Spectral K-Way Ratio-Cut Partitioning Part I: Preliminary Results

Pak K. Chan, Martine Schlag and Jason Zien
Computer Engineering Board of Studies
University of California, Santa Cruz

May, 1992

Abstract

Recent research on partitioning has focussed on the ratio-cut cost metric which maintains a balance between the sizes of the edges cut and the sizes of the partitions without fixing the size of the partitions a priori. Iterative approaches and spectral approaches to two-way ratio-cut partitioning have yielded higher quality partitioning results. In this paper we develop a spectral approach to multi-way ratio-cut partitioning which provides a generalization of the ratio-cut cost metric to k-way partitioning and a lower bound on this cost metric. Our approach uses Lanczos algorithm to find the k smallest eigenvalue/eigenvector pairs of the Laplacian of the graph. The eigenvectors are used to construct an orthogonal projection to map a vertex (of the graph) in an n-dimensional space into a k-dimensional subspace. We exploit the (near) orthogonality of the projected points to effect high quality clustering of points in a k-dimensional subspace. An efficient algorithm is presented for coercing the points in the k-dimensional subspace into k-partitions. Advancement over the current work is evidenced by the results of experiments on the standard MCNC benchmarks.

1 Introduction

We present a method for k-way partitioning based on spectral techniques by extending the techniques of Hagen and Kahng [1]. The k-way partition problem can be formulated as the search for a projection of n-dimensional space onto a k-dimensional subspace, mapping the n unit-vector basis (the n nodes of a graph) into k distinct points (the partitions) to minimize the weighted quadratic displacement. This is essentially the formulation given by Barnes [2, 3]. However, unlike Barnes' formulation we do not assume any pre-determined partition sizes.

By Hall's result [4], using the k eigenvectors of the graph's Laplacian, corresponding to the smallest k eigenvalues provides a projection which minimizes the weighted quadratic displacement under the orthonormality constraint. In the case of a partition, this amounts to the number of edges cut.

We show that a k projection provided by a partition can be reformulated as an orthonormal projection. This reformulation no longer minimizes the number of edges cut, but a new cost metric which incorporates the size of the partitions of a k-way partition $\mathcal{P}=\left\{P_{1}, P_{2}, \ldots P_{k}\right\}$:

$$
\operatorname{cost}(\mathcal{P})=\sum_{h=1}^{k} \frac{E_{h}}{\left|P_{h}\right|}
$$

Here, E_{h} denotes the number of edges between nodes in partition P_{h} and nodes outside the partition. Interestingly, in the case of $k=2$, this is the ratio-cut metric defined by Cheng and Wei scaled by the number of nodes in the graph [5]. The sum of the smallest k eigenvalues provides a lower bound on this cost metric.

A geometric interpretation of the eigenvectors provides a method for transforming the eigenvector solution into a partition. More significantly, this formulation provides a heuristic for identifying the natural number of partitions, k, a priori. Scaling the cost function above by $\frac{1}{k(k-1)}$ to offset the influence of k on this cost metric (fewer nodes per partition and higher expected degrees) provides a means of comparing partitions across different k 's.

2 Definitions

Given an undirected graph G with n nodes, $v_{1}, v_{2}, \ldots, v_{n}$, the adjacency matrix of G is the $n \times n$ matrix $A(G)=\left[a_{i j}\right]$ defined by,

$$
a_{i j}=\text { the number of edges between } v_{i} \text { and } v_{j}
$$

If G is simple (no loops or parallel edges), then all of the entries in $A(G)$ are 1's or 0's and there are 0's along the diagonal. The degree matrix of G is the $n \times n$ matrix $D(G)=\left[d_{i j}\right]$
defined by,

$$
d_{i j}= \begin{cases}\operatorname{degree}\left(v_{i}\right) & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

The Laplacian ${ }^{1}$ of G is the $n \times n$ matrix $Q(G)=D(G)-A(G)$.
A k-partition of the nodes of $G, \mathcal{P}=\left\{P_{1}, P_{2}, \ldots P_{k}\right\}$ is represented by an $n \times k$ assignment matrix $Y(\mathcal{P})=\left[y_{i h}\right]$ where

$$
y_{i h}= \begin{cases}1 & \text { if } v_{i} \in P_{h} \\ 0 & \text { if } v_{i} \notin P_{h}\end{cases}
$$

The rows of Y sum to 1 and column h sums to $\left|P_{h}\right|$.
A k-partition of $G, \mathcal{P}=\left\{P_{1}, P_{2}, \ldots P_{k}\right\}$ can also be represented by the $n \times n$ partition matrix $^{2} P=\left[p_{i j}\right]$ where

$$
p_{i j}= \begin{cases}1 & \text { if } v_{i} \text { and } v_{j} \text { are in the same partition } \\ 0 & \text { otherwise }\end{cases}
$$

Given a simple graph G and a partition of its nodes, \mathcal{P}, the partition graph $G_{\mathcal{P}}$ is the graph with k vertices $u_{1}, u_{2}, \ldots, u_{k}$ where the number of edges between u_{g} and u_{h} for $g \neq h$ is

$$
\sum_{v_{i} \in P_{g}} \sum_{v_{j} \in P_{h}} a_{i j}=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} y_{i g} y_{j h},
$$

where Y is the assignment matrix of \mathcal{P}. This is the graph whose nodes are the partitions and whose interconnections are inherited from the edges of G.

3 Graph partitioning and some basic properties of the Laplacian

Observation 1 From Mohar "The Laplacian Spectrum of Graphs" [6]

$$
\sum_{i=1}^{n} \lambda_{i}=2|E(G)|=\sum_{i=1} \operatorname{degree}\left(v_{i}\right)
$$

This follows from the Handshaking Lemma (the sum of the degrees of all nodes in an undirected graph is twice the number of edges) and the trace of a symmetric matrix (the sum of its diagonal entries) is the sum of its eigenvalues.

[^0]Observation 2 If Y is an $n \times k$ matrix then $Y^{T} Q(G) Y$ is a $k \times k$ matrix whose $g h^{t h}$ component is

$$
\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}\left(y_{i g}-y_{j g}\right)\left(y_{i h}-y_{j h}\right)
$$

Proof: Since $\left.Y^{T} Q(G) Y=Y^{T}(D(G)-A(G)) Y=Y^{T} D(G) Y-Y^{T} A(G)\right) Y$ the $g h^{\text {th }}$ component of $Y^{T} Q(G) Y$ is

$$
\begin{aligned}
\sum_{i=1}^{n} y_{i g} d_{i i} y_{i h}-\sum_{i=1}^{n} y_{i g}\left(\sum_{j=1}^{n} a_{i j} y_{j h}\right) & =\sum_{i=1}^{n} y_{i g} y_{i h}\left(\sum_{j=1}^{n} a_{i j}\right)-\sum_{i=1}^{n} y_{i g}\left(\sum_{j=1}^{n} a_{i j} y_{j h}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}\left(y_{i g} y_{i h}\right)-\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}\left(y_{i g} y_{j h}\right) \\
& =\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}\left(y_{i g} y_{i h}\right)-\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}\left(y_{i g} y_{j h}\right)+\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}\left(y_{i g} y_{i h}\right) \\
& =\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}\left(y_{i g} y_{i h}\right)-\sum_{i=1}^{n} \sum_{j=1}^{n} n a_{i j}\left(y_{i g} y_{j h}\right)+\frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{n} a_{j i}\left(y_{j g} y_{j h}\right) \\
& =\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}\left(y_{i g} y_{i h}\right)-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} 2 a_{i j}\left(y_{i g} y_{j h}\right)+\frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{n} a_{i j}\left(y_{j g} y_{j h}\right) \\
& =\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}\left(y_{i g} y_{i h}-2 y_{i g} y_{j h}+y_{j g} y_{j h}\right) \\
& =\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}\left(y_{i g}-y_{j g}\right)\left(y_{i h}-y_{j h}\right)
\end{aligned}
$$

Observation 3 If Y is the assignment matrix for \mathcal{P} then $Y^{T} Q(G) Y=Q\left(G_{\mathcal{P}}\right)$, the Laplacian of G_{P}.

Proof: First consider the $g^{\text {th }}$ diagonal entry of $Y^{T} Q(G) Y$:

$$
\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}\left(y_{i g}-y_{j g}\right)^{2}
$$

Since Y is an assignment matrix, $a_{i j}\left(y_{i g}-y_{j g}\right)^{2}$ will be 1 only when exactly one of v_{i} and v_{j} is in P_{g} and $a_{i j}=1$. Summed over all i and j this gives twice the total number of edges from nodes in P_{g} to nodes not in P_{g}. Hence the $g^{\text {th }}$ diagonal entry is the degree of u_{g} in $G_{\mathcal{P}}$.

Now consider an off-diagonal entry $(h \neq g)$. The $g h^{\text {th }}$ component of $Y^{T} Q(G) Y$ is:

$$
\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}\left(y_{i g}-y_{j g}\right)\left(y_{i h}-y_{j h}\right)
$$

Note that $y_{i g}-y_{j g}$ will be non-zero if and only if exactly one of v_{i} or v_{j} is in P_{g}. The same holds for $y_{i h}-y_{j h}$ with respect to P_{h}. Since a node can not be simultaneously in two partitions, $\left(y_{i g}-y_{j g}\right)\left(y_{i h}-y_{j h}\right)$ is non-zero exactly when one of v_{i} or v_{j} is in P_{g} and the other is in P_{h}. If this is the case and $a_{i j}$ must be non-zero, then the $i j^{\text {th }}$ term of the summation is -1 . Hence summing over all i and j gives minus twice the number of edges between nodes in partition P_{g} and nodes in partition P_{h}.

Observation 4 If P is a partition matrix, then its eigenvalues $\lambda(P)=\left\{m_{1}, m_{2}, \ldots, m_{k}\right\}$, where m_{i} is the number of nodes in the $i^{\text {th }}$ partition (E. Barnes).

Observation 5 If Y is the assignment matrix for \mathcal{P} then $Y Y^{T}$ is the partition matrix.

Proof: The $i j^{\text {th }}$ element of $Y Y^{T}$ is

$$
\sum_{h=1}^{k} y_{i h} y_{j h}
$$

The term $y_{i h} y_{j h}$ will be 1 if and only if both v_{i} and v_{j} are in P_{h}, and hence the sum is 1 exactly when v_{i} and v_{j} are in the same partition and 0 otherwise.

Observation 6 If Y is the assignment matrix for \mathcal{P} then $Y^{T} Y$ is a diagonal matrix with $\left|P_{g}\right|$ in the $g^{\text {th }}$ entry.

Proof: The $g h^{t h}$ element of $Y^{T} Y$ is

$$
\sum_{i=1}^{n} y_{i g} y_{i h} .
$$

The term $y_{i g} y_{i h}$ can only be 0 when $h \neq g$ since node v_{i} can be in at most one of the two partitions. Hence the off-diagonal entries will be 0's. On the diagonal we have

$$
\sum_{i=1}^{n} y_{i g}^{2}
$$

which sums to the number of nodes in P_{g}.
The partition problem considered by Barnes and Donath,Hoffman was to solve for Y given k and $\left|P_{1}\right|,\left|P_{2}\right|, \ldots,\left|P_{k}\right|$, the sizes of the partitions [7].

4 Ratio-cut graph partitioning

Now consider modifying the definition of the partition matrix to take into account the size of the partitions. Specifically, a k-partition of the nodes of $G, \mathcal{P}=\left\{P_{1}, P_{2}, \ldots P_{k}\right\}$ is represented
by an $n \times k$ ratioed assignment matrix $R(\mathcal{P})=\left[r_{i h}\right]$ where

$$
r_{i h}= \begin{cases}\frac{1}{\sqrt{\left|P_{h}\right|}} & \text { if } v_{i} \in P_{h} \\ 0 & \text { if } v_{i} \notin P_{h}\end{cases}
$$

The rows no longer necessarily sum to 1 and column h now sums to $\sqrt{\left|P_{h}\right|}$.

Observation 7 If R is the ratioed assignment matrix for \mathcal{P} then the $g^{\text {th }}$ diagonal entry of $R^{T} Q(G) R$ is the degree of u_{g} in $G_{\mathcal{P}}$ divided by $\left|P_{g}\right|$, and the $g h^{\text {th }}$ off-diagonal entry is minus the number of edges between P_{g} and P_{h} divided by $\sqrt{\left|P_{g}\right| \cdot\left|P_{h}\right|}$.

Proof: By Observation 2 the $g^{\text {th }}$ diagonal entry of $R^{T} Q(G) R$ is:

$$
\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}\left(r_{i g}-r_{j g}\right)^{2}
$$

Since R is a ratioed assignment matrix, $a_{i j}\left(r_{i g}-r_{j g}\right)^{2}$ will be non-zero only when exactly one of v_{i} and v_{j} is in P_{g} and $a_{i j}=1$. Summed over all i and j this gives twice the total number of edges from nodes in P_{g} to nodes not in P_{g}. Each non-zero $\left(r_{i g}-r_{j g}\right)^{2}$ is

$$
\left(\pm \frac{1}{\sqrt{\left|P_{h}\right|}}\right)^{2}=\frac{1}{\left|P_{h}\right|}
$$

Hence the $g^{t h}$ diagonal entry is the degree of u_{g} in $G_{\mathcal{P}}$ divided by $\left|P_{g}\right|$.
Now consider an off-diagonal entry $(h \neq g)$. The $g h^{t h}$ component of $R^{T} Q(G) R$ is:

$$
\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}\left(r_{i g}-r_{j g}\right)\left(r_{i h}-r_{j h}\right)
$$

Note that $r_{i g}-r_{j g}$ will be non-zero if and only if exactly one of v_{i} or v_{j} is in P_{g}. The same holds for $r_{i h}-r_{j h}$ with respect to P_{h}. Since a node can not be simultaneously in two partitions, $\left(r_{i g}-r_{j g}\right)\left(r_{i h}-r_{j h}\right)$ is non-zero exactly when one of v_{i} or v_{j} is in P_{g} and the other is in P_{h}. If this is the case and $a_{i j}$ is non-zero, then the $i j^{t h}$ term of the summation is

$$
\frac{-1}{\sqrt{\left|P_{g}\right|} \sqrt{\left|P_{h}\right|}}
$$

Hence summing over all i and j gives minus twice the number of edges between nodes in partition P_{g} and nodes in partition P_{h} divided by $\sqrt{\left|P_{g}\right| \cdot\left|P_{h}\right|}$.

Given a k-partition of G, the $n \times n$ ratioed partition matrix $P_{R}=\left[r p_{i j}\right]$ where

$$
r p_{i j}= \begin{cases}\frac{1}{\left|P_{g}\right|} & \text { if } v_{i} \text { and } v_{j} \text { both belong to } P_{g} \\ 0 & \text { otherwise }\end{cases}
$$

Observation 8 If R is a ratioed assignment matrix for \mathcal{P} then $R R^{T}=P_{R}$, the ratioed partition matrix.

Proof: The $i j^{\text {th }}$ element of $R R^{T}$ is

$$
\sum_{h=1}^{k} r_{i h} r_{j h} .
$$

The term $r_{i h} r_{j h}$ will be non-zero if and only if both v_{i} and v_{j} are in P_{h}, hence the sum is $\frac{1}{\left|P_{h}\right|}$ when v_{i} and v_{j} are in the same partition and 0 otherwise.

Observation 9 If R is the ratioed assignment matrix for \mathcal{P} then $R^{T} R$ is I_{k}, an identity matrix.

Proof: The $g h^{t h}$ element of $R^{T} R$ is

$$
\sum_{i=1}^{n} r_{i g} r_{i h} .
$$

The term $r_{i g} r_{i h}$ can only be 0 when $h \neq g$ since node v_{i} can be in at most one of the two partitions. Hence the off-diagonal entries will be 0's. On the diagonal we have

$$
\sum_{i=1}^{n} r_{i g}^{2}
$$

which sums to 1 since there are $\left|P_{g}\right|$ non-zero terms which are all $\frac{1}{\left|P_{g}\right|}$.
Hence the ratioed partition matrix meets the constraint $R^{T} R=I_{k}$.

5 Relation between the eigenvalues and ratio cuts

Define the k-way ratio cut cost metric of a k-partition \mathcal{P} of G to be

$$
\operatorname{cost}(\mathcal{P})=\sum_{h=1}^{k} \frac{\operatorname{degre\epsilon }\left(u_{h}\right)}{\left|P_{h}\right|}
$$

(Recall that u_{h} is the node in the partition graph corresponding to P_{h} so degree $\left(u_{h}\right)$ is the number of edges in G with exactly one endpoint in P_{h}.)

Observation 10 If $k=2$, $\operatorname{cost}(\mathcal{P})$ is the ratio-cut cost metric defined by Wei and Cheng scaled by n, the number of nodes in the graph.

Proof: If $k=2$, and E_{c} is the number of edges cut in $\mathcal{P}=\left\{P_{1}, P_{2}\right\}$, then we have

$$
\begin{aligned}
\operatorname{cost}(\mathcal{P}) & =\frac{\operatorname{degree}\left(u_{1}\right)}{\left|P_{1}\right|}+\frac{\operatorname{degree}\left(u_{2}\right)}{\left|P_{2}\right|} \\
& =\frac{E_{c}}{\left|P_{1}\right|}+\frac{E_{c}}{\left|P_{2}\right|} \\
& =E_{c}\left(\frac{1}{\left|P_{1}\right|}+\frac{1}{\left|P_{2}\right|}\right) \\
& =E_{c} \frac{\left|P_{1}\right|+\left|P_{2}\right|}{\left|P_{1}\right| \cdot\left|P_{2}\right|} \\
& =E_{c} \frac{n}{\left|P_{1}\right| \cdot\left|P_{2}\right|} \\
& =n \frac{E_{c}}{\left|P_{1}\right| \cdot\left|P_{2}\right|}
\end{aligned}
$$

Observation 11 If R is the ratioed assignment matrix associated with \mathcal{P}, then $\operatorname{cost}(\mathcal{P})=$ $\operatorname{trace}\left(R^{T} Q(G) R\right)$.

This follows from Observation 7.
Minimizing $\operatorname{cost}(\mathcal{P})$, amounts to finding a ratioed assignment matrix which minimizes the sum of the diagonal entries of $R^{T} Q R$.

Observation 12 The $n \times k$ matrix which minimizes the trace $\left(Y^{T} Q(G) Y\right)$ subject to the constraint $Y^{T} Y=I_{k}$, is the $n \times k$ matrix whose k columns consist of the k eigenvectors of Q corresponding to the k smallest ${ }^{3}$ eigenvalues of Q.

Proof: If we take the partials with respect to the variables in Y of the $g^{t h}$ diagonal entry the matrix Lagrangian of $Y^{T} Q(G) Y-\lambda\left(Y^{T} Y-I_{k}\right)$, and equate them to zero, this constrains column g of Y to be an eigenvector; no other columns are constrained. Thus the minimal solution will consist of a k eigenvectors of Q. These k eigenvectors must be distinct to satisfy $Y^{T} Y=I_{k}$. If V is formed with any k eigenvectors of Q then $Q V=V \Lambda_{k}$ where Λ_{k} is the diagonal matrix formed with the eigenvalues corresponding to the k eigenvectors in V. This means that

$$
V^{T} Q V=V^{T} V \Lambda_{k}=I_{k} \Lambda_{k}=\Lambda_{k}
$$

and the sum of the diagonal entries of $V^{T} Q V$ is the sum of the eigenvalues corresponding to the k eigenvectors in V. It follows that this sum is minimized by selecting the eigenvectors corresponding to the k smallest eigenvalues of Q.

[^1]Observation 13 The sum of the smallest k eigenvalues is a lower bound on the minimum $\operatorname{cost}(\mathcal{P})$ of any k-partition of G.

In the case $k=2$, since $\lambda_{1}+\lambda_{2}=0+\lambda_{2}=\lambda_{2}$ we obtain

$$
\lambda_{2} \leq \operatorname{cost}(\mathcal{P})=n \frac{E_{c}}{\left|P_{1}\right| \cdot\left|P_{2}\right|}
$$

which amounts to the result of Hagen and Kahng [1]

$$
\frac{\lambda_{2}}{n} \leq \frac{E_{c}}{\left|P_{1}\right| \cdot\left|P_{2}\right|}
$$

obviously not a tight upper bound for a graph with large number of nodes.

Observation 14 By Fiedler's inequality [8],

$$
\left.\lambda_{2} \geq 2 \mathcal{C}(1-\cos (\pi / n))\right)
$$

where \mathcal{C} is a cut set of the graph G, an upper bound on the optimal ratio-cut partitioning is

$$
\frac{\lambda_{2}}{2(n-1)(1-\cos (\pi / n))}
$$

6 A new k-way spectral ratio cut method

The problem of finding an assignment is solved as follows:

1. Calculate all or enough(?) eigenvalues of $Q(G)$.
2. Select k. See Section 7 below.
3. Find the eigenvectors corresponding to these k smallest eigenvalues.
4. Construct V, an $n \times k$ matrix whose columns are the k eigenvectors.
5. Compute $Z=V V^{T}$.
6. Construct a matrix $P=\left[p_{i j}\right]$ from Z where

$$
p_{i j}= \begin{cases}1 & \text { if } z_{i j}>=\frac{1}{n} \\ 0 & \text { otherwise }\end{cases}
$$

This is a heuristic of finding a partition using Z as "close" to P as possible. This method of coercing Z into a partition matrix doesn't always work. See Section 8 for alternatives.

7 Selecting the number of partitions k

In order to compare costs of partitions with different sizes, we scale our cost metric by $\frac{n}{k(k-1)}$,

$$
\operatorname{scost}(\mathcal{P})=\frac{n \cdot \operatorname{cost}(\mathcal{P})}{k(k-1)}
$$

The quantity $\frac{n}{k}$ is the average number of nodes in a balanced k -way partition and $k-1$ is the degree of a node in the complete graph with k nodes.

Observation 15 For a random graph with edge probability f, and any partition \mathcal{P} of size k,

$$
\operatorname{scost}(\mathcal{P})=f n \cdot \frac{n}{k}
$$

which is a generalization of results of Cheng and Wei for bipartition [5]. (We are not sure yet what this means, may be this is the average degree of the partition graph per partition. But it will result in $k=n$ being selected, if the heuristics by eigenvalues estimation below is accurate).

We would like to select the k that produces the smallest $\operatorname{scost}()$

$$
\frac{n}{k(k-1)} \sum_{h=1}^{k} \frac{\operatorname{degree}\left(u_{h}\right)}{\left|P_{h}\right|}
$$

but since we do not know the optimal ratio-cut partition for any k we use the lower bound as an indicator. That is, we choose the k which minimizes

$$
\frac{n}{k(k-1)} \sum_{h=1}^{k} \lambda_{h}
$$

where $\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$ is the non-decreasing order of the eigenvalues of Q. Note that this is a HEURISTIC.

8 Geometrical interpretation

The $n \times n$ matrix in $\mathbf{R}^{k}, R R^{T}=P_{R}$, the ratioed partition matrix is a projector, since $P_{R}^{2}=P_{R}$.

The $n \times n$ matrix in \mathbf{R}^{k}

$$
Z=V V^{T}
$$

(which approximates the ratioed assignment matrix P_{R}) also forms an orthogonal projection of \mathbf{R}^{n} spanned by the column vectors of Q onto a subspace of \mathbf{R}^{k} spanned by the k smallest eigenvectors.

Observation $16 Z$ has exactly k nonzero eigenvalues which are all 1, i.e.,

$$
\lambda\left(V V^{T}\right)=1
$$

Proof: Let the columns of the matrix \mathbf{X} be the eigenvectors of Z, and Λ be their corresponding matrix of eigenvalues

$$
\begin{aligned}
V V^{T} \mathbf{X} & =\mathbf{X} \Lambda \\
V^{T} V V^{T} \mathbf{X} & =V^{T} \mathbf{X} \Lambda \\
I_{k} & =\Lambda
\end{aligned}
$$

Observation 17 The nonzero eigenvalues of the ratioed partition matrix $R R^{T}$ are all $1 s$.

Proof: Same as above.

Observation 18 The "distance" between the subspaces formed by ratioed assignment matrix R and V is given by Hoffman-Wielandt inequality and is bounded from below:

$$
\left\|\left(R R^{T}\right)-\left(V V^{T}\right)\right\|_{2} \geq 0
$$

Observation 19 The distance between two equidimensional subspaces spanned by R and V is

$$
\sqrt{1-\sigma_{m i n}^{2}\left(R^{T} V\right)}
$$

where $\sigma_{\min }\left(R^{T} V\right)$ is the smallest singular value of matrix $R^{T} V$ (By CS Decomposition, Golub and van Loan, pg. 77). This is the generalized sine angle between the two subspaces.

The P_{R} matrix projects \mathbf{R}^{n} onto the \mathbf{R}^{k} subspace defined by the orthonormal R. If the n nodes of the graph G are associated with the n unit-vectors of \mathbf{R}^{n}, then nodes belonging to the same partition are mapped to the same point by R. Since P_{R} is "close" to the subspace defined by $V^{T} V$, the nodes belonging to the same partition should have "close" projections under V. This suggests a heuristic for constructing the R which is "closest" to V : use proximity of the images of the unit-vectors under V. In cases of ambiguity the distance can be verified.

$9 \quad$ Summary

We have presented some preliminary but new and basic results on spectral k-way ratio-cut partitioning in this report. The next report will demonstrate the effectiveness of this method and some experimental results.

References

[1] L. Hagen and A. Kahng, "New spectral methods for ratio cut partitioning and clustering," To appear in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1992.
[2] E. R. Barnes, "An algorithm for partitioning the nodes of a graph," SIAM Journal on Algorithm and Discrete Method, vol. 3, pp. 541-550, Dec. 1982.
[3] E. R. Barnes, "Partitioning the nodes of a graph," in Proceedings of Graph Theory with Applications to Algorithms and Computer Science, (Wiley), pp. 57-72, 1985.
[4] K. M. Hall, "An r-dimensional quadratic placement algorithm," Management Science, vol. 17, pp. 219-229, Nov. 1970.
[5] C.-K. Cheng and Y.-C. A. Wei, "An improved two-way partitioning algorithm with stable performance," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 10, pp. 1502-1511, Dec. 1991.
[6] B. Mohar, "The Laplacian spectrum of graphs," in Proceedings of the 6th Quadrennial International Conference on the Theory and Applications of Graphs: Graph Theory, Combinatorics and Applications, Vol. 2, (Wiley), pp. 871-898, 1988.
[7] W. Donath and A. Hoffman, "Lower bounds for the partitioning of graphs," IBM Journal of Research and Development, pp. 420-425, 1973.
[8] M. Fiedler, Special matrices and their applications in numerical mathematics. Martinus Nijhoff Publishers, 1986.

[^0]: ${ }^{1}$ aka Kirchoff matrix aka admittance matrix
 ${ }^{2}$ This was defined in Barnes' SIAM paper [2].

[^1]: ${ }^{3}$ Eigenvalues may be repeated but eigenvectors may not.

