
Spectral K-Way Ratio-Cut PartitioningPart I: Preliminary ResultsPak K. Chan, Martine Schlag and Jason ZienComputer Engineering Board of StudiesUniversity of California, Santa CruzMay, 1992AbstractRecent research on partitioning has focussed on the ratio-cut cost metric which maintains abalance between the sizes of the edges cut and the sizes of the partitions without �xing the sizeof the partitions a priori. Iterative approaches and spectral approaches to two-way ratio-cutpartitioning have yielded higher quality partitioning results. In this paper we develop a spectralapproach to multi-way ratio-cut partitioning which provides a generalization of the ratio-cut costmetric to k-way partitioning and a lower bound on this cost metric. Our approach uses Lanczosalgorithm to �nd the k smallest eigenvalue/eigenvector pairs of the Laplacian of the graph.The eigenvectors are used to construct an orthogonal projection to map a vertex (of the graph)in an n-dimensional space into a k-dimensional subspace. We exploit the (near) orthogonalityof the projected points to e�ect high quality clustering of points in a k-dimensional subspace.An e�cient algorithm is presented for coercing the points in the k-dimensional subspace intok-partitions. Advancement over the current work is evidenced by the results of experiments onthe standard MCNC benchmarks.
1



Chan, Schlag, Zien/UCSC May, 1992 21 IntroductionWe present a method for k-way partitioning based on spectral techniques by extending thetechniques of Hagen and Kahng [1]. The k-way partition problem can be formulated asthe search for a projection of n-dimensional space onto a k-dimensional subspace, mappingthe n unit-vector basis (the n nodes of a graph) into k distinct points (the partitions) tominimize the weighted quadratic displacement. This is essentially the formulation given byBarnes [2, 3]. However, unlike Barnes' formulation we do not assume any pre-determinedpartition sizes.By Hall's result [4], using the k eigenvectors of the graph's Laplacian, corresponding tothe smallest k eigenvalues provides a projection which minimizes the weighted quadraticdisplacement under the orthonormality constraint. In the case of a partition, this amountsto the number of edges cut.We show that a k projection provided by a partition can be reformulated as an orthonormalprojection. This reformulation no longer minimizes the number of edges cut, but a new costmetric which incorporates the size of the partitions of a k-way partition P = fP1; P2; : : : Pkg:cost(P) = kXh=1 EhjPhj:Here, Eh denotes the number of edges between nodes in partition Ph and nodes outside thepartition. Interestingly, in the case of k = 2, this is the ratio-cut metric de�ned by Cheng andWei scaled by the number of nodes in the graph [5]. The sum of the smallest k eigenvaluesprovides a lower bound on this cost metric.A geometric interpretation of the eigenvectors provides a method for transforming the eigen-vector solution into a partition. More signi�cantly, this formulation provides a heuristic foridentifying the natural number of partitions, k, a priori. Scaling the cost function above by1k(k�1) to o�set the inuence of k on this cost metric (fewer nodes per partition and higherexpected degrees) provides a means of comparing partitions across di�erent k's.2 De�nitionsGiven an undirected graph G with n nodes, v1; v2; : : : ; vn, the adjacency matrix of G is then� n matrix A(G) = [aij] de�ned by,aij = the number of edges between vi and vj:If G is simple (no loops or parallel edges), then all of the entries in A(G) are 1's or 0's andthere are 0's along the diagonal. The degree matrix of G is the n � n matrix D(G) = [dij]



Chan, Schlag, Zien/UCSC May, 1992 3de�ned by, dij = ( degree(vi) if i = j0 if i 6= jThe Laplacian1of G is the n� n matrix Q(G) = D(G) �A(G).A k-partition of the nodes of G, P = fP1; P2; : : : Pkg is represented by an n� k assignmentmatrix Y (P) = [yih] where yih = ( 1 if vi 2 Ph0 if vi 62 PhThe rows of Y sum to 1 and column h sums to jPhj.A k-partition of G, P = fP1; P2; : : : Pkg can also be represented by the n � n partitionmatrix2 P = [pij] wherepij = ( 1 if vi and vj are in the same partition0 otherwiseGiven a simple graph G and a partition of its nodes, P, the partition graph GP is the graphwith k vertices u1; u2; : : : ; uk where the number of edges between ug and uh for g 6= h isXvi2Pg Xvj2Ph aij = nXi=1 nXj=1 aijyigyjh;where Y is the assignment matrix of P. This is the graph whose nodes are the partitionsand whose interconnections are inherited from the edges of G.3 Graph partitioning and some basic properties of the LaplacianObservation 1 From Mohar \The Laplacian Spectrum of Graphs" [6]nXi=1 �i = 2jE(G)j =Xi=1 degree(vi)This follows from the Handshaking Lemma (the sum of the degrees of all nodes in an undi-rected graph is twice the number of edges) and the trace of a symmetric matrix (the sum ofits diagonal entries) is the sum of its eigenvalues.1aka Kircho� matrix aka admittance matrix2This was de�ned in Barnes' SIAM paper [2].



Chan, Schlag, Zien/UCSC May, 1992 4Observation 2 If Y is an n � k matrix then Y TQ(G)Y is a k � k matrix whose ghthcomponent is 12 nXi=1 nXj=1 aij(yig � yjg)(yih � yjh):Proof: Since Y TQ(G)Y = Y T (D(G) � A(G))Y = Y TD(G)Y � Y TA(G))Y the ghth com-ponent of Y TQ(G)Y isnXi=1 yigdiiyih � nXi=1 yig( nXj=1 aijyjh) = nXi=1 yigyih( nXj=1 aij)� nXi=1 yig( nXj=1 aijyjh)= nXi=1 nXj=1 aij(yigyih)� nXi=1 nXj=1 aij(yigyjh)= 12 nXi=1 nXj=1 aij(yigyih)� nXi=1 nXj=1 aij(yigyjh) + 12 nXi=1 nXj=1 aij(yigyih)= 12 nXi=1 nXj=1 aij(yigyih)� nXi=1Xj=1 naij(yigyjh) + 12 nXj=1 nXi=1 aji(yjgyjh)= 12 nXi=1 nXj=1 aij(yigyih)� 12 nXi=1 nXj=1 2aij(yigyjh) + 12 nXj=1 nXi=1 aij(yjgyjh)= 12 nXi=1 nXj=1 aij(yigyih � 2yigyjh + yjgyjh)= 12 nXi=1 nXj=1 aij(yig � yjg)(yih � yjh) 2Observation 3 If Y is the assignment matrix for P then Y TQ(G)Y = Q(GP), the Lapla-cian of GP .Proof: First consider the gth diagonal entry of Y TQ(G)Y :12 nXi=1 nXj=1 aij(yig � yjg)2:Since Y is an assignment matrix, aij(yig � yjg)2 will be 1 only when exactly one of vi andvj is in Pg and aij = 1. Summed over all i and j this gives twice the total number of edgesfrom nodes in Pg to nodes not in Pg. Hence the gth diagonal entry is the degree of ug in GP .Now consider an o�-diagonal entry (h 6= g). The ghth component of Y TQ(G)Y is:12 nXi=1 nXj=1 aij(yig � yjg)(yih � yjh):



Chan, Schlag, Zien/UCSC May, 1992 5Note that yig � yjg will be non-zero if and only if exactly one of vi or vj is in Pg. Thesame holds for yih � yjh with respect to Ph. Since a node can not be simultaneously in twopartitions, (yig�yjg)(yih�yjh) is non-zero exactly when one of vi or vj is in Pg and the otheris in Ph. If this is the case and aij must be non-zero, then the ijth term of the summation is�1. Hence summing over all i and j gives minus twice the number of edges between nodesin partition Pg and nodes in partition Ph. 2Observation 4 If P is a partition matrix, then its eigenvalues �(P ) = fm1;m2; :::;mkg,where mi is the number of nodes in the ith partition (E. Barnes).Observation 5 If Y is the assignment matrix for P then Y Y T is the partition matrix.Proof: The ijth element of Y Y T is kXh=1 yihyjh:The term yihyjh will be 1 if and only if both vi and vj are in Ph, and hence the sum is 1exactly when vi and vj are in the same partition and 0 otherwise. 2Observation 6 If Y is the assignment matrix for P then Y TY is a diagonal matrix withjPgj in the gthentry.Proof: The ghth element of Y TY is nXi=1 yigyih:The term yigyih can only be 0 when h 6= g since node vi can be in at most one of the twopartitions. Hence the o�-diagonal entries will be 0's. On the diagonal we havenXi=1 y2igwhich sums to the number of nodes in Pg. 2The partition problem considered by Barnes and Donath,Ho�man was to solve for Y givenk and jP1j; jP2j; : : : ; jPkj, the sizes of the partitions [7].4 Ratio-cut graph partitioningNow consider modifying the de�nition of the partition matrix to take into account the size ofthe partitions. Speci�cally, a k-partition of the nodes of G, P = fP1; P2; : : : Pkg is represented



Chan, Schlag, Zien/UCSC May, 1992 6by an n � k ratioed assignment matrix R(P) = [rih] whererih = 8<: 1pjPhj if vi 2 Ph0 if vi 62 PhThe rows no longer necessarily sum to 1 and column h now sums to qjPhj.Observation 7 If R is the ratioed assignment matrix for P then the gth diagonal entry ofRTQ(G)R is the degree of ug in GP divided by jPgj, and the ghth o�-diagonal entry is minusthe number of edges between Pg and Ph divided by qjPgj � jPhj. 2Proof: By Observation 2 the gth diagonal entry of RTQ(G)R is:12 nXi=1 nXj=1 aij(rig � rjg)2:Since R is a ratioed assignment matrix, aij(rig�rjg)2 will be non-zero only when exactly oneof vi and vj is in Pg and aij = 1. Summed over all i and j this gives twice the total numberof edges from nodes in Pg to nodes not in Pg. Each non-zero (rig � rjg)2 is0@� 1qjPhj1A2 = 1jPhj :Hence the gth diagonal entry is the degree of ug in GP divided by jPgj.Now consider an o�-diagonal entry (h 6= g). The ghth component of RTQ(G)R is:12 nXi=1 nXj=1 aij(rig � rjg)(rih � rjh):Note that rig � rjg will be non-zero if and only if exactly one of vi or vj is in Pg. Thesame holds for rih � rjh with respect to Ph. Since a node can not be simultaneously in twopartitions, (rig� rjg)(rih� rjh) is non-zero exactly when one of vi or vj is in Pg and the otheris in Ph. If this is the case and aij is non-zero, then the ijth term of the summation is�1qjPgjqjPhj :Hence summing over all i and j gives minus twice the number of edges between nodes inpartition Pg and nodes in partition Ph divided by qjPgj � jPhj. 2Given a k-partition of G, the n� n ratioed partition matrix PR = [rpij ] whererpij = ( 1jPg j if vi and vj both belong to Pg0 otherwise



Chan, Schlag, Zien/UCSC May, 1992 7Observation 8 If R is a ratioed assignment matrix for P then RRT = PR, the ratioedpartition matrix.Proof: The ijth element of RRT is kXh=1 rihrjh:The term rihrjh will be non-zero if and only if both vi and vj are in Ph, hence the sum is 1jPhjwhen vi and vj are in the same partition and 0 otherwise. 2Observation 9 If R is the ratioed assignment matrix for P then RTR is Ik, an identitymatrix.Proof: The ghth element of RTR is nXi=1 rigrih:The term rigrih can only be 0 when h 6= g since node vi can be in at most one of the twopartitions. Hence the o�-diagonal entries will be 0's. On the diagonal we havenXi=1 r2igwhich sums to 1 since there are jPgj non-zero terms which are all 1jPg j. 2Hence the ratioed partition matrix meets the constraint RTR = Ik.5 Relation between the eigenvalues and ratio cutsDe�ne the k-way ratio cut cost metric of a k-partition P of G to becost(P) = kXh=1 degree(uh)jPhj :(Recall that uh is the node in the partition graph corresponding to Ph so degree(uh) is thenumber of edges in G with exactly one endpoint in Ph.)Observation 10 If k = 2, cost(P) is the ratio-cut cost metric de�ned by Wei and Chengscaled by n, the number of nodes in the graph.



Chan, Schlag, Zien/UCSC May, 1992 8Proof: If k = 2, and Ec is the number of edges cut in P = fP1; P2g, then we havecost(P) = degree(u1)jP1j + degree(u2)jP2j= EcjP1j + EcjP2j= Ec  1jP1j + 1jP2j!= Ec jP1j+ jP2jjP1j � jP2j= Ec njP1j � jP2j= n EcjP1j � jP2j 2Observation 11 If R is the ratioed assignment matrix associated with P, then cost(P) =trace(RTQ(G)R).This follows from Observation 7.Minimizing cost(P), amounts to �nding a ratioed assignment matrix which minimizes thesum of the diagonal entries of RTQR.Observation 12 The n � k matrix which minimizes the trace(Y TQ(G)Y ) subject to theconstraint Y TY = Ik, is the n � k matrix whose k columns consist of the k eigenvectors ofQ corresponding to the k smallest3 eigenvalues of Q.Proof: If we take the partials with respect to the variables in Y of the gth diagonal entrythe matrix Lagrangian of Y TQ(G)Y ��(Y TY �Ik), and equate them to zero, this constrainscolumn g of Y to be an eigenvector; no other columns are constrained. Thus the minimalsolution will consist of a k eigenvectors of Q. These k eigenvectors must be distinct to satisfyY TY = Ik. If V is formed with any k eigenvectors of Q then QV = V �k where �k is thediagonal matrix formed with the eigenvalues corresponding to the k eigenvectors in V . Thismeans that V TQV = V TV �k = Ik�k = �kand the sum of the diagonal entries of V TQV is the sum of the eigenvalues corresponding tothe k eigenvectors in V . It follows that this sum is minimized by selecting the eigenvectorscorresponding to the k smallest eigenvalues of Q. 23Eigenvalues may be repeated but eigenvectors may not.



Chan, Schlag, Zien/UCSC May, 1992 9Observation 13 The sum of the smallest k eigenvalues is a lower bound on the minimumcost(P) of any k-partition of G.In the case k = 2, since �1 + �2 = 0 + �2 = �2 we obtain�2 � cost(P) = n EcjP1j � jP2jwhich amounts to the result of Hagen and Kahng [1]�2n � EcjP1j � jP2j :obviously not a tight upper bound for a graph with large number of nodes.Observation 14 By Fiedler's inequality [8],�2 � 2C(1 � cos(�=n)))where C is a cut set of the graph G, an upper bound on the optimal ratio-cut partitioning is�22(n� 1)(1 � cos(�=n))6 A new k-way spectral ratio cut methodThe problem of �nding an assignment is solved as follows:1. Calculate all or enough(?) eigenvalues of Q(G).2. Select k. See Section 7 below.3. Find the eigenvectors corresponding to these k smallest eigenvalues.4. Construct V , an n � k matrix whose columns are the k eigenvectors.5. Compute Z = V V T .6. Construct a matrix P = [pij] from Z wherepij = ( 1 if zij >= 1n0 otherwiseThis is a heuristic of �nding a partition using Z as \close" to P as possible. Thismethod of coercing Z into a partition matrix doesn't always work. See Section 8 foralternatives.



Chan, Schlag, Zien/UCSC May, 1992 107 Selecting the number of partitions kIn order to compare costs of partitions with di�erent sizes, we scale our cost metric by nk(k�1) ,scost(P) = n � cost(P)k(k � 1) :The quantity nk is the average number of nodes in a balanced k-way partition and k � 1 isthe degree of a node in the complete graph with k nodes.Observation 15 For a random graph with edge probability f , and any partition P of sizek, scost(P) = fn � nkwhich is a generalization of results of Cheng and Wei for bipartition [5]. (We are not sureyet what this means, may be this is the average degree of the partition graph per partition.But it will result in k = n being selected, if the heuristics by eigenvalues estimation belowis accurate).We would like to select the k that produces the smallest scost()nk(k � 1) kXh=1 degree(uh)jPhjbut since we do not know the optimal ratio-cut partition for any k we use the lower boundas an indicator. That is, we choose the k which minimizesnk(k � 1) kXh=1 �hwhere �1 � �2 � : : : � �n is the non-decreasing order of the eigenvalues of Q.Note that this is a HEURISTIC.8 Geometrical interpretationThe n � n matrix in Rk, RRT = PR, the ratioed partition matrix is a projector, sinceP 2R = PR.The n� n matrix in Rk Z = V V T(which approximates the ratioed assignment matrix PR) also forms an orthogonal projectionof Rn spanned by the column vectors of Q onto a subspace of Rk spanned by the k smallesteigenvectors.



Chan, Schlag, Zien/UCSC May, 1992 11Observation 16 Z has exactly k nonzero eigenvalues which are all 1, i.e.,�(V V T ) = 1Proof: Let the columns of the matrix X be the eigenvectors of Z, and � be their corre-sponding matrix of eigenvalues V V TX = X�V TV V TX = V TX�Ik = � 2Observation 17 The nonzero eigenvalues of the ratioed partition matrix RRT are all 1s.Proof: Same as above. 2Observation 18 The \distance" between the subspaces formed by ratioed assignment matrixR and V is given by Ho�man-Wielandt inequality and is bounded from below:jj(RRT )� (V V T )jj2 � 0Observation 19 The distance between two equidimensional subspaces spanned by R and Vis q1� �2min(RTV )where �min(RTV ) is the smallest singular value of matrix RTV (By CS Decomposition,Golub and van Loan, pg. 77). This is the generalized sine angle between the two subspaces.The PR matrix projects Rn onto the Rk subspace de�ned by the orthonormal R. If the nnodes of the graph G are associated with the n unit-vectors of Rn, then nodes belonging tothe same partition are mapped to the same point by R. Since PR is \close" to the subspacede�ned by V TV , the nodes belonging to the same partition should have \close" projectionsunder V . This suggests a heuristic for constructing the R which is \closest" to V : useproximity of the images of the unit-vectors under V . In cases of ambiguity the distance canbe veri�ed.9 SummaryWe have presented some preliminary but new and basic results on spectral k-way ratio-cutpartitioning in this report. The next report will demonstrate the e�ectiveness of this methodand some experimental results.
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