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Abstract

Recent research on partitioning has focussed on the ratio-cut cost metric which maintains a
balance between the sizes of the edges cut and the sizes of the partitions without fixing the size
of the partitions a priori. Iterative approaches and spectral approaches to two-way ratio-cut
partitioning have yielded higher quality partitioning results. In this paper we develop a spectral
approach to multi-way ratio-cut partitioning which provides a generalization of the ratio-cut cost
metric to k-way partitioning and a lower bound on this cost metric. Our approach uses Lanczos
algorithm to find the k& smallest eigenvalue/eigenvector pairs of the Laplacian of the graph.
The eigenvectors are used to construct an orthogonal projection to map a vertex (of the graph)
in an n-dimensional space into a k-dimensional subspace. We exploit the (near) orthogonality
of the projected points to effect high quality clustering of points in a k-dimensional subspace.
An efficient algorithm is presented for coercing the points in the k-dimensional subspace into
k-partitions. Advancement over the current work is evidenced by the results of experiments on
the standard MCNC benchmarks.
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1 Introduction

We present a method for k-way partitioning based on spectral techniques by extending the
techniques of Hagen and Kahng [1]. The k-way partition problem can be formulated as
the search for a projection of n-dimensional space onto a k-dimensional subspace, mapping
the n unit-vector basis (the n nodes of a graph) into k& distinct points (the partitions) to
minimize the weighted quadratic displacement. This is essentially the formulation given by
Barnes [2, 3]. However, unlike Barnes’ formulation we do not assume any pre-determined
partition sizes.

By Hall’s result [4], using the k eigenvectors of the graph’s Laplacian, corresponding to
the smallest k eigenvalues provides a projection which minimizes the weighted quadratic
displacement under the orthonormality constraint. In the case of a partition, this amounts
to the number of edges cut.

We show that a k projection provided by a partition can be reformulated as an orthonormal
projection. This reformulation no longer minimizes the number of edges cut, but a new cost
metric which incorporates the size of the partitions of a k-way partition P = {P;, P,,... P, }:

cost(P) = Z m

Here, Ej, denotes the number of edges between nodes in partition P, and nodes outside the
partition. Interestingly, in the case of & = 2, this is the ratio-cut metric defined by Cheng and
Wei scaled by the number of nodes in the graph [5]. The sum of the smallest &k eigenvalues
provides a lower bound on this cost metric.

A geometric interpretation of the eigenvectors provides a method for transtorming the eigen-

vector solution into a partition. More significantly, this formulation provides a heuristic for

identifying the natural number of partitions, k, a priori. Scaling the cost function above by
1

=) to offset the influence of k on this cost metric (fewer nodes per partition and higher

expected degrees) provides a means of comparing partitions across different k’s.

2 Definitions
Given an undirected graph ' with n nodes, vy, vs, ..., v,, the adjacency matriz of G is the
n X n matrix A(G) = [a;;] defined by,

a;; = the number of edges between v; and v;.

If G is simple (no loops or parallel edges), then all of the entries in A(G) are 1’s or 0’s and
there are 0’s along the diagonal. The degree matriz of G is the n x n matrix D(G) = [d;]
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defined by,
d = degree(v;) ifi=j
Y10 ife#£j
The Laplacian'of G is the n x n matrix Q(G) = D(G) — A(G).
A k-partition of the nodes of G, P = { Py, P,,... P} is represented by an n x k assignment
matriz Y (P) = [y;n] where
o 1 if v, € Py
Vi =N 0 ifv & P,

The rows of ¥ sum to 1 and column h sums to |Py].

A k-partition of G, P = {P, P2,... P} can also be represented by the n x n partition
matrix® P = [p;;] where
~_J 1 ifv; and v; are in the same partition
Pii =1 0 otherwise

Given a simple graph G and a partition of its nodes, P, the partition graph Gp is the graph

with k vertices uy, ug, ..., u; where the number of edges between u, and wuy, for g # h is
n n
5 as= 3 Y e,
vi€Pgv;€P) =1 7=1

where Y is the assignment matrix of P. This is the graph whose nodes are the partitions
and whose interconnections are inherited from the edges of G.

3 Graph partitioning and some basic properties of the Laplacian

Observation 1 From Mohar “The Laplacian Spectrum of Graphs” [6]

n

Z A =2|E(G)] = Zdegree(vi)

=1

This follows from the Handshaking Lemma (the sum of the degrees of all nodes in an undi-
rected graph is twice the number of edges) and the trace of a symmetric matrix (the sum of
its diagonal entries) is the sum of its eigenvalues.

Yaka Kirchoff matriz aka admittance matric

2This was defined in Barnes’ SIAM paper [2].
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Observation 2 If Y is an n x k matriz then YTQ(G)Y is a k x k matriz whose gh'"
component 8

ZZ% (Yig — Yig) (Yir — Yjn)-

=1 j5=1

[N

Proof: Since YTQ(G)Y = YT (D(G) — A(G)Y = YID(G)Y — YTA(G))Y the gh'" com-
ponent of YTQ(G)Y is

S vigdiyin — Yy (O aiym) = Z yigyih(z aij) — Y _yis(O_ aijyjn)
=1 =1 7=1 ; j =1 7=1
= >3 ai(igyin) — D2 aii(yigyin)
=1 ]:1 =1 j5=1
1 n n n 1 n n
= 5 Z Cl” yzgyzh Z Z al] ylgy]h —I_ 2 Z Z azy yzgyzh
=1 7=1 =1 j5=1 =1 j5=1
1 n n n 1 n n
= 9 Z Z aij(YigYin) Z Z na;;(Yigyin) + ) Z Z a;i(YjgYin)
=1 7=1 =1 j5=1 7=11=1
= 5 2. 2 wilyigyimn) = 5 22 2 2aii(Yigyin) + 5 2 2 @i (Yig¥sn)
=1 7=1 =1 j5=1 7=11=1
1 n n
= 3 0> aii(ighin — 2vigYin + Yigsn)
=1 7=1
1 n n
= 3. 22 ii(yig — Yig) (Wi — yin)

.
Il
—

ECH
Il
—

Observation 3 If Y is the assignment matriz for P then YT Q(G)Y = Q(Gp), the Lapla-
cian of Gp.

Proof: First consider the ¢ diagonal entry of YTQ(G)Y

Z Z Clu Yig — ng

=1 j5=1

[N

Since Y is an assignment matrix, a;;(y;; — y;,)* will be 1 only when exactly one of v; and
v; is in P, and a;; = 1. Summed over all ¢ and j this gives twice the total number of edges
from nodes in P, to nodes not in P,. Hence the ¢'* diagonal entry is the degree of u, in Gp.

Now consider an off-diagonal entry (h # ¢). The gh'" component of YTQ(G)Y is:

Z Z al] Yig — Yjig (yih - yjh)-

=1 j5=1

[N
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Note that y;, — y;, will be non-zero if and only if exactly one of v; or v; is in P,. The
same holds for y;, — y;, with respect to Pj,. Since a node can not be simultaneously in two
partitions, (yi; — ¥;4)(Yin — y;1) is non-zero exactly when one of v; or v; is in P, and the other
is in P,. If this is the case and a;; must be non-zero, then the ;" term of the summation is
—1. Hence summing over all ¢ and j gives minus twice the number of edges between nodes
in partition P, and nodes in partition Fj. a

Observation 4 If P is a partition matriz, then its eigenvalues A\(P) = {mq,ma,...,my},
where m; is the number of nodes in the i'"* partition (E. Barnes).

Observation 5 If Y is the assignment matriz for P then YYT is the partition matriz.

Proof: The 51" element of YY7 is

k
Z YirnYih-
h=1
The term y;ny;n, will be 1 if and only if both v; and v; are in P}, and hence the sum is 1
exactly when v; and v; are in the same partition and 0 otherwise. O

Observation 6 If Y is the assignment matriz for P then YTY is a diagonal matriz with
|P,| in the g'"entry.

Proof: The ¢h'" element of YTV is
Z YigYin-
=1

The term y;,y;, can only be 0 when h # ¢ since node v; can be in at most one of the two
partitions. Hence the off-diagonal entries will be 0’s. On the diagonal we have

> Uiy
=1
which sums to the number of nodes in P,. O

The partition problem considered by Barnes and Donath,Hoffman was to solve for ¥ given
k and |Pi|, | P, ..., |Px|, the sizes of the partitions [7].

4 Ratio-cut graph partitioning

Now consider modifying the definition of the partition matrix to take into account the size of
the partitions. Specifically, a k-partition of the nodes of G, P = { P, P,, ... P, } is represented
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by an n X k ratioed assignment matriz R(P) = [riy] where

L if v; € P
m:{mlve h

0 lvaQ/Ph

The rows no longer necessarily sum to 1 and column A now sums to {/|FPy|.

Observation 7 If R is the ratioed assignment matriz for P then the ¢'" diagonal entry of
RTQ(G)R is the degree of u, in Gp divided by |P,|, and the gh'" off-diagonal entry is minus
the number of edges between P, and Py, divided by \/|P,| - | Pr|. 0

Proof: By Observation 2 the ¢'" diagonal entry of RTQ(G)R is:
1 i3 i3
522“21 rig = Tig)*.
=1 j5=1

Since R is a ratioed assignment matrix, a;;(r;; —r;,)? will be non-zero only when exactly one
of v; and v; is in P, and a;; = 1. Summed over all « and j this gives twice the total number
of edges from nodes in P, to nodes not in P,. Each non-zero (r;, —r;,)?* is

2
L] 1
|12, | Enl

Hence the ¢'* diagonal entry is the degree of u, in Gp divided by |P,|.

Now consider an off-diagonal entry (h # g). The gh'" component of RTQ(G)R is:

1 n n
5 Z Z aij(rig — 7jg)(Tin — Tjn)-

=1 j5=1

Note that r;; — r;, will be non-zero if and only if exactly one of v; or v; is in F,. The
same holds for r;, — rj;, with respect to P,. Since a node can not be simultaneously in two
partitions, (r;; — rjg)(ri — 7;,) is non-zero exactly when one of v; or v; is in P, and the other
is in P,. If this is the case and a;; is non-zero, then the ij" term of the summation is

—1
[Py /1 Pn]

Hence summing over all  and j gives minus twice the number of edges between nodes in
partition P, and nodes in partition P, divided by +/|P,| - | Pxl. 0

Given a k-partition of (7, the n X n ratioed partition matrix Pr = [rp;;] where

{ |]§—| if v; and v; both belong to P,
rpij = g

0 otherwise
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Observation 8 If R is a ratioed assignment matriz for P then RRT = Pg, the ratioed
partitton matrix.

Proof: The 5" element of RRT is
k
Z rihrjh-
h=1

The term ry,r;;, will be non-zero if and only if both v; and v; are in P, hence the sum is |];_h|

when v; and v; are in the same partition and 0 otherwise. O

Observation 9 If R is the ratioed assignment matriz for P then RTR is I, an identity
matriz.

Proof: The ¢gh'" element of RT R is
Z TigTih-
=1

The term r;,r;, can only be 0 when h # ¢ since node v; can be in at most one of the two
partitions. Hence the off-diagonal entries will be 0’s. On the diagonal we have
2T

=1

which sums to 1 since there are |P,| non-zero terms which are all ﬁ. O
g

Hence the ratioed partition matrix meets the constraint RT R = I},.

5 Relation between the eigenvalues and ratio cuts

Define the k-way ratio cut cost metric of a k-partition P of GG to be

k

cost(P) = Z

h=1

degree(uy,)
| £ ]

(Recall that uy, is the node in the partition graph corresponding to P, so degree(uy) is the
number of edges in ¢ with exactly one endpoint in P,.)

Observation 10 If k = 2, cost(P) is the ratio-cut cost metric defined by Wei and Cheng
scaled by n, the number of nodes in the graph.
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Proof: If k£ = 2, and FE. is the number of edges cut in P = { P, P}, then we have

degree(uy) — degree(us)
|1 £,
E, E,

_I_
1P| | P

1 1
— Ec —_I__
(|P1| |P2|)
| P | + | Ps|

C| Pyl - Py

n

E.—
|Pr| - | Py
E

cost(P) =

= K

e
|Pr| - | Py

Observation 11 If R is the ratioed assignment matriz associated with P, then cost(P) =
trace(RTQ(G)R).

This follows from Observation 7.

Minimizing cost(P), amounts to finding a ratioed assignment matrix which minimizes the
sum of the diagonal entries of RTQR.

Observation 12 The n x k matriz which minimizes the trace(YTQ(G)Y') subject to the
constraint Y'Y = I, is the n X k matriz whose k columns consist of the k eigenvectors of
Q corresponding to the k smallest® eigenvalues of ().

Proof: If we take the partials with respect to the variables in Y of the ¢'* diagonal entry
the matrix Lagrangian of YTQ(G)Y —A(YTY —I,,), and equate them to zero, this constrains
column ¢ of Y to be an eigenvector; no other columns are constrained. Thus the minimal
solution will consist of a k eigenvectors of (). These k eigenvectors must be distinct to satisfy
YTY = I,. If V is formed with any k eigenvectors of ) then QV = VA, where A is the
diagonal matrix formed with the eigenvalues corresponding to the k eigenvectors in V. This
means that

VIQV = VIVA, = LA, = Ay

and the sum of the diagonal entries of VI QV is the sum of the eigenvalues corresponding to
the k eigenvectors in V. It follows that this sum is minimized by selecting the eigenvectors
corresponding to the & smallest eigenvalues of (). O

?Eigenvalues may be repeated but eigenvectors may not.
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Observation 13 The sum of the smallest k eigenvalues is a lower bound on the minimum

cost(P) of any k-partition of G.

In the case k = 2, since A; + Ay = 0+ Ay = Ay we obtain

E,

Ao < cost(P)l=n———
2 S cost(P) = B E

which amounts to the result of Hagen and Kahng [1]

Ag E.
R
n = P | P

obviously not a tight upper bound for a graph with large number of nodes.

Observation 14 By Fliedler’s inequality [8],
Ay > 2C(1 — cos(w/n)))

where C is a cut set of the graph G, an upper bound on the optimal ratio-cut partitioning s

A2
2(n — 1)(1 = cos(w/n))

6 A new k-way spectral ratio cut method
The problem of finding an assignment is solved as follows:

1. Calculate all or enough(?) eigenvalues of Q(G).
Select k. See Section 7 below.
Find the eigenvectors corresponding to these k smallest eigenvalues.

Construct V, an n x k matrix whose columns are the k eigenvectors.

Compute Z = VVT,

AR

Construct a matrix P = [p;;] from Z where

o 1 if Zi; >= %
Pii =Y 0 otherwise

This is a heuristic of finding a partition using Z as “close” to P as possible. This
method of coercing Z into a partition matrix doesn’t always work. See Section 8 for

alternatives.
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7 Selecting the number of partitions £

In order to compare costs of partitions with different sizes, we scale our cost metric by ﬁ,

n - cost(P)
k(k—1)

The quantity 7 is the average number of nodes in a balanced k-way partition and & — 1 is
the degree of a node in the complete graph with k& nodes.

scost(P) =

Observation 15 For a random graph with edge probability f, and any partition P of size
k

Y

scost(P) = fn - %

which is a generalization of results of Cheng and Wei for bipartition [5]. (We are not sure
yet what this means, may be this is the average degree of the partition graph per partition.
But it will result in £ = n being selected, if the heuristics by eigenvalues estimation below
is accurate).

We would like to select the & that produces the smallest scost()

n  degree(uy)
>

k(k—1) | |

h=1

but since we do not know the optimal ratio-cut partition for any & we use the lower bound
as an indicator. That is, we choose the k& which minimizes

n k
_° "
k(k—1) };

where Ay < Ay < ... < ), is the non-decreasing order of the eigenvalues of ().

Note that this is a HEURISTIC.

8 Geometrical interpretation

The n x n matrix in R*, RRT = Pg, the ratioed partition matrix is a projector, since

P = Pp.

The n x n matrix in R*

Z=vv?
(which approximates the ratioed assignment matrix Pr) also forms an orthogonal projection
of R” spanned by the column vectors of Q onto a subspace of R* spanned by the k& smallest
eigenvectors.
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Observation 16 7 has exactly k nonzero eigenvalues which are all 1, i.e.,

AVVTY =1

Proof: Let the columns of the matrix X be the eigenvectors of Z, and A be their corre-
sponding matrix of eigenvalues

VVIX = XA
VIvVTX = VIXA
I, = A

Observation 17 The nonzero eigenvalues of the ratioed partition matriz RRT are all 1s.
Proof: Same as above. O

Observation 18 The “distance” belween the subspaces formed by ratioed assignment matrix
R and V is given by Hoffman-Wielandt inequality and is bounded from below:

I(RRT) = (VVT)]l2 2 0

Observation 19 The distance between two equidimensional subspaces spanned by R and V

1S
V1= 02, (RTV)

where 0,,;,(RTV) is the smallest singular value of matrix RTV (By CS Decomposition,
Golub and van Loan, pg. 77). This is the generalized sine angle between the two subspaces.

The Pr matrix projects R™ onto the R* subspace defined by the orthonormal R. If the n
nodes of the graph G are associated with the n unit-vectors of R", then nodes belonging to
the same partition are mapped to the same point by R. Since Pgr is “close” to the subspace
defined by VTV, the nodes belonging to the same partition should have “close” projections
under V. This suggests a heuristic for constructing the R which is “closest” to V: use
proximity of the images of the unit-vectors under V. In cases of ambiguity the distance can

be verified.

9 Summary

We have presented some preliminary but new and basic results on spectral k-way ratio-cut
partitioning in this report. The next report will demonstrate the effectiveness of this method
and some experimental results.
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