made, the algorithm would predict p;. Thus with the optimum choice for f3;
the algorithm is in some sense “corrective.”

Since we have determined the choice for 3; which gives the best bound when p, = i - &,
why not use it? First, we know no closed form for ;... We can use a number of
heuristics for approximating [., such as gradient descent, Newton’s method or binary
search. Another choice is to iterate the update of As a number of times with the same
instance ;.

However, even if the computational cost of approximating 3; ¢ is not a deterrent, there
is a second reason for not choosing a 3; that is too close to (.. This is illustrated
with the following example. Assume there is a long sequence of examples consistent with
i@ = (1/2,1/2) except that the first example ((1,0),1) is noisy. In this case, in order to be
consistent, we must hypothesize #; = (1,0), effectively choosing 31 = co. Now all future
updates cannot correct the second component of the weight vector of ¥, leading to an
unbounded loss on future examples consistent with (1/2,1/2).

5o in case of noise it is advantageous to choose 3; not too close to 3., and instead

make a less drastic update.

2.2.4 Tuning ¢

If one has a prior idea of N(fi) ahead of time, one can tune ¢ to optimize the first
bound of the preceding theorem. In fact, if N is known, one may calculate the best é using

calculus. However, the resulting expression, as a function of N and n, is hideous, and lower

17
2.2.1 Choosing an initial weight vector

If we choose 7} to be something other than (1/n,...,1/n), reflecting some prior bias on
which weighted combination of the experts predicts well, then the bounds in the previous
theorem hold if we replace “Inn — H(@)” by “I(fi||#1)”. Thus, our algorithm can take

advantage of increasingly accurate prior beliefs.

2.2.2 Trading between fit and entropy

There is a curious trade off between N(ji) and H(f) in the upper bound

L2(4,) 5.5) £ 5.83(Inn + min(N(f) — H(jD))).

i

For example, assume the algorithm receives a single example ((1,0,---,0),1). Since we
require that 7 € [0,1]" and ||f]|1 = 1, only fin = (1,0,---,0) is consistent. The upper bound
for i = iy is 5.831nn, since N(fi1) = H(fl1) = 0. However for i = (1/n,1/n,---,1/n) the

bound is 5.83, so the minimum in the loss bound is not achieved at the consistent vector

—

M-

2.2.3 Choosing the base of the exponent in our update

pet+8 1=X¢46
At+6 1—pe 46

How did we come up with our choice of g; = as the base of the exponent
in our update for the algorithm As? Consider the upper bound for A; given by the

Inequality (2.5) for the case when py = i - 7y
Ay <In(1+ (B = DAY = piIn By

Our above choice for 3, is obtained by minimizing this upper bound for Ay, i.e. we maximize

our bounds on the decrease of I(ji||#;) caused by the update in trial ¢.

However, there are better choices for g, for the case when p; = i - #. From (2.4) we get

A=Y v, ") = pyIn Be.

=1

16

where the minimum is over all ji € [0,1]" with ||fi||y = 1 and for each such [i, N(fi) is

defined to be 3701 (ji- Ty — p;)?. In particular,

LAy /5, 9) £ 5.83(Inn + min(N (i) — H(fi))).

i
Further, for any sequence S = (L, p))i<i<m of m examples in [0,1]" x [0,1] for which

there exists ji € [0,1]",||f]l1 = 1 such that for all t,1 <t < m, ji-Z; = pi, we have

(Inn — H (7))

LQ(A(JvS) < 2

Proof: Assume first that 6 > 0. Since I(f||?) = Inn — H (@) and and I(f]|vm41) > 0,
> Av = I(l|vm) — I(H[) > —Inn + H(f).
t=1

Thus using (2.2), we get:

S 2 lpe — [+ Z4l|pr — Ad L
e () 2 > —1 H(i).

i=

Rewrite the second inequality

ul (ﬁw—m)l (ﬁm—M) ((1+26)|pt—ﬁ-ft|

1426 1426 V26(1 4 6)

) > —Inn+ H(ji)

t=1

and apply Lemma 3, obtaining

(14 26)*

61 gy P e D

“ 1
— e)’
— (1+26)

Solving for Y72 (A — py)? yields the first loss bound of the theorem:

(1+26)*

Lo(As, §) < (14 26)2(Inn — H(fZ)) + 16211 6)2

N ().

For the second bound, observe that when § = 1//2,

. (1+26)*

(1 +26) _m

< 5.83.

Finally, the third bound may be easily obtained in a similar manner using (2.3).

This completes the proof. O

15

Ay = Z,Uihl s
=1

Vi41,0

n n_ Vs 2 Tt,y
- S (hi% In M)

i=1 v 2l

L 2=t VB

=1 v

. A= pe)? .
< %13% —2% (Using (2.6))
= =200 —pi)?

establishing (2.3).
Next, assuming again that § > 0, replacing the second term in (2.6) with its absolute

value, we obtain:

— -7 1Hﬁ§|
A < _9 I A/ 2 |pt 1% $t| | . 9.
t> (Pt)+ 1126 (2.7)

Now, we wish to bound |In 3|. First, let us assume that A\; < p;. Let z = p; — A;. Then

A+ z+6)(1=A+0)
A+)(1=A—z+6)

Ing=1In

Applying Lemmas 4 and 5, we get that

26+ 1)z (26+ 1)(pr— M)
R P N W R

By symmetry, when p; < Ay, if we let 2 = Ay — p;, we obtain

L2641z (28+1)(Mi—pi)

S ST e) - et
Hence
(26 4+ 1)z (26 +)|pr — A
N T I TS TR

Plugging into (2.7) yields the desired result. O

We can apply the previous lemma to obtain the following loss bounds.

Theorem 7: Choose n,m € N. Let S = (¥4, pt))1<i<m be any sequence of m examples in
[0,1]" x [0,1]. Then for each § > 0,

L9(As,5) < m}n ((1 +26)*(Inn — H(j7)) + %N(ﬁ))

14

coefficient vectors hypothesized by As and (A\;);eN be the sequence of Ag’s predictions. Let

Ay = I(f]|Begr) — I({]|7;) and for z € R let 2" denote Z+255. Then for all t, if 6 > 0,

3 |pe— A

2
<
A 5(1+ 6)

= (1426)2

If6 =0 and ps = [1-Z5 for all s <,
At S —Q(At—pt)z. (23)
Proof: Choose t. For each § > 0, let
85 = (Pt+5) (1—/\t+5)
TN \T—ptd)

Assume for the moment that 6 > 0. From the definition of A; and from Lemma 2 it

follows that

Ay = Z 223 In

?Jt-|-1 i

)

n 5
St S T
- ,uZ ‘th

ﬁ51+25

- > i1 Ut,jﬁéwéd
= pi ln =—=——F——
; Bs i
= 01ifBs7) +Zuzlnﬁ (2:4)

— i=1 615,1
n

Z (14 (8s — 1) Zﬂﬁmlnﬁé

=1 =1

_ _ 1 _ﬁ'ft+6
= In(1+(8s = 1)AY) 74—26 In 3

In(1+ (8s — 1)/\) — pyIn 3s —|—

IN

ln Bs. (2.5)

1—|—26

. . Y . .
Since (s can be written as % =, We can rewrite the last expression as
t t

pe— H- Tt

(/\t_pt)2 pr— [+ T
1—|—26 1 fs < — + In s, (2.6)

(1+26)2 1426

= I((pts L= pOII(A L = AD)) + 57—

—

applying Lemma 1. Since, if 6 = 0 and p; = i+ &,

13

X
vy - ({Pt-l—énl—/\t-l—é!) T+26
. te \ (N +8) (T—pe+9)
Vt41,0 = T

n) (1= \t6) | T2
S v (i)

If 6 = 0, the update is
X
(e (A=Ae) \ TH27
Ut ((/\t+’Y)(1_Pt+'V))

X
S ((pt-l—w)(l—At-I—w)) T+
i=1 Ykt \ () (T—pe)

(2.1)

Vey1,; = lim
y

—0

The algorithm Ag is only intended for use when there is known to be “no noise,”® i.e.

when there is a probability vector [such that for all ¢, p; = - Z;. In such circumstances, a
simple but tedious proof, included in Appendix B establishes that the weights maintained
by Ag are always finite. If p; < 1 and A; > 0, it is trivial that the above update preserves
the finiteness of the weights, and we may replace the limit above with the simpler update:
— Tt,e
Vi1, = o (itt(d_iz;) ’x .
Ty (Ml—_Atl) b

i=1 Yt Ae(1—pt)

In the case that p, = 1, Appendix B contains a proof that the update of (2.1) is equivalent

to the following

X

g, =1
Z]:mtJ:1 Vt,3

0 otherwise.

Vi1, =

When A, = 0, Appendix B contains a proof that p; = 0 (again, assuming that there is “no
noise”), and therefore trivially, that using Ao, for all ¢, viyq; = vy ;.

As in [Littlestone, 1989b] in the case of linear threshold algorithms, we use the relative
entropy between the coefficient vector @ of a target function and the coefficient vector
of the algorithm’s hypothesis as a measure of progress. Our key lemma relates the change
in this measure of progress on a particular trial to the loss of the algorithm on that trial.

Loosely speaking, it says that the algorithm learns a lot when it makes large errors.

Lemma 6: Choose 6 > 0 and n € N. Choose ji € [0,1]" such that ||fi]ly = 1. Let

((Zt, pt))1enN be a sequence of examples from [0,1]" x [0,1]. Let (Ti);cN be the sequence of

®Even then, it is not recommended for numerical reasons.

12

Lemma 5: For all 6 > 0, and z such that 0 < z <1,

(= +8)(1+9)
((1+8)— =)

(26 + 1)z

In 51 +0) "

<

Proof: Fix 6 > 0. Define f:[0,1] — R by

B (26—|—1)2_1 (z+6)(1+96)

& =505 Msaro-o
We have
, 20+ 1 S((L+6)—2)\ [6((1+8)—2)(1+8)+(=+0)(1+6)6
) s1+6) ((2+5)(1+5)) (21+ 06— z2))
2641 26+ 1
T 6148 (z+6H)(1+6—2)
> 0.

Thus, f is monotonically increasing and is thus minimized when z = 0. The fact that

f(0) = 0 then completes the proof. O

2.2 The basic family of learning algorithms

The basic family of learning algorithms {As : 6§ > 0} is designed to perform well on the
set of linear functions defined on [0,1]™ whose coefficients are nonnegative and sum to 1.
These functions can be viewed as computing weighted averages. Intuitively, the larger ¢ is
the more robust the algorithm is against noise, and, correspondingly, the more slowly the
algorithm learns.

The Algorithm As may be stated formally as follows. We maintain a vector of normalized
weights which is updated at the end of each trial. For each ¢, let ¥ € [0,1]" be the
algorithm’s weights before trial . When given the instance @y = (241, ..., 2¢,) € [0,1]" at
trial ¢, the algorithm predicts with A\; = @, - Z;. Let p; € [0, 1] be the response at trial ¢.

We initialize the weight vector to ¥ ; = 1/n for all i. At the end of each trial we update
the weights as follows:

If 6 > 0, our update is

11

The following series of lemmas also give approximations for quantities arising in our

analysis.

Lemma 3: For all z,y € R,

rr—y) 2 50 =)

Proof: Suppose z > y. Then z is at least the average of # and y, which is (# 4+ y)/2. Thus,

rr—9) 2 Sty —y) = 50—)

Now, suppose & < y. Then # — y < 0, and thus the fact that (z + y)/2 > « in this case

implies that

o= 9)> 5o+)z - 9) = 52 -)

completing the proof. O

Lemma 4: For all z,6 and x such that 6 > 0,0 <2< 1 and 0 <z <1 — 2z,

(z+2z+8)(1—a+0) <1n(z+6)(1+6)

b o ice g0 S Sz 55)

Proof: Fix z,6 > 0. Define f:[0,1— z] — R by

(z+24+8)(1—z40)

ﬂ@:th+®u—x—z+®‘

Note that it is sufficient to prove that f is convex over its domain, since the right hand side
of the claimed inequality is f(0) = f(1 — 2).

Define g : [0,1 — z] — R by

Then

fl@) = g(z)+g((1-2)—2)
fz) = ¢@)—g¢'((1-2)-2)

@) = ¢"(@)+¢"(1-2) -).

Hence, the result follows from the convexity of g, which is easily verified. O

10

were too large. Of course, these changes are reversed when the aggregate prediction is too

small.

Our algorithms use the above philosophy of updating the weights with the additional
crucial feature that the smaller the aggregate error, the “gentler” the updates. In particular,
if the aggregate prediction is correct, the weights are not changed.

As is done in [Littlestone, 1989b] for linear threshold functions, we use the relative
entropy between our weights and a target set of weights as a measure of progress. The
relative entropy is an information theoretic notion normally used to measure the distance

between probability distributions.

2.1 Preliminaries

We will find it convenient to discuss sequences ¥y, Zs,... of elements of R”. In such
circumstances, we will denote the 7th component of ¥; by z; ;.

Suppose ji, ¥ € [0,1]" are such that ||fi]|1 = ||7]|1 = 1. We define the entropy of [i to be
oy —piIn p;, where 01n 0 is taken to be 0, and denote this quantity by H (). The relative

entropy between ¥ and fi, denoted by I(ji||¥), is given by
IR i
1(f]|5) = Y _ piln e
=1 v

For any two such i and 7, it is well known that I(j||¥) > 0 and that I(7]|7) = 0 iff 7 = 7.

We will need the following simple lemmas. The first is due to Kullback [Kullback, 1967].
Lemma 1 ([Kullback, 1967]): For A,p € [0,1] I((p,1—p)||(A, 1= X)) > 2(A — p)2.
We will also make use of the following.

Lemma 2 ([Littlestone, 1989b]): For all 3 > 0,z € [0, 1],

with equality iff =0 or x = 1.

the advisor would be to initially weigh all opinions equally, and adjust the weight assigned
to each economist based on her performance.

When using a weighted average for prediction, a natural interpretation of the weights
is as the relative “credibilities” of the economists. Given this interpretation, a natu-
ral reweighting strategy is to reduce the weights of each economist according to some
monotone function of how far off her estimate was (e.g., the Weighted Majority algo-
rithm [Littlestone and Warmuth, 1989]), and then normalize so that the weights sum to
one. In the discrete case this approach can lead to logarithmic total mistake bounds
[Littlestone, 1988] [Littlestone, 1989b] [Littlestone and Warmuth, 1989]. Furthermore, it
was shown in [Littlestone and Warmuth, 1989] that in the continuous case the loss of the
advisor is at most O(logn) plus a constant times the least individual loss of any of the n
economists.?

However, if one wishes to learn a linear combinations without assuming that any one
economist does well individually, then this strategy does not work. Suppose that there
were three economists: one who always wildly overestimated the GNP, one who wildly
underestimated the GNP, and one who always gave an estimate slightly greater than the
correct GNP. Suppose further that the average of the estimates of the two wild economists
was always exactly correct, so that there was a weighting with zero total loss. It is easy to
see that in this example the loss of the above strategy is unbounded: the wild economists’
contribution will be steadily decreased and in the limit the prediction of the economist who
is always slightly off will dominate.

It turns out that the following intuition can be translated into an essentially optimal
learning algorithm. If the aggregate opinion was greater than the true GNP, then those
whose predictions were too small were “pulling” the aggregate in the right direction, and
the marginal effect of increasing their weights is to improve the aggregate prediction, even
if their predictions were very inaccurate. Thus one would want to increase the weights of

those whose predictions were too small, and decrease the weights of those whose predictions

* Again, these results are with respect to the loss function |A; — p¢|.

rule including experimental comparisons is given in [Cesa-Bianchi et al., 1991].

Our algorithms are motivated by the algorithms of [Littlestone, 1988] [Littlestone, 1989b]
for learning simple boolean functions, such as clauses with a small number of literals. In
that case the predictions and responses are boolean. A mistake occurs when the predic-
tion and response disagree, and the loss is taken to be the total number of mistakes in all
trials. Algorithms are given in those papers for learning k-literal clauses whose worst case
mistake bounds are at most a constant factor from optimal. We generalize the techniques
developed there to the learning of linear functions defined on R"™. Algorithms for a simple
continuous-valued case which are within a constant factor of optimal have already been
given in [Littlestone and Warmuth, 1989]. In our notation, this is the case when exactly
one of the hidden yu;’s is 1 and the rest are 0.

As in [Littlestone, 1988] [Littlestone, 1989b] [Littlestone and Warmuth, 1989] and the
Widrow-Hoff rule [Widrow and Hoff, 1960] [Duda and Hart, 1973], our algorithms maintain
a vector of n weights that is updated each trial after the response is received. Let #;
represent this weight vector before trial . Our algorithms always predict with the current
weight vector: i.e., they predict A\; = ¥; - ;. Note that in the noise-free case it is easy to
always find a coefficient vector v consistent with the previously observed examples, i.e., such
that for all j less than ¢, ¥'-¥; = p;. However, consistency is neither necessary nor sufficient
to obtain the performance we describe. We show that an algorithm that predicts using an
arbitrary consistent linear function can have loss of Q(n) (Theorem 11). Our algorithms
do not necessarily maintain consistency with previously observed examples. Instead, they
are designed so that they “learn a lot” from a large loss, so that the cumulative loss is only
logarithmic in n instead of linear.

To get some intuition about updates of the weights that might achieve the above, let us
go back to our initial example of predicting the GNP. An obvious strategy for the advisor
would be to predict with the average estimate of the economists. Suppose, however, the

advisor notices that some economists are better at predicting the GNP. A good method for

3These results are with respect to the loss function |As — pyl.

the corresponding weighted average of economists’ estimates always equals the actual
GNP. For that case, we describe a family {As : 6§ > 0} of learning algorithms. We
show that for any finite sequence of trials and any é > 0, the loss of Ag is bounded by
O(min{lnn — H(@) + 7, (f - & — pt)*}), where the minimum! is over all probability
vectors ji € [0,1]". In particular, this implies that the total loss of As is O(logn 4+ N),
where N is the total loss obtained from the best fixed weight vector. This performance is
obtained even though the algorithm is not given any information about future examples
and about the error term (the sum in the above expression). As in the case in which all
examples are consistent with some hidden function, we can show that our algorithms are
optimal to within a constant factor. We can also give algorithms for more general linear
functions defined on more general domains by transforming such problems into the basic
problem discussed above. These transformations resemble those studied in [Haussler, 1989b]
[Kearns et al., 1987] [Littlestone, 1988] [Pitt and Warmuth, 1990].

It was shown in [Cesa-Bianchi et al., 1991] that the worst-case total loss of the Widrow-
Hoff rule (also sometimes called the A-rule) [Widrow and Hoff, 1960] [Duda and Hart, 1973]
in the setting of this chapter is Q(n + N), where, again, N is the total loss of the best
fixed weight vector. This contrasts with the bound of O(logn + N) for our algorithm.
On the other hand, techniques due to Mycielski? [Mycielski, 1988] can also be used to
show that the Widrow-Hoff rule is within a constant factor of optimal for a closely related
problem, where, instead of assuming that the hidden weight vector ji consists of nonnegative
components summing to one, one assumes that it has Euclidian length at most one, and
instead of choosing instances ¥y, ¥o, ... from [0, 1], one assumes that the Euclidian length
of the instances is 1 [Cesa-Bianchi et al., 1991]. The bound of the sum of squared errors

obtained is 2.25(1 4+ N). A more detailed comparison of our algorithm to the Widrow-Hoff

!There is a subtle trade off between the two summands in the minimum. Even if there is a @ such
that pr = - & for all 1 < ¢t < m, the minimum sometimes occurs at a i’ with higher entropy for which
ST F—) 0

Mycielski gives worst case bounds on the total loss of the Widrow-Hoff rule. Instead of giving bounds

in terms of Z:Zl(ﬁ N - pt)2, he states his bounds in terms of m max, (g - Ty — pt)2.

2. On-Line Learning of Linear Functions

Suppose, for budget purposes, each year each member of a panel of economists predicts
the next year’s GNP and an advisor to the president wishes to combine their predictions to
obtain a single prediction. If we measure the loss for each year as the square of the difference
between the advisor’s prediction and actual GNP, a reasonable goal for the advisor is to
minimize the worst case total loss over the years. In this chapter, we present near-optimal
strategies for combining opinions in situations like this, assuming that some fixed weighted
average of the economists is always reasonably close to the actual GNP, which, for problems
like this, appears reasonable.

Let CONVEX,, be the class of functions f defined on R™ by f(Z) = ji- &, where
i € [0,1]" has components which sum to 1 (let’s call such 7 “probability vectors” from here
on). Note that each function in CONVEX,, takes a different convex combination (“weighted
average”) of the components of its argument. In this chapter we will concern ourselves with
LC3(CONVEX,,, N). As we will see later, it is interesting to consider CONVEX,, not only
for situations like combining the opinions of experts, where it is interesting for its own
sake, but also because the analysis of CONVEX,, forms the basis for the analysis of several
natural, and larger, classes of functions.

Let us begin with the case N = 0, i.e., the case in which there is an unknown f €
CONVEX,, for which f(&%) always equals p,. We describe an algorithm Ay for this case,
and prove that the worst case sum of squared errors of Ag on any sequence of trials consistent
with an element of CONVEX,, is at most (Inn — H(f))/2 where H(fI) = — > iy i Inpy
is the entropy of the hidden coefficient vector 7 that defines f. Since for all relevant fi,
H(ji) > 0, another upper bound on total loss of Ag is (Inn)/2. Also, as fi approaches
(1/n,1/n,....,1/n), H(ji) approaches In n, and our bounds approach 0. We show that for all
values of H(fi), Ao is optimal to within a constant factor. Note that our bounds hold for
an arbitrarily large number m of trials.

Now, suppose that N > 0, e.g., that there is not any fixed set of weights such that

Fix X and Y and a learning algorithm A. For a finite sequence of examples 5 =

(24, p¢))1<t<m we then have that the prediction A; of A on the t-th trial satisfies

Av = A(((21,p1); oo (B2, pe-1)); 7).

For p > 1, the p-loss of A on 5 is defined as follows:
Lo(A.8) = 3 [Ac = pil”.
=2

Note that we begin summing on the second trial. This is reasonable, since an algorithm’s
prediction on the first trial is made without seeing any examples, and is therefore not
an indication of learning ability. The upper bounds of Chapter 2 also hold if we begin
summing on the first trial, but not those of Chapter 3. The p-loss of A on a particular
trial ¢ is [A; — p¢|P. Finally, if F is a class of functions from X to Y, let L,(A,F,N) be
the supremum of L,(A,S5) over all finite sequences S = ((2¢,p¢))1<i<m of examples (of
unbounded length) such that there exists f € F with >/, (f(2¢) — pe)? < N. L,(A, F,N)
measures the algorithm A’s ability to take advantage of the fact that a nearly functional
relationship from the known class F exists between the z;’s, which it uses for prediction, and

the py’s, which it is trying to predict. The parameter N indicates how close to a function

in F this relationship is. The p-learning complexity of F (with N noise) is given by
LC,(F,N)= i%f L,(A,F,N).

The p-learning complexity is the best “p-performance” that can possibly be obtained for F
(and N), and therefore gives us a measure of the power of the assumption that there is a
function in F that (nearly) maps a¢’s to p;’s.

Finally, when N = 0, we will drop mention of N from our notation. That is,

Lp(A,f,O) = Lp(Avf)

LC,(F,0) = LC,(F).

In Chapter 3, we will consider classes of functions of a single variable designed to capture
the intuition that, for many relationships of practical interest, similar inputs tend to yield
similar outputs. We show that for several settings of this type, extremely simple algorithms

are optimal.

1.1 Defining adversarial learning

Some standard notation and mathematical definitions are listed in Appendix A. We
give more topic-specific notation and definitions here.
Let X be aset, Y C R. We assume that learning takes place in a sequence of trials,

where in the #th trial,
e The (on-line) learning algorithm receives € X from the environment.

e The learning algorithm outputs a prediction A\; € Y (interpreted as a prediction of

the upcoming response py).
e The learning algorithm receives a response p; € Y.

Note that each pair (@, p¢) serves a dual role in this setting. At time ¢, it is used to test the
algorithm’s predictive ability. For trials s > ¢, it is used by the algorithm to make future
predictions.

In keeping with the second role, we define an example for (X,Y) to be an element of
X xY. If (z,p) is an example, call 2 the instance and p the correct response to z. If fis a
function from X to Y, we say that f is consistent with an example (z,p) if f(z) = p, and
that f is consistent with a sequence S of examples if it is consistent with each example of
S.

Fach prediction of an on-line learning algorithm (for (X,Y)) is determined by the
previous examples and the current instance. Associated with an on-line learning algorithm
A we define a mapping of the same name from (X x Y)* x X to Y. Let A(X,Y) be the set

of such mappings corresponding to learning algorithms for (X,Y).

[Maass and Turan, 1989] [Maass and Turan, 1990]. We will find that several techniques
developed during the study of mistake-bounded learning, especially some of Littlestone’s
[Littlestone, 1988, Littlestone, 1989b], are useful for the problems addressed in this part.

Despite the popularity of the mistake-bound model, perhaps the dominant model of
learning relationships between {0, 1}-valued quantities is Valiant’s PAC model
[Valiant, 1984], and variants thereof (esp., [Haussler et al., 1990]). This model, which will
be described in more detail in Part 11, includes probabilistic assumptions on the learner’s en-
vironment. Kearns, Li, Pitt, and Valiant [Kearns et al., 1987] and Angluin [Angluin, 1988]
independently showed that a “good” learning algorithm in the mistake-bound model can
be transformed into a “good” algorithm in the PAC model, and Haussler [Haussler, 1988]
showed that in many cases, no transformation was necessary. Littlestone [Littlestone, 1989a]
described a transformation which, in some cases, yielded better PAC learning algorithms.
Blum [Blum, 1990c] then showed that no such conversion could exist from the PAC model
to the mistake-bound model, exhibiting a class which was “learnable” in the PAC model,
but not in the mistake bound model.

Littlestone has sinced generalized his transformation to show that algorithms with good
performance in the model considered in this part can be transformed to obtain algorithms
that are very good in random environments, in a natural sense [Littlestone, 1991]. Thus,
“worst-case” analyses like those in this part are interesting not only because they can be
applied in a broader variety of circumstances, but also due to their consequences concerning
learning in random environments.

In Chapter 2, we will consider learning in this model where it is assumed that the
mapping to be learned is linear. An intuitively obvious algorithm is to simply hypothesize
at any given time the function which would have yielded the best predictions, had we used
it in the past. We show that this algorithm can perform significantly far from optimal in a
natural setting, and describe an algorithm whose performance is within a constant factor of
optimal. We will see that our results may also be applied when the mapping is a low order

polynomial.

1. Introduction

In this part, we will be concerned with situations in which a learner wishes to use the
current value of a certain quantity (or quantities) to predict the future value of another
quantity. Examples include using the barametric pressure to predict rainfall, using the
interest rate to predict changes in the Dow Jones average, or combining the predictions
of several experts (e.g., National Basketball Association scouts) on the future value of any
quantity (say the scoring average during the first NBA season of a current college senior).
We wish to further focus our attention on problems where the value that was predicted
is later received, e.g. through observation or measurement, as is the case in the examples
sketched above. Finally, we assume that a (nearly) functional relationship exists between
the quantity used for prediction and that predicted, and that the learner knows of a class
of functions containing the mapping to be “learned.”

A main distinguishing feature of the research described in this part is the absence of
probabilistic assumptions about the learner’s environment. Instead, we assume that the
learner’s environment is an adversary operating within a certain reasonable constraint.
An interpretation of the adversary’s constraint is that it enforces that the learner’s prior
knowledge of the class of functions containing that to be learned is (nearly) accurate. It
is a well-established “pseudo-theorem” that nontrivial learning in the absence of such prior
knowledge is impossible.

The learning model of this part was introduced by Mycielski [Mycielski, 1988], and in-
dependently by Littlestone and Warmuth [Littlestone and Warmuth, 1989].1 It generalizes
the “mistake-bound” model of Angluin [Angluin, 1987] and Littlestone [Littlestone, 1988],
in which it is assumed that the quantity to be predicted takes on one of two values.
This model and its close relatives have been heavily studied [Angluin, 1988] [Blum, 1990b]
[Blum, 1990a] [Blum et al., 1991] [Helmbold et al., 1990] [Littlestone, 1988]
[Littlestone, 1989b] [Littlestone and Warmuth, 1989] [Maass, 1991]

! These papers will be discussed further in Chapter 2.

Part 1

Learning Real-Valued Functions in an

Adversarial Environment

viii
students, who have taught me a lot. I'd like to especially thank Naoki Abe, Nicolo Cesa-
Bianchi, Yoav Freund, Lisa Hellerstein, Anders Krogh, Nick Littlestone, Aleks Milosavljevic,
Giulia Pagallo and Madhukar Thakur.
Finally, I’d like to thank David Haussler and Manfred Warmuth for their generous
financial support, which came from ONR grants numbered N00014-86-K-0454 and N00014-
91-J-1162. I'd also like to thank UCSC for giving me a Chancellor’s dissertation-year

fellowship.

vii

Acknowledgements

I’d like to begin by thanking my parents, Ralph and Linda Long, who inspired by their
example, provided a loving home, and who dedicated themselves to my and my brother’s
education. I'd also like to thank my dear friend Melanie Liu, who generously gave emotional
support, listened patiently to many descriptions of the work described in this thesis, and
asked many interesting questions. Also, thanks to my brother Al Long, with whom I’ve had
many stimulating discussions about this work and related topics, and who has also been
very supportive.

Very special thanks go to David Haussler, Dave Helmbold and Manfred Warmuth, who
shared a majority of the responsibility for my graduate education. They were very patient,
and extremely generous with both time and ideas. Studying with them has been the single
greatest joy of my life.

I’d also like to thank those with whom I pursued the work described in this thesis: Shai
Ben-David, Nicolo Cesa-Bianchi, David Haussler, David Helmbold, Don Kimber, Nick Lit-
tlestone, and Manfred Warmuth. Thank you for the pleasure of working with you, and for al-
lowing me to include our joint research in my thesis. The results of Chapter 2 were obtained
through joint work with Nick Littlestone and Manfred Warmuth, and appeared in a pre-
liminary form in [Littlestone et al., 1991]. Chapter 3 contains work done jointly with Don
Kimber [Kimber and Long, 1992]. The work described in Chapter 5 was done jointly with
Shai Ben-David, Nicolo Cesa-Bianchi, and David Haussler [Ben-David et al., 1992]. David
Haussler also contributed to the work contained in Chapter 6 [Haussler and Long, 1990].
Chapter 7 contains joint work with David Helmbold, and improves on the preliminary
results we reported in [Helmbold and Long, 1991].

Thanks also to those who contributed indirectly to this thesis by teaching interesting
classes. Among the most memorable are George Exner, Sol Friedberg, David Haussler,

Dave Helmbold, Phokion Kolaitis, Bill Miller and Manfred Warmuth.

I’d like to thank the Santa Cruz Machine Learning postdocs and my fellow graduate

Towards a More
Comprehensive Theory
of Learning in Computers

Philip M. Long

ABSTRACT

We attempt to determine the theoretical boundaries of the ability of computers to learn.
We consider several rigorous models of learning, aimed at addressing types of learning
problems excluded from earlier models.

In Part I, we consider learning dependencies between real-valued quantities in situations
where the environment is assumed to be an adversary, operating within constraints that
model the prior knowledge of the learner. While our assumptions as to the form of these
dependencies is taken from previous work in statistics, this work is distinguished by the fact
that the analysis is worst case.

In Part I, we consider learning in situations in which the learner’s enviroment is assumed
to be at least partially random. We consider methods for extending the tools for learning
{0, 1}-valued functions to apply to the learning of many-valued and real-valued functions.
We also study the learning of {0, 1}-valued functions in situations in which the relationship

to be learned is gradually changing as learning is taking place.

List of Figures

3.1 ChangeinJ

7.1 Algorithm Min-Disagreements

v

IT Learning in a Random Environment 41
4. Introduction 42
4.1 Some definitions L e 43

5. Characterizations of Learnability for Classes of Many-valued Functions 47

5.1 Generalizations of the VC-dimension 48
5.2 Applications to learning L L Lo 52
6. A Generalization of Sauer’s Lemma 58
6.1 Statement of results L L L 58
6.2 Proofsof theresults oL 61
6.3 An application oL L e 67
6.4 Discussion 75
7. Tracking Drifting Concepts 77
7.1 Notation and some definitions o000 81
7.2 Increasingly unreliable evidence and hypothesis evaluation 82
7.3 Efficiently approximately minimizing disagreements 86
7.4 Upper bounds on the tolerable amount of drift 92
7.5 Discussion L L e e e e 95
References 98
A. Mathematical Preliminaries 102
B. The finiteness of Ay’s weights 104
C. Reductions between real-valued learning problems 106

C.1 Proof of Theorem 8. e e 107

iii

Contents
Abstract vi
Acknowledgements vii
I Learning Real-Valued Functions in an Adversarial Environment 1
1. Introduction 2
1.1 Defining adversarial learning o oL 4
2. On-Line Learning of Linear Functions 6
2.1 Preliminaries oL e 10
2.2 The basic family of learning algorithms 12
2.2.1 Choosing an initial weight vector 17
2.2.2 Trading between fit and entropy 17
2.2.3 Choosing the base of the exponent in our update 17
224 Tuning 6 e 18
2.2.5 Noise tolerance L oL e 19
2.3 More general linear functions Lo oL 19
2.4 Lower bounds L L 20
2.5 Discussion 24
3. The Learning Complexity of Smooth Functions of a Single Variable 26
3.1 Introduction L e 26
3.2 Some negative results Lo 28
3.3 Some positive results oL 31
3.4 More general loss functions L Lo 34

3.5 Bounded-length trial sequences L L oL, 38

UNIVERSITY OF CALIFORNIA
SaANTAa CRUZ

Towards a More
Comprehensive Theory
of Learning in Computers

A dissertation submitted in partial satisfaction
of the requirements for the degree of

DocTor oF PHILOSOPHY
in
COMPUTER AND INFORMATION SCIENCES
by
Philip M. Long
June 1992

The dissertation of Philip M. Long is
approved:

David Haussler

David P. Helmbold

Manfred K. Warmuth

Dean of Graduate Studies and Research

