
Sorting and SearchingWith a FaultyComparison OraclePhilip M. Long�UCSC-CRL-92-15November 9, 1992Board of Studies in Computer and Information SciencesUniversity of California at Santa CruzSanta Cruz, CA 95064abstractWe study sorting and searching using a comparison oracle that \lies." First, weprove that an algorithm of Rivest, Meyer, Kleitman, Winklmann and Spencer forsearching in an n-element list using a comparison oracle that lies E times requiresat most O(logn + E) comparisons, improving the best previously known bound oflog n+ E log logn+ O(E logE). A lower bound, easily obtained from their results,establishes that the number of comparisons used by their algorithm is within aconstant factor of optimal.We apply their search algorithm to obtain an algorithm for sorting an n elementlist with E lies that requires at most O(n logn + En) comparisons, improving onthe algorithm of Lakshmanan, Ravikumar and Ganesan, which required at mostO(n logn+En+E2) comparisons. A lower bound proved by Lakshmanan, Raviku-mar and Ganesan establishes that the number of comparisons used by our sortingalgorithm is optimal to within a constant factor.�I gratefully acknowledge the support of a UCSC Chancellor's dissertation-year Fellowship. Emailaddress: plong@cs.ucsc.edu.

1. Introduction 11 IntroductionRivest, Meyer, Kleitman, Winklmann, and Spencer [RMK+80] described an algorithmfor �nding an element k in f1; :::; ng using questions of the form \is k � a?" for a chosenby the algorithm, when up to E of their algorithm's questions were answered incorrectly.They showed that the algorithm was guaranteed to output k, and that their algorithm usedat most1 logn+ E log logn+ O(E logE)comparisons. In this note, we show that the number of comparisons required by theiralgorithm is at most O(logn+ E);improving on their bound when E grows faster than (logn)=(log logn).A trivial application of their results provides a lower bound of
(logn+E), establishingthat their algorithm is optimal to within a constant factor.We may easily apply this searching bound to show that an insertion sort algorithm,which uses their algorithm is a subroutine to determine where each insertion is to takeplace, requires at most O(n logn+En) comparisons to sort n keys with E \lies," improvingon the bound of O(n logn + En + E2) proved by Lakshmanan, Ravikumar and Ganesan[LRG91] for a closely related algorithm when E grows faster than n. A lower bound of
(n logn+En) comparisons proved in that paper establishes the fact that our modi�cationof their algorithm is within a constant factor of optimal.The [RMK+80] paper contained a detailed proof of the following theorem, which is thestarting point of our analysis.2Theorem 1 ([RMK+80]): For any nonnegative integer E and positive integer n, letQ(n;E) denote the number of comparison questions necessary in the worst case to iden-tify an unknown k 2 f1; :::; ng when up to E of the questions may receive an erroneousanswer. Thenmin(u : 2u � n EXi=0 ui!) � Q(n;E) � min(u : 2u�E � n EXi=0 u�Ei !) :Our improvement on their upper bound is obtained by applying an unusual approxi-mation to Pdi=0 �mi �. It is a a direct consequence of Hoe�ding's inequality, a bound on theprobability that the following two quantities di�er by much:� The probability that a (biased) coin will come up heads,� The fraction of the time it comes up heads when ipped m times.Their approximation improves on the usual approximation of (em=d)d [BEHW89] when dis large relative to m, which is useful for this application.Note that if E 2
(logn), the En term in our sorting bound of O(n logn + En)dominates. This is especially interesting in light of the result of Ravikumar, Ganesanand Lakshmanan [RGL87], which says that (E + 1)n � 1 comparisons are necessary and1In this paper, we follow usual convention of denoting the base 2 logarithm by log and the naturallogarithm by ln.2Bounds of O(log n + E) on the �rst minimum of this theorem were obtained independently by Cesa-Bianchi and Warmuth [CW92] while working on another application.

2 2. Approximating Pdi=0 �mi �su�cient to simply �nd the maximum of n elements using a comparison oracle that liesE times. Thus, if E 2
(logn), only a constant factor more comparisons are required tosort n elements than to simply output their maximum. It is also perhaps worth repeatingthe observation in [LRG91] that any O(n logn) sorting algorithm can be trivially modi�edto cope with E lies by repeating each comparison 2E + 1 times, obtaining an algorithmthat uses O(En logn) comparisons. Thus, for moderately large E, our sorting result can beviewed as knocking o� a log factor from what can be obtained trivially.For those familiar with the Computational Learning Theory literature, as noted byGoldman, Rivest and Schapire [GRS89], another interpretation of the sorting problemis as the problem of learning a total order on n elements using Angluin's \membershipqueries" [Ang88]. Our sorting result can therefore be interpreted as determining (to withina constant factor) the number of membership queries required for learning a total order,when a bounded number of the membership queries are answered incorrectly.In addition to the aforementioned previous work, sorting and searching with a faultycomparison oracle has been studied under at least two other assumptions about the gen-eration of the faults, including that they are generated independently at random [Pel89,FPRU90], and that there is a constant r such that for each i, at most ir of the �rst icomparisons are answered incorrectly [Pel89, AD91].2 Approximating Pdi=0 �mi �In this section, we state and, for completeness, prove, a useful approximation toPdi=0 �mi �.The following form of the Hoe�ding bounds will be useful.Theorem 2 (c.f., [Pol84]): Let Y1; :::; Ym be independent, identically distributed f0; 1g-valued random variables such that for each i, Pr(Yi = 1) = p. Then, for any � � 0,Pr 1m mXi=1 Yi � p� �! � e�2�2m:The following Corollary is the useful approximation.Corollary 3: Choose d;m 2 N, d � m=2. ThendXi=0 mi ! � 2m exp �(m� 2d)22m ! :Proof: Since if an unbiased coin is ipped independently m times (call the results of theips Y1; :::; Ym), any subset of the m tosses is equally likely to be the set of trials in whichheads appeared,12m dXi=0 mi ! = Pr 1m mXi=0 Yi � dm! � exp(�2(1=2� d=m)2m);applying Theorem 2 with p = 1=2. Multiplying both sides by 2m and simplifying yields thedesired result. 2

3. Searching with a faulty comparison oracle 33 Searching with a faulty comparison oracleIn the section, we present our main result.Theorem 4: For any nonnegative integer E and positive integer n, let Q(n;E) denotethe number of comparison questions necessary in the worst case to identify an unknownk 2 f1; :::; ng when up to E of the questions may receive an erroneous answer. ThenQ(n;E) = O(logn+E):Proof: First, note thatmin(u : 2u�E � n EXi=0 u� Ei !) � min(u : 2u � n EXi=0 ui!) +E:Thus, by Theorem 1, a bound of u+E holds for any u such that2u � n EXi=0 ui!:Fix E and n. Let u = d4maxf2 lnn;Ege: (3:1)In particular, u � 8 lnnpu � 2p2 lnnu � 2p2u lnn:Returning to (3.1), we may obtain the following sequence of inequalities,u � 2maxfp2u lnn; 2Egu � p2u lnn+ 2Eu � 2E � p2u lnn(u� 2E)2 � 2u lnn(u� 2E)22u � ln nexp (u� 2E)22u ! � nexp �(u� 2E)22u ! � 1=n:Applying Corollary 3, we obtain 12u EXi=0 ui! � 1=nn EXi=0 ui! � 2u:

4 4. Sorting with a faulty comparison oracleApplying Theorem 1, this implies that the number of comparisons used by their algorithmis at most u+ E = d4maxf2 lnn;Ege+ E� 8 lnn+ 5E + 1;completing the proof. 2Next, we turn to lower bounds.Theorem 5: For any nonnegative integer E and positive integer n � 2, let Q(n;E) denotethe number of comparison questions necessary in the worst case to identify an unknownk 2 f1; :::; ng when up to E of the questions may receive an erroneous answer. ThenQ(n;E) =
(logn+E):Proof: Fix E and n. Note that 2u � n EXi=0 ui!is an increasing function of u, and therefore, by Theorem 1 that any u for which2u < n EXi=0 ui!provides a lower bound on Q(n;E). Let u = blog nc +E. Then2u � n2E= n EXi=0 Ei !< n EXi=0 blognc +Ei ! (since n � 2)= n EXi=0 ui!:This completes the proof. 24 Sorting with a faulty comparison oracleIn this section, we describe how to apply the algorithm of the previous section to obtaina sorting algorithm that copes with incorrect answers to comparison questions, and requiresa number of comparisons that is within a constant factor of optimal.We begin by describing a modi�cation of binary insertion sort that uses the robustbinary search algorithm of [RMK+80] to determine where to insert. Pseudo-code for thisalgorithm is given in Figure 4.1.The following follows trivially from the results of the previous section.

5. Acknowledgements 5algorithm robust-insertion-sort(A,E,n)array A; (n elements in A)integer E;integer n;for i = 2 to nbeginuse [RMK+80] to determine where A[i] should beinserted in A[1]; :::; A[i� 1], assuming at most E lies(during this search), say it is before A[k];insert A[i] before A[k];end;Figure 4.1: Pseudo-code for a robust sorting algorithm.Theorem 6: The algorithm robust-insertion-sort correctly sorts an array of n elementswhen at most E of its comparison questions are answered incorrectly, usingO(n logn+ En)comparisons.The following theorem, due to Lakshmanan, Ravikumar and Ganesan, establishes thatthe number of comparisons used by robust-insertion-sort is within a constant factor ofoptimal.Theorem 7 ([LRG91]): Any correct algorithm for sorting n keys, when up to E compar-isons may be answered incorrectly, must make
(n logn) +E(n� 1)comparisons.5 AcknowledgementsWe'd like to thank Nicolo Cesa-Bianchi, Max Copperman, Dave Helmbold, Hans UlrichSimon, K.B. Sriram, Madhukar Thakur and Manfred Warmuth for valuable conversationsabout this research and related topics.References[AD91] J.A. Aslam and A. Dhagat. Searching in the presence of linearly bounded errors.Proceedings of the 23rd ACM Symposium on the Theory of Computation, 1991.[Ang88] D. Angluin. Queries and concept learning. Machine Learning, 2:319{342, 1988.[BEHW89] A. Blumer, A. Ehrenfeucht, D. Haussler, and M.K. Warmuth. Learnability andthe Vapnik-Chervonenkis dimension. JACM, 36(4):929{965, 1989.

6 References[CW92] N. Cesa-Bianchi and M.K. Warmuth. Personal communication, 1992.[FPRU90] U. Feige, D. Peleg, P. Raghavan, and E. Upfal. Computing with unreliable infor-mation. Proceedings of the 22nd ACMSymposium on the Theory of Computation,1990.[GRS89] S.A. Goldman, R.L. Rivest, and R.E. Schapire. Learning binary relations andtotal orders. Proceedings of the 30th Annual Symposium on the Foundations ofComputer Science, 1989.[LRG91] K.B. Lakshmanan, B. Ravikumar, and K. Ganesan. Coping with erroneousinformation while sorting. IEEE Transactions on Computers, 40(9):1081{1084,1991.[Pel89] A. Pelc. Searching with known error probability. Theoretical Computer Science,63:185{202, 1989.[Pol84] D. Pollard. Convergence of Stochastic Processes. Springer Verlag, 1984.[RGL87] B. Ravikumar, K. Ganesan, and K.B. Lakshmanan. On selecting the largestelement in spite of erroneous information. Proceedings of STACS87, LectureNotes in Computer Science, 247, 1987.[RMK+80] R.L. Rivest, A.R. Meyer, D.J. Kleitman, K.Winklmann, and J. Spencer. Copingwith errors in binary search procedures. Journal of Computer and SystemSciences, 20:396{404, 1980.

