Sorting and Searching
With a Faulty
Comparison Oracle

Philip M. Long

UCSC-CRL-92-15
November 9, 1992

Board of Studies in Computer and Information Sciences
University of California at Santa Cruz
Santa Cruz, CA 95064

ABSTRACT

We study sorting and searching using a comparison oracle that "lies." First, we prove that an algorithm of Rivest, Meyer, Kleitman, Winklmann and Spencer for searching in an \(n \)-element list using a comparison oracle that lies \(E \) times requires at most \(O(\log n + E) \) comparisons, improving the best previously known bound of \(\log n + E\log\log n + O(E\log E) \). A lower bound, easily obtained from their results, establishes that the number of comparisons used by their algorithm is within a constant factor of optimal.

We apply their search algorithm to obtain an algorithm for sorting an \(n \) element list with \(E \) lies that requires at most \(O(n\log n + En) \) comparisons, improving on the algorithm of Lakshmanan, Ravikumar and Ganesan, which required at most \(O(n\log n + En + E^2) \) comparisons. A lower bound proved by Lakshmanan, Ravikumar and Ganesan establishes that the number of comparisons used by our sorting algorithm is optimal to within a constant factor.

* I gratefully acknowledge the support of a UCSC Chancellor’s dissertation-year Fellowship. Email address: plong@cs.ucsc.edu.
1 Introduction

Rivest, Meyer, Kleitman, Winklmann, and Spencer [RMK+80] described an algorithm for finding an element \(k \) in \(\{1, \ldots, n\} \) using questions of the form "is \(k \leq a^2 \)" for \(a \) chosen by the algorithm, when up to \(E \) of their algorithm’s questions were answered incorrectly. They showed that the algorithm was guaranteed to output \(k \), and that their algorithm used at most

\[
\log n + E \log \log n + O(E \log E)
\]

comparisons. In this note, we show that the number of comparisons required by their algorithm is at most

\[
O(\log n + E),
\]

improving on their bound when \(E \) grows faster than \((\log n) / (\log \log n)\).

A trivial application of their results provides a lower bound of \(\Omega(\log n + E) \), establishing that their algorithm is optimal to within a constant factor.

We may easily apply this searching bound to show that an insertion sort algorithm, which uses their algorithm as a subroutine to determine where each insertion is to take place, requires at most \(O(n \log n + En) \) comparisons to sort \(n \) keys with \(E \) "lies," improving on the bound of \(O(n \log n + En + E^2) \) proved by Lakshmanan, Ravikumar and Ganesan [LRG91] for a closely related algorithm when \(E \) grows faster than \(n \). A lower bound of \(\Omega(n \log n + En) \) comparisons proved in that paper establishes the fact that our modification of their algorithm is within a constant factor of optimal.

The [RMK+80] paper contained a detailed proof of the following theorem, which is the starting point of our analysis.

Theorem 1 ([RMK+80]): For any nonnegative integer \(E \) and positive integer \(n \), let \(Q(n, E) \) denote the number of comparison questions necessary in the worst case to identify an unknown \(k \in \{1, \ldots, n\} \) when up to \(E \) of the questions may receive an erroneous answer. Then

\[
\min \left\{ u : 2^n \geq n \sum_{i=0}^{E} \binom{n}{i} \right\} \leq Q(n, E) \leq \min \left\{ u : 2^n - E \geq n \sum_{i=0}^{E} \binom{n}{i} \right\}.
\]

Our improvement on their upper bound is obtained by applying an unusual approximation to \(\sum_{i=0}^{d} \binom{m}{i} \). It is a direct consequence of Hoeffding's inequality, a bound on the probability that the following two quantities differ by much:

- The probability that a (biased) coin will come up heads,
- The fraction of the time it comes up heads when flipped \(m \) times.

Their approximation improves on the usual approximation of \((\epsilon m / d)^d \) [BEHW89] when \(d \) is large relative to \(m \), which is useful for this application.

Note that if \(E \in \Omega(\log n) \), the \(En \) term in our sorting bound of \(O(n \log n + En) \) dominates. This is especially interesting in light of the result of Ravikumar, Ganesan and Lakshmanan [RGIL87], which says that \((E + 1)n - 1\) comparisons are necessary and

1 In this paper, we follow usual convention of denoting the base 2 logarithm by \(\log \) and the natural logarithm by \(\ln \).

2 Bounds of \(O(\log n + E) \) on the first minimum of this theorem were obtained independently by Cesa-Bianchi and Warmuth [CW92] while working on another application.
sufficient to simply find the maximum of \(n \) elements using a comparison oracle that lies \(E \) times. Thus, if \(E \in \Omega(\log n) \), only a constant factor more comparisons are required to sort \(n \) elements than to simply output their maximum. It is also perhaps worth repeating the observation in [LRG91] that any \(O(n \log n) \) sorting algorithm can be trivially modified to cope with \(E \) lies by repeating each comparison \(2E + 1 \) times, obtaining an algorithm that uses \(O(En \log n) \) comparisons. Thus, for moderately large \(E \), our sorting result can be viewed as knocking off a log factor from what can be obtained trivially.

For those familiar with the Computational Learning Theory literature, as noted by Goldman, Rivest and Schapire [GRS89], another interpretation of the sorting problem is as the problem of learning a total order on \(n \) elements using Angluin’s “membership queries” [Ang88]. Our sorting result can therefore be interpreted as determining (to within a constant factor) the number of membership queries required for learning a total order, when a bounded number of the membership queries are answered incorrectly.

In addition to the aforementioned previous work, sorting and searching with a faulty comparison oracle has been studied under at least two other assumptions about the generation of the faults, including that they are generated independently at random [Pel89, FPRU90], and that there is a constant \(r \) such that for each \(i \), at most \(ir \) of the first \(i \) comparisons are answered incorrectly [Pel89, AD91].

2 Approximating \(\sum_{i=0}^{d} \binom{m}{i} \)

In this section, we state and, for completeness, prove, a useful approximation to \(\sum_{i=0}^{d} \binom{m}{i} \).

The following form of the Hoeffding bounds will be useful.

Theorem 2 (c.f., [Pol84]): Let \(Y_1, \ldots, Y_m \) be independent, identically distributed \(\{0,1\} \)-valued random variables such that for each \(i \), \(\Pr(Y_i = 1) = p \). Then, for any \(\alpha \geq 0 \),

\[
\Pr \left(\frac{1}{m} \sum_{i=1}^{m} Y_i \leq p - \alpha \right) \leq e^{-2\alpha^2 m}.
\]

The following Corollary is the useful approximation.

Corollary 3: Choose \(d, m \in \mathbb{N} \), \(d \leq m/2 \). Then

\[
\sum_{i=0}^{d} \binom{m}{i} \leq 2^m \exp \left(-\frac{(m - 2d)^2}{2m} \right).
\]

Proof: Since if an unbiased coin is flipped independently \(m \) times (call the results of the flips \(Y_1, \ldots, Y_m \)), any subset of the \(m \) tosses is equally likely to be the set of trials in which heads appeared,

\[
\frac{1}{2^m} \sum_{i=0}^{d} \binom{m}{i} = \Pr \left(\frac{1}{m} \sum_{i=0}^{m} Y_i \leq \frac{d}{m} \right) \leq \exp(-2(1/2 - d/m)^2 m),
\]

applying Theorem 2 with \(p = 1/2 \). Multiplying both sides by \(2^m \) and simplifying yields the desired result. \(\square \)
3 Searching with a faulty comparison oracle

In the section, we present our main result.

Theorem 4: For any nonnegative integer E and positive integer n, let $Q(n, E)$ denote the number of comparison questions necessary in the worst case to identify an unknown $k \in \{1, ..., n\}$ when up to E of the questions may receive an erroneous answer. Then

$$Q(n, E) = O(\log n + E).$$

Proof: First, note that

$$\min \left\{ u : 2^{u-E} \geq n \sum_{i=0}^{E} \binom{u-E}{i} \right\} \leq \min \left\{ u : 2^u \geq n \sum_{i=0}^{E} \binom{u}{i} \right\} + E.$$

Thus, by Theorem 1, a bound of $u + E$ holds for any u such that

$$2^u \geq n \sum_{i=0}^{E} \binom{u}{i}.$$

Fix E and n. Let

$$u = \lceil 4 \max\{2\ln n, E\} \rceil.$$ \hspace{1cm} (3.1)

In particular,

$$u \geq 8 \ln n$$
$$\sqrt{u} \geq 2 \sqrt{2 \ln n}$$
$$u \geq 2 \sqrt{2 u \ln n}.$$

Returning to (3.1), we may obtain the following sequence of inequalities,

$$u \geq 2 \max\{2 \sqrt{u \ln n}, 2 E\}$$
$$u \geq 2 \sqrt{u \ln n} + 2 E$$
$$(u - 2 E)^2 \geq 2 u \ln n$$
$$\frac{(u - 2 E)^2}{2 u} \geq \ln n$$
$$\exp\left(\frac{(u - 2 E)^2}{2 u}\right) \geq n$$
$$\exp\left(\frac{-(u - 2 E)^2}{2 u}\right) \leq 1/n.$$

Applying Corollary 3, we obtain

$$\frac{1}{2^u} \sum_{i=0}^{E} \binom{u}{i} \leq 1/n$$
$$n \sum_{i=0}^{E} \binom{u}{i} \leq 2^u.$$
Applying Theorem 1, this implies that the number of comparisons used by their algorithm is at most

\[u + E = \lceil 4\max\{2\ln n, E\} \rceil + E \leq 8\ln n + 5E + 1, \]

completing the proof. \Box

Next, we turn to lower bounds.

Theorem 5: For any nonnegative integer \(E \) and positive integer \(n \geq 2 \), let \(Q(n, E) \) denote the number of comparison questions necessary in the worst case to identify an unknown \(k \in \{1, \ldots, n\} \) when up to \(E \) of the questions may receive an erroneous answer. Then

\[Q(n, E) = \Omega(\log n + E). \]

Proof: Fix \(E \) and \(n \). Note that

\[2^n - n \sum_{i=0}^{E} \binom{u}{i} \]

is an increasing function of \(u \), and therefore, by Theorem 1 that any \(u \) for which

\[2^n < n \sum_{i=0}^{E} \binom{u}{i} \]

provides a lower bound on \(Q(n, E) \). Let \(u = \lfloor \log n \rfloor + E \). Then

\[2^n \leq n2^{E} = n \sum_{i=0}^{E} \binom{E}{i} < n \sum_{i=0}^{E} \binom{\lfloor \log n \rfloor + E}{i} \quad \text{(since } n \geq 2) \]

\[= n \sum_{i=0}^{E} \binom{u}{i}. \]

This completes the proof. \Box

4 Sorting with a faulty comparison oracle

In this section, we describe how to apply the algorithm of the previous section to obtain a sorting algorithm that copes with incorrect answers to comparison questions, and requires a number of comparisons that is within a constant factor of optimal.

We begin by describing a modification of binary insertion sort that uses the robust binary search algorithm of \([\text{RMK}^+80] \) to determine where to insert. Pseudo-code for this algorithm is given in Figure 4.1.

The following follows trivially from the results of the previous section.
algorithm robust-insertion-sort(A,E,n)
array A; (n elements in A)
integer E;
integer n;

for i = 2 to n
 begin
 use [RMK+80] to determine where A[i] should be
 inserted in A[1],...,A[i-1], assuming at most E lies
 (during this search), say it is before A[k];
 insert A[i] before A[k];
 end;

Figure 4.1: Pseudo-code for a robust sorting algorithm.

Theorem 6: The algorithm robust-insertion-sort correctly sorts an array of n elements when at most E of its comparison questions are answered incorrectly, using

\[O(n \log n + En) \]

comparisons.

The following theorem, due to Lakshmanan, Ravikumar and Ganesan, establishes that the number of comparisons used by robust-insertion-sort is within a constant factor of optimal.

Theorem 7 ([LRG91]): Any correct algorithm for sorting n keys, when up to E comparisons may be answered incorrectly, must make

\[\Omega(n \log n) + E(n - 1) \]

comparisons.

5 Acknowledgements

We’d like to thank Nicolo Cesa-Bianchi, Max Cooperman, Dave Helmbold, Hans Ulrich Simon, K.B. Sriram, Madhukar Thakur and Manfred Warmuth for valuable conversations about this research and related topics.

References

