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ABSTRACT

We study sorting and searching using a comparison oracle that “lies.” First, we
prove that an algorithm of Rivest, Meyer, Kleitman, Winklmann and Spencer for
searching in an n-element list using a comparison oracle that lies F times requires
at most O(logn + F) comparisons, improving the best previously known bound of
logn 4+ Floglogn + O(Flog F). A lower bound, easily obtained from their results,
establishes that the number of comparisons used by their algorithm is within a
constant factor of optimal.

We apply their search algorithm to obtain an algorithm for sorting an n element
list with F lies that requires at most O(nlogn + En) comparisons, improving on
the algorithm of Lakshmanan, Ravikumar and Ganesan, which required at most
O(nlogn+ En+ E?) comparisons. A lower bound proved by Lakshmanan, Raviku-
mar and Ganesan establishes that the number of comparisons used by our sorting
algorithm is optimal to within a constant factor.
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1 Introduction

Rivest, Meyer, Kleitman, Winklmann, and Spencer [RMK'80] described an algorithm
for finding an element k in {1,...,n} using questions of the form “is k& < a?” for a chosen
by the algorithm, when up to F of their algorithm’s questions were answered incorrectly.
They showed that the algorithm was guaranteed to output &, and that their algorithm used
at most!

logn + Floglogn + O(Flog F)

comparisons. In this note, we show that the number of comparisons required by their
algorithm is at most

O(logn + ),

improving on their bound when F grows faster than (logn)/(loglogn).

A trivial application of their results provides a lower bound of Q(logn+ F'), establishing
that their algorithm is optimal to within a constant factor.

We may easily apply this searching bound to show that an insertion sort algorithm,
which uses their algorithm is a subroutine to determine where each insertion is to take
place, requires at most O(nlogn+ En) comparisons to sort n keys with £ “lies,” improving
on the bound of O(nlogn + En + E?) proved by Lakshmanan, Ravikumar and Ganesan
[LRGI1] for a closely related algorithm when F grows faster than n. A lower bound of
Q(nlogn+ En) comparisons proved in that paper establishes the fact that our modification
of their algorithm is within a constant factor of optimal.

The [RMK™80] paper contained a detailed proof of the following theorem, which is the

starting point of our analysis.?

Theorem 1 ([RMKT™80]): For any nonnegative integer E and positive integer n, let
Q(n, F) denote the number of comparison questions necessary in the worst case to iden-
tify an unknown k € {1,...,n} when up to E of the questions may receive an erroneous
answer. Then

E [y E (u—E
min{u:Q“ZnZ(i)}§Q(n,E)§min{u:2“_E2nZ( ; )}

Our improvement on their upper bound is obtained by applying an unusual approxi-

mation to Z?:o (T) It is a a direct consequence of Hoeffding’s inequality, a bound on the

probability that the following two quantities differ by much:
e The probability that a (biased) coin will come up heads,

e The fraction of the time it comes up heads when flipped m times.
Their approximation improves on the usual approximation of (em/d)? [BEHWS89] when d
is large relative to m, which is useful for this application.

Note that if £ € Q(logn), the En term in our sorting bound of O(nlogn + En)
dominates. This is especially interesting in light of the result of Ravikumar, Ganesan
and Lakshmanan [RGL87], which says that (F' + 1)n — 1 comparisons are necessary and

'In this paper, we follow usual convention of denoting the base 2 logarithm by log and the natural
logarithm by In.

2Bounds of O(logn + E) on the first minimum of this theorem were obtained independently by Cesa-
Bianchi and Warmuth [CW92] while working on another application.
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sufficient to simply find the maximum of n elements using a comparison oracle that lies
E times. Thus, if £ € Q(logn), only a constant factor more comparisons are required to
sort n elements than to simply output their maximum. It is also perhaps worth repeating
the observation in [LRG91] that any O(nlogn) sorting algorithm can be trivially modified
to cope with F lies by repeating each comparison 2F + 1 times, obtaining an algorithm
that uses O(Enlogn) comparisons. Thus, for moderately large £, our sorting result can be
viewed as knocking off a log factor from what can be obtained trivially.

For those familiar with the Computational Learning Theory literature, as noted by
Goldman, Rivest and Schapire [GRS89], another interpretation of the sorting problem
is as the problem of learning a total order on n elements using Angluin’s “membership
queries” [Ang88]. Our sorting result can therefore be interpreted as determining (to within
a constant factor) the number of membership queries required for learning a total order,
when a bounded number of the membership queries are answered incorrectly.

In addition to the aforementioned previous work, sorting and searching with a faulty
comparison oracle has been studied under at least two other assumptions about the gen-
eration of the faults, including that they are generated independently at random [Pel89,
FPRU90], and that there is a constant r such that for each ¢, at most ir of the first ¢
comparisons are answered incorrectly [Pel89, AD91].

2 Approximating ¢, (an)

In this section, we state and, for completeness, prove, a useful approximation to
d
Zi:O (Tzn)
The following form of the Hoeffding bounds will be useful.

Theorem 2 (c.f., [Pol84]): Let Yi,...,Y,, be independent, identically distributed {0,1}-
valued random variables such that for each i, Pr(Y; = 1) = p. Then, for any a > 0,

1 & 2
Pr| = YV, <p-— < gTaTm
r (m ; <p a) <e

The following Corollary is the useful approximation.
Corollary 3: Choose d,m € N, d < m/2. Then

(1) <2 (22207)

1=0 2m

Proof: Since if an unbiased coin is flipped independently m times (call the results of the
flips Y1, ..., Y:), any subset of the m tosses is equally likely to be the set of trials in which
heads appeared,

%i (m) - (%iy : %) < exp(=2(1/2 = d/m)’m),

applying Theorem 2 with p = 1/2. Multiplying both sides by 2™ and simplifying yields the
desired result. O
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3 Searching with a faulty comparison oracle

In the section, we present our main result.

Theorem 4: For any nonnegative integer F and positive integer n, let Q(n, F) denote
the number of comparison questions necessary in the worst case to identify an unknown
ke {l,...n} when up to E of the questions may receive an erroneous answer. Then

Q(n, L) =0(logn + ).

Proof: First, note that

E u B E u
. L ou—F - . . ou
mm{u.Q Zn}zo( ; )} §mm{u.2 Zn}zo (J}—I—E

Thus, by Theorem 1, a bound of w + F holds for any u such that

b Uu
2% > nZ ()
1=0 ¢

Fix £ and n. Let
w = [4max{2Inn, L'}]. (3.1)

In particular,

lnn
2vV21Inn

U
Vu
U 2v2u In n.

VAR AVAN Y,

Returning to (3.1), we may obtain the following sequence of inequalities,

w > 2max{V2ulnn,2E}
w > V2ulnn+ 2F
u—2FE > V2ulnn
(u—2E)Y > 2ulnn
_ 2
(w=2E7 o
2u
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Applying Corollary 3, we obtain
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Applying Theorem 1, this implies that the number of comparisons used by their algorithm
is at most

v+ £ = [4max{2lnn, F}|4+ F
< 8lnn+5HE+1,

completing the proof. O

Next, we turn to lower bounds.

Theorem 5: For any nonnegative integer I and positive integer n > 2, let Q(n, ) denote
the number of comparison questions necessary in the worst case to identify an unknown
ke {l,...n} when up to E of the questions may receive an erroneous answer. Then

Q(n, F)=Qogn + F).

2o ()

is an increasing function of w, and therefore, by Theorem 1 that any u for which

b U
2% < nZ (2)
1=0

provides a lower bound on Q(n, F). Let w = |logn| + £. Then

Proof: Fix F and n. Note that

2t < p2Ff

(Uog nj + E) (since n > 2)

This completes the proof. O

4 Sorting with a faulty comparison oracle

In this section, we describe how to apply the algorithm of the previous section to obtain
a sorting algorithm that copes with incorrect answers to comparison questions, and requires
a number of comparisons that is within a constant factor of optimal.

We begin by describing a modification of binary insertion sort that uses the robust
binary search algorithm of [RMK'80] to determine where to insert. Pseudo-code for this
algorithm is given in Figure 4.1.

The following follows trivially from the results of the previous section.
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algorithm robust-insertion-sort( A, £ ,n)
array A; (n elements in A)

integer F;

integer n;

fori=2ton
begin
use [RMK™T80] to determine where A[i] should be
inserted in A[l], ..., A[i — 1], assuming at most E lies
(during this search), say it is before A[k];
insert A[i] before A[k];

end;

Figure 4.1: Pseudo-code for a robust sorting algorithm.

Theorem 6: The algorithm robust-insertion-sort correctly sorts an array of n elements
when at most E of its comparison questions are answered incorrectly, using

O(nlogn + En)

COMPATiSONS.

The following theorem, due to Lakshmanan, Ravikumar and Ganesan, establishes that
the number of comparisons used by robust-insertion-sort is within a constant factor of
optimal.

Theorem 7 ([LRGI91]): Any correct algorithm for sorting n keys, when up to E compar-
isons may be answered incorrectly, must make

Qnlogn)+ E(n—1)

COMPATiSONS.
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