
References 25(Tesauro, 1992) Gerald Tesauro. Practical issues in temporal di�erence learning. MachineLearning, 1992. To appear in Special Issue on reinforcement learning, Richard Sutton,editor.(Thompson and Roycroft, 1983) K. Thompson and A. J. Roycroft. A prophesy ful�lled.EndGame, 5(74):217{220, 1983.(Wilkins, 1980) D. Wilkins. Using patterns and plans in chess. Arti�cial Intelligence,14(2):165{203, 1980.(Yee et al., 1990) R. C. Yee, Sharad Saxena, Paul E. Utgo�, and Andrew G. Barto. Explain-ing temporal di�erences to create useful concepts for evaluating states. In Proceedingsof the Eighth National Conference on AI, Menlo Park, 1990. American Association forArti�cial Intelligence, AAAI Press/The MIT Press.(Zobrist and Carlson, 1973) A. L. Zobrist and D. R. Carlson. An advice-taking chesscomputer. Scienti�c American, 228:92{105, June 1973.

24 References(Metropolis et al., 1953) N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, andE. Teller. Equations of state calculations by fast computing machines. Journal ofChemical Physics, 21:1087{1091, 1953.(Michalski, 1983) R. S. Michalski. A theory and methodology of inductive learning. In R. S.Michalski, J. G. Carbonell, and T. M. Mitchell, editors, Machine learning: An Arti�cialIntelligence Approach. Tioga Press, 1983.(Michie and Bratko, 1987) D. Michie and I. Bratko. Ideas on knowledge synthesis stemmingfrom the KBBKN endgame. Intern. Computer Chess Assoc. Journal, 10(1):3{13, 1987.(Minton, 1984) S. Minton. Constraint based generalization- learning game playing plansfrom single examples. In Proceedings of AAAI-84, pages 251{254. AAAI, 1984.(Mitchell et al., 1986a) T. M. Mitchell, J. G. Carbonell, and R. S. Michalski, editors.Machine Learning: A Guide to Current Research. Kluwer Academic Publishers, 1986.(Mitchell et al., 1986b) T. M. Mitchell, R. Keller, and S. Kedar-Cabelli. Explanation basedgeneralization: A unifying view. In Machine Learning 1, pages 47{80. Kluwer AcademicPublishers, Boston, 1986.(Muggleton, 1988) S. H. Muggleton. Inductive acquisition of chess strategies. In D. MichieJ. E. Hayes and J. Richards, editors, Machine Intelligence 11, pages 375{389. OxfordUniversity Press, Oxford, 1988.(Niblett and Shapiro, 1981) T Niblett and A. Shapiro. Automatic induction of classi�cationrules for chess endgames. Technical Report MIP-R-129, Machine Intelligence ResearchUnit, University of Edinburgh, 1981.(Pitrat, 1976) J. Pitrat. A program for learning to play chess. In Pattern Recognition andArti�cial Intelligence. Academic Press, 1976.(Quinlan, 1986) J. R. Quinlan. Induction on decision trees. Machine Learning, 1:81{106,1986.(Rendell and Seshu, 1990) L. Rendell and R. Seshu. Learning hard concepts through con-structive induction: Framework and rationale. Computational Intelligence, 6(4):247{270,1990.(Samuel, 1959) A. L. Samuel. Some studies in machine learning using the game of checkers.IBM Journal of Research and Development, 3(3):211{229, 1959.(Samuel, 1967) A. L. Samuel. Some studies in machine learning using the game of checkers{ii recent progress. IBM Journal of Research and Development, 11(6):601{617, 1967.(Shannon, 1950) C. E. Shannon. Programming a computer for playing chess. PhilosophicalMagazine, 41(7):256{275, 1950.(Sutton, 1988) R. S. Sutton. Learning to predict by the methods of temporal di�erences.Machine Learning, 3(1):9{44, August 1988.(Tadepalli, 1989) P. Tadepalli. Lazy explanation-based learning: A solution to the in-tractable theory problem. In Proceedings of the Eleventh International Joint Conferenceon Arti�cial Intelligence, Detroit, MI, 1989. Morgan Kaufmann.(Tesauro and Sejnowski, 1989) G. Tesauro and T. J. Sejnowski. A parallel network thatlearns to play backgammon. Arti�cial Intelligence, 39:357{390, 1989.

References 23References(Birnbaum and Collins, 1991) A.L. Birnbaum and G.C. Collins, editors. Proceedings of theEighth International Workshop on Machine Learning. Morgan Kaufmann, San Mateo,CA., 1991. See part 3, pages 117-232.(Botvinnik, 1984) M. Botvinnik. Computers in Chess. Springer-Verlag, 1984.(Christensen and Korf, 1986) J. Christensen and R. Korf. A uni�ed theory of heuristicevaluation. In AAAI-86, 1986.(Davis and Steenstrup, 1987) Lawrence Davis and Martha Steenstrup. Genetic algorithmsand simulated annealing: An overview. In Lawrence Davis, editor, Genetic Algorithmsand Simulated Annealing, Research Notes in Arti�cial Intelligence. Morgan KaufmannPublishers, 1987.(Epstein, 1990) S. L. Epstein. Learning plans for competitive domains. In Proceedings ofthe Seventh International Conference on Machine Learning, June 1990.(Flann and Dietterich, 1989) N. S. Flann and T. G. Dietterich. A study of explanation-based methods for inductive learning. Machine Learning, 4:187{226, 1989.(Fox and James, 1987) M. Fox and R. James. The Complete Chess Addict. Faber andFaber, London, 1987.(Glover, 1987) David E. Glover. Genetic Algorithms and Simulated Annealing, chapterChapter 1, Solving a Complex Keyboaard Con�guation Problem Through GeneralizedAdaptive Search. Research Notes in Arti�cial Intelligence. Morgan Kaufmann Publishers,1987.(Holland, 1975) J. H. Holland. Adaptation in Natural and Arti�cial Systems. The Univer-sity of Michigan Press, Ann Arbor, 1975.(Kirkpatrick et al., 1983) S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization bysimulated annealing. Science, 220:671{680, 1983.(Lee and Mahajan, 1988) K. F. Lee and S. Mahajan. A pattern classi�cation approach toevaluation function learning. Arti�cial Intelligence, 36:1{25, 1988.(Levinson and Snyder, 1991) R. Levinson and R. Snyder. Adaptive pattern oriented chess.In Proceedings of AAAI-91, pages 601{605. Morgan-Kaufman, 1991.(Levinson et al., 1992) R. Levinson, B. Beach, R. Snyder, T. Dayan, and K. Sohn.Adaptive-predictive game-playing programs. Journal of Experimental and TheoreticalAI, 1992. To appear. Also appears as Tech Report UCSC-CRL-90-12, University ofCalifornia, Santa Cruz.(Levinson, 1989a) Robert Levinson. Pattern formation, associative recall and search: Aproposal. Technical report, University of California at Santa Cru, 1989.(Levinson, 1989b) Robert Levinson. A pattern-weight formulation of search knowledge.Technical Report UCSC-CRL-91-15, University of California Santa Cruz, 1989. Revisionto appear in Computational Intelligence.(Levinson, 1991) R. Levinson. A self-organizing pattern retrieval system and its applica-tions. Internation Journal of Intelligent Systems, 6:717{738, 1991.

22 6. Conclusions and Ongoing DirectionsAcknowledgmentsThank you to Je� Keller for constructing the new evaluation function, to Paul Zola andKamal Mostafa for the initial Morph implementation, and to Richard Sutton for sharing ourenthusiasm for reinforcement learning. Finally, we would like to thank Richard Snyder forvaluable editing assistance. The research was partially funded by NSF grant IRI-9112862and a Faculty Research Grant from the University of California.

21� Guided by appropriate performance measures, modi�cation and testing of the systemproceeds systematically.� Interesting ideas arise directly as a result of taking the multi-strategy view. The goalis to exploit the strength of individual methods while eliminating their weaknesses.Some examples:1. The genetic mutation operator described in Chapter 0.3.3.2. Higher level concepts via hidden units. Once a good set of patterns has beenobtained it may be possible for the system to develop a more sophisticatedevaluation function. This function, patterned after neural nets, would havehidden units that correspond to higher level interactions between the patterns.For example, conjunctions and disjunctions may be realized and given weightsdi�erent from that implied by their components.3. Clarity of system's knowledge The \meaning" of hidden units to which weights areassociated in neural nets is usually not clear, whereas in experience-based systemsit is speci�c structures that are given weights. Indeed, it is the transparency ofMorph's knowledge that has allowed its learning mechanisms to be �ne tuned;with various system utilities it is possible to ascertain exactly why Morph isselecting one move over another.

20 6. Conclusions and Ongoing Directions6. Conclusions and Ongoing DirectionsThe development of a computational framework for experience-based learning is a dif-�cult but important challenge. Here, we have argued for the necessity of a multi-strategyapproach: At the least, an adaptive search system requires mechanisms for credit assign-ment, feature creation and deletion, weight maintenance and state evaluation. Further, ithas been demonstrated that the TD error measure can provide a mechanism by which thesystem can monitor its own error rate and steer itself to smooth convergence. The error rateprovides a metric more re�ned but well-correlated with the reinforcement values and moredomain-speci�c metrics. Finally, in a system with many components (pws) to be adjusted,learning rates should be allowed to di�er across these components. Simulated annealingprovides this capability.APS has produced encouraging results in a variety of domains studied as classroomprojects (Levinson et al., 1992), including Othello, Tetris, 8-puzzle, Tic-Tac-Toe, Pente,image alignment, Missionary and Cannibals and more. Currently, others are studying theapplication of the Morph-APS shell1 to GO, Shogi and Chinese Chess. Here we have usedthe Morph project to illustrate the potential for these methods. But clearly, much moredistance remains to be covered before Morph or other experience-based systems will learnfrom experience with nearly the e�ciency that humans do. To achieve this, substantialre�nement of the learning mechanisms and an enhancement of their mutual cooperation isrequired. Undoubtedly, advances in pattern-based knowledge representation and associativememory will also be required. This model of experience-based learning has pursued alargely syntactic approach to codifying and exploiting experience. What role can and shouldsemantic knowledge serve?A limitation of the problem-solving system presented here is the reliance on full-width1-ply search. This is wasteful: many moves considered may be irrelevant whereas othermoves may require further search to determine their suitability. That is, at times the useof search may be more economical than developing patterns to make �ne distinctions. Aselective search more akin to human analysis is desirable for more e�ective processing. Cansuch selectivity also be learned from experience? This avenue is currently being pursued.The key to experience-based learning, beyond recent work in constructive induction(Birnbaum and Collins, 1991; Michalski, 1983; Rendell and Seshu, 1990), is that the sys-tem is given responsibility for both the structure and signi�cance of learned knowledge.Experience-based learning should have application far beyond chess. Consider a robot (e.g.a Mars rover) that must learn to survive and manage e�ectively in a new environment, ora machine tutor that must learn which forms of instruction and examples work better thanothers. Finally, it may be possible to get organic synthesis systems to improve search timewith experience using graph methods similar to Morph (Levinson, 1991).The following points are worth remembering:� In combining the many learning methods for experience-based learning the methodsare not taken as they are normally used but their essence is extracted and combinedbene�cially.1Now publicly available via anonymous ftp from ftp.cse.ucsc.edu. The �le, morph.tar.Z, is in directory/pub/morph/.

5.2. Improvement through Adding New Learning Methods 19
0

1

2

3

4

5

6

7

8

9

0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
u
m
u
l
a
t
i
v
e

A
v
e
r
a
g
e

P
o
i
n
t
s

p
e
r

G
a
m
e

Games

(a)

(b)

(a)

(b)

Figure 5.1: Cumulative average of two versions of Morph.Version (a) is a basic Morph. Version (b) has the reverse node ordering pattern addition scheme added.
0

1

2

3

4

5

6

7

8

9

0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
u
m
u
l
a
t
i
v
e

A
v
e
r
a
g
e

P
o
i
n
t
s

p
e
r

G
a
m
e

Games

(a)

(b)

Figure 5.2: Cumulative average of two versions of Morph.Version (a) improves the evaluation function from the Morph in Version (b) of Figure 0.9. Version (b) addsannealing on top of Version (a).

18 5. Performance Resultsnot rare for Morph to reach the middlegame or sometimes the endgame with equalchances before making a crucial mistake due to lack of appropriate knowledge.� Morph's database contains many patterns that are recognizable by human playersand has given most of these reasonable values. The patterns include mating patterns,mates-in-one, castled king and related defenses and attacks on this position, pawnstructures in the center, doubled rooks, developed knights, attacked and/or defendedpieces and more.We have discovered that adding patterns too frequently, \overloads" Morph so it can'tlearn proper weights. In the experiment graphed in Figures 0.9 and 0.10, weights areupdated after every game but patterns are added only every 7 games. This allowsthe system to display a steady learning curve as depicted. Morph's games improvebased on other metrics as well, such as average game length and TD error (see section0.2.3).5.1 Performance EvaluationTo explore new additions to Morph, one implementation is compared with another byusing the average number of traditional chess points captured per game as the metric. To beconsistent with the experienced-based learning framework, Morph is not made aware of thismetric. Each implementation is run until the metric is no longer increasing (Most Morphsstop learning at between 1500 and 2000 games of play). The one with the higher ratingis considered the better. We have concluded that only one such comparison is su�cient,because the same version of Morph usually reaches the same average.5.2 Improvement through Adding New Learning MethodsAdding learning strategies is a gradual process. Each method must be added oneat a time to see if it increases performance. If it does than it is kept. Since Morph'sinitial implementation, such additions have produced signi�cant performance increases. Thefollowing two graphs show Morph's cumulative average over time. These graphs comparethe performance of four versions of the system. Each version is an extension of the previousone. Figure 0.9a shows a basic Morph, Figure 0.9b shows the result of adding reversenode ordering, Figure 0.10a shows the result of improving the evaluation function, andFigure 0.10b shows the result of adding simulated annealing.

175. Performance ResultsTo date, Morph has defeated GnuChess twice, and obtained over 40 draws via stalemate,repetition of position and the 50-move rule. The versions of Morph that defeated GnuChesshad previously played around 3000 games. However, despite Morph's victory, GnuChessis still much stronger than Morph which is at best a beginning tournament player. Inaddition to Morph's limited success against GnuChess, there are many encouraging signssince Morph was fully implemented in November, 1990:� Even though no information about the relative values of the pieces (or that piecesare valuable) have been supplied to the system, after 30 or more games of trainingMorph's material patterns are consistent and credible (Levinson and Snyder, 1991).(see Table 0.2 for a database after 106 games). The weights correspond very well tothe traditional values assigned to those patterns. These results recon�rm other e�ortswith TD learning (Christensen and Korf, 1986) and perhaps go beyond by providinga �ner grain size for material.Material Pattern Statistics Trad.Pawn Knight Bishop Rook Queen Weight Updates Variance Age Value0 0 0 0 0 0.455 2485 240.2 106 00 0 {1 0 0 0.094 556 7.53 86 {30 0 +1 0 0 0.912 653 11.19 88 +30 +1 0 0 0 0.910 679 23.59 101 +30 {1 0 0 0 0.102 588 17.96 101 {30 0 0 {1 0 0.078 667 3.56 103 {50 0 0 +1 0 0.916 754 5.74 103 +5+1 0 0 0 0 0.731 969 22.96 105 +1{1 0 0 0 0 0.259 861 13.84 105 {10 0 0 0 +1 0.903 743 5.68 105 +90 0 0 0 {1 0.085 642 3.12 105 {90 0 {1 +1 0 0.894 10 0.03 55 +20 0 {2 0 0 0.078 146 0.53 71 {6+1 0 {1 0 0 0.248 26 2.35 73 {20 +1 {1 0 0 0.417 81 4.48 82 0{1 0 {1 0 0 0.081 413 2.14 92 {40 {1 +1 0 0 0.478 84 5.72 82 0+1 0 +1 0 0 0.916 495 3.56 88 +40 0 +2 0 0 0.924 168 0.66 91 +6Table 5.1: A portion of an actual Morph material database after 106 games.The columns headed by pieces denote relative quantity. The weight column is the learned weight of thepattern in [0,1]. Updates is the number of times that this weight has been changed. Variance is the sum ofthe weight changes. Age is how many games this pattern has been in the database. Value is the traditionalvalue assigned to this pattern. Note that a weight of 0.5 corresponds to a traditional value of 0. The entiredatabase contained 575 patterns.� After 50 games of training, Morph begins to play reasonable sequences of openingmoves and even the beginning of book variations. This is encouraging because noinformation about development, center control and king safety have been directlygiven the system and since neither Morph or GnuChess uses an opening book. It is

16 4. Relationship to Other Approachessystem (Wilkins, 1980), which, also building on Pitrat's work, used pattern knowledge toguide search in tactical situations. Paradise was able to �nd combinations as deep as 19-ply. It made liberal use of planning knowledge in the form of a rich set of primitives forreasoning and thus can be characterized as a \semantic approach." This di�erence, the useof search to check plans and the restriction to tactical positions distinguish it from Morph.Also, Paradise is not a learning program: patterns and planning knowledge are supplied bythe programmer. Epstein's Hoyle system (Epstein, 1990) also applies a semantic approachbut to multiple simultaneous game domains.Of course, the novel aspects of APS could not have been achieved without the uniquecombination of learning methods described here.

154. Relationship to Other ApproachesAn APS system combines threads of a variety of machine-learning techniques that havebeen successful in other settings. To produce this combination, design constraints usuallyassociated with these methods have been relaxed.The integration of these diverse techniques would not be possible without the uniform,syntactic processing provided by the pattern-weight formulation of search knowledge. Toappreciate this, it is useful to understand the similarities and di�erences between APSand other systems for learning control or problem-solving knowledge. For example, con-sider Minton's explanation-based Prodigy system (Minton, 1984). The use of explanation-based learning is one similarity: APS speci�cally creates patterns that are \responsible"(as preconditions) for achieving future favorable or unfavorable patterns through reverseengineering (see Chapter 0.2.2). Also similar is the use of \utility" by the deletion routineto determine if it is worthwhile to continue to store a pattern. The decision is based onthe accuracy and signi�cance of the pattern versus matching or retrieval costs. A majordi�erence between the two approaches is the simplicity and uniformity of the APS controlstructure: no \meta-level control" rules are constructed or used nor are goals or subgoalsexplicitly reasoned about. Another di�erence is that actions are never explicitly mentionedin the system. Yee et al. (Yee et al., 1990) have combined explanation-based learning andTD learning in a manner similar to APS. They apply the technique to Tic-Tac-Toe.It is also interesting to compare APS to other adaptive-game playing systems. Mostother systems are given a set of features and asked to determine the weights that go withthem. These weights are usually learned through some form of TD learning, with very goodsuccess. (Tesauro and Sejnowski, 1989; Tesauro, 1992; Samuel, 1959; Samuel, 1967).APS extends the TD approaches by exploring and selecting from a very large set ofpossible features in a manner similar to genetic algorithms. It is also possible to improveon these approaches by using Bayesian learning to determine inter-feature correlation (Leeand Mahajan, 1988).A small number of AI and machine learning techniques in addition to heuristic searchhave been applied directly to chess (which, without relying on search, requires much higherprecision than backgammon), and then, usually to a small sub-domain. The inductive-learning endgame systems (Michie and Bratko, 1987; Muggleton, 1988) have relied on pre-classi�ed sets of examples or examples that are classi�ed by a complete game-tree searchfrom the given position (Thompson and Roycroft, 1983). The symbolic learning work byFlann (Flann and Dietterich, 1989) has occurred on only a very small sub-domain of chess.The concepts capable of being learned by this system are graphs of two or three nodes inMorph. Such concepts are learned naturally by Morph's generalization mechanism.Tadepalli's work (Tadepalli, 1989) on hierarchical goal structures for chess is promising.Such high-level strategic understanding may be necessary in the long run to bring Morphbeyond an intermediate level (the goal of the current project) to an expert or master level.This brings out both a major weakness and a current topic of research: Morph's currentpattern representation scheme is not general and exible enough for it to create usefulplans via EBG. Minton (Minton, 1984), building on Pitrat's work (Pitrat, 1976), appliedconstraint-based generalization to learning forced mating plans. This method can be viewedas a special case of our pattern creation system. Perhaps the most successful applicationof AI to chess was Wilkin's Paradise (PAttern Recognition Applied to DIrecting Search)

14 3. Morph System����� P P P P Pq?@ @ @ @ @R�����	 QK nSQQ Kn
Figure 3.4: The graph on the left depicts a standard pattern derived from nodeordering. By applying reverse engineering to the graph on the left we get the graphon the right. The node labeled SQ matches squares from which the black knightattacks the white queen and white king simultaneously.When Morph adds a generalization to the database, it looks for two patterns that havesimilar weights and then inserts their maximum common subgraph. Specialization occurswhen a pattern's weight has a high variance. A new pattern is extracted from the highvariance pattern by adding a node and edge to the original graph.The reverse engineering procedure is performed on each position (state) that occurs inthe previous game. For each position, the procedure �nds the most extreme pattern pi thatmatches it and adds the precondition pattern of pi to the pw database. The preconditionpattern, pri contains all the nodes in pi; in addition it may also contain \square nodes"which are nodes that may match any square on the board. To determine the structure of prithe system examines each position, starting from the current position and moving towardsthe initial position, until it �nds one in which the structure of the nodes in pri di�ers fromthat in pi. pri is then extracted from the structure in this earlier position and insertedinto the database. An example of a pattern and one of its possible precondition patterns isdisplayed in Figure 0.8.Although the genetic operators have not yet been implemented in Morph, mutationand crossover operators are being considered. The mutation operator would be appliedeach time another addition module was about to insert a pattern. For that pattern therewould then be a small probability per node of either ipping its color or changing its piecedesignation. Finally, the crossover operator would take two extreme patterns and combinehalf of the nodes in the �rst with half of the nodes in the second to form a new hybridstructure.

3.3. Pattern Creation in Morph 13rmbZkansopopZpop0Z0ZpZ0ZZ0Z0Z0Z00Z0ZPZ0lZ0ZBZNZ0POPO0OPOSNAQJ0ZR -- ?N qB PFigure 3.3: In the position shown on the left the pieces no longer on their originalsquares are moved in the order white pawn, black pawn, white knight, black queen,and white bishop. The subgraph on the right is added when using most recentlymoved node ordering with a node size of 4. Note, that the black pawn is excludeddue to node ordering's preference for the connectivity criterion over the mostrecently moved criterion.3.3 Pattern Creation in MorphThis section describes the implementation of the pattern addition modules for graphpatterns. As will be seen from the following paragraphs, the implementation is heavilydependent on the pattern representation language. All four types of pattern additionprocedures, as described in section 0.2.2, are discussed: search context rules, generalizationand specialization, reverse engineering, and genetic operators.Morph uses two types of search context rules (see section 0.2.2) to add patterns intothe database. The search context rules, called node orderings, produce as output a patternwhich is a subgraph of the position (state) which is passed in as input. The output pattern iscreated by numbering the nodes of the position graph according to a node ordering, choosinga random size n, and returning the induced subgraph formed by the �rst n nodes in the nodeordering (and the edges between them). Morph uses two relatively game-independent nodeordering rules: In forward node ordering, nodes are ordered by most recently moved piecewhile maintaining connectivity of the nodes; see Figure 0.7 for an example. In reverse nodeordering, nodes are ordered by which piece is next to move while maintaining connectivityof the nodes. In both schemes captured pieces and kings in check are placed high in the listand ties (for squares and unmoved pieces, for instance) are broken randomly. The inclusionof random factors in the above scheme also falls within the genetic algorithm viewpoint,allowing the system to generate and explore a large set of possibilities.

12 3. Morph SystemThese mathematical constraints to the evaluation function have a strong intuitive back-ing. For instance, rule 1 states that if two patterns suggest that a position is good (> :5)the board should then be considered better than either of them alone. .5 is the weight thatis assigned to a pattern that does not have any positive or negative connotation. Patternswith weight 0 suggest strongly that the current board is a losing position and patternswith weight 1 suggest that the current board is a winning position. Table 0.1 shows theapplication of the evaluation function to several sample values.Arguments Result.5 .5 0.50.2 .8 0.50.2 .5 0.20.8 .5 0.80.8 .8 0.92.2 .2 0.08.1 .8 0.33.2 .9 0.671 .8 1.000 .2 0.00Table 3.1: Results of applying the evaluation function in Morph to various inputpairs.

3.2. Evaluation Function 114. if w1 < :5 and w2 < :5 then f < min(w1; w2) unless either w1 or w2 is 0 then f = 0.5. if w1 > :5 and w2 < :5 then w2 < f < w1. f is more towards the most extreme weight.The entire function is displayed in Figure 0.6. This binary function is applied iterativelyto the weights of all matching patterns. Note, however, that this function is not associative;thus, the order of evaluation matters. We are currently working on an associative versionof this function.f(x; y) = 8>>><>>>: �:5(2� 2x)(2� 2y) + 1 if x � 12 and y � 12x�:5+y�:5(2x�1)(2y�1)((2x�1)2�(2y�1)2)(2x�1)2(2y�1)2 if x � 12 and y < 12f(y; x) if x < 12 and y � 122xy otherwiseFigure 3.2: Move selection evaluation function.

10 3. Morph System0Z0Z0Z0Z rlbZ0ZkZZ0o0Z0ok Z0Z0apo00Z0Z0ono 0Z0o0m0oZ0Z0Z0Z0 ZpZ0Z0Z00ZQZpOqZ pZ0oPZ0AZPZrZ0Z0 Z0Z0M0ZPPZ0Z0ZPO PO0Z0OPZZ0A0ZRJ0 ZBZQS0J0(c)n n(b) PRBQQB RP(a) QB RP nFigure 3.1: A generalization derived from two di�erent chess positions. (a) is thesubgraph derived from the board on the left and (b) is the subgraph from theboard on the right. The solid edges correspond to direct edges between piecesand the dashed edges correspond to indirect edges. Graph (c) is the generalizedgraph derived from (a) and (b) in which the dotted edges have been generalizedto generic \attacks."There are actually two types of patterns stored in the Morph system. In addition tothe above mentioned graph patterns, Morph stores \material" patterns: vectors that givethe relative material di�erence between the players, e.g. \up 2 pawns and down 1 rook,"\even material," etc. Material patterns and graph patterns are processed identically by thesystem; thus the pw database contains patterns of more than one type.Along with each pattern is stored a weight in [0,1] as an estimate of the expected trueminimax evaluation of states that satisfy the pattern. In order to determine the utility ofa pattern and whether it should be retained other statistics about patterns are maintained.These statistic include the number of weight updates the pattern has had, the number oftimes the pattern has been referenced during play, and the degree to which the weight variesover time.3.2 Evaluation FunctionThe evaluation function takes a set of pws matching the position and returns a value in[0,1] that represents an estimate of the expected outcome of the game from that position(0=loss, .5=draw, 1.0=win). It has the following properties, where w1 and w2 are theweights of the above mentioned pws.1. if w1 > :5 and w2 > :5 then f(w1; w2) > max(w1; w2) unless either w1 or w2 is 1 thenf = 1.2. if w1 = :5 then f(w1; w2) = w23. if w1 = � and w2 = 1� � then f = :5

93. Morph SystemThe previous section outlined the framework of a generic APS system. This sectiondescribes the actual implementation of one. The APS framework only provides generaldescriptions for several key elements of the system. These elements include the speci�c pat-tern representation, the speci�c evaluation function and the algorithms used to implementthe four pattern addition schemes. This section will describe in detail those decisions thatmust be made in an actual implementation, in this case, the Morph learning chess program.Being an APS system, Morph makes a move by generating all legal successors of thecurrent position, evaluating each position using the current pattern database and choosingthe most favorable position. After each game patterns are created, deleted and weights arechanged to make evaluations more accurate (in the system's view) based on the outcome ofthe game. Patterns are deleted periodically if they are not considered useful. Morph playsagainst GnuChess Level I, a program that is stronger than most tournament players.3.1 Patterns and their RepresentationTo fully exploit previous experience, the method chosen to represent each experienceis critical. An ideal representation is one that uses features that are general enough tooccur across many experiences (positions, for chess), but are such that their signi�canceis invariant across these experiences. How to construct such a representation for chess isnot obvious. The straightforward approach of using a standard chess board representationis not powerful enough since there are over 1040 possible chess positions (Shannon, 1950).In fact, after just three moves for each player, there are over 9 million possible positions(Fox and James, 1987). Further, a pattern such as \white bishop can capture black rook"has nearly the same signi�cance regardless of where on the board the white bishop andblack rook are located, and one would like to choose a representation that exploits thisinformation.In Morph, positions are represented as unique directed graphs in which both nodes andedges are labelled (Levinson, 1991). Nodes are created for all pieces that occur in a positionand for all squares that are immediately adjacent to the kings. The nodes are labelled withthe type and color of the piece (or square) they represent. For kings and pawns (and alsopieces that would otherwise be disconnected from the graph) the exact rank and �le onthe board in which they occur is also stored. The exact squares of kings and pawns allowsthe system to generate speci�c endgame patterns and patterns related to pawn structure.Edges represent attack and defend relationships between pieces and pawns: Direct attack,indirect attack, or discovered attack (a defense is simply an attack on one's own piece). Atmost one directed edge is assigned from one node to another and the graph is oriented withblack to move. Patterns come from subgraphs of position graphs (see Figure 0.5) and henceare represented the same way except that they may label any node with an exact or partialsquare designation. The representation has recently been extended to include other squaresas nodes besides those adjacent to kings.A similar representation scheme has successfully been used to represent chess general-izations (Zobrist and Carlson, 1973) and to produce a similarity metric for chess positions(Levinson, 1991; Botvinnik, 1984).

8 2. The APS Model

Reverse

Engineering

Node Ordering

Annealing

Simulated

Difference

Temporal

PW Database

Utility Function
Specialization

and
Generalization

Game Sequence

delete

evaluations

modify

add

add

add

positions

positions

Figure 2.4: The integration of learning modules within an APS system.

2.5. Integration: The workings of the entire system 7
the patterns matching it.
Evaluate each position based on Update weight of matching patterns.

Remove patterns (optional).

Add patterns (optional).

Perform TD assignment.

PLAYING PHASE

Examine each successor position.

highest evaluation.

LEARNING PHASE

Advance to the successor with the Figure 2.3: The execution cycle of an APS system.The search phase traverses a path from the initial state of the problem domain to areinforcement state. Depth �rst hill climbing is the search technique used to traverse thesearch tree. In other words, at each state Si in the search path the state moved into next, Sj ,is determined by applying an evaluation function to each successor state of Si and choosingthat state which has the highest evaluation. Note, however, nothing prevents the databasefrom supporting more sophisticated search strategies.Although the exact calculations performed by the evaluation function depend on theparticular APS system, the function has the following framework. It takes the state to beevaluated and determines the most speci�c pws in the pw database that match that state.The weights of these most speci�c pws are then combined by a system dependent rule todetermine the �nal evaluation for that state.The learning phase, the second in the APS cycle of execution, takes as input thesequence of states traversed in the search performed by the �rst phase. This sequenceis used by TD learning and simulated annealing to modify the weights of the patternsin the database. Patterns are then inserted into the database using the four techniquesmentioned in Section 0.2.2. Finally, unimportant patterns are removed from the databaseas described in the same section.The execution of an APS system involves the interaction of many learning techniques.A global view of this interaction is displayed in Figure 0.4. In this �gure the edges arelabelled with actions specifying whether a given module adds patterns, deletes patternsor modi�es the weights of patterns. Central to the APS system is the pattern weightdatabase, which holds all of the accumulated search knowledge generated and manipulatedby the surrounding modules.

6 2. The APS Model
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0 100 200 300 400 500 600

W
e
i
g
h
t

Pattern UpdatesFigure 2.1: This graph depicts the weight change of the material pattern \down 1bishop" in a system without simulated annealing.
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 100 200 300 400 500 600

W
e
i
g
h
t

Pattern UpdatesFigure 2.2: This graph depicts the weight change of the same pattern as Figure 0.1in a system that has simulated annealing added.2.5 Integration: The workings of the entire systemThis section describes the workings of a complete APS system by combining the partsdescribed in the previous three sections. An APS system executes by repeatedly cyclingthrough two phases: a search phase and a learning phase (see Figure 0.3). In the searchphase the APS system does not modify its knowledge base but instead performs a searchusing the current knowledge base. The learning phase then alters the knowledge base byadding and deleting patterns, and modifying the weights of patterns.

2.4. Simulated Annealing 5� Moving a physical system to its lowest energy con�guration is then analogous to�nding the con�guration that optimizes the objective function.� The con�guration of the system is then the di�erent informational parameters thatthe system can have.� The temperature is a mechanism for changing the parameters.In APS, the system's situation is similar to that of the statistical physicist. The databaseis comprised of a complex system of many particles (patterns). The goal is to reach anoptimal con�guration, i.e. one in which each weight has its proper value. The averageerror (i.e. the di�erence between APS's prediction of a state's value and that provided bytemporal-di�erence learning) serves as the objective evaluation function. Intuitively, theaverage error is an acceptable performance evaluation metric if one accepts the empiricaland analytical arguments that TD learning is a convergent process (Sutton, 1988): sinceTD learning will produce evaluations close to the true ones the error will be high or lowdepending on the APS system's degree of accuracy. Indeed, experimentally we have observeda high correlation between TD error and more domain-speci�c performance metrics.The con�guration of an APS system is made up of its pws. Temperature corresponds tothe rate at which each weight moves towards the value recommended by TD learning. Inaddition to using a global temperature that applies to all weights, each weight has its ownlocal temperature. This is done to give each pw its own learning curve that depends on thenumber of states it has occurred in. A pw that occurs in many states has its temperaturereduced more quickly than a pw that occurs in only a few states, because the �rst patternhas more examples to learn from and hence early convergence is appropriate. Each pw'slearning rate is a�ected by its number of updates and the global temperature as follows:Weightn = Weightn�1 � (n� 1) + k � newn + k � 1Weighti is the weight after the ith update, new is what TD recommends that the weightshould be, n is the number of the current update and k is the global temperature. Whenk = 0 the system only considers previous experience, when k = 1 the system averages allexperience, and when k > 1 the present recommendation is weighted more heavily thanprevious experience. Thus, raising k creates faster moving patterns. As an example of howglobal temperature a�ects the learning rate, if the system doubles the global temperature,a pattern that has 100 updates will be updated like a pattern that has 50 updates the nexttime its weight is modi�ed.The above discussion describes how simulated annealing gives each pattern its own learn-ing rate. The �gures below, taken from the Morph system, demonstrate the e�ectivenesssimulated annealing has in forcing convergence of the weights in the system. Figure 0.1 andFigure 0.2 show the weight change over time for the material pattern \down one bishop."The �rst �gure comes from a version of Morph that does not use simulated annealing; theweight uctuates within a certain range. The second �gure displays the same pattern froma Morph with simulated annealing. Here, the weight homes in on a speci�c value.

4 2. The APS Modelgrown to 2500 patterns the Morph chess system takes twice as long to play and learn (fromabout 600 games a day on a Sun Sparc II to about 300 games per day).2.3 Modifying the Weights of PatternsThe modi�cation of weights (of patterns) to more appropriate values occurs every timea reinforcement value is received from the environment. The modi�cation process can bebroken down into two parts. First, each state in the sequence of states that preceded thereinforcement value is assigned a new value using temporal di�erence learning. Second, thenew value assigned to each state is propagated down to the patterns which matched thatstate. A pattern in the database matches a given state if the state satis�es the booleanfeature represented by the pattern and no other pattern more speci�c than it matches thestate.TD learning determines new values for the states in the game sequence moving from thelast state, Sn, to the �rst state, S1. Since state Sn was the state at which reinforcement wasdelivered its new value is set to the reinforcement value. For all other states, Si, the newvalue is set to a linear combination of its old value and the new value of state Si+1. Thismethod di�ers from supervised learning, where the value of each state Si is moved towardthe reinforcement value. It has been shown that TD learning converges faster than thesupervised method for Markov model learning (Sutton, 1988). The success of TD learningstems from the fact that value adjustments are localized. Thus, if the systemmakes decisionsall the way through the search and makes a mistake toward the end, the earlier decisionsare not harshly penalized.Once each state Si has been assigned its new value, each pattern matching Si must haveits weight moved towards the new value. Each weight is moved an amount relative to thecontribution the pw had in determining the old value for the state.This weight updating procedure di�ers from those traditionally used with TD learningin two ways. First, TD learning systems typically use a �xed set of features, whereas inan APS system, the feature set changes throughout the learning process. Second, the APSsystem uses a simulated annealing type scheme to give the weight of each pattern its ownlearning rate. In this scheme, the more a pattern gets updated, the slower its learningrate becomes. Furthermore, in addition to giving each pattern its own learning rate, theannealing scheme forces the convergence of patterns to reasonable values.2.4 Simulated AnnealingSimulated annealing is a learning procedure that has been derived from a practice instatistical mechanics (Davis and Steenstrup, 1987). In this area it is often desirable to takea system of molecules and reduce it to the lowest possible energy by lowering temperature.Through experience it has been found that if the temperature is reduced too quickly thesystem will have a small probability of being at an optimally low temperature. Metropoliset al. (Metropolis et al., 1953) developed a technique for lowering the temperature graduallyto produce (on the average) very low energy systems at the lowest temperature.Kirkpatrick et al (Kirkpatrick et al., 1983) adapted annealing to computer science, by�nding information analogies for their physical counterparts (Davis and Steenstrup, 1987):� The energy of the system becomes an objective function that describes the quality ofthe current system con�guration.

2.2. Adding and removing patterns 3make a further distinction. At other times it can be simpli�ed (generalized) without loss ofdiscriminative power.Generalization patterns are created by extracting similar structures from within twopatterns that have similar weights. A pattern is specialized in an APS system if its weightmust be updated a large amount (indicating inaccuracy). Whereas in a standard conceptinduction scheme the more speci�c patterns may be deleted, the APS system keeps themaround because they can lead to further important distinctions. The deletion module maydelete them later, if they no longer prove useful.Reverse engineering is a method used to add macro knowledge into an APS system.Macros can be represented as pws by constructing a sequence of them such that eachpattern is a precondition of the following one. Successive weights in the macro sequencewill gradually approach a favorable reinforcement; thus, the system is then motivated tomove in this direction.Reverse engineering extends a macro sequence by adding a pattern. This extension issimilar to Explanation-Based-Generalization (EBG) (Mitchell et al., 1986b) or goal regres-sion. The idea is to take the most important pattern in one state, s1, and back it up to getits preconditions in the preceding state, s2. These preconditions then form a new patternp2. If pattern p2 is the most useful pattern in state s2, it will be backed up as well, creatinga third pattern in the sequence, etc. The advantages of this technique are more than justlearning \one more macro"; each of the patterns can be used to improve the evaluation ofmany future positions and/or to enter the macro at any point in the macro sequence.Genetic algorithms (Holland, 1975) are a means of optimizing global and local search(Glover, 1987). In these algorithms, solutions to a problem are encoded in bit strings thatare made to evolve over time into better solutions in a manner analogous to the evolutionof species of animals. The bits in the solution representation are analogous to genes andthe entire solution to a chromosome. In such systems there are a �xed number of solutionsat any one time (a generation). Members of each generation interbreed to form the nextgeneration. Each genetic algorithm has a �tness function that rates the quality of thesolution in a particular generation. When it is time for a new generation to be created fromthe current generation, the solutions that are more �t are allowed to be the more activebreeders. Breeding usually involves three processes: crossover, inversion, and mutation.The APS system makes use of genetic operators in order to add additional patternsinto the database. Since patterns are not required to be represented as bit strings (infact in Morph they are graphs), it is up to the individual APS system to tailor the geneticoperators to suit the pattern representation. The APS system does not remove all or most ofa population of patterns, however, due to the large amount of time necessary in determiningappropriate weights for all patterns.Although a variety of pattern addition schemes are available, due to memory andprocessing restrictions, the database must be limited in size. As in genetic algorithmsthere must be a mechanism for insigni�cant, incorrect or redundant patterns to be deleted(forgotten) by the system. A pattern should contribute to making the evaluations of statesit is part of more accurate. The utility of a pattern can be measured as a function ofmany factors including age, number of updates, uses, size, extremeness and variance. Theseattributes will be elaborated upon in the next section. We are exploring a variety of utilityfunctions (Minton, 1984). Using such functions, patterns below a certain level of utility canbe deleted. Deletion is also necessary for e�ciency considerations: the larger the database,the slower the system learns. For example, after 2000 games of training and with a database

2 2. The APS Model2. The APS ModelAs mentioned previously, the APS framework contains three major parts: the pattern-weight formulation of search knowledge, methods for creating and removing pws, andmethods for obtaining appropriate weights for the pws with respect to reinforcement values.This section discusses each of these facets in detail, after which it describes how the partsinteract and how the system performs as a whole.2.1 Pattern weight formulation of search knowledgeA pattern represents a boolean feature of a state in the state space. This feature typicallyrepresents a proper subset of all the possible properties of the state. That is the featureusually does not represent a single state, because such patterns would be far too speci�c(and numerous) to be useful in complex problem domains. Examples of patterns includegraphs and sets of attributes. Often the language in which patterns are expressed is akinto the language used to represent the states, but with a higher level of abstraction, e.g., seediscussion of Morph below.Each pattern has associated with it a weight that is a real number within the reinforce-ment value range. The weight denotes an expected value of reinforcement, given that thecurrent state satis�es the pattern. For example, in a game problem domain a typical set ofreinforcement values is f0,1g, for loss and win respectively. If we have a pw, <p1, :7>, thisimplies that states which have p1 as a feature are more likely to lead to a win than a loss.The major reason for using pws over another form of knowledge representation is theiruniformity. Pws can simulate other forms of search control and due to their low levelof granularity and uniformity more power and exibility is possible (Levinson, 1989b).For example, pws have all the expressive power of macro tables. Additionally, they allowswitching over from one macro sequence to another and allow for the combination of twoor more macro tables(Levinson, 1989b).2.2 Adding and removing patternsThe patterns used to represent search knowledge are stored within a database that isorganized as a partial order on the relation \more-general-than". Patterns are inserted intothis database through the following four methods: search context rules, generalization andspecialization, reverse engineering, and genetic operators.Search context rules are the only pattern addition scheme that does not rely on patternsalready in the database; thus, they are the only way patterns are added to an emptydatabase. A search context rule takes as input a particular state and the sequence of allstates in the last search and returns a pattern to be inserted into the database. A searchcontext rule is just a deterministic procedure that builds up a pattern given the previouslymentioned inputs. Examples of search context rules can be found in Section 0.3.3.In concept induction schemes (Michalski, 1983; Mitchell et al., 1986a; Niblett andShapiro, 1981; Quinlan, 1986) the goal is to �nd a concept description to correctly classifya set of positive and negative examples. In general, the smaller description that does thejob, the better. Sometimes the concept description needs to be made more speci�c to

11. IntroductionThis paper introduces experience-based learning. This term refers to that type ofunsupervised reinforcement learning in which almost all responsibility for the learningprocess is given to the system. These responsibilities include state evaluation, operator(move) selection, feature discovery and feature signi�cance. As a learning frameworkexperience-based learning can be applied to many problem domains (Levinson et al., 1992).The types of problem domains considered here are restricted to complex problem do-mains characterized by three features. First the problem must have a formulation as a statespace search. Further, reinforcement is only provided occasionally, and for many prob-lems only at the end of a given search. Finally, the cardinality of the state space must besu�ciently large so that attempting to store all states is impractical.This paper describes a learning system architecture called an adaptive predictive search(APS) system (Levinson, 1989a; Levinson et al., 1992), which handles experienced-basedlearning in complex problem domains. The �rst key aspect of an APS system is the com-pilation of search knowledge in the form of pattern-weight pairs (pws). Patterns representfeatures of states, and weights indicate their signi�cance with respect to expected rein-forcement. Secondly, since the APS system resides within the experience-based learningframework, it must possess facilities for creating and removing search knowledge (pws).Knowledge is maintained to maximize the system's performance given space and time con-straints. The APS model uses a variety of techniques for inserting and deleting patterns. Fi-nally, a combination of several learning techniques incrementally assign appropriate weightsto the patterns in the database. The speci�c insertion, deletion, and learning techniqueswill be described in the next section.Since APS adheres to the experience-based learning framework, it can be applied to newdomains without requiring the programmer to be an expert in the domain. In fact, APS hasbeen applied to a variety of domains including chess, othello, pente, and image alignment(Levinson et al., 1992). The chess implementation, Morph, is also described in this paper.Chess satis�es all of the abovementioned requirements of the complex problem domainsconsidered in this paper: The game tree forms the state space, each game representing asearch path through the space; reinforcement is only provided at the end of the game; and,�nally, it has a large cardinality of states (around 1040) (Shannon, 1950). Furthermore, fewe�orts use previous search experience in this area despite the high costs of search. In orderto focus the research on the learning mechanisms, Morph has been constrained to using onlyone-ply of search. In addition, Morph has been given little initial chess knowledge, thus,keeping it within the experienced based learning framework. Despite these constraints,Morph has managed several dozen draws and two wins against Gnuchess, a traditionalsearch based chess program stronger than most tournament players.The structure of the rest of the paper is as follows. The next section discusses the APSsystem framework in detail. In Section 3 the Morph APS implementation is described.Section 4 compares APS to other e�orts in adaptive search and adaptive game-playingsystems. This is followed by performance results in Section 5 and, �nally, a conclusion inwhich future research and open questions are discussed.

Experience-Based Adaptive SearchJe�rey Gould and Robert LevinsonDepartment of Computer and InformationSciencesUniversity of California Santa CruzSanta Cruz, CA 95064 U.S.A(408)-458-9792 (408)-459-2565je�g@cis.ucsc.edu levinson@cis.ucsc.eduUCSC-CRL-92-10April 16, 1992Baskin Center forComputer Engineering & Information SciencesUniversity of California, Santa CruzSanta Cruz, CA 95064 USA

