
[14] XILINX 2000/3000 Development System Reference Guide: The XNFMAP Program. 2100

Logic Drive, San Jose, CA 95124, 1991.

[15] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. R. Wang, \MIS: A Multiple-Level

Logic Optimization System," IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. CAD-6, pp. 1062{1081, Nov. 1987.

[16] K. Karplus, \Xmap: a technology mapper for table-lookup �eld programmable gate arrays,"

in ACM IEEE 28

th

Design Automation Conference Proceedings, (San Franciso, California),

pp. 240{243, June 1991.

[17] EXEMPLAR: XNFOPT. 2550 Ninth Street, Suite 102, Berkeley, CA 94710, 1990.

19

References

[1] K. A. El-Ayat, A. El Gamal, R. Guo, J. Chang, R. K. Mak, F. Chiu, E. Z. Hamdy, J. McCollum,

and A. Mohsen, \A CMOS electrically con�gurable gate array," IEEE Journal of Solid-State

Circuits, vol. 24, pp. 752{762, June 1989.

[2] XILINX: The Programmable Gate Array Data Book. 2100 Logic Drive, San Jose, CA 95124,

1991.

[3] R. Murgai, Y. Nishizaki, N. Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli, \Logic

synthesis for programmable gate arrays," in ACM IEEE 27

th

Design Automation Conference

Proceedings, (Orlando, Florida), pp. 620{625, June 1990.

[4] R. Murgai, N. Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli, \Improved logic syn-

thesis algorithms for table look up architectures," in IEEE International Conference on Com-

puter-Aided Design ICCAD-91, (Santa Clara, California), pp. 564{567, November 1991.

[5] N.-S. Woo, \A heuristic method for FPGA technology mapping based on the edge visibility,"

in ACM IEEE 28

th

Design Automation Conference Proceedings, (San Franciso, California),

pp. 248{251, June 1991.

[6] R. J. Franics, J. Rose, and K. Chung, \Chortle: A technology mapping program for lookup

table-based �eld programmable gate arrays," in ACM IEEE 27

th

Design Automation Confer-

ence Proceedings, (Orlando, Florida), pp. 613{619, June 1990.

[7] R. J. Franics, J. Rose, and Z. Vranesic, \Chortle-crf: Fast technology mapping for lookup

table-based FPGAs," in ACM IEEE 28

th

Design Automation Conference Proceedings, (San

Franciso, California), pp. 227{233, June 1991.

[8] F. Dresig, O. Rettig, and U. G. Baitinger, \Logic synthesis for universal logic cells," in Pro-

ceedings of International Workshop on Field Programmable Logic and Applications, (Oxford,

England), 4{6 September 1991.

[9] D. Filo, J. Yang, F. Mailhot, and G. Micheli, \Technology Mapping for a Two-Output

RAM-based Field-Programmable Gate Arrays," in European Design Automation Conference,

pp. 534{538, February 1991.

[10] J. Rose and S. Brown, \Flexibility of interconnection structures for �eld-programmable gate

arrays," IEEE Journal of Solid-State Circuits, vol. 26, pp. 277{282, Mar. 1991.

[11] XILINX Application Note: Fundamentals of Placement and Routing. 2100 Logic Drive, San

Jose, CA 95124, 1990.

[12] A. El Gamal, \Two-Dimensional Stochastic Model for Interconnections in Master Slice In-

tegrated Circuits," IEEE Transactions on Circuits and Systems, vol. 28, pp. 127{138, Feb.

1981.

[13] R. J. Franics, J. Rose, and Z. Vranesic, \Technology mapping for lookup table-based fpgas

for performance," in IEEE International Conference on Computer-Aided Design ICCAD-91,

(Santa Clara, California), pp. 568{571, November 1991.

18

SWITCH

MATRIX

MATRIX

SWITCH SWITCH

MATRIX

MATRIX

SWITCH

t

4

s

4

t

1

s

1

s

2

t

2

s

3

t

3

Figure 5: The 4000 series routing.

Because of its simplicity and generality, Rmap can be easily extended to other LUT-based ar-

chitectures by adjusting the cost function to reect the characteristics of the FPGA architecture.

For example, in the XC3000 series the ip-op outputs of a cell can be internally routed to the

cell's LUT. The cost function can be easily adjusted to reward pairings which exploit this internal

routing resource.

In the XC4000, the cells can again accommodate two 4-input LUTs (plus a third LUT which

can combine the outputs of the two 4-input LUTs with another input). The two 4-input LUTs can

have completely disjoint inputs in the 4000 series. However as shown in Figure 5, routing resources

are used most e�ciently when these two tables share inputs. This is because when the input (t

i

) of

one table is obtained from one of the adjacent wire segments, the other table can connect the input

s

i

to the same segment (except in one case) without consuming any additional routing resources.

Acknowledgments

The �rst and second authors were supported by the National Science Foundation Presidential Young

Investigator Grant No. MIP-8896276. The third author was supported in part by the National

Science Foundation Research Initiation Award Grant No. MIP-9111607. The authors wish to

thank Xilinx Inc. for donating their XACT XC3000/2000 Sparc Design Implementation Systems

in support of this research.

17

It appears from the pins per net and pins per cell ratios of these four di�cult-to-route designs

and their apr results, that routability is enhanced when these ratios are reduced and balanced.

Circuit Time #Nodes #Potential #Potential #CLBs

Sparc 1+ Before After Blocks Pairs

5xp1 5.87s 111 113 582 21746 20

9sym 13.02s 152 160 722 30742 46

9symml 17.48s 156 169 790 40298 46

C499 651.08s 455 455 10126 592823 71

C880 65.37s 357 372 2445 127073 82

alu2 96.62s 306 321 2383 157713 91

alu4 606.00s 564 597 5965 635497 167

apex1 259.08s 509 619 3073 234268 241

apex5 425.87s 743 783 2718 352780 206

apex6 432.02s 745 753 2153 292114 176

apex7 17.80s 252 256 830 47175 45

apex7b 17.78s 252 256 830 47175 45

b9 2.03s 144 144 301 7781 25

duke2 34.58s 269 278 1286 62107 85

e64 1.33s 226 226 187 2863 53

misex1 0.55s 51 54 182 2149 9

misex2 0.45s 88 94 129 1583 20

misex3 86.13s 344 358 1757 110715 115

rd73 6.25s 97 100 788 19478 18

rd84 25.37s 164 174 1345 58318 40

rot 178.03s 695 701 2246 216893 137

vg2 1.03s 79 97 245 4363 21

z4ml 0.68s 41 41 280 3862 4

Table 6: Time and memory requirements for Rmap.

Table 6 gives the time and memory requirements for Rmap on the benchmarks. The number of

nodes in the network are given before and after the node-splitting routine. The number of potential

blocks appears reasonable except for C499. Typically, Rmap is 5 times slower than Chortle-crf.

However, it should be noted that these times are small when compared to the time required to

place and route even the small mapped designs.

Conclusions

We have presented a new algorithm for technology mapping of combinational circuits for LookUp

Table-based Field-Programmable Gate Arrays. This new algorithm treats covering, pairing, and

replication under the same framework rather than applying local optimizations. The mapper, Rmap,

is very general and has the exibility of trading routability with compactness of a design. It is able

to produce routable mappings on benchmarks for which Chortle-cfr and xnfmap do not. The

routability issue in LUT-based technology mapping is discussed and three di�erent mappers are

evaluated with respect to routability.

16

Rmap produces a bit more routable design, in terms of average numbers of unrouted pins and nets,

than xnfmap and chortle. For the benchmark circuit duke2, xnfmap outperforms the others; and

�nally for misex3, again Rmap produces a bit closer to routable design than the other mappers.

The results in Table 4 raise the question of whether the routings can be completed by simply

adjusting the parameters c

I

and c

O

properly? This is indeed the case as illustrated in Table 5,

which shows that the number of unrouted pins (using apr) in these designs can actually be brought

down to zeros by appropriate values of c

I

and c

O

. A routed mapping for the circuit alu4 was

obtained with c

I

= 2:1 and c

O

= 1:0, despite the discouraging initial result of 85 unrouted pins

obtained with c

I

= c

O

= 0.

Chortle-crf Rmap c

I

= c

O

= 0 Rmap c

I

= c

O

= 1 Xnfmap 3.13

Circuit average minimum average minimum average minimum average minimum

pins nets pins nets pins nets pins nets pins nets pins nets pins nets pins nets

alu2* 12.1 7.4 6 6 15.3 10.8 5 5 3.1 2.9 0 0 10.9 8.1 4 3

duke2* 27.9 15.0 16 11 18.5 12.5 6 5 5.1 4.1 2 2 3.3 2.9 1 1

misex3* 26.6 17.1 7 6 27.0 19.7 18 13 8.3 6.1 1 1 14.7 9.5 5 5

alu4* 29 21 85 62 36 19 52 30

Table 4: Number of unrouted pins and nets after 10 apr runs (except for alu4); alu2 is routed on

a 3042PG132, duke2 is routed on a 3042PQ100, misex3 is routed on a 3064PG132, alu4 is routed

on a 3090PC84 only once.

Rmap c

I

= c

O

= 0 c

I

= c

O

= 1 c

I

= 0 c

O

= 2 c

I

= 1:5 c

O

= 1

Unrouted # Unrouted # Unrouted # Unrouted

Circuit CLB P/C P/N pins nets CLB P/C P/N pins nets CLB P/C P/N pins nets CLB P/C P/N pins nets

alu2 91 5.66 3.54 5 5 110 4.70 3.68 0 0 109 4.79 3.86 0 0 114 4.68 3.56 0 0

duke2 85 4.44 3.47 6 5 105 3.92 3.62 2 2 113 3.87 3.80 5 3 118 3.68 3.42 0 0

misex3 115 5.41 3.69 18 13 131 4.79 3.77 1 1 147 4.58 4.17 0 0 146 4.48 3.57 0 0

alu4 167 5.81 3.52 85 62 194 4.92 3.59 36 19 212 4.66 3.80 38 31 213 4.65 3.49 22 12

Table 5: CLBs, Pin-to-cell (P/C), Pin-to-net ratios (P/N), and number of unrouted pins and nets

after ten apr runs; alu2 is routed on a 3042PG132, duke2 is routed on a 3042PQ100, misex3 is

routed on a 3064PG132, alu4 is routed on a 3090PC84 only once.

We made several observations from Table 5:

1. Positive c

I

and c

O

values deliver less compact but more routable mappings.

2. Increasing c

I

or c

O

can generate more routable mappings.

3. Continuing to increase the values of c

I

or c

O

increases utilization of the devices, but will not

impair the routabilities of the mappings.

15

communication.

In the total number of CLBs summed over the 19 implementable benchmarks Chortle-crf had

12 fewer CLBs than Rmap with constants c

I

= c

O

= 0, 108 fewer CLBs than Xnfmap. However in

general, although Xnfmap produces mapped designs with more CLBs, they are rather balanced in

terms of pins per cell and pins per net ratios. We also tried Xnfmap -s to attempt to squeeze more

functions into CLBs, but this didn't improve the CLB counts.

Chortle-crf Rmap c

I

= c

O

= 0 Rmap c

I

= c

O

= 1 Xnfmap 3.13

Circuit Pins/Cell Pins/Net Pins/Cell Pins/Net Pins/Cell Pins/Net Pins/Cell Pins/Net

5xp1 4.00 4.43 3.78 3.89 3.48 3.86 3.83 3.65

9sym 5.21 4.82 5.55 3.53 4.80 3.70 5.03 3.66

9symml 5.21 4.64 5.54 3.56 5.03 3.57 4.97 3.55

alu2* 5.34 4.58 5.66 3.54 4.70 3.68 5.08 3.60

alu4* 5.51 4.64 5.81 3.52 4.92 3.59 5.15 3.40

b9 2.56 2.85 2.50 2.62 2.29 2.60 2.31 2.63

duke2* 4.27 4.27 4.44 3.47 3.92 3.62 3.90 3.46

misex1 3.33 3.75 3.28 3.04 3.04 2.93 3.23 3.34

misex2 2.84 3.51 2.63 2.81 2.55 2.80 2.57 2.78

misex3* 5.22 4.56 5.41 3.69 4.79 3.77 4.82 3.59

rd73 4.53 4.14 4.39 3.24 4.10 3.32 4.32 3.58

rd84 5.0 4.59 5.08 3.47 4.73 3.56 4.76 3.55

vg2 2.81 3.17 3.11 2.58 2.73 2.54 2.69 2.80

z4ml 1.86 2.00 2.27 2.27 2.19 2.33 1.86 2.00

Table 3: Pins per cell (local congestion), and pins per net (global congestion) of di�erent mappers

We ran Rmap with two sets of parameters to demonstrate the exibility of the mapper, as

illustrated in Table 3. With the parameters of the cost function (equation 1) set to c

I

= c

O

= 0, Rmap

produces comparatively fewer CLB counts and performs very well in reducing global congestion.

However, it also has the poorest local congestion grades. With the weights of the cost function set

to c

I

= c

O

= 1, Rmap produces comparatively more CLB counts than with c

I

= c

O

= 0, however

it scores well in both reducing global and local congestions. Chortle's performance is average on

CLB counts and poor on global congestion.

To validate the use of these ratios as routability criteria, we conducted another set of experi-

ments. The unrouted circuits are the most interesting ones in this context. In some sense, these

circuits indicate the routability of the mappers. Again, routability is de�ned to be the probability of

automatic completion of a design. It is the \probability" because there are degrees of randomness

in the simulated annealing-based placement algorithm.

We ran apr ten times and measured the average and the minimum number of unrouted pins

and nets to assess the routability of the mappers. The minimum number of unrouted pins and

nets indicates how close a design is from being routed. A partially routed design with one or two

unrouted nets or pins is considered to be acceptable. Often the routing can be completed with

additional routing iterations or human intervention. The results are tabulated in Table 4. We

demonstrate that by simply setting the parameters of the cost function to c

I

= c

O

= 1 in Rmap, we

could trade (and control) routability for compactness of a design. For the benchmark circuit alu2,

14

Chortle-crf Rmap c

I

= c

O

= 0 Rmap c

I

= c

O

= 1 Xnfmap 3.13

Circuit #CLB #Pin #Net #CLB #Pin #Net #CLB #Pin #Net #CLB #Pin #Net

5xp1 24 164 37 20 140 36 21 139 36 24 157 43

9sym 51 318 66 46 311 88 54 307 83 54 322 88

9symml 47 297 64 46 310 87 51 307 86 55 323 91

alu2* 92 577 126 91 606 171 110 592 161 99 584 162

alu4* 154 970 209 167 1099 312 194 1063 296 180 1030 303

apex1+ 227 1505 351 241 1624 445 290 1619 432 246 3182 865

apex4+ 456 2832 567 491 3248 887 526 3103 863 526 6589 1810

apex5+ 202 1395 354 206 1558 486 233 1526 458 202 3185 958

apex6+ 165 1219 347 176 1337 408 205 1325 403 171 2939 926

apex7 45 368 114 45 379 130 57 380 129 51 366 120

apex7b 45 368 114 45 379 130 57 380 129 51 366 120

e64 55 462 146 53 450 151 53 406 159 63 383 160

C499 50 379 115 71 524 181 79 509 176 70 399 121

C880 76 522 146 82 620 209 103 610 199 76 530 178

b9 26 225 79 25 220 84 29 211 88 28 208 79

duke2* 85 581 136 85 604 174 105 612 169 89 546 158

misex1 12 90 24 9 77 26 11 79 27 15 97 29

misex2 25 193 55 20 166 59 23 168 60 22 167 60

misex3* 117 757 166 115 774 210 131 761 202 128 752 209

rd73 22 145 35 18 123 38 20 123 37 24 147 41

rd84 44 280 61 40 264 76 43 260 73 50 295 83

rot+ 148 1072 324 137 1139 378 169 1127 370 146 2491 788

vg2 19 146 46 21 168 65 22 150 59 19 140 50

z4ml 3 26 13 4 34 15 5 35 15 3 26 13

Table 2: Numbers of CLBs, pins and nets generated by three di�erent mappers; all designs were

routed without di�culty except those marked with �'s (see Table 4) and those marked with +'s

which are not implementable, e.g., apex6 has 234 I/O pins

All mappers use identical package types for placement and routing, the package types are

chosen to maintain approximately 80% cell utilization. We used the following package types in our

experiments: XC3030, XC3042, XC3064, and XC3090(only for alu4).

The MCNC benchmark circuits are minimized with misII2.0 using the standard script once.

The minimized circuits are then mapped by three di�erent mappers: Chortle-crf, Rmap, and

Xnfmap. All the mapped designs are converted to .map format, and then translated to .lca format

by map2lca which uses a mincut approach to obtain an initial placement. The �nal step is the

automatic placement and routing by apr.

Small designs were placed and routed with the default settings without di�culty. The unrouted

designs are marked with asterisks in Tables 2 and 3.

Note that the numbers of CLBs produced by chortle-crf di�er from the ones reported in [7]

for two reasons. The �rst reason is that the authors of chortle-crf used the misII2.0 standard

script plus an additional simpli�cation step in misII to minimize the circuits before mapping them.

The second reason is that they revised the published results after the publication through private

13

Device XC3020 XC3030 XC3042 XC3064 XC3090

Total CLBs 64 100 144 224 320

80% � Total CLBS 51 80 115 180 256

Table 1: Package types and CLBs available

2. Decompose by internal common dependency sets.

For each child c

i

of node x we compute g(c

i

) which is the number of children of x which have

at least one child in common with c

i

. Note that g(c

i

) will be at least 1 since c

i

is included in

the count. We pick the child c

i

with the largest g(c

i

) breaking ties arbitrarily. If 1 < g(c

i

) < f

then we create a node, new, whose children are exactly those counted in g(c

i

) (the children of

x having one child in common with c

i

, including c

i

). These new children of new are removed

as children of x and new becomes a child of x. If g(c

i

) = f then we create a new node, new,

with children c

1

and c

2

, remove c

1

and c

2

as children of x and add new as a child of x. If

g(c

i

) = 1 nothing is changed.

3. Decompose by building balanced feasible subtrees.

The set of children of x, C(x) is partitioned arbitrarily into three sets of roughly equal size

(di�ering by at most one), C(x) = S

1

[S

2

[S

3

. Three new nodes, new

1

, new

2

, and new

3

are

created with S

1

, S

2

, S

3

as their sets of children, respectively. These three new nodes become

the children of x: C(x) = fnew

1

; new

2

; new

3

g.

The �rst technique is applied to all nodes with four or more children until the fanout is three or

less, or it fails. The technique is also applied to any new nodes created as a result of the splitting

of their parents. If there are still nodes of four or more children at this point, then the second

technique is applied in the same manner. Finally, any remaining nodes with four or more children

are divided into balanced trees of degree three using the last technique.

Creating all blocks can be memory intensive. However creating only feasible blocks for a small

value of k is manageable. In Section 5 the number of feasible blocks and the number of potential

pairings are given in Table 6. This method is more general than previous approaches because it

considers replication, covering, and cell packing within one framework, allowing these operations

to interact. The heuristics in Rmap are the node-splitting and the selection of pairs to commit.

Experimentation with di�erent pair selection criteria is simple and convenient in this framework.

Time permitting, even an exhaustive backtracking approach to pair selection could be performed

to obtain the optimal mapping (for a �xed node-splitting and logic network). We shall present

some experimental results in the next section.

5 Experimental results

Due to their size and scope, the experiments are conducted using only three di�erent mappers,

and an impartial subset of the standard MCNC combinational circuit benchmarks. The selected

benchmark circuits have numbers of CLBs and I/O pins feasible for realization with the XC3000

packages. Part of the experiments involved using the industrial placement and routing tool apr

with the default settings.

12

vdcba

x

u

z

w

y

ge f

v

ge f

v

w v

x d c

u

z

w

y

y

x

ba c

Figure 4: Mappings for the network in Fig. 1 obtained for c

I

= c

O

= 0 (left) and c

I

= c

O

= 1

(right).

Which nodes of the paired blocks to remove is determined by a traversal originating at the

block outputs which decrements the outdegree of each node visited, and visits a node's children

only when the outdegree of that node reaches zero. All nodes in the block whose outdegrees

reach zero are removed from the network. What is left behind is a network where each of

the blocks have been collapsed to single nodes and any sub-networks of the blocks which

are not dominated by the block outputs have been replicated. Figure 3 shows the resulting

network after committing a pair containing the block with nodes w and y, and the empty

block. Node w becomes a primary input, w is removed while y remains, and nodes x and v

become primary outputs.

Figure 4 contains the two cell packings of the network in Figure 1 obtained for two sets of parameters

c

I

and c

O

in the cost function.

The four steps presented above will produce a covering and cell packing if the initial network

can be covered by feasible blocks. If the dependency set of every block of a node x has size greater

than k, then x cannot be included in any feasible block. In Rmap, node-splitting is a pre-processing

step which attempts to increase the chances of �nding pairable blocks. We use three techniques to

split a node x with f > 3 children. Here, C(x) = fc

1

; . . . ; c

f

g, denotes the set of children of node

x.

1. Decompose by external common dependency sets.

If there is a proper subset, S, of children of a node x, S � C(x) which is exactly the set of

children of a node y (S = C(y)), then a node, new, with child set S is created and x's new

children become fnewg[(C(x)�S). If there is more than one choice for S, one of maximum

size is selected arbitrarily.

11

v

g

f

e

w

c

u

z

y

x

d

cba

Figure 3: Resulting network after committing the block with nodes w and y.

is chosen. The number of input pins is the size of the union of the dependency sets of the

two blocks and the number of output pins is 2 unless one of the blocks is the empty block (in

other words, it is 1 if only one block is packed into the cell). The input parameters c

I

and c

O

are varied to a�ect the routing characteristics of the mapping. Their e�ects are described in

the next section. Since there is quite a bit of overlap among our blocks, the choice of pairing

to commit will a�ect the remaining available pairings, and so ties must be resolved carefully.

Ties (which are the norm rather than the exception) are broken in the following manner:

(a) The pairing whose block outputs appear the least frequently among the tied potential

pairs,

(b) if there are still ties and if one particular block output, say x, appears in every one of

the remaining tied pairs, then we select for x the partner whose next best alternative is

the worst in terms of the cost function.

4. Commit Pairings

After selecting the pairing we modify the network and remove any invalid blocks (and their

pairings) by

(a) making the block output(s) of the pairing into primary inputs (removing all their in-

edges),

(b) making all nodes with edges into the pairing, into primary outputs,

(c) removing all nodes in the blocks which now have no inuence on the remaining primary

outputs (have no directed path to any primary output), and

(d) eliminating any blocks containing any removed nodes and/or the block outputs of the

pairing.

10

begin Rmap(�)

� Node Split(�)

Create All Blocks(�)

Create All Potential pairs(�)

while there are uncovered nodes in �

p Select pairing(�)

Add p to mapping

� Commit pairing(�, p)

endwhile

end Rmap

The four main steps in Rmap's covering and packing algorithm are described below. Node Split()

is discussed after the covering and packing are described.

1. Create all blocks.

At each node x we �nd the dependency sets for all possible feasible blocks for which x is

the block output. The unique block corresponding to each set is also recorded. These sets

(and their blocks) are obtained for x from the dependency sets of x's children in a bottom-up

traversal of the network. Blocks of x's children are combined to form blocks for x and any of

these new blocks which contain a node in its own dependency set are discarded. This is the

case for node u in Figure 2 when combining the blocks for its two children with dependency

sets fx; c; dg and fy; vg, respectively. The resulting block would depend on y and contain

y. We discard this block rather than repair it, because the repaired block will always be

generated from another pair of blocks. In this case, combining blocks for the dependency sets

fx; c; dg and fx; c; d; vg yields the block for dependency set fx; c; d; vg with nodes y, z, and

w.

2. Create All Potential Pairings

From their lists of dependency sets, it is possible to determine whether two nodes x

1

and x

2

have blocks b

1

and b

2

which can be paired. A potential pairing is created for each pair of

blocks, b

1

and b

2

of x

1

and x

2

if,

(a) b

1

and b

2

can be packed together in a single cell, and

(b) x

1

62 b

2

and x

2

62 b

1

.

Each block can also be paired with the empty block which provides the mechanism for packing

a single block into a cell. The number of edges covered by a pairing is de�ned to be the sum of

the edges covered by the individual blocks; edges common to both blocks are counted twice.

(The empty block has zero edges.)

3. Select Pairings

From the list of all potential pairings, Rmap uses a greedy method to choose a pair of blocks

to pack into one cell. A pairing which maximizes the following cost function:

edges� c

I

� (# of input pins)� c

O

� (# of output pins) (1)

9

fx; c; d; wg; fx; c; d; vg; fa; b; c; y; wg;fa; b; c; y; vg; fa; b; c; d;wg;fa; b; c; d; vg

u : fz; wg; fz; y; vg; fz; y; e; f; gg;fz; x; c; d; vg; fx; y; vg; fx; y; wg; fx; y; e; f; gg

w : fy; vg; fy; e; f; gg; fx; c; d; vg; fv; a; b; c; dg

z : fx; yg; fa; b; c; yg; fa; b; c; dg; fx; c; dg

y : fx; c; dg; fa; b; c; dg

v : fe; f; gg

x : fa; b; cg

c

v

w

u

z

y

x

gfed

cba

Figure 2: A network and the dependency sets of its feasible blocks.

increases the number of alternatives. Similarly, collapsing is also taken care of by considering all

blocks with both the parent and child (assuming the collapse would not remove any variable from

the fanin). Mostly, however, Rmap di�ers from these approaches in that pairs of blocks and/or

single blocks are selected directly from among all potential blocks so that covering and packing are

considered simultaneously. Although pairing potential is considered byHydra in its decomposition

and covering phases, cell packing is only performed once the covering has been �xed. In constrast

to mispga and other mappers which attempt to minimize the size of the covering, Rmap uses the

number of edges covered by a block (edges within and entering the block) to greedily construct a

covering which covers as many edges as possible. Finally, because it generates all possible blocks

(LUTs) before making any decisions, Rmap is able to look ahead one or two steps to determine the

e�ect that selecting a particular pairing will have on the prospects for other nodes' blocks.

4 Mapping for Routability: Rmap

The approach to mapping taken in Rmap is a greedy one with respect to covering the edges in the

network as quickly as possible. All feasible blocks are considered and the largest ones which can be

paired together are selected. Feasible blocks are generated quickly by keeping track of dependency

sets. Recall that the dependency set of a block b in the network is the set of nodes external to b

with edges into nodes of b. A node x cannot be the block output of two distinct blocks with the

same dependency set. This would require the existence of a node in one block, b

1

, not in the other

block, b

2

, with an edge into some node of b

2

. Such a node would by de�nition be in the dependency

set of b

2

and hence also b

1

's. Since a node in a block is not in the dependency set of that block,

this cannot occur.

We assume that technology independent logic minimization has been performed on the network

and that the nodes of the network have been decomposed so that the only Boolean functions

represented in the network are ANDs and ORs, possibly with negated inputs: an AND/OR network.

The algorithm used by Rmap is given below. It takes as input a logic network, �.

8

phase is accomplished by xl partition and xl cover. The former uses a greedy method to

collapse a child into its parent if the resulting node would form a feasible block. The com-

mand xl cover implements both an exact exponential algorithm and heuristics to �nd a cover

with the minimum number of blocks. Candidate blocks for xl cover are determined using

a maxow technique. The cell packing is performed by xl merge

3

which �nds a maximum

cardinality matching between blocks which can be paired.

Several enhancements tomispga are presented in [4]. The decomposition phase now includes

a cube-packing algorithm similar to the bin-packing node-splitting in Chortle-crf (described

above) and co-factoring. Collapsing a child into its parent is now permitted (even if the

resulting node is infeasible) as long as the cost is reduced. Finally, a covering technique geared

towards minimizing the number of cells rather than blocks is proposed (but not implemented).

Hydra [9] uses techniques similar to those of mis-pga, but with stronger emphasis on exploiting

two-output CLBs. Simple disjoint decomposition is �rst applied to network to extract a child

(sub-function) with a disjoint input set from its parent. Pairs of nodes with common inputs

are identi�ed and decomposed together in an attempt to produce children which can be paired

together later. The second decomposition phase is an AND/OR decomposition which groups

children whose combined input set is 5 or less in one subtree. The covering (referred to as

local elimination in this case) consists of examining nodes from the bottom up and collapsing

them into their parent if the result will be a node with 5 or less inputs. If the node has

multiple parents, the collapse is performed only when the parents will have 4 or less inputs.

Once the blocks are determined, a cost function based on the number of shared inputs and

total inputs is used to pair the blocks in a greedy manner.

Xmap [16] converts the Boolean network into an If-then-else dag [16]. Simple, e�cient heuris-

tics are used to designate some of the nodes in network as block outputs in a manner which

guarantees that each designated node has a feasible block whose fanin consists only of other

designated nodes. The covering is generated in a second phase by examining each designated

node and selecting either the feasible block found for it during the �rst phase or the block

consisting of the \closest designated descendants," which ever block has smaller fanin. A

greedy method then pairs up the blocks to form the cells.

Aloe-CLB [8] uses functional decomposition rather than structural decomposition techniques.

Speci�cally, multiplexor based decomposition and Ashenhurst decomposition are used to ob-

tain a Boolean network in which each node forms a feasible block. Blocks are then paired

using a greedy method based on the number of shared inputs.

Xnfopt [17] We classify the industrial tool xnfopt in this category as well since it performs logic

minimization.

All of these tools (with the exception of hydra and possibly xnfmap) have the common trait

of considering cell packing separately from generating the covering. In Rmap, we perform covering

and cell packing simultaneously allowing replication and covering by blocks to be considered along

with cell packing. We �rst perform AND/OR decomposition to reduce the fanin of each node

to 3. Because Rmap considers all possible blocks in generating its covering, decomposition only

3

This command relies on a separate integer programming package.

7

LUT Covering: This phase can be viewed as a graph theoretic problem in which a covering of the

network with blocks is constructed. The �nal set of feasible blocks must satisfy constraints

given in De�nition 6.

Cell Packing: To increase cell utilization, the cells (CLBs) are designed so that their LUT can

be sub-divided into separate LUTs. Cell packing consists of combining the blocks generated

by the covering phase into groups which can be accommodated in a single cell. For example,

the XC3000 family accommodates one table of 5 inputs or two tables of 4 inputs each (if they

have at most 5 distinct inputs between them).

Below we have classi�ed LUT-based mappers according to whether or not they perform logic

minimization (restructuring) of the network before generating its covering. We �rst examine tools

which can be characterized as being strictly technology mappers. These tools solve the covering,

splitting and packing problems on AND/OR networks. Note that these tools generally assume that

some form of technology independent minimization has been performed on the network.

Chortle [6] divides a network into fanout-free trees and uses a dynamic programming approach to

obtain the optimal number of blocks covering a tree. This approach produces the minimum

number of blocks in fanout-free trees. Chortle-crf[7] has additional enhancements to support

node-splitting, exploiting reconvergent fanout, and replicating nodes. A bin packing algorithm

is used to group a node's children into subtrees (bins) which can be covered by the fewest

number of blocks. Reconvergent fanout is exploited by attempting to group children with the

same inputs together. For nodes with multiple fanouts, both the unreplicated and replicated

cases are considered. Chortle-d [13] uses the same dynamic programming approach but with

the goal of minimizing the depth of the resulting network; minimizing the number of cells is

a secondary optimization.

Vismap [5]. Here the covering problem is formulated as the problem of deciding whether or not

each edge will be inside a block (whether the origin of the edge will be a block output).

Given a set of choices, one for each edge, it is straightforward to determine whether these

choices correspond to a covering, and if so, to determine the number of blocks in the covering.

Because of the exponential nature of this potentially exhaustive search, heuristics are used

to e�ciently generate and control the number of combinations considered. Cell packing is

performed only after the blocks have been determined.

Xnfmap [14] is the Xilinx mapper. From our observations, it performs only minor local rearrange-

ments of the network and so we have classi�ed it in this category. (This classi�cation is based

solely on our observations since no public documentation is available on its implementation.)

The second class of \mappers" are logic synthesis tools for LUT based FPGAs. They incorpo-

rate technology independent as well as technology dependent logic minimization techniques in the

covering, splitting and/or packing phases.

Mis-pga [3] enhances the technology independent minimization techniques of misII [15] by pro-

viding new LUT technology dependent logic optimization commands such as xl k decomp

which performs a limited Roth-Karp decomposition, and xl split which uses kernel extrac-

tion and AND/OR decomposition to reduce the number of fanins to each node. The covering

6

De�nition 3 The dependency set of a block is the set of nodes outside the block which have edges

directed into the block.

De�nition 4 The fanin of a block is the size of its dependency set.

De�nition 5 A feasible block is one whose fanin is at or below the maximum lookup-table width

(e.g., k = 5 in the XC 3000 series).

A block corresponds to a sub-function of the network. Figure 1 shows a network and one of its

blocks, the one formed by fw; yg. This block has dependency set fx; c; d; vg, fanin 4, and block

output w. A block can be implemented with a lookup-table of k inputs if its fanin is at most k.

For example in Figure 1, the block fw; y; vg has dependency set fx; c; d; e; f; gg and is not feasible

for k = 5, while the larger block fu; z; w; y; xg with dependency set fa; b; c; d; vg is feasible. Nodes

other than the designated block output may have edges in the network to nodes outside the block.

These nodes will be replicated in other blocks.

The output of the mapper consists of a covering of the network by blocks and an assignment of

the blocks to cells.

De�nition 6 A covering of the network is a collection of blocks which satisfy the following con-

straints:

1. each primary output is the block output of some block

2. no primary input is in any block, and

3. each non-primary input node is the block output of some block, or it belongs to every block

containing one or more of its parents.

The �rst constraint de�nes the boundary of the covering, the second enforces implementation of the

outputs of the network and the last constraint ensures that the inputs to each node are implemented

either inside the same block, as a block output or as primary inputs. The assignment of blocks

to cells is constrained according to the particular resources the cell possesses for accommodating

multiple LUTs. We shall assume that the cells can accommodate one or two LUTs as in XC3000

series.

The major activities of logic synthesis for LUT based FPGAs are:

Logic Minimization: The Boolean network can �rst be altered using technology independent

as well as technology dependent logic minimization. Technology independent multi-level

logic minimization tools are used to reduce the literal count, while technology dependent

minimization techniques take into account the number of inputs of the LUTs in simplifying

and rearranging the network.

Node Decomposition/Splitting: If a node is not the block output of any feasible block, then it

is not contained in any feasible block. Such nodes must be split into two or more nodes which

implement the same logical function as the original node. Node-splitting (or decomposition)

can be part of the logic optimization and/or the covering phase (below) where the e�ects of

the various alternatives can be better evaluated. In an AND/OR network, the children of a

a node can always be regrouped arbitrarily into subtrees.

5

u

z

x

cba

d e f g

y

w

v

c

w

y

Figure 1: A network and one of its blocks.

a secondary optimization. The goal was to further reduce the number of cells and the byproduct

was the reduction of the pins-to-net ratio. In this paper we present a mapper, Rmap, which can

balance the amount of logic packed into the LUTs and the CLBs against both the pin-to-nets and

pins-to-cell ratios. Given di�erent parameters, Rmap can balance the various goals given above.

This provides the designer with the exibility of trading number of CLBs for routability.

3 Previous work and de�nitions

The input of the LUT technology mapping problem is an acyclic directed Boolean network whose

sinks are the primary outputs of the circuit and whose roots are the primary inputs. Each node of

the graph has a Boolean function associated with it. If there is an edge from node x to node y in

the network, x is a child of y while y is a parent of x.

1

Note that since the network is not assumed

to be a tree, a node can have more than one parent. An AND/OR network is a Boolean network in

which all node functions are either logical ANDs or ORs with complemented or uncomplemented

inputs. An arbitrary Boolean network can be converted to an AND/OR network by replacing non-

complying nodes with subgraphs implementing an equivalent sum-of-products form for the original

node's function.

De�nition 1 A block

2

of the network is a set of nodes which induces a subgraph of the network

having only one sink (a node with no fanout).

De�nition 2 The single sink of the sub-network induced by the block is called its block output.

1

We �nd the terminology parent/child more descriptive than successor/predecessor.

2

In our terminology a block corresponds to a lookup table, while a cell is a CLB (Con�gurable Logic Block). A

block is equivalent to the term supernode introduced in [3,4].

4

The probability of automatic completion of a particular design.

Using a stochastic two-dimensional gate array model, El Gamal [12] estimates the expected

number of tracks required in each channel at about half the product of the average number of pins

per cell and the average wire length. The XC3000 series violates this model in not providing full

switch matrix connectivity as well as by providing long lines (heterogeneous routing resources).

However, the model does support the following two observations:

� Routing larger designs and packages will be more di�cult since the average wire length is

expected to increase while the routing resources (channel width) remains constant.

� The pins-to-cell ratio will a�ect the routability since the average number of pins per cell varies

while the channel width remains constant.

Based on practical experience and supported by El Gamal's results, a number of related factors

which determine the routability of a mapped design can be identi�ed:

Ratio of cells used to total cells available: This ratio is a measure of the density (sparsity)

of a design. This ratio depends of the package type used.

Ratio of pins to cells: A high pins-to-cells ratio indicates that a design has a large number of

high fanin cells. Both IOBs (Input/Output Blocks) and CLBs are included in the accounting

of the number of cells. Similarly, both input and output pins are counted. This ratio is a

measure of the amount of tra�c in and out around a cell. This ratio is independent of the

package type used. It is a characteristic of the mapper.

Ratio of pins to nets: A high pins-to-nets ratio indicates that a design has many high fanout

nets. The vendor considers values in excess of 3.6 to be high [11]. This ratio is a measure of

the amount of tra�c on the chip. This is more of a global measure, whereas the pins to cells

ratio is a local measure. This ratio is independent of the package type used.

These observations lead to the following goals for a mapper:

1. Generate a mapping which does not exceed the number of cells available on the XC3000 LCA.

2. Minimize the fanout of nets by creating LUTs which cover multiple occurrences of the same

input.

3. Minimize the fanout of nets by pairing two LUTs which share three inputs since those three

nets will each consume only one pin for both LUTs.

4. Minimize and/or distribute the pins evenly among the CLBs.

The �rst three goals are compatible, however the fourth is in conict both with the goal of mini-

mizing the number of cells, and with the goal of maximizing LUT pairing (two output pins will be

used rather than one). Making the logic units as large as possible is consistent with attempting to

minimize the number of cells utilized. However, it conicts with the reduction in pins-to-nets that

occurs because of the packing of multiple LUTs in a single cell. Previous approaches to the mapping

problem (with the exception of Hydra [9]) have considered the packing of LUTs into cells only as

3

shall see in Section 5 the manner in which a design is mapped can determine whether or not the

design can be automatically routed and if not, how close to completion the automatic routing results

will be. The routing resources in FPGA architectures must be balanced against cell resources. Tools

which use the routing resources e�ectively admit architectures which devote more area to cells.

Typically, only 80% of the cells can be allocated in a mapping that is routable [2]. Minimizing the

number of cells in the mapping is important since the number of cells available is a hard constraint.

However, mappers which concentrate only on minimzing the number of cells may require an even

lower threshold to ensure routability. Minimizing the number of cells without regard to routability

is futile if the mapped design cannot be routed. It is quite possible that with a slightly less compact

mapping, a larger design can still be accommodated and be routed.

In this paper, we present a technology mapper for LUT-based cell arrays, Rmap, which balances

cell utilization with the goal of producing routable mappings. In Section 2 we examine the archi-

tecture of a LUT-based FPGA and routability criteria. Section 3 we de�ne the mapping problem

and review previous approaches. The mapping algorithm used in Rmap is presented in Section 4

and we compare Rmap's results with two other mappers' in Section 5. Experiments validating the

routability criteria are also provided in Section 5.

2 LUT-based LCAs and Routability Criteria

We focus on the Logic Cell Array (LCA) architecture of the XC3000 series [2], however these

techniques can be generalized to similar Look-Up Table(LUT)-based architectures. The architecture

of the XC3000 LCA series consists of an array of con�gurable logic blocks (CLBs) separated by

routing channels. Each CLB provides a 32-bit LUT and two D ip-ops. The LUT can either be

con�gured as a single 5-input LUT or as two 4-input LUTs. However since only 5 signals can be

routed, the two LUTs must have at most 5 inputs among them in the latter case. Input/Output

Blocks (IOBs) for tristate-able outputs and bu�ered, latched input/output connections to each user

pins are along the perimeter of the LCA. The routing resources on the LCA consist of

1. direct lines which connect each cell with its four immediate neighbors in the array,

2. general-purpose interconnect which consist of vertical and horizontal segments intersecting at

switch matrices, and

3. long lines which run horizontally and vertically the entire length of the array bypassing the

switch matrices.

The switch matrices do not o�er full connectivity. Rose and Brown [10] have shown that limited

switch matrix exibility is preferable in balancing area between routing and cell resources. Some

of the horizontal long lines are provided for tristate busses, and can also be used for high-fanout

nets or even local routing.

The XC3000 series consists of various packages with arrays ranging in size from 64 cells to 320

cells with 34 to 144 user programmable pads. The direct line and general interconnect resources

do not vary over the range of packages, however the larger LCAs have additional long lines with

the added possibility of splitting some long lines in half.

Once a design has been mapped, it must be placed and routed. The vendor de�nes routabil-

ity [11, pg. 34] of a mapped design as:

2

Routability-Driven Technology Mapping for LookUp

Table-Based FPGAs

Martine Schlag, Jackson Kong and Pak K. Chan

February 7, 1992

Abstract

A new algorithm for technology mapping of LookUp Table-based Field-Programmable Gate

Arrays (FPGAs) is presented. It has the capability of producing slightly more compact designs

(using less cells (CLBs)) than some existing mappers. More signi�cantly, it has the exibility

of trading routability with compactness of a design. Research in this area has focussed on

minimizing the number of cells. However, minimizing the number of cells without regard to

routability is ine�ective. Since placement and routing is really the most time-consuming part

of the FPGA design process, producing a routable design with a slightly larger number of cells

is preferable than producing a design using fewer cells which is di�cult to route, or in the

worst case unroutable. We have implemented our algorithm in the Rmap program, and studied

routability of two other mappers with respect to Rmap in this paper. In general Rmap produces

mappings with better routability charactersitics, and more signi�cantly Rmap produces routable

mappings when other mappers do not.

1 Introduction

Field-Programmable Gate Arrays (FPGAs) are integrated circuits consisting of arrays of gates that

can be con�gured { and recon�gured { by the system designer through software, rather than by chip

manufacturer in the fabrication line. With realization times measured in hours, systems incorporat-

ing up to thousands of gates on a single FPGA can be designed, programmed and evaluated within

a few weeks. The advent of FPGA technology facilitates a mechanism for rapid prototyping. There

are multiplexor-based [1] and LookUp Table-based (or RAM-based) FPGAs. This paper focusses

on LookUp Table-based (LUT) FGPAs implemented as Logic Cell Arrays (LCAs) [2].

The success of FPGA technologies is supported by a set of CAD tools to aid the design process.

The two �nal steps in the implementation of a prototype on an FPGA are:

1. its mapping to a network of logic cells (technology mapping), and

2. the assignment of the network cells to physical cells on the LCA and the con�guration of

routing structures to interconnect them as in the network (placement and routing).

The �gure of merit for logic synthesis and mapping techniques for LUTs in the literature has been

the number of logic cells in the network (Con�gurable Logic Blocks) [3,4,5,6,7,8,9]. However, as we

1

