A Replicated Monitoring Tool

Darrell D. E. Long'
Computer & Information Sciences
University of California, Santa Cruz

Abstract

Modeling the reliability of distributed systems requires
a good understanding of the reliability of the components.
Careful modeling allows highly fault-tolerant distributed
applications to be constructed at the least cost. Realis-
tic estimates can be found by measuring the performance
of actual systems. An enormous amount of information
about system performance can be acquired with no special
privileges via the Internet.

A distributed monitoring tool called a tattler is de-
scribed. The system is composed of a group of tattler
processes that monitor a set of selected hosts. The tat-
tlers cooperate to provide a fault-tolerant distributed data
base of information about the hosts they monitor. They
use weak-consi stency replication techniquesto ensure their
own fault-tol eranceand the eventual consi stency of the data
base that they maintain.

1 Introduction

Disgtributed systems are now pervasive. Few system
architects would consider designing a system that could
not interact with other systems. Soon it will be rare to
find computers that are not connected by a network. With
distribution comes an increased incidence of partia failure.
Replication of both control and data can be employed to
provide systems capabl e of tolerating partial failures.

To use replication techniques most effectively, it isim-
portant to understand the nature of thefailuresto be masked.
Recent studies include analyses of Tandem systems [1, 2]
and the IBM/XA system [3]. Research covering heteroge-
neous systemsis|ess common. Very few such studieshave
appeared in the open literature, although it is certain that
most companies performreliability studiesof their products
internally.

An earlier study [4] that used the Internet to estimate sev-
eral parameters, including mean-time-to-failure (MTTF)

1 Supported in part by a grant from Sun Microsystems, Incorporated,
and the University of California MICRO program.

and availahility. These estimates were then used to derive
an estimate of mean-time-to-repair (MTTR). While this
study provided many important results, it suffered from
severa weaknesses. First, the assumptions made about
the distributions that described host failures may not re-
flect those found in actual systems. Second, the network
that connected the polling host (pollster) to the polled hosts
(respondents) can affect the statisticsby reportingfal se fail -
ures. Asaresult, theestimates of the parameters may differ
significantly from the actual values. In particular, the de-
rived estimate of mean-time-to-repair can be much larger
than expected since small errorsinthe avail ability estimate
that are introduced by the intervening network can have a
significant effect.

Estimates of mean-time-to-failure were based on re-
ported up-times and not the actual time of failure. This
was the best information available since a host isnot in a
positionto giveitsfailuretimeasit goesdown. Asaresult,
there was a bias towards more reliable hosts which means
that the estimate of MTTF islarger than the true value.

Similarly, availability was estimated by the fraction of
hosts that were reachable by the pollster. To ensure that
only hosts capable of answering were queried, an initia
poll was made and only hosts that answered this poll were
counted in the avail ability census. Unfortunately, there are
a significant number of network segments separating the
pollster from most respondents and so a network failure
may be misinterpreted as a host failure.

The most direct way of determining statistics such as
MTTF and availability is through direct measurement. A
fault-tolerant monitor is being devel oped that can be placed
at strategic locations around the Internet. Instances of the
monitor will be placed to minimize the amount of shared
network so that afailureof arouter or alink will beunlikely
to disable more than one monitor. They replicate their
statistics so that even the permanent failure of one monitor
will not cause a significant loss of information.

These monitorsare called tattlerssince they periodically
inquireabout other hostsand then tattle to each other about
what they learn. Thedistributed databaseismanaged using
an epidemic replication protocol [5, 6, 7]. Such protocols
provide weak consistency guarantees, which are sufficient

for statistical purposes. Given the frequency of polls and
the potentially large number of tattlers, a pessimistic repli-
cation protocol isimpractical.

2 Tattlers

For the sake of concurrency and modularity each tattler
is composed of severa parts: a client interface, a polling
daemon, a data base daemon, and atattler daemon.

The polling daemon produces sample observations. It
takes samples at a specified rate, and can be requested to
start or stop sampling using the client interface. The data
base daemon provides stable storage for sample observa
tions (from the polling daemon), and meta-data from the
client interface and the tattler daemon. The tattler daemon
is responsible for group membership (adding and delet-
ing tattlers) and managing the consistency of the replicated
data base through anti-entropy sessions. The structure of a
tattler isdepicted in figure 1.

Other Tattler Daemons
N A a4

oy
Tattler
Daemon

Polling
Daemon

Data base
Daemon

Client
Interface

Figure 1: Structure of a Tattler.

There are several advantages to replicating the tattlers
around the network. First, it provides a fault-tolerant
method for monitoring hosts. All but one of the tattlers
can fail and the set of hosts can till be monitored (albeit
in a degraded mode). It aso provides away of mitigating
the effect of transient network failures. When monitoring
hosts from asingle point, the failure of one router can pre-
vent any host from being polled. When severa relatively

independent polling daemons work together, it will bevery
unlikely that a total failure can occur. Second, instead of
estimating parameters such asMTTF based on alarge sam-
ple with an unknown distribution, the tattlers will be able
to record the actual events (with an epsilon error). Since
the quantities are being directly measured, questions such
as the governing distribution are less important. Third,
because the tattlers are distributed they can perform many
more queriesthan asinglepolling program. Whileasingle
polling program would create roughly the same message
traffic, it would be vulnerableto failure. It would al so take
significantly longer to complete its task since there would
be no paraldism and it would have to poll for a longer
period to make up for the data lost dueto failures.

Collectively thetattlersare responsiblefor maintaining a
list of hoststo monitor, and collecting statisticsonthem. A
record of theform (host, poll method, poll interval) is kept
for each host. The client interface allows hoststo be added
or deleted from thislist. The recorded statistics are stored
inlogs. Theselogs can take any form, but are initialy se-
quencesof tuplesof theform (host, boot time, sampletime).

The tattler daemon communicates this information to
other tattlers, using weak-consistency group communica
tion protocols. These protocols ensure that the logs and
host list are eventually consistent [8] (see §3 for details).
To accomplish this, each tattler daemon periodically con-
tactsanother tattler and thetwo exchange their log and host
filesin anti-entropy sessions. Boththen mergetheinforma
tion to obtain a log with better coverage of the monitored
hosts.

The group communication protocol s require the tattlers
to know the identity of the other tattlers. This is done
using a weak-consistency membership protocol [9]. This
protocol requiresthat anew tattler join the group of tattlers
by obtai ning one or more sponsors. A tattler can leave the
group by following a two-phase protocol: it first declares
itsintent to leave. It can destroy state information once it
knows that all other tattlers have observed its declaration
of intent. The client interface provides a mechanism to
request tattlersto shut down.

Thetattler’ sstate—logs, host list and group information
—arewrittento secondary storage by the data base daemon
to simulate a fault-tolerant process. When a host on which
the tattler runs fails and recovers, the tattler returns with
adight case of amnesia. It will remember statistics about
events that were written to secondary store, but it will not
know about more recent events that occurred while it was
down. The group communication protocols ensure that it
will eventually receive any missing information.

At the heart of thetattler are severa event queues. All
theeventsthetattler must performinthefutureare recorded
in these queues, including initiating anti-entropy sessions

and polling hoststo obtain measurements. By breaking the
tattlersup into severa processes, severa activitiescan take
place concurrently. Since the time when an event occurs
can beimportant, serializing the eventsin asingle program
could compromise the statistical data

The polling daemon periodically polls hosts using the
polling method given in the list of hosts. This method is
not coded into the polling daemon; instead, it is provided
as separate programsto be executed by the pollingdaemon.
Thisa so allowsthetattler togo onwithitsbusinessinstead
of waiting for the poll to complete. Polling can be done
at any selected interval, though in the initial configuration
it pollsat exponentially-distributed random intervals (with
a given mean) both for statistical purposes and to prevent
synchronous behavior where multipl etattlers poll the same
host at once.

The polling method program is determined from the
poll method field in the host list. The system will provide
methodsthat use such protocolsas Sun Rpc and ICMP echo.
By separating the polling method from the tattler daemon,
new methods can be added with relative ease.

Each polling method will requireacorresponding merge
method, to be used when other logs are merged withthelo-
ca log. Thisisnecessary because each polling method may
record different informationwithitsown unique semantics.
The tattler daemon is unconcerned with the semantics of
the datathat it gathers.

A client interface is provided to manipulate the tattlers.
It allows hosts to be added and deleted from the monitor-
ing list, and allows a user to suspend monitoring of certain
hosts. It can inform a tattler that it should shut down and
leave the process group. Similarly, new tattlers can be
added easily. It is sufficient to contact a single tattler to
perform dl of these operations. In fact, the client interface
need only contact the closest tattler, and the group commu-
nication protocol sensure that the operation will eventua ly
be known by dl tattlers.

3 Weak Consistency Replication

The tattler uses new wesk-consistency replication and
group membership protocol sdevel oped by members of our
research group. The tattler, like many distributed appli-
cations can be written as a group of processes that com-
municate through a group communication protocol. This
protocol ensures that the group member processes have a
consistent view of the service they are to provide, by stip-
ulating the way that messages are sent between processes.
The group communication protocol generaly provides a
multicast service that sends a message from one process to
all other processes in the group.

In general, two processes are consistent at time ¢ if
they have received the same set of messages. Various
degrees of consistency place different constraints on the
orders in which the messages can be delivered. In genera,
the stronger the consistency requirements, the more ex-
pensive the protocol. Protocols that provide synchronous
communication can require long latency for the multicast
operation. Those that provide strong guarantees on mes-
sage ordering append orderinginformation to each message
or can impose latency reguirements.

There are a number of weak-consistency protocols that
provide eventual consistency: they ensure that every mes-
sage will eventually be delivered to every process, but they
provide only weak bounds on the time required. Vari-
ous message orders are possible, ranging from unordered
delivery to various total orderings. These protocols al-
low changes to the data base to be processed at any host,
then later forwarded to other hosts. This providesahighly
availableservice, and communication can occur at off-peak
times; it also handles failureswell. On the other hand, the
application must beabl eto tol eratetemporarily inconsi stent
information.

The time-stamped anti-entropy method is the heart of
these protocols. As in the Grapevine anti-entropy proto-
col [5], messages are exchanged by two processes. The
exchange of information continues until they are mutually
consistent. Aslong as processesin agroup continueto per-
form these exchanges, changes will eventually propagate
to all replicas. Unlikethe Grapevine protocol, this method
maintains lists of time-stamps at each process. These lists
area so exchanged, and allow the processes to identify both
what information the other is missing and what messages
other processes have received. The ability to indentify
missing information increases the efficiency and alows
applicationsto build stronger forms of consistency.

Our group has a so developed a new light-weight group
membership mechanism that allows temporary inconsis-
tencies in membership views [10]. Each group member
maintains a view of the group, listing those processesit be-
lievesto be members. The members use weak-consistency
communi cation protocolsto ensure that al group members
eventually converge to a consistent view of the member-
ship, as discussed in the last section. The mechanism is
resilientto & < n — 2 members failing by crashing, where
n isthe number of members currently in the group.

4 Status

At the time of writing, the tattler design has been com-
pleted and the coding of thefirst prototypeis nearing com-
pletion. The tattler is expected to be fully operationa by
September 1, 1992. The first version uses the Sun RpPC

protocol to gather information. Thisallowsinformation on
awidevariety of host typesto be gathered, whileremaining
a manageabl e programming task.

Once the tattler becomes operational, it will be used to
study weak-consistency replication protocols, in particular
circularity, in addition to its primary task of host monitor-
ing.

As experience is gained with the tattler, other protocols
will be added. For example, as the record route option
could be used to map routes from tattlersto the hosts being
monitored. Other commonly available network services
are being investigated as sources of information.

Acknowledgments

The wesk-consistency protocol sused by thetattler were
developed by R. Golding as part of hisdissertation research.
K. B. Sriram and J. Wright are contributing to the devel-
opment of the tattler. J. Carroll, K. Taylor and M. Long
contributed through their thoughtful comments.

References

[1] J. Gray, “Why do computers stop and what can be
doneabout it?,” Tech. Rep. 85.7, Tandem Computers,
June 1985.

[2] J. Gray, “A census of Tandem system availability
between 1985 and 1990,” Tech. Rep. 90.1, Tandem
Computers, Jan. 1990.

[3] S. Mourad and D. Andrews, “The reliability of the
IBM/XA operating system,” in Proceedings 15"
Annual International Symposium on Fault-tolerant
Computing, |EEE, June 1985.

[4] D.D.E. Long,J. L. Carroll, and C. J. Park, “A study
of the reliability of internet sites,” in Proceedings
of the 10" IEEE Symposium on Reliable Distributed
Systems, (Pisa, Itay), IEEE, Sept. 1991.

[5] A.Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry,
“Epidemic a gorithmsfor replicated database mainte-
nance,” Operating Systems Review, vol. 22, pp. 8-32,
Jan. 1988.

[6] A.D. Birrel, R. Levin, R. M. Needham, and M. D.
Schroeder, “Grapevine: an exercise in distributed
computing,” Communications of the ACM, vol. 25,
pp. 260-74, Apr. 1982.

[7] M. D. Schroeder, A. D. Birrell, and R. M. Need-
ham, “Experience with grapevine: the growth of a

(8]

[9]

[10]

distributed system,” ACM Transactions on Computer
Systems, vol. 2, pp. 3-23, Feb. 1984.

R. A. Golding, “Distributed epidemic agorithms for
replicated tuple spaces,” Tech. Rep. Technica re-
port HPL—CSP-91-15, Concurrent Systems Project,
Hewlett-Packard Laboratories, June 1991.

R. A. Golding, Weak-consistency group communica-
tion and membership. Ph.D. dissertation, University
of Caifornia, Santa Cruz, Sept. 1992 (expected).

R. A. Golding and K. Taylor, “Group membership
in the epidemic style,” Tech. Rep. UCSC-CRL-92—
13, Computer and Information Sciences, University
of California, Santa Cruz, Apr. 1992.

