
UNIVERSITY OF CALIFORNIA

SANTA CRUZ

Automatic Process Selection for Load Balancing

A thesis submitted in partial satisfaction

of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

William Osser

June 1992

The thesis of William Osser is

approved:

Prof. Darrell D. E. Long

Prof. Kimberly E. Taylor

Prof. Charles McDowell

Dean of Graduate Studies and Research

Copyright c by
William Osser

1992

iii

Contents

Abstract vi

Acknowledgments viii

1. Introduction 1

2. Previous Research 4

2.1 The Sprite Operating System : 5

2.2 Load Balancing Algorithms : 8

2.2.1 Distributed Algorithms : 10

2.2.2 Centralized Algorithms : 16

2.2.3 Choosing an Algorithm : 17

2.3 Which Processes Can Execute Remotely? : : : : : : : : : : : : : : 17

2.3.1 Existing Schemes : 20

2.3.2 Deciding Which Processes Can Execute Remotely : : : : : 24

3. Adding Automatic Load Balancing to Sprite 26

3.1 Modifying the Shell : 29

3.2 Kernel Modification : 33

iv

3.3 Migration Policies : 35

3.4 Other Considerations : 37

4. Measurements 39

5. Future Research 44

5.1 Enhancing Process Identification : : : : : : : : : : : : : : : : : : : 44

5.2 Rigorous Statistics Acquisition : 45

5.3 Load Balancing : 46

5.4 Increased Testing : 48

5.5 Other Modifications : 49

6. Conclusion 51

References 53

A. History Toolkit 57

B. Sample Programs 62

B.1 Consw.c : 62

B.2 gettime.c : 64

v

List of Tables

4.1 Comparison of local execution versus remote execution : : : : : : 40

4.2 Comparison of gettimeofday calls executed locally and remotely. : 42

Automatic Process Selection for Load Balancing

William Osser

ABSTRACT

Distributed operating systems give users access to multiple computational

engines throughout the system network. Users of one workstation are not

hindered by the CPU intensive applications run on a different workstation.

However, when a large number of machines in the network are idle, the

efficiency of computation is decreased. Load balancing promises to alleviate

this problem by sharing the workload on heavily loaded workstations with

lightly loaded workstations. A threshold can be established so that only a

limited number of processes are transferred to the lightly loaded sites, so that

the load at those sites does not inhibit local execution of processes.

While load balancing has been studied extensively, there have been few

studies on determining which processes should be relocated to increase the

throughput of the system. We present an automatic process selector for load

balancing that chooses processes to be relocated based on the history of its

performance. We have implemented this system on the Sprite distributed

operating system [1].

vii

To my parents, neither of whom ever had any difficulty deciding which tasks

should be distributed to their sons.

viii

Acknowledgments

First and foremost, I would like to thank Professor Darrell Long. Darrell

captured my interest when describing operating systems, Sprite in particular,

and made sure that I did not fall too far behind my time schedule. I also want

to thank Dean Long for the large amount of time he invested in reviving Sprite

each time it died. Rich Golding was and still is a constant source of inspiration

to me, and he gave me enough faith in myself to complete this project. Bruce

Montague spent an large amount of time reminding me how to write in the

active voice, and was always available for forays into the shell and kernel code.

Other people in the CSL that Imust mention areMichelle Abram, Bob Ellefson,

Nitin Ganatra, Fred Long, and Carol Osterbrock, who put up with my endless

use and abuse of several of the lab resources.

Kim Taylor and Charlie McDowell were very patient, allowingme give them

a rough draft whenever I could, and making several pertinent suggestions for

improvement. I want to thank my fiance Andrea Silver (soon to be Osser)

for putting up with me over the last few months. I also need to thank K.B.

Sriram, Max Copperman, Professor DaveHaussler, and especiallyPhil Long for

describing the two-armed bandit problem, and pointing out how it is applicable

in this system. Douglas Jones proof read several revisions of my thesis to

give me a sanity check. Finally, I want to thank Fred Douglis for answering

ix

numerous questions on Sprite, and givingme the pointers I needed to findmany

of my referenced papers.

1

Chapter 1

Introduction

As the power of individual workstations increase, distributed systems are

becoming more popular. Users have all of the capabilities that are provided by

their workstations, and at most times, this is sufficient. However, there are

cases when the power of one workstation is not sufficient to complete all of the

tasks at hand. One solution to this problem is to distribute some of the tasks

to an idle workstation. Studies have shown that over 65% of workstations are

idle at any given time [2, 3]. Distributing processes over all of the workstations

in the network balances the load at each machine so the overall time needed to

complete tasks is reduced.

Automatic load balancing is a system process that distributes tasks from

heavily loaded workstations to idle workstations without user intervention.

This user-transparent process provides a greater amount of processing power

to all users of the system. Early studies showed that automatic load balancing

can be achieved in multiprocessing systems [4] (before distributed systems

were commonly available). Since then, several different algorithms have been

presented for load balancing of multiprocessing and distributed system. The

load from one workstation can be transferred to a lightly loaded workstation

through two different methods. One method is to start a process remotely and

2

wait for it to terminate, using tools such as rsh [5]. Another method uses a

mechanism called process migration [1].

Processmigration in the Sprite distributed operating system [1] is defined as

being able to halt a process during its execution, freeze its current state, move

it to a different host, and then resume execution [2]. One of the advantages of

processmigration is that it can beused to distribute the load fromheavily loaded

workstations to idle ones during process execution. If an idle workstation

becomes active again, any migrated processes can be sent back to their original

locations.

While there are several different methods for balancing the load in dis-

tributed systems, there are few publishedmethods of selecting which processes

should be migrated for the best performance. We present a set of criteria that

are used by an automatic load balancing scheme to select processes for remote

execution based on past performance statistics. We have incorporated some of

the ideas of previous proposals and working systems to implement an automatic

process selector based on the performance history of each program. The criteria

used to determine whether a process will be remotely executed is specified by

either the user or the system administrator.

The rest of this document is organized as follows. In chapter 2, we examine

previous research in automatic load balancing, automatic process selection,

and the Sprite operating system, which we have chosen to use to implement

our automatic process selector. In chapter 3, we describe the considerations

and implementation of our system, and the criteria used to determine whether

a process should be remotely executed. In chapter 4, we give a performance

evaluation of our system. In chapter 5 we describe future work and alternate

methods of implementation. In chapter 6, we present our conclusions on this

3

project. Appendix A gives sample output from our process selector, while

Appendix B gives a listing of some of the programs used to takemeasurements.

4

Chapter 2

Previous Research

Operating systems require different tools to support load balancing. Con-

siderations include the implementation of the file system, the types of processes

that will be executed on the system, and the process relocation mechanism. If

a process can be relocated during execution, load balancing may need to be

performed continuously. If a process is only assigned a location upon invoca-

tion, then the load balancer will only be needed at process activation. Remote

execution is advantageous in a system where there are a number of long run-

ning jobs. A file system that is globally accessible provides better support for

remotely executed processes than a file system in which some files cannot be

accessed from any node.

Our goal is to create an automatic load balancer. This is an automated

decision making process that removes as much responsibility from the users as

possible while still providing a balanced load with close to optimum response

time. Besides providing a mechanism to relocate processes to balance the load,

we must also provide a method whereby processes are chosen automatically for

remote execution. Processes that would experience performance degradation

from remote execution should not be migrated, while those that would experi-

ence improved response time should be the first processes chosen for migration.

5

This chapter describes the requirements for an automated load balancing

program that will decide which processes should be executed remotely, and

which processes locally. First, we describe the requirement of the operating

system to implement an initial placement policyand performautomated process

selection. The different aspects of the Sprite operating system that makes it

suitable for this purpose are discussed. Next, we present some of the different

algorithms that have been developed for load balancing, as well as those that

have been implemented in Sprite. Some methods of determining whether a

process should be executed remotely are also examined.

2.1 The Sprite Operating System

There are several issues that must be considered when choosing an oper-

ating system to support automatic process selection for load balancing. The

operating system must have a uniform name space for accessing files. Every

process must be capable of executing on any homogeneous machine. If a pro-

cess cannot be executed on every machine, then there is an additional cost that

must be paid to identify such processes. There must be an inexpensive way

to remotely execute a process. Additional overhead in executing a program re-

motely may degrade the performance of a process such that there is no benefit in

executing it remotely. Finally, the performance information and resource usage

of a process must be available, preferably to user processes. This information

is useful for determining whether a process may be executed remotely.

The operating system that we have chosen to use is the Sprite operating sys-

tem developed at University of California, Berkeley [1]. Sprite is a distributed

operating system that provides aUNIX compatible interface. The name space is

6

transparent to all of the clients [6], so all files are accessed uniformly through-

out the system. Sprite provides process migration, which supports moving

processes to any homogeneous machine before or during execution [2]. Sprite

includes a migration daemon [7] which locates a site for remote execution and

migrates a process to that site. Processes only migrate to workstations that

have received no user input from the mouse or keyboard in the last thirty sec-

onds. When input is received from either of these devices, all remote processes

are evicted and sent back to the machine from which they were originally in-

voked. Processes migrated by the daemon are sent to machines that have been

idle for the greatest amount of time.

Sprite’s process migration is transparent to the user. When a process is

migrated, all dirty pages are flushed to backing files. The state information

of the process is then transferred to the target machine and needed pages are

loaded from the backing files [2]. A process control block is kept on the machine

that invokes that process for every process executed, including processes that

have been migrated. This supports a mechanism whereby calls to the process

can be forwarded to the machine where the process is executing. System calls

are handled by the target machine with the exception of those calls that must

be handled by the machine that originally invoked the process. An example of

such a call is gettimeofday, which must be executed on its home machine since

clocks are not synchronized between workstations.

Some processes can never be migrated. When a process is migrated, as

much of its state is transferred as possible. State information private to the

process and internal kernel state can be transferred without much difficulty.

However, state information concerning certain physical devices on the home

machine cannot be migrated. A program such as the X window system accesses

7

the frame buffer, which is a physical device that cannot be transferred. Such

processes are not flagged by the operating system, so any program that migrates

processes needs to flag these as exceptions so that they are never migrated.

There are local devices that can be accessed remotely, as well as user and

server processes that have been made available through the file system as

pseudo-devices [8]. A pseudo-device is a process or device whose driver is a

user process, instead of part of the kernel. This allows extensions to the file

system without modifying the kernel. Pseudo-devices give system access to

those objects for which the operating system handles I/O functions. Any access

to a local device, local pipe, or a local pseudo device can be executed on a remote

machine. Some of these devices are the keyboard, the tty, and the TCP and

UDP servers, which supports access to NFS files instead of Sprite’s own LFS

file system [9].

Sprite satisfies the uniform name space requirement, as well as providing

an inexpensive remote execution facility. It also provides performance and

resource usage information. Since Sprite provides a UNIX compatible pro-

gramming interface, certain system calls which return a process’s performance

statistics, such as getrusage and wait3, are available to user processes. In the

current Sprite implementation, some of these statistics are simply returned as

zero. However, with a small number of modifications, the needed values can be

obtained.

Two programs that use the migration daemon to distribute work load are

Pmake andmig [2]. The former programdoes a parallel compilation, separating

each makefile command into a different process and migrating that process to

an idle host [2]. The mig command migrates a user-specified process to an idle

host. A recent modification to the command interpreter (shell) migrates specific

8

processes using the migration daemon [10]. These processes must be specified

by the user.

A problem with the existing method is that it only migrates processes to

idle clients. Once a process has been migrated to an idle site, that site is no

longer idle, and thus no more processes can be migrated to the site until the

first process has terminated. A true load balancing algorithm would migrate

more than one process to a user-idle site. We have found no measurements in

the literature that justify the limit of one migrated process per workstation. It

may be that in a network with a large number of workstations there are always

enough idle workstations for process migration. However, in a small network,

the benefits of load balancing would be limited. In this case, increasing the

number of migrated processes on a client would clearly be desirable have to be

increased.

2.2 Load Balancing Algorithms

In order to perform load balancing, it is necessary to identify nodes to which

it would be advantageous to move processes. Once a source and target site are

located, a process that would normally be executed on a heavily loaded node is

executed on a lightly loaded node. Distributing the load in this fashion provides

potentially faster response time to processes that would otherwise be executed

on the heavily loaded local site.

There are two policies describing remote process execution, initial placement

and process migration. The former policy places a process at a specific site,

where it will remain until execution is terminated. Under this policy, the load

cannot be fully balanced, since long-lived processes are bound to the site at

9

which they begin execution. Distributing the load using an initial placement

policy is called load sharing. An example of such a system is Utopia [11]. The

latter policy, process migration, allows processes to be moved to a different site

during execution. In this way, processes can be moved from any site so that the

load can be maintained in a balanced state. Distributing the load using process

migration is called load balancing. Examples of operating systems that provide

process migration include Charlotte [12], V [13], Accent [14], and Sprite [1].

Several load sharing algorithms have been developed. Most of these al-

gorithms can be implemented as load balancing algorithms, if the targeted

operating system is one that supports process migration. Load sharing is sim-

pler, but load balancing provides more benefits. In a system with a large

number of long running processes, load balancing provides a finer granularity

for “smoothing” out the load across the system. Any system that implements

load balancing can implement a load sharing, or initial placement, algorithm,

by simply adding the constraint that processes are only migrated when they

are initially invoked.

Of the algorithms discussed in this section, some have been designed with

load balancing inmind and somewith load sharing. Since all of these can be im-

plemented as load balancing algorithms, we refer to them as such. Algorithms

that are specific to load balancing are noted as necessary.

There are two general classifications of load balancing algorithms, central-

ized and distributed. The former algorithm relies on a central server to deter-

mine both when processes should be migrated to balance the load, and where

to migrate the processes. A distributed algorithm lets each client make its own

decision based on data that is globally available, either through broadcasting

over the network or via a shared file.

10

The machine that invokes a process is called the source client. The machine

that executes the process, either through initial placement or processmigration,

is called the target client. In most of the following algorithms, the source client

must exceed a specified load level before it can migrate processes away from

itself. This load level is called the threshold, and can be set either statically or

dynamically, depending upon the algorithm.

2.2.1 Distributed Algorithms

A distributed algorithm leaves the responsibility of determining what action

to take to each client. The client must locate a target client to which processes

can be migrated, or locate a source client fromwhich a process can be migrated.

The status of each client can be kept in a shared file, or can be broadcast by each

client to all other pertinent clients. Since Sprite has no concept of topographic

structure, network algorithms that rely on topology, as presented in [15, 16, 17,

18, 19], will not be discussed. The algorithms presented are required to provide

clients access to every site involved in process migration.

Sender-Initiated

A Sender-Initiated algorithm [20] is one where an overloaded source client

attempts to execute a local process on a remote target client. If a shared file

exists, or load information is broadcast, the source client can choose a candidate

based on this information. Otherwise, the source client must poll several sites

to determine the most likely host for remote execution.

The two requirements for process migration to occur in this case are:� The source client must have exceeded the current threshold.

11� A target client must be found.
If the first requirement is not met, then there is no need to balance the load any

further – all clients are below the threshold. If the second requirement is not

met, then all target clients (of those polled) are above the minimum threshold,

and the system is too heavily loaded for any useful load balancing.

There are several different methods for choosing a site for remote execution

when using a Sender-Initiated algorithm: Random, Threshold, Shortest Queue,

and Broadcast and Bidding. In each of these methods, the load balancing

mechanism is invoked whenever a process is invoked and the load at the local

processor is greater than the threshold value. The load balancing mechanism

attempts to find another site to execute the process. The first three methods

are described by Eager et al. [21].

In Random, a target client is chosen at random and the new process is

migrated to that client. There is no state information passed between the

clients, so the source client has no knowledge concerning the load of the target

client. If the newly arrived process places the target client above the load

threshold, the load balancer is used again to find another new site for the

process. Thus, it is possible for a process to migrate to several clients before a

suitable execution site is found.

In Threshold, a target client is chosen at random and polled to see if it can

accept an additional process without surpassing the threshold level. If not,

the source client must “keep” the process. The source client can make several

attempts to find an eligible target client. Simulations show that large number

of attempts (e.g., 20) provide no significant improvement over a small number

(e.g., 3 or 5) [21].

In Shortest Queue, also known as Lightest Load, several foreign sites are

12

polled to determine their load. The site with the load farthest below the

threshold, if there is one, is selected from this set to be the target client. This

requires more information to be transferred between the clients than either of

the previous two algorithms.

Simulations performed using these algorithms assume that the largest

amount of overhead is the CPU bundling. Results show that even a simple

algorithm, such as Random, is a significant improvement over no load balanc-

ing [21]. Threshold gives even better results than Random. However, Shortest

Queue provides very little improvement over Threshold, and costs the system

more overhead time to poll potential target clients. Thus, more complex algo-

rithms will not provide any significant performance benefits. Simple algorithms

that need a minimum amount of information passed between clients provided

the greatest speedup.

In Broadcast and Bidding, the source client broadcasts to all clients in the

system when it has exceeded the threshold level. Target clients that respond

bid for the extra process, and the “best” bid receives the process. This bidding

scheme can take a number of different forms, such as those explained by Chang

[22] and Ramamitham et al. [23]. A simple bidding scheme is to grant the

process to the first site that responds, limiting responses to those clients with

a load small enough to accept additional processes. A more complex method

allows for differences in bidding weight among potential target clients that

would occur in a network with homogeneous architecture but heterogeneous

performance capabilities. A greater weight can be assigned to sites that

have greater processing power, increasing the likelyhood that a process will

be migrated there.

The disadvantage of this algorithm is that a broadcast, followed by the re-

13

sulting responses, increases network communication traffic. To avoid network

traffic, the number of sites receiving the broadcast must be limited to a small

number, chosen at random. The site that can provide the best response time is

chosen as the target client in the same manner as previously described. This

algorithm differs from Shortest Queue in that different criteria can be used to

determine the best target client. It remains to be seen if this more specific

algorithm would provide better results than Threshold.

Receiver-Initiated

A Receiver-Initiated algorithm [20] starts at an underloaded client. When

the load of a client is below the minimum threshold level, it requests processes

from a heavily loaded client. The methods used for obtaining processes are

similar to those used to off load processes in Sender-Initiated algorithms. How-

ever, these algorithms require process migration policies to be implemented,

since it is not likely that an idle processor will locate a heavily loaded client

immediately preceding process execution.

There are some differences in the benefits of Sender-Initiated and Receiver-

Initiated algorithms [20]. The former produces better response times overall

when the system load is low, and the latter when the load is high.

If the system load is low, idle clients searching for an overloaded client will

consume more resources and generate more network traffic than a few over-

loaded clients searching for an idle client and migrating a process. Similarly,

in a heavily loaded system, several heavily loaded clients searching for a few

lightly loaded hosts will be more inefficient than a few lightly loaded clients

requesting processes from heavily loaded clients.

14

Symmetric

Simulations have shown that the combination of the Sender-Initiated and

Receiver-Initiated algorithms performs better than either single algorithm [24].

These estimates aremadewith the assumption that network delay is the largest

factor, and not CPU bundling [20]. With a small network delay, there is no

significant difference between Sender-Initiated and Symmetric at low system

loads. A larger network delay resulted in no significant difference until the

system load was greater than 80%.

Depending on the number of clients that are polled to find a target client,

network traffic may be a factor [21]. For a Sender-Initiated algorithm, a

smaller number of queries is more beneficial in a lightly loaded system. In a

heavily loaded system a greater number of queries are necessary. A Symmetric

algorithm must limit the number queries made when the system load is low to

be comparable to a Sender-Initiated algorithm.

One method of combining these two algorithms is to dynamically choose

either the Sender-Initiated or Receiver-Initiated algorithm based on the system

load. A server detects the global load and broadcasts the algorithm to be used

when there is a state change. This method suffers from periodic global polls

determining the system load.

Shared File

The method of determining the load on each client previously used by Sprite

involved maintaining a shared file to which all clients had access. When a

client’s state changes from active to idle, or idle to active, it accessed the file and

changed its entry. The file was locked by the client until it was finished making

changes to avoid concurrent access problems. When a source client wished

15

to find a target client, it accessed the file, found an idle site, and migrated a

process to that site [2].

This was inefficient as the file system had to be invoked each time the file

was accessed. For consistency reasons, no process could retain the file in the

cache of the local workstation. This method was seen as more costly than a

centralized program that kept track of the load average of each workstation [7].

A differentmethod that uses a shared file is amodification of the Distributed

Drafting algorithm [25]. This algorithm is a Receiver-Initiated algorithm that

employs lightly loaded sites in finding heavily loaded sites. When a heavily

loaded site is found, the idle sites “draft” some of the processes and execute

them locally. The difference between this algorithmand the previous one is that

the Sprite implementation is concerned with the idleness of each workstation,

where as this algorithm is concerned with the load of eachworkstation. A client

can be in three different states:� Below-threshold� At-threshold� Above-threshold
When a client changes state, it accesses the shared file and updates its

state information. When a below-threshold client wishes to “draft” a process,

it accesses the global file and finds an above-threshold client. To insure that

the information in the shared file is accurate, an extra handshake between

the above-threshold client and the below-threshold client is necessary. If the

former client has changed state, then the “drafting” client must reaccess the

shared file to locate an above-threshold client.

One way to reduce the amount of shared file accesses is to only update a

16

client’s state when there is an extreme state transition. Whenever the state of

a site changes to above or below the threshold value, if it had previously been

in the opposite state, it updates its entry in the shared file. This method avoids

numerous messages being sent to the server when a client is continuously

switching between the middle state and one of the two extreme states.

2.2.2 Centralized Algorithms

Centralized algorithms use a process scheduler that makes decisions con-

cerning where a process should migrate. In many cases [26, 27], process sched-

ulers take all incoming processes and place them at a lightly loaded client.

Workload and client characteristics can be used to determine the overall sys-

tem load [28]. These characteristics include the number of processes waiting in

the CPU queue, CPU utilization, and number of jobs active at the client. These

values are translated into vectors that are used to determine the most likely

candidate to receive a process.

Sprite is currently using a centralized algorithm for load balancing [7].

Instead of a shared file, a global load average daemon maintains each client’s

load in its own virtual memory. This avoids the multiple accesses to the file

system that were incurred in the previous version. Local load average daemons,

executing on each workstation, periodically send the local state to the global

load average daemon. Whenever a load average daemon is started, it attempts

to locate the global load average daemon. If it cannot find one, it designates

itself as the global load average daemon. If multiple load average daemons are

present, only one of them becomes the global daemon.

When a process requests migration, the global load average daemon is

invoked, and a target client is selected from the list of idle clients. This

17

method is a Sender-Initiated algorithm that relies on the central server to

determine the target client. This method provides the additional benefit of

monitoring howmany processes each client hasmigrated, and supports leveling

out the system wide level of migration for each client. A problem with the

Sprite implementation is that it is left to the users to explicitly invoke process

migration. Although not user-transparent, this does allow users aware of the

migration tool to execute processes on foreign hosts.

2.2.3 Choosing an Algorithm

Studies on Sprite and other distributed environments of differing sizes have

shown idle hosts are plentiful, 65-85% in a network of over 60 workstation

[2], and greater than 70% in a Michigan State University study with 17

workstations [3]. If this is the case, then the system load is never high

enough to merit a Receiver-Initiated or Symmetric algorithm. Depending upon

the system and its network, either a centralized or distributed version of the

Sender-Initiated algorithm, using the Threshold method, will provide the best

load balancing with the least amount of overhead.

2.3 Which Processes Can Execute Remotely?

Once a load balancing algorithm is determined, how can we decide which

processes should migrate to a target client? The goal of load balancing is

to increase the throughput of each workstation so that the maximal number

of processes are executed in the least amount of time. The goal of process

selection for remote execution is to find those process that, when executed

remotely increase the overall throughput for the entire system. We must

18

determine which processes can bemigrated and which of those processes should

be migrated.

In the UNIX operating system, a process that relies on a device that is not

accessible to all clients cannot be remotely executed on those sites. In Sprite,

there is a transparent name space enabling access of all files to all clients [6].

Therefore, there are no file dependencies to affect process migration. However,

processes on Sprite that access physical devices may not be migratable, or they

may experience performance degradation ifmigrated to a different site. Douglis

and Ousterhout [2] pose the question:

Which processes should be migrated? Should all processes be con-

sidered candidates for migration, or only a few particularly CPU-

intensive processes? How are CPU-intensive processes to be identi-

fied?

While they provide the question, the issue is left open. We must find some

means to determine which processes are the best candidates for remote execu-

tion. First, we must define which processes are eligible for migration. Haĉ and

Jin [29] state:

If, in the system not loaded by any additional processes, the mean

response time of a process executed locally is greater than the mean

response time caused by migration of this process and relative files,

then this process is calledmigratable in the sense of load balancing.

Otherwise, the process is called nonmigratable.

Such a definition is too constrained for a system where processes are migrated

to improve performance locally. We believe that if, by migrating a process, the

overall mean response time for all processes in the system is improved, then

the process is migratable.

The optimal method would be to know which processes, when executed

remotely, would give the best overall response time. However, there is no

19

easy way of evaluating whether a process is migratable before it is executed,

nor whether it will increase the throughput of the system when migrated.

There are, however, certain indications that can be noted both during and after

process execution which determine whether a process is migratable. In a study

on multiprocessor systems [30], Gait states that during execution, a process

may be rescheduled on another processor if:� The local resident time slice becomes exhausted;� An idle processor intervenes to globally schedule a low priority pro-
cess waiting at a processor currently executing a high-priority process;

(Receiver-Initiated load balancing) or� The process is swapped out to make room for newly created or higher-
priority processes.

If a process is being swapped out, this reduces the cost of the process migration

as page swapping has already been performed. Therefore, the memory alloca-

tion mechanism might invoke a daemon to migrate any process being swapped

out. Most processes in Sprite that are migrated complete their execution on

their foreign site [2]. Therefore, under normal circumstances, it is only long-

lived processes that will be swapped out. Large batch jobs of low priority may

be identified if a majority of their pages in virtual memory are swapped out.

One way of deciding whether a process should be executed remotely is to

require the user to give this information. Since each user has some idea of

whether a process should execute locally or remotely, they can provide an

optimized list of processes that can be executed remotely. This is not as

optimal as a fully omniscient method, since some processes might be executed

remotely even though the would complete sooner locally. However, the user

must constantly maintain this list for good results.

A better solution would allow the system to automatically decide whether

20

a process can be executed remotely. If the system maintains a history of the

past performance of a process, it can use a number of different metrics to

decide whether a process should be executed remotely. One drawback with

this approach is that the system is guessing whether the process should be

executed remotely. However, every time a process is executed, the system will

have more information concerning the behavior of the process. In most cases,

after a relatively few number of executions, the history of a process will be

mature enough to accurately predict whether the process should be executed

remotely.

2.3.1 Existing Schemes

Previous work on process selection for remote execution can be divided

into two different approaches. The first method relies on the user specifying

processes that are candidates for remote execution, or, alternatively, which

processes should never be executed remotely. When a process is invoked, the

user’s list is consulted to determine whether the process should be migrated.

Two systems have been implemented using this method. One is Utopia

[11], which runs on several operating systems, including UNIX and VMS,

and the other is msh [10], which runs on Sprite. Utopia distributes the

load of each machine within a cluster. This cluster is defined by the system

administrator depending upon their needs and network organization. Clusters

have a centralized cluster server that directs process placement within the

cluster. Each cluster may be executing a different operating system, but there

must be a channel of communication between the clusters.

Each user maintains a list of processes that can execute remotely, along

with a detailed description of what resources each process requires. There is

21

also a global list maintained by the system administrator that is available to

the users. The requirements of a process can include descriptions of the CPU

or I/O needs, as well as the operating system on which it should be executed.

The benefit of such a heterogeneous system is that a process that is unavailable

on the local machine is made available to the user by executing it on a remote

machine. The question this raises iswhether the file system name space is truly

transparent. A UNIX process could not be transferred to a VMS environment

for execution, nor would storing it at the UNIX environment make any sense.

The transparent name space could come into play between the different clusters

that access the same file system.

Whenever a process on the list is executed, a search is conducted by the

cluster server to locate the best site within the cluster to execute the process.

In this way, a client may have its load distributed across several machines.

Processes that need to be executed outside the cluster are transferred to the

required cluster. Processes are executed remotely via a remote shell process

(rsh) on the target machine.

Some UNIX based operating systems allow a remotely executed process to

be evicted during its execution and continued on another machine. An example

of this is Condor [31], which creates a shadow process on the source client to

keep track of process state during remote execution. At certain checkpoints,

the state of a process is sent back to the source client. The Utopia system uses

an initial placement policy, since its processes cannot be moved in the midst of

execution.

One restriction ofUtopia on the operating system is that the file name space

must be uniform throughout the system. Therefore, devices local to a machine,

such as local boot disks containing similarly named files, cannot be part of the

22

global file name space. Also, as noted above, some files will not be meaningful

to all systems, since different operating systems may interpret files in different

manners.

A command interpreter, or shell, on Spritewhich employsuser files to specify

migratable processes ismsh, a version of tcsh.1 Each user maintains a local file

of process names. If that file does not exist, a global system file is used. These

files are called export files. The processes that are selected for remote execution

depend upon the export policy chosen by the user.

Each user is allowed to specify one of four different export policies:� Migrate all processes,� Migrate only those processes that are not listed in the export file,� Migrate only those processes that are backgrounded and are not listed in
the export file, and� Migrate only those processes that are not in the export file when the load
is greater than a user supplied threshold.

Given that most processes in Sprite can be migrated, the processes listed

in the export files are those that are highly interactive, such as the text editor

or the command interpreter, or processes that would fail if executed remotely,

such as the X server. Only one export file is used, though it would seem more

beneficial to allow users to access both the local and global file.

When the shell is initiated, process names are read in from the export file

and inserted into a hash table. Whenever the shell initiates a process, the hash

table is searched to see if there is an entry that matches the process name.

If no match is found, depending upon the export policy, the shell may send a

request to the global migration daemon to execute the process remotely. The

1tcsh is a version of the C shell with file name completion and command line editing.

23

load average daemon searches for an idle client upon which the process can be

executed.

One of the problems with this method of process selection for remote ex-

ecution is the involvement of the user. When processes are executed for the

first time, the user must update his list so that the process executes locally or

remotely as appropriate. If a process changes characteristics the user must

update his export file. If the list is not properly maintained, the benefits of this

system are lost.

Another method for selecting processes to execute remotely is to estimate

from past performance whether the process should migrate. There are two

problems that must be considered when using past performance as a guide to

the migratability of a process. What characteristics should a process exhibit

to be eligible for remote execution, and what data is available from previous

executions of the process?

In History, proposed by Svennson [32], the amount of CPU time necessary

to complete execution is used to determine whether a process should execute

remotely. This approach is based on the assumption that the greatest cost

associated with executing a process remotely is the amount of CPU time neces-

sary to send the process to the target client. Upon completion, the amount of

CPU time used by the process is recorded, and averaged in with all previously

recorded times.

One variable in this system is the percentage of process eligible for remote

execution. All processes are entered into a list, ordered by their execution

time. In this manner, a certain percentage of processes, based on the time of

execution, can be selected. Svennson defines a filter factor, which has a value

between zero and one. All processes in the list below the percentage defined

24

by the filter factor are executed locally while those above it are scheduled for

remote execution. In a network with a large number of long running processes,

the filter factor may be low. Alternatively, if the system administrator knew

that the majority of processes executed were short lived, and therefore, not

worth the trouble of invoking remote execution, the filter factor could be set to

a high value.

Svennson states that some factors have no significant effect on the perfor-

mance of History. We agree that the factors he describes, such as which user,

number of input parameters, and the time of day of execution, are relatively

insignificant. Svennson’s simulations also used a distributed file system, where

processes that execute remotely have the same file access time as processes ex-

ecuted locally. However, he does not take into account the cost of transferring

information to or from the source client. This can occur whenever a process has

interaction with user devices, such as the keyboard or display, or when system

calls that must be sent back to the home machine occur, such as IPC.

2.3.2 Deciding Which Processes Can Execute Remotely

The optimal solution is to know exactly which processes will benefit from

remote execution each time those processes are executed. A slightly less optimal

method is to rely on the user to determine which processes are migratable,

and to maintain a database of this information. However, since most users

are not likely to know which processes may benefit from remote execution, or

even which processes they may be using during any given day, the optimal

method is unobtainable. Keeping track of system statistics is useful, but if

CPU time is the only statistic recorded, there is no accounting for the amount

of information that must be transferred between the source and target clients.

25

Such information may determine whether a process will benefit from remote

execution no matter how long it takes to complete execution.

Combining the two methods would allow users to specify which processes

should be executed locally, while letting the system automatically determine

which processes should be executed remotely based upon their past perfor-

mance. The more frequently a process is executed, the more accurate the

average measurements of its performance will be. There are two exceptions:

process that use different resources based on input parameters, and processes

that, when recompiled, change characteristics drastically. With just these ex-

ceptions, these measurements would be as accurate as a user maintained file

that is always up to date.

26

Chapter 3

Adding Automatic Load

Balancing to Sprite

The existing load balancing policy in Sprite is a centralized version of the

Sender-Initiated algorithm. The global load average daemon maintains a list

of idle workstations ordered by the amount of time that they have been idle.

Whenever an idle site is needed, the global daemon is invoked, and the site

that has been idle the longest is selected as the target client. Using msh, the

processes that are chosen for remote execution are those not listed in the export

file.

We have modified the msh shell so that historical information is used to

determine whether a process should be executed remotely. The additional

information that is required to make a decision is the number of system calls

that must be handled on the source client, and the number of accesses to

devices local to the source client. For example, in Condor [31], the number of

checkpoints that need to be sent to the homemachine is used as ameasurement

to determine whether a process should be executed remotely. This information

can be obtained by tracking the number of times these specific calls are made.

By combining different techniques, we believe that we can provide a better

27

decision making process for determining which processes should be executed

remotely. In addition to being able to state which processes should be executed

locally, we can use historical information to determine which processes will be

the best candidates for remote execution. Another benefit is that there is no

requirement for constant user involvement.

For the sake of simplicity, we have chosen to implement an initial placement

policy instead of using the full capabilities of process migration. By using an

initial placement policy we lose some of the advantages of load balancing but

we decrease the overhead of process migration. The minimum amount of time

necessary to migrate a null process on a SPARCStation 1 (4/60) running Sprite

is 76 milliseconds [33]. This cost increases for each page and file block that

must be written back to the file system, as well as for all open file descriptors

that must be migrated with the process [33]. By migrating processes only upon

invocation, we limit the cost of migration to a minimum. We discuss extending

this work to include process migration in x5.3.
Implementing automatic load balancing on Sprite requires both a load

balancing policy to decide when and where load should be distributed, and a

policy to decide which specific processes should be migrated. The existing load

average daemon on Sprite interacts with local daemons to keep track of the load

of each site, and whether it is idle. Whenever a request to migrate a process

is received from a client, the global load average daemon finds an idle site, if

one exists, for remote execution. This is a Sender-Initiated algorithm with a

central server determining the best target client based on load information. The

current method used to decide which processes should be migrated relies on the

user keeping track of all processes that should not be migrated. What is needed

is a method which removes the responsibility of selecting processes from the

28

user, but provides results better than the current method. We have modified

both the kernel and the user shell in order to implement such a system.1

Several modifications to the shell were required. We modified msh [10] so

that it maintains a database of the past performance of processes based on

data that is returned to the shell from the kernel. The shell decides whether

a process should be executed remotely based on both this history and a user

supplied migration policy (see x3.3) similar to the existing msh export policies.
Compared to the modifications to the shell, only a few modifications to

the kernel were necessary to implement our process selector on Sprite. The

only information needed from the kernel is resource usage. Any process that

accesses a local device or makes a system call that must be executed on the

source client must have that access recorded. The kernel must keep track of

these values for the current process and all of the current process’s children.

All of this statistical information must be propagated up through the kernel

so that it is available to user processes. Two different statistics are recorded

under different circumstances. System call usage is recorded whether the

process is executed locally or migrated, since these calls can be trapped and

recorded nomatter where they are executed. Local device usage is only recorded

when the process is executing locally, since the device is no longer local when

the process is executing remotely. The only responsibility of the kernel is to

make this information available to the shell. We let the shell take care of the

entire decision making process.

1All changes were made according to the Sprite Engineering Manual [34].

29

3.1 Modifying the Shell

Since msh [10] was available to us and included several of the functions

that were needed, we started with this version of the shell as our foundation.

We want to allow for the user and the system to specify processes that should

never be migrated, so we have kept export files in our system. However, since

all processes listed in the export files are nevermigrated, we now call these files

the restrain files.

Instead of checking only one restrain file, both a global and local file are

used to specify which processes must be executed locally. The global file is

provided by the system administrator and contains a standard list of processes,

commonly executed by the users of the system, that should not be migrated.

The local file is provided so that experienced users can provide their own list of

processes that cannot be migrated. Another file, called the history file, has been

added that maintains the history of all processes that are not in the restrain

files. This file, like the local restrain file, is located in the user’s home directory.

When the shell is initiated, the process names from the restrain files are

read in first, and tagged as being nonmigratable. The entries in the history

file are then loaded and inserted into the same hash table as were the entries

from the restrain files. Precedence is given to entries in the restrain files. The

only way a process can exist in both files is if the process has just been added

to one of the restrain files. In this case, when the entries in the history file are

entered into the hash table, the history of the superfluous entry is discarded.

Each entry in the hash table that is tagged asmigratable uses three different

fields to store information: CPU time, system calls, and local device usage. The

CPU time is used to determine whether a process executes long enough to merit

30

the cost of migration. As stated, the time necessary migrate a null process on a

SPARCstation 1 workstation is 76milliseconds. A process that does not execute

for at least 1 second will experience a minimum 8% increase in execution time.

A process that does not execute for more than 100 milliseconds could have its

execution time more than doubled if it is migrated. The CPU time is also used

when determining if the number of local system calls or local device usage will

degrade the process’s performance.

System calls that must be handled by the source client can limit the benefits

of remote execution. If a large number of calls must be sent to the source

client, the CPU time must be proportionately larger to offset the time needed

for these remote procedure calls. Condor [31] uses a similar measurement to

determine the benefits of remote execution. For any process, they compare the

amount of CPU time with the number of checkpoints that are sent to the source

client. The result is the leverage of the process. A large leverage indicates

that the number of checkpoints are small compared to the amount of CPU time

consumed. Processes with a small leverage should not be executed remotely.

A checkpoint involves a great deal more overhead than the local system calls

executed on Sprite, since it is used to keep track of process state information

during execution. These checkpoints are used by the system to relocate a

process during execution and start the process on another workstation.

There are two types of local system calls that are used in our implementa-

tion. The first is comprised of any call to the file system which accesses a device

or service local to the source client. These devices and services are accessible

through the file system using the pseudo-file mechanism in Sprite [9]. Any

device mounted as a pseudo-file can be accessed as a file, with normal read and

write operations. Any access to a local device is recorded by the kernel, but it

31

is only relevant when the process is executing locally, since a process executing

remotely has a different set of devices that are local. We refer to the number of

accesses to local devices as the local device usage.

The second type of local system call is comprised of all calls that must be

sent back to the source client that do not involve the file system. These system

calls can be recorded whether the process is executing locally or remotely, since

the call can be trapped regardless of execution location and recorded before

it is executed. In comparison, checkpointing in Condor can only be recorded

when the process is executing remotely, since checkpointing is not used for local

execution. We refer to the number of system calls that must be handled by the

source client as the local system call usage.

When a process is executed, the shell forks off a child process and waits until

that process completes. Either during or upon completion, some information

from the kernel is available to user processes. The getrusage system call returns

the kernel statistics of an executing process. A user process can use this call

to obtain a partial history of a child process. The wait3 system call returns the

exit code of a child process, as well as the resource usage returned by getrusage.

The only time the performance of a process is recorded is when a normal

exit code is received. The history of processes that are interrupted or exit with

an abnormal code is discarded. The impact of this policy is that all programs

must exit properly (e.g. programs written in C must exit with a value of 0).

A future implementation may include a method of recording information from

abnormally terminated processes.

We have augmented getrusage and wait3 so that both return the number of

local system calls and local device usage. The CPU time was already returned.

Currently, only wait3 is used for examining the performance of a process. When

32

the child exits, the shell uses wait3 to obtain kernel statistics. These statistics

are averaged in with the previous statistics to provide a sample mean of the

performance of the process. These statistics are not recorded for those processes

that are marked as nonmigratable.

Finally, we must make these statistics available to other invocations of

the shell. In our implementation, the statistics are written to the history

file whenever the shell is terminated. An addition we would like to add is

to periodically save the information. Shells read in the previous statistics

whenever they are initiated. Statistics are not shared between concurrently

running shells.

We had to take special care when writing statistics in order to avoid over-

writing new data. When two or more processes try to write to the history file,

there must be some lockingmechanism to prevent concurrent access. When the

history file is opened, we use an advisory lock to determine if another process

is using the file. If it is in use, the process waits until the file is unlocked. Since

access to the file is protected by this lock, there is no problem with concurrent

access.

Any values accumulated by one shell are not available to any other shell that

is executing concurrently. If the same process is executed in different shells, the

only way for its history to coalesce into one record is to merge all of the history

in each shell together. Since overwriting the existing history file may overwrite

statistics recorded by another shell, we had to find a method whereby all of the

statistics could be gathered together. Each shell has a record of which statistics

were previously recorded and which statistics have been recorded during the

current execution. When the shell gains access to the history file, the statistics

in the file are averaged inwith the statistics that have been recorded during the

33

current execution. The updated statistics are then written back to the history

file. When a process writes to the history file, the recorded statistics for the

current execution are set to zero. These values are no longer needed since they

are now accounted for by the previously recorded statistics.

In the current implementation, there are two differentmethods for updating

the history file. One method implemented is to exit the shell. Since this is a

costly way of updating the history file, we have also included a programmer’s

toolkit which allows the informed user to write the statistics to the file (see

appendix A). A reasonable solution would be to update the history file period-

ically. We plan to include this change in a future implementation, but due to

time constraints, we were unable to add it to our current version. The proposed

method is to set a timer based on an environment variable so that the shell

updates the history file at each time interval.

3.2 Kernel Modification

Our design goal for modifying Sprite’s kernel was to keep changes to a

minimum. Any changes we made had the possibility of affecting the entire

system, and debugging the entire kernel would be an enormous task. Also, we

did not want to degrade the performance of the kernel. Large additions of code

could slow down execution. The only changes necessary were adding the local

system calls usage and the local device usage fields to the process control block,

making certain that these fields were incremented at the appropriate times,

and returning these values to user processes.

Every system call has two functions that it uses depending upon whether

it is executing remotely or locally. In most cases, both of the functions are the

34

same. However, those system calls that must be returned to the source client

call a different function if the process is executing remotely. This function uses

a kernel-to-kernel remote procedure call (RPC) to execute the needed function

on the source client. Each time one of these system calls is made, the local

system call usage is incremented. Since these calls are trapped whether they

are executed remotely or locally, the local system calls are always recorded.

The only local system calls that are not recorded in the manner described

above are calls that access devices, pipes, or pseudo-devices local to the source

client. A pseudo-device is an extension to the file system that allows user

processes and services to be accessed remotely as it were a device [9]. These

system calls must be trapped by the file system. This allows processes to access

them as if they were streams, using normal read and write operations. When

a read or write operation is performed, if the stream accessed is a local device,

pipe, or pseudo-file, local device usage is incremented.

The only problem with trapping this call in the file system is that this

data is meaningless when the process is executing remotely. The previously

local streams are now accessed as remote streams; in our implementation,

the kernel cannot distinguish remote calls to different hosts. Since we cannot

knowwhether there are any other remote streams being accessed by the current

process, we must discard this statistic whenever the process is migrated.

Returning the statistics to user processes requires a number of small modi-

fications to the kernel. When a process control block is first created, the addi-

tional fields must to be initialized to zero like the rest of the structure. When a

child process completes execution, the values of the local system call usage and

local device usage fields have to be added to the parent’s fields. When either

getrusage or wait3 are used, the parent process that made the call must locate

35

the child’s process control block. The pertinent data must be transferred to a

different memory location so that the security of the kernel is not compromised.

Once all of the has been done, the system call returns the data from the kernel

to the parent process.

3.3 Migration Policies

We have built three different metrics that reflect the past performance of a

process. Users can use any combination of one or more metrics, as well as using

no metric at all. These metrics allow experienced users to design a migration

policy for their needs. A system administrator can set the default policy based

on the requirements and resources of the system. Different policies can have

different effects on the processes that are migrated.

The three different metrics are CPU usage (Min Time), the ratio of CPU

usage to local system call usage (Sys Call), and the ratio of local device usage to

CPU usage (Dev Ratio). In addition to these metrics, there are two additional

policies which can be used: migrate no processes, and migrate all processes not

listed in the restrain files. The reason for the different metrics is to give options

to systems with different needs.

If the cost of a local system call is high, then the Sys Call metric should be

used. For example, every time a process uses the gettimeofday system call, the

call must be sent to the source client via kernel-to-kernel RPC. A large number

of these calls will degrade the completion time of a process. If the CPU usage

is large compared to the number of system calls, then the kernel-to-kernel RPC

overhead will be negligible. Therefore, a ratio is used to determine whether the

number of local system calls will affect the performance of a process executed

36

remotely. The number of local system calls is recorded whether the process is

executing locally or remotely. Each time a process exits normally, the number of

system calls made is averaged in with the previous value. Thus, if the number

of local system calls varies between executions, it may be noted after execution

is complete whether any benefits were received by migrating the process.

When this policy is used, a process is eligible for remote execution if the ratio

of the average CPU time to the number of local system calls is greater than the

Sys Ratio threshold. We have observed that all processes make a minimum

of two system calls that must be executed locally. In our implementation, we

account for these two calls. In other words, if the number of local system calls

is two, we make a comparison as if the number were zero, in which case, the

process would pass this metric.

If the cost of accessing devices local to the source client is high, then the

Dev Ratiometric should be used. In Sprite, this metric is not as great a factor

as the Sys Ratio metric. All reads and writes to local streams can be buffered

so that the actual time spent accessing them is minimal. Also, the statistics

returned for local device usage are only valid when the process executes locally

and exits normally.

If the process is executed remotely, there is no method by which we can be

certain if any benefit was gained from remote execution using the Dev Ratio

metric.2 The local device usage may be different for the remote execution based

on different input parameters.

When this policy is used, a process is eligible for remote execution if the ratio

of the average number of accesses to local devices to the average CPU time is

2This problem can be translated into the Two-Armed Bandit Problem [35, 36], where one

arm has a positive or negative value based on the gain or loss from remote execution, and the

other arm has a value of zero.

37

less than the Dev Ratio threshold. If the number of local devices accessed by

the program is zero, then the process passes this metric. This can occur in any

program that has no I/O associated with local devices.

The final metric is execution duration for the process. A process that

executes for a short amount of time will suffer tremendously from process

migration. The execution time of a short-lived process is greatly affected by

the overhead of migration, while a long-lived process does not experience any

significant penalty. The metric used to prevent short-lived processes from

migrating isMin Time. Any process that has an average execution time greater

than the Min Time threshold is eligible for remote execution.

This last metric is similar to the method used inHistory [32]. The difference

is that History only migrates the top percentage of processes, whereas our

system migrates all processes that execute longer than the specified threshold.

We feel that our method is more robust as the processes migrated will not

depend upon the number of short-lived or long-lived processes that have been

previously executed.

3.4 Other Considerations

Processes that are eligible for remote execution are not always migrated to

another site, as an idle site may not be available. However, the shell does not

know whether a process executed remotely, locally, or was evicted from a target

client during execution and sent back to its source client. The local device usage

statistics are disregarded if the metrics used indicated that the process could

have migrated.

If a process is eligible for remote execution, it may never be executed locally.

38

The only problem that this creates is that the performance of such a process

may change so that it is no longer eligible for migration. This can happen

whenever a process is modified so that it accesses local devices more frequently

than before. Such a change may cause unwanted performance degradation

until the process executes enough times to change the average characteristics

to the proper values. At this point, we only have a few ideas on how to fix

this problem. One of them is to keep track of the date of creation of the file,

and dispose of the process’s history whenever it the date has been changed.

However, since local device usage plays a small role in Sprite, we do not believe

that it is a serious concern at this time.

39

Chapter 4

Measurements

We use several different types of programs to measure the effectiveness of

our implementation. Some are CPU intensive, while others are file intensive,

and the remaining few are examples of processes that should never bemigrated.

Our network consists of three Sun SLCs (4/20) and one Sun IPC (4/40) which is

the file server. This is much smaller than the Sprite network at University of

California, Berkeley. All programswere executed on Sun SLC’s (4/20), ten times

in rapid succession and measured for their CPU usage as well as their overall

time. Migration to the IPC was disabled so that differences in computational

power were not a factor. The file system is distributed throughout Sprite, so

we did not want file access to be part of our measurements Each program was

executed once before the measurements were taken, so that any files needed

by the programs would already be resident in local file cache. No other user

processes were executed on the machines while data was gathered.

Table 4 gives a comparison of both the average CPU time and the average

execution time needed by the process. The latter measurement is the time

from invocation to completion. The final two columns give a percentage speed

up based on the ratio of the time for the process whenmigrated to the time when

the process was executed locally. In all cases, the speed up for the average CPU

40

Table 4.1: Comparison of local execution versus remote execution

Local Migrated Speed Up

Average Average Average Average

Process CPU time Exec Time CPU time Exec Time CPU Real

LATEX 5.89 6.34 5.73 7.28 2.8% -12.9%

compression 3.01 3.05 2.91 3.01 3.4% 1.3%

decode 3.23 3.26 3.28 3.31 -1.5% -1.5%

consw 14.83 14.90 14.65 14.83 1.2% 0.5%

ls 0.070 0.090 0.130 0.210 -46.1% -57.1%

cat 0.054 0.064 0.086 0.116 -37.2% -44.8%

gettime 0.218 0.260 0.924 4.07 -76.4% -93.6%

usage was greater than the total execution time. This can be attributed to

the overhead locating an idle client to execute the process on, and the actual

process migration. The main point of this table is to indicate which processes

should never be migrated. Those processes that experience a speed up that is

slightly greater than or less than zero are good candidates. Processes that with

a large negative speed up should never be migrated.

The file that was compiled by LATEXwas small (30 Kbyte). The programs

compression and decode are arithmetic encoding algorithms. The former took

a 16 Kbyte file and compressed it using Laplacian Estimation [37]. The

latter used the compressed file and generated the original file from it. The

program consw uses a large number of reads and writes to local devices to

determine the context switch time (given inAppendixB.1), and ls and cat are the

standard UNIX utilities. Finally, gettime is a program that calls gettimeofday

two thousand times.

As predicted, CPU intensive programs, such as compression and decode,

completed execution in roughly the same amount of time. A more exhaustive

test should show that there is no difference between local and remote execution.

41

The discrepancy in total execution time for LATEX is not apparent. One obser-

vation that was made concerning this program is that there were 7 local system

calls made during execution, rather than the 2 to 4 calls that most programs

make. By table 4 (explained below), the average time for a migrated gettimeof-

day system call is 2 milliseconds greater than when it is executed locally. This

does not explain the additional time taken when the process is migrated.

Both compression and decode passed all metrics that were put to them,

since the average number of system calls was 2, the average number of local

devices used was 0 – the programs have no output – and the average CPU time

was high (the program executes in excess of three minutes when the input is

512 K-bytes).

Another anomaly was the execution time of consw. When executed locally,

over 60;000 accesses were made to a local pipe. However, when executed
remotely, there was no loss of execution time. We attribute this to the fact

that the program opens up a pipe local to the remote machine when migrated.

If a process must communicate through a pipe to another process (IPC), then

we would expect an increase in execution time when the process is migrated

to communicate with the (now) remote pipe. The Dev Usage metric was not a

factor here since the devices local to the source client were not accessed from the

target client. A possible detection of this type of occurrence may be to measure

the local device usage when the process executes remotely.

The ls and cat system utilities are short programs that take much longer

to execute remotely. The overhead to migrate these processes is much greater

than the amount of time that the processes actually execute. In this case,

using the CPU metric would cause these processes to be executed locally and,

therefore, not degrade their performance time.

42

Table 4.2: Comparison of gettimeofday calls executed locally and remotely.

Location of Time for Average time

Execution 1 call 1,000 calls for call

local 30 msec 140 msec 110 �sec
remote 94 msec 2,250 msec 2,160 �sec

An example of a program that should always be executed locally is one that

makes excessive local system calls. Our gettime program is such an example. To

measure the average amount of time taken by a gettimeofday call, we took the

average execution time of a program that called gettimeofday one time. Using

this as the overhead of executing the instruction, we executed another process

which called gettimeofday 1001 times. Subtacting the difference in times and

dividing the result by 1000 gave us the average time for this system call. Each

program was executed twenty times to obtain the average value.

By table 4, we see that the average time taken to execute a gettimeofday

system call when executing locally is 110 microseconds, whereas the time

needed to execute it remotely is over 2 milliseconds. We have not measured the

other system calls that must be executed locally, but if the time of execution for

each call is comparable to the time for gettimeofday, then any program that uses

local system calls to this extent must be forced to stay local to avoid increased

execution time of this magnitude.

A more complete test would measure the overall throughput on a system

running just msh, or just History, and comparing that with the throughput of

our system. We do not have a large group of users on our Sprite network, nor

do we have a large number of workstations running Sprite. This test would

need to be run in an actual user environment, such as the Sprite network at

University of California, Berkeley. This test would show whether users were

43

maintaining their export files adequately, in the case of msh, and whether the

filter factor in History was set to the proper value.

One problem that has plagued development of this project from the start

is the unreliability of the Sprite log file system (LFS) [38]. When we started

our final series of tests, we began to experience failures in the file system.

The source code for the kernel was not always available because of the file

system failures, and therefore, recompilations took an excessive amount of

time. Because of this, we have not been able to take proper measurements on

the effects of local device usage and the number of local system calls.

Even without these two metrics, we believe that our automatic process

selector is an improvement overmsh and History. Short-lived processes which

would bemigrated inmsh are forced to execute locally if the CPU timemetric is

used. Long-lived processes that cannot bemigrated because they access private

local devices, or when the user is aware of the excessive number of local system

calls and device access, can be forced to execute locally instead of remotely, as

they would in History. It remains to be seen how much of an advantage the

other two metrics are.

44

Chapter 5

Future Research

As with any project, several ideas have come to light that may improve the

performance of our system but have not been implemented. Some of these

did not seem to provide additional benefit, while others were not implemented

due to lack of time. In this chapter, we describe some of these ideas and our

intuition as to whether their implementation would be beneficial.

5.1 Enhancing Process Identification

Currently, a process record stored in the history file has no notion of the

process’s path. Processes that have the same name, but are located in different

directories are recorded as if they were the same process. Adding the path

name to the process entry would provide better process identification. An

additional benefit of this modification is that different history files could be

merged together to provide a more complete history.

If the creation date of a program is stored in the history file, then when a

program is modified the shell could disregard the old statistics and start anew.

In this way, the history would be more adaptive to a program’s changing needs,

since amodified programmay have completely different resource requirements.

45

A drawback of this implementation is that minor modifications to a program

that do not affect the resource requirements or execution time would cause the

previous history to be lost.

5.2 Rigorous Statistics Acquisition

By gathering more data, we may be able to make a better decision as to

whether a process should migrate, or as to what location it should migrate.

Trade-offs between the amount of space needed for the statistics and the benefits

gained must be considered, as well as the increased level of complexity and

potential performance degradation.

Modifying the file system so that it keeps track of every single device

accessed by a process would give a clearer indication of the optimum site of

remote execution. Because Sprite’s file system is distributed over the network

[6], migrating a process to the file server of the needed file domain could

provide better execution time. We could determine which file server received

the greatest number of accesses and, therefore, which client would be the best

site for remote execution.

We chose not to implement this for two reasons. First, maintaining an array

of all device accesses when the number of clients in the system is large (> 100)
would increase the size of the history file to an unmanageable degree (from

40 bytes per process entry to 400 bytes per process entry). Using our current

design, this arraywould also be required by the kernel, increasing the size of the

kernel structures enormously. Another disadvantage would be overutilization

of those workstations that host the file system, while other workstations would

be underutilized. We believe that the overall benefit of this modification would

46

be small.

By examining the file system calls carefully, it may be possible to determine

which hosts are being most utilized. While this may give a good indication of

where to migrate the process, it may also be used to determine what the local

device usage is when a process is executing remotely. Such knowledge would

increase the accuracy of our automated process selector. No longer would the

system have to guess whether a benefit accrued from remote execution based

on the Dev Ratio. The statistics could be limited to the number of accesses to

devices local to the source client (as it is now), or could be as extensive as an

array of all clients with all device accesses. The latter implementation, as noted

above, would use an excessive amount space. It remains to be seen whether

this modification can be added to the kernel.

5.3 Load Balancing

We have implemented a load sharing program with automatic process se-

lection. Because we are using an initial placement policy, we do not keep track

of a process during its execution, nor are processes relocated during execution

except when they are evicted from a foreign site. A load balancing systemwould

relocate processes during execution to other clients if the local client became

heavily loaded. This would include moving already migrated processes.

Load balancing would entail increasing the number of migrated processes

that can be executed on a client. The current limit of two foreign process

per workstation, one of low priority (backgrounded) and one of higher priority,

is too low. The difficulty of having a large number of foreign processes on

a workstation is Sprite’s concept of user-owned workstations. Whenever a

47

user accesses the workstation so that it is no longer idle, all foreign processes

are evicted and sent to their home machine. Even though the global load

average daemon could be invoked to find suitable hosts for these processes, the

system will never be balanced so long as a user may refuse migrated processes.

Because one of the tenets of Sprite is that each user has the power of at least one

workstation, complete load balancing will have to be a secondary consideration.

Another component of the load balancing algorithm used in Sprite that has

not been implemented is the threshold value. There must be some minimum

load at a workstation before processes are migrated. Setting this value at zero

causes an excessive number of processes to be migrated where the benefits of

such migration are limited. By only migrating processes when the load on the

local workstation is high, we can improve the chances that this migration will

improve the overall response time of the system.

Another modification necessary to implement load balancing is migrating

processes during execution. To accomplish this feat, a supervisor process

must monitor the load on each workstation and know which process should

be migrated in the case of an excessive load. The supervisor could choose the

process at random, but it would be more useful if some information to make

this decision were available. If the supervisor has access to the history file

generated by the shell, then the information used would be the same as that

used for the initial placement.

The supervisor process could be implemented as a local daemon that runs

on each workstation, which is active whenever the load surpasses a specified

threshold. However, there is a problem in deciding which history file should

be used. Since each user has their own private history file, the daemon should

not be bound to a specific user’s history. One possible solution is to load each

48

user’s history file into memory, and augment each table by the user’s id number.

When the supervisor needs to determine if a process should be migrated, the

user id is used to access the correct history, and then the past statistics of the

process are accessible. Another solution is to merge all history files into one

history file usable by the daemons. This would require that each entry in a

user’s history file has a path name associated with it. In both of these methods,

the supervisor would need to update its history periodically from each user’s

history file.

A third solution that involves less file access is to use getrusage. The

supervisor process could note the current statistics of all executing processes

using this system call and determine from that information which process is

the best candidate for migration. This method would be less accurate than the

other two methods, as the execution pattern of a process may change during its

execution.

5.4 Increased Testing

We need to test our automatic process selector in amore active environment.

The limitations of our environment have contributed to our limited results. A

more exhaustive sequence of tests needs to be performed on an environment

with numerous users and clients. Measurements would indicate the overall

performance of our system compared to msh and History. Also, the benefits

of the measuring and using the number of local system calls and number of

accesses to local devices needs to be determined. As it stands, we could not

determine any correlation between the amount of local device use and the

execution time when the process was executed remotely. We hope that in the

49

future, we can test the performance of our system on a larger community of

Sprite users, such as the group at University of California, Berkeley.

5.5 Other Modifications

Currently, the statistics of processes that terminate with an abnormal exit

code are not recorded. In some cases, this might be beneficial, such as when a

process is interrupted. However, there are processes that do not have normal

termination methods, and thus, they must be interrupted. Such processes will

never be chosen for process migration since no history is recorded for them. If a

method for determining the cause of termination could be implemented, it may

be possible to have a special class of processes that have their history recorded

when they are interrupted.

The one modification that should be made before this system is put into

general usage is history file recording. Since most users of Sprite have their

own workstation, it is unreasonable to expect that they will exit the shell each

time that they end a session. More likely, the user will leave the shell running

continuously. Since the goal of this system is to remove users from the decision

making process, requiring them to write back the history file is stopping short

of our designs. We need to add a periodic update that forces a write back to the

history file. The period for this update could range from thirty seconds to ten

minutes.

Another question that arises is the impact of the modifications to the kernel.

Though the modifications were kept simple to avoid adding overhead time, a

comparison should be made between execution time of processes under the old

kernel, and execution time of processes running our kernel. Also, we must

50

consider what effect the advisory lock may play in slowing down the shell in

the case of multiple accesses to the history file, though we expect that this

would be small.

51

Chapter 6

Conclusion

We have implemented an automatic process selector that can be used in

conjunction with an automatic load balancer to determine which processes are

the best candidates for remote execution. The decision to migrate a process

is based on its past performance. Several metrics have been implemented to

allow for several different criteria when deciding which processes should be

migrated. Although our automatic process selector has not been completely

debugged, it still provides results that are theoretically better than msh and

History, two other methods used to select processes for remote execution. More

rigorous testing would provide a more definitive answer. Another benefit of our

system is that it reduces the amount of user intervention necessary to maintain

proper statistics, as in msh.

There are definite advantages to working with a well organized kernel.

Modifying the Sprite kernel was a pleasure, as the arrangement of the modules

and the documentation of the code was straightforward. On the contrary,

modifying the shell was more complex and most of our debugging time was

spent in the shell, rather than the kernel. If enough time were permitted, a

new shell could be built based around the process selector. A communication

channel could be set up between all invocations of the shell on the local machine

52

and a load balancing daemon so that the daemon would have access to the

statistical records of the shell. An informed decision could be made by the load

balancing daemon as to which process should be migrated to balance the load

without reducing the throughput of the system.

A limitation of our system is that it relies on an initial placement policy

instead of utilizing the full capabilities of process migration. A true load

balancer cannot be implemented until we add an additional program which

selects processes to migrate during their execution. The benefits of such an

implementation remain to be seen, though Eager et al. present evidence that

the benefits of process migration are small under normal circumstances [39].

Our system as it is can be used on distributed operating systems that do

not have process migration, and only assumes that any process can be executed

remotely. We feel that having a general purpose program is highly useful and

may be incorporated in future operating systems in addition to Sprite.

53

References

[1] J. K. Ousterhout et al., “The Sprite network operating system,” IEEE

Computer, vol. 21, pp. 23–36, February 1988.

[2] F. Douglis and J. Ousterhout, “Transparent process migration for per-

sonal workstations,” Tech. Rep. UCB/CSD 89/540, University of California

Berkeley, California, November 1989.

[3] M. Mutka, “Estimating capacity for sharing in a privately owned worksta-

tion environment,” IEEE Transactions on Software Engineering, vol. 18,

pp. 319–328, April 1992.

[4] H. S. Stone, “Multiprocessor scheduling with the aid of network flow

algorithms,” IEEE Transactions on Software Engineering, vol. 32, pp. 85–

93, January 1977.

[5] S. J. Leffler, M. K. McKusick, M. J. Karels, and J. S. Quarterman, The De-

sign and Implementation of the 4.3BSDUNIXOperating System. Addison-

Wesley Publishing Company, 1989.

[6] B. B. Welch and J. K. Ousterhout, “Prefix tables: A simple mechanism for

locating files in a distributed file system,” in Proc. of the 6th International
Conference on Distributed Computing Systems, pp. 184–189, May 1986.

[7] F. Douglis and J. Ousterhout, “Transparent process migration: Design

alternatives and the Sprite implementation,” Software–Practice & Expe-

rience, vol. 21, pp. 757–785, Aug. 1991.

[8] B. B. Welch and J. K. Ousterhout, “Pseudo-devices: User-level extensions

to the Sprite file system,” in Proc. of the 1988 Summer USENIX Conf.,

pp. 184–189, June 1988.

[9] B. B. Welch and J. K. Ousterhout, “Pseudo-file-systems,” Tech. Rep.

UCB/CSD 89/499, Univ. California Berkeley, April 1989.

[10] A. Ho and F. Meyer, “A migration shell for Sprite.” Submitted for CS 262

at University of California, Berkeley, May 1990.

[11] S. Zhou, X. Zheng, J. Wang, and P. Delisle, “Utopia: A load sharing system

54

for large, heterogeneous distributed computer systems,” Tech. Rep. CSRI-

257, University of Toronto, November 1991.

[12] Y. Artsy and R. Finkel, “Designing a process migration facility: The

charlotte experience,” IEEE Computers, vol. 22, pp. 47–56, September

1989.

[13] D. R. Cheriton, “The V distributed system,” Communications of the ACM,

vol. 31, pp. 314–333, March 1988.

[14] E. Zayas, “Attacking the processmigration bottleneck,” inProc. of the 1986

fall joint computer conference, pp. 1–23, IEEE, May 1986.

[15] G. Cybenko, “Dynamic load balancing for distributedmemorymultiproces-

sors,” Journal of Parallel and Distributed Computing, vol. 8, pp. 279–301,

July 1989.

[16] F. C. H. Lin and R. M. Keller, “The gradientmodel load balancingmethod,”

IEEE Transactions on Software Engineering, vol. SE-11, pp. 32–38, Jan-

uary 1987.

[17] T. L. Casavant and J. G. Kuhl, “Analysis of three dynamic distributed load

balancing strategies with varying global information requirements,” Proc.

of the 7th International Conference on Distributed Computing Systems,

pp. 185–192, August 1987.

[18] S. H. Bokhari, “A shortest tree algorithm for optimal assignments across

space and time in a distributed processor system,” IEEE Transactions On

Software Engineering, vol. SE-7, pp. 583–589, November 1981.

[19] S. Hosseini, B. Litow, M. Malkawi, J. McPherson, and K. Vairavan, “Anal-

ysis of a graph coloring based distributed load balancing algorithm,” Jour-

nal of Parallel and Distributed Computng, pp. 160–166, October 1990.

[20] D. Eager, E. D. Lazowska, and J. Zahorjan, “A comparison of receiver-

initiated and sender-initiated adaptive load sharing,” Performance Evalu-

ation, vol. 6, pp. 53–68, March 1986.

[21] D. L. Eager, E. D. Lazowska, and J. Zahorjan, “Adaptive load sharing

in homogeneous distributed systems,” IEEE Transactions on Software

Engineering, vol. SE-12, pp. 662–675, May 1986.

[22] C.-K. Chang, “Bidding against competitors,” IEEE Transactions on Soft-

ware Engineering, vol. 16, pp. 100–104, January 1990.

[23] K. Ramamritham, J. A. Stankovic, and W. Zhao, “Distributed scheduling

of tasks with deadlines and resource requirements,” IEEE Transactions

on Computers, vol. 38, pp. 1110–1123, August 1989.

[24] R. Mirchandaney, D. Towsley, and J. A. Stankovic, “Analysis of the effects

of delays on load sharing,” IEEE Transactions on Computers, vol. 38,

55

pp. 1513–1525, November 1989.

[25] L. M. Ni, C.-W. Xu, and T. B. Gendreau, “A distributed drafting algorithm

for load balancing,” IEEE Transactions on Software Engineering, vol. SE-

11, pp. 1153–1161, October 1985.

[26] F. Bonomi and A. Kumar, “Adaptive optimal load balancing in a nonhomo-

geneous multiserversystem with a central job scheduler,” IEEE Transac-

tions On Computers, vol. 39, pp. 1232–1250, October 1990.

[27] A. Thomasian, “A performance study of dynamic load balancing in dis-

tributed systems,” IEEE, pp. 178–184, August 1987.

[28] A.Haĉ and T. J. Johnson, “Sensitivity study of the load balancing algorithm

in a distributed system,” Journal of Parallel and Distributed Computing,

pp. 85–89, October 1990.

[29] A. Haĉ and X. Jin, “Dynamic load balancing in a distributed system using

a sender-initiated algorithm,” in Proc. of the 7th International Conference

on Distributed Computing Systems, pp. 170–177, September 1987.

[30] J. Gait, “Scheduling and process migration in partitioned multiproces-

sors,” Journal of Parallel and Distributed Computing, pp. 274–279, Au-

gust 1990.

[31] M. J. Litzkow, M. Livny, and M. W. Mutka, “Condor – a hunter of idle

workstations,” in Proceedings of ACM Computer Network Performance

Symposium, pp. 104–111, June 1988.

[32] A. Svensson, “History, an intelligent load sharing filter,” in Proc. of the 10th
International Conference on Distributed Computing Systems, pp. 546–553,

1990.

[33] F. Douglis, Transparent Process Migration in the Sprite Operating System.

PhD dissertation, University of CaliforniaBerkeley, California, September

1990.

[34] J. K. Ousterhout, “Sprite engineering manual.” Programming and docu-

mentation conventions for the Sprite Operating System.

[35] D. A. Berry and B. Fristedt, Bandit Problems – Sequential Allocation of

Experiments. Chapman and Hall, 1985.

[36] J. C. Gittins, Multi-Armed Bandit Allocation Indices. John Wiley & Sons,

1989.

[37] J. Glen G. Langdon, “An introduction to arithmetic coding,” IBM Journal

of Research and Development, vol. 28, pp. 135–149, Mar. 1984.

[38] F. Douglis and J. Ousterhout, “Beating the I/O bottleneck: A case for log-

structured files systems,” Tech. Rep. UCB/CSD 88/467, Univ. California

Berkeley, October 1988.

56

[39] D. L. Eager, E. D. Lazowska, and J. Zahorjan, “The limited performance

benefits of migrating active processes for load sharing,” in Proc. of ACM

SIGMETRICS 1988, May 1988.

57

Appendix A

History Toolkit

We have modified a built in command so that experienced users can access

the historical data from the shell. In msh [10], the export command either

printed out all entries loaded from the export file, or listed the current policy

and threshold values. The following is a description of the different options

available using the export command.

Export --help: Prints out the current export policy, the metrics Min Time,

Dev Use, and Sys Ratio used in the for the different export policies, a descrip-

tion of the policies, and descriptions of the different options. The following is a

sample message printed by invoking export with the –help option.

EXPORT HELP current policy: 5
Min_Time: 100, Dev_Ratio: 500, Sys_Ratio: 50

Policies:
000 (0): Don’t Migrate anything
001 (1): Migrate if CPU > Min Time
010 (2): Migrate if Dev_Use/CPU < Dev Ratio
100 (4): Migrate if CPU/Sys_Ratio > Sys_Ratio

1000 (8): Migrate everything

Process statistics are used to determine whether processes
are migrated. These statistics are kept in .tcsh.history
Options:

58

-help: Print this message
-print: Print all processes with and without statistics
-write: Update history file with new performance statistics
-stat: List the statistics for all processes with statistics
-stat {process_name}: List statistics for specific process
-rm {process_name}: Remove the named process from the

history file and current statistics
-read: Read in the statistics from the history file,

losing all new performance statistics

The –read and –write commands will be outdated when the periodic history file

updates are implemented. From experience, it has been found that the –print

and –stat options are rather unwieldy, since a large number of processes tend

to accumulate in the history after just a few hours of use. This prompted the

addition of a –stat option with a process name specifier. The –rm option is used

to remove a bogus process name from the history file. Otherwise, if the user

is aware that the performance of a process has changed drastically and doesn’t

want to retain the old statistics, this option can also be used to discard the old

statistics.

In this example, the current policy is to migrate processes execute for longer

than one second (policy 1 with Min Time equal to 100) and if the ratio of the

CPU time to the number of local system calls is greater than 50.

The following is a sample output of the –print option:

(0) finger CPU= 13, S/C= 3, Times= 4, D/U= 11, Rec’d= 4
(3) shutdown Not Migratable
(5) select Not Migratable
(8) update CPU= 154, S/C= 2, Times= 2, D/U=120, Rec’d= 1
(9) xclock Not Migratable

.

.

.
[96]+ vi Not Migratable
[96]+ ls CPU= 4, S/C= 3, Times=101, D/U= 0, Rec’d=101

59

(96) rm CPU= 4, S/C= 2, Times= 16, D/U= 0, Rec’d= 2
(99) loadavg Not Migratable
(100) ps Not Migratable
(101) hostname Not Migratable
(102) mx Not Migratable
(104) spritemon Not Migratable
(105) su Not Migratable
(109) tx Not Migratable
(114) Flock CPU= 3, S/C= 2, Times= 11, D/U= 2, Rec’d= 11
(116) Xsprite Not Migratable
(117) migcmd Not Migratable
(122) xwebster Not Migratable
(124) whereis CPU= 36, S/C= 2, Times= 2, D/U= 1, Rec’d= 1

The numbers in the left hand columns are the hash values used to sort the data.

This is an artifact frommsh. The entries are ordered by their hash values. Any

process that is in one of the restrain files is tagged asNotMigratable. The other

files have abbreviated statistics given (described below). We have not tested

our system for aesthetical value, so it remains to be determined if giving the

statistics in this form is appreciated by the general user populace.

The statistics give, in order, are the CPU time in tens of milliseconds, the

number of local system calls, the number of times these two statistics have been

recorded, the number of times a local device was accessed, and the number of

times that this statistic has been recorded.

60

The following is a sample output of the –stat option:

times process
cpu time Sys Calls executed Dev Use Dev Rec’d name

13 3 4 11 4 finger
154 2 2 120 1 update
12 2 1 19 1 xsetroot
4 2 1 0 1 chmod
6 2 6 12 6 prefix
4 2 2 0 1 mkdir

512 4 6 41 3 latex
28 3 2 20 2 mail
34 3 1 71 1 chsh

120 2 2 0 2 gcc
12 2 1 17 1 talk
48 2 7 1 4 grep
70 2 3 100 1 doit
6 1 64 31 64 more
6 2 4 2 3 cat

1702 2 8 2 2 compression
156 4 1 25 1 man

8 2 2 0 1 stat
68 3 2 1 1 tar
36 5 3 87 3 ftp
4 2 8 1 2 pwd

26 4 2 3 2 who
24 4 2 3 2 if
10 2 1 5 1 co

105 2 4 0 1 cp
122 2 1 0 1 uncompress
68 4 24 10 24 rup

141 2 25 30 25 du
4 3 101 0 101 ls
4 2 16 0 2 rm
3 2 11 2 11 Flock

36 2 2 1 1 whereis

The measurements presented here are a less abbreviated form of the statistics

presented by the –print option.

Some processes can be moved from the history file to the restrain file.

61

For example, while this program was being tested, stty would be called every

time that the shell was invoked. This generated an average CPU time of 80

milliseconds, 2 system calls (the minimum for a program), and no local device

usage. It was clear that such a program should never be migrated, so it was

added to the restrain file. From statistics printed above, and a knowledge of

the programs involved, it is clear that chmod, mkdir, cat, and more should be

added to the restrain file.

62

Appendix B

Sample Programs

B.1 Consw.c

include <stdio.h>
include <sys/types.h>
include <sys/times.h>

define LOOPS 10000

/*
** Find the context switch time.
**
** DDEL
** Thu Dec 13 14:42:49 PST 1990
*/
void main() {

int hither[2], yonder[2];
int i;
char puck;

struct tms now, then;
int overhead;

(void) pipe(hither);
(void) pipe(yonder);

(void) times(&now);

63

for (i = 0; i < LOOPS; i += 1) {
(void) write(yonder[1], &puck, sizeof(char));
(void) read (yonder[0], &puck, sizeof(char));

}

(void) times(&then);

overhead = then.tms_stime - now.tms_stime;

printf("Overhead per loop = %lf, ", (double) overhead /
(60 * LOOPS));

fflush(stdout);

if (fork() == 0)
for (i = 0; i < LOOPS; i += 1) {

(void) read (yonder[0], &puck, sizeof(char));
(void) write(hither[1], &puck, sizeof(char));

}
else {

(void) times(&now);

for (i = 0; i < LOOPS; i += 1) {
(void) write(yonder[1], &puck, sizeof(char));
(void) read (hither[0], &puck, sizeof(char));

}

(void) times(&then);

printf("elapsed = %lf, context switch = %lf\n",
(double) (then.tms_stime - now.tms_stime) / 60,
(double) (then.tms_stime - now.tms_stime - overhead)
/ (LOOPS * 60));

}

exit(0);
}

64

B.2 gettime.c

#include <stdio.h>
#include <sys/time.h>
#include <sys/resource.h>
/*
** Get time of day 2000 times
** Access local devices excessively
**
** William Osser
*/
main()
{

int loops;
struct timeval time1;

for (loops =0;loops < 2000; loops++)
{

gettimeofday(&time1);
}
exit(0);

}

