50 Appendix A. Sample Analyses

System:

—————— cache------ Main

instr data CPU Memory

Tmem 2.5 2.5 20
Bw 16 16
Bk 1
TPIb 2.5
A 0.95
B 0.75
pf 2

stk ok sk ok ke ok sk ok ke ok ok ok ok ok ok sk ok ok sk ok ook sk sk ok ok sk ok ook ok ok sk okok ok sk ok ok sk sk ok ok sk ok ok ok ok ok ok ok
OUTPUT

Cache Model:

—————— cache------
instr data
Cmr 0.080 0.038
P/I Model:
—————— cache------ Main
instr data CPU Memory
Rm-bar 1.33 1.33 1.11
Fp 0.35 0.35 1.39
Am-sub 0.49 0.49 3.85
Lint 2.03 2.03
Ce 2.41 2.41
Tpd 1.13 1.13
Dm 2.20 cm
System Model:
—————— cache------
instr data CPU SYSTEM
Cet 6.36 5.52
TPI 5.31
fs 188.23

As 4.83

BCB MCM: U. Mich.; verification

INPUT

Cache:

Dc

Kb
Wb
Nc

P/I:

FPcc
Nelt
Fc
Ew
Pw
Nw
Pp
Zo
Cpad
Rint
Cint

vm
Rtr
Ctr
()

instr data
0.90 0.90
0.00 0.00
0.00 0.00
16384 16384
14 14
16 16
4 4

(no model for now)

—————— cache------
instr data CPU
0.3 0.3 0.7
48 48 300

1 1

32 32
4 4 2

—————— cache------
instr data CPU
0.35 0.35 0.75
0.65 0.65 0.65
1 1 2
0.6 0.6 0.4
0.005 0.005 0.005
2 2 2
0.02 0.02 0.02
70 70 70
0.9 0.9 0.9
10.7 10.7 10.7
1.08 1.08 1.08
18.7 18.7 18.7
3200 3200 3200
5 5 5
3 3 3

48 Appendix A. Sample Analyses

System:

—————— cache------ Main

instr data CPU Memory

Tmem 10 10 60
Bw 4 4
Bk 2
TPIb 10
A 0.95
B 0.75
pf 2

stk ok sk ok ke ok sk ok ke ok ok ok ok ok ok sk ok ok sk ok ook sk sk ok ok sk ok ook ok ok sk okok ok sk ok ok sk sk ok ok sk ok ok ok ok ok ok ok
OUTPUT

Cache Model:

—————— cache------
instr data
Cmr 0.034 0.012
P/I Model:
—————— cache------ Main
instr data CPU Memory
Rm-bar 1.59 1.89 1.11
Fp 1.65 1.65 3.61
Am-sub 21.78 43.56 26.01
Lint 9.55 12.45
Ce 4.46 6.82
Tpd 6.68 10.19
Dm 9.56 cm
System Model:
—————— cache------
instr data CPU SYSTEM
Cet 27.39 33.27
TPI 18.63
fs 53.69

As 91.35

Appendix A. Sample Analyses

Advanced PCB:

INPUT

Cache:

Dc
Np
Kb
Wb
Nc

P/I:

FPcc
Nelt
Fc
Ew
Pw
Nw
Pp
Zo
Cpad
Rint
Cint
vm
Rtr
Ctr
()

HP PA-RISC; verification

instr data
0.90 0.90
0.00 0.00
0.00 0.00
131072 262144
17 18

16 32

4 5

(no model for now)

—————— cache------
instr data CPU
0.57 0.57 1.35
52 52 300

8 8

16 16
8 16 2

—————— cache------
instr data CPU
1.65 1.65 2.2
0.65 0.65 0.65
1 1 2
0.6 0.6 0.4
0.026 0.026 0.026
4 4 4
0.13 0.13 0.13
75 75 75
5 5 5
0.5 0.5 0.5
0.8 0.8 0.8
17 17 17
4000 4000 4000
17 17 17
3 3 3

47

46

[SC91a)
[SCO1D]
[SMO1]

[SMF+91]

[SRM+89]

[TSP+89]

References

Michael Slater and Brian Case. MIPS R4000 sets performance record. Micro-
processor Report, October 2 1991.

Michael Slater and Brian Case. MIPS R4000 sets performance record. Micro-
processor Report, 5(18), October 1991.

Howard Sachs and Harlan McGhan. Future directions in CLIPPER processors.
In Compeon, 1991.

Hirofumi Shinohara, Noriaki Matsumoto, Kumiko Fujimori, Yoshiki Tsuhihashi,
Hiroomi Nakao, Shuichi Kato, Yasutaka Horiba, and Akiharu Tada. A flexible
multiport RAM compiler for data path. IFEF Journal of Solid-state Circuits,
26(3), March 1991.

E. Seewan, S. L. Runyon, R. K Montoye, Q. Nguyen, and J. C. Ridings. VLSI
circuit design for the RISC System /6000 processor. In IBM RISC System /6000
Technology. IBM, 1989.

D. W. Terry, D. E. Stivers, K. W. Pennington, M. W. Riley, and H. C. Nguyen.
Packaging for high performance. In IBM RISC System /6000 Technology. IBM,
1989.

References 45

References

[Bak90] H. B. Bakoglu. Circuits, Interconnections, and Packaging for VLSI. Addison-
Wesley, 1990.

[BGM90] H. B. Bakoglu, G. F. Grohoski, and R. K. Montoye. The IBM RISC System /6000
processor: Hardware overview. [IBM Journal of Research and Development,
34(1), January 1990.

[BW89] H. B. Bakoglu and T. Whiteside. RISC Sstem /6000 hardware overview. In IBM
RISC System/6000 Technology. IBM, 1989.

[Cos91] Terry Costlow. IBM puts its RISC on multichip module. Electronic Engineering
Times, July 1 1991.

ark Forsyth, Steve Mangelsdort, Eric Del.ano, Crai eason, and Jell Yetter.

FMD%191] Mark F\ h, S Mangelsdorf, Eric DelL Craig Gl d Jeff Y
CMOS PA-RISC Processor for a New Family of Workstations. In Compcon,
1991.

[Gro90] G. F. Grohoski. Machine organization of the IBM RISC Sstem /6000 processor.
IBM Journal of Research and Development, 34(1), January 1990.

[Hig90] Lee Higbie. Quick and Fasy Cache Performance Analysis. Computer Architec-
ture News, 18(2):33-44, June 1990.

[HJ91] John L. Hennessy and Norman P. Jouppi. Computer technology and architec-
ture: An evolving interaction. Computer, September 1991.

[HIT*91] Rob Horning, Leith Johnson, Larry Thayer, Daniel Li, Victoria Meier, Casey
Dowdell, and David Roberts. Systems Design for a Low Cost PA-RISC Desktop
Workstation. In Compcon, 1991.

[IBM90] IBM. IBM RISC System/6000 Hardware Technical Reference General Informa-
tion, 1990.

[KSBT91] A.I. Kayssi, Karem A. Sakallah, Richard B. Brown, Ronald J. Lomax, Trevor N.
Mudge, and Thomas R. Huff. Impact of MCMs on System Performance. In Proc.
Multichip Module Workshop, pages 5865, 1991.

[KV8&7] Kevin Karplus and T. B. Verghese. Sizing cMOS gates along a critical path —
a tutorial. Technical Report UCSC-CRL-87-30, University of California, Santa
Cruz, 1987.

[Men91] Alex Mendelsohn. Will monolithic or multichip processors win the performance
race. Computer Design, May 1991.

[MQF91] Johannes M. Mulder, Nhon T. Quach, and Michael J. Flynn. An area model
for on-chip memories and its application. IEFE Journal of Solid-state Circuits,
26(2), February 1991.

OBL*™91] O. A. Olukotun, R. B. Brown, R. J. Lomax, T. N. Mudge, and K. A. Sakallah.
g

Multilevel optimization in the design of a high-performance GaAs microcom-
puter. Journal of Solid-State Circuits, 26(5), May 1991.

[PHI1] Olgierd A. Palusinski and Jokob H. Hohl. Modeling of performance-related
design trade-offs in multi-chip assemblies. In IFFE/CHMT IEMT Symposium,
1991.

44 6. Conclusion

with immediate feedback from technology to architecture decisions. Development risks can
be reduced and more what-if alternatives can be explored.

It must be kept in mind that the results presented are valid only for the given assump-
tions and options. Considering first-order modeling accuracy limitations, they should be
considered no more than indications of relative values and trends, which should serve to
identify areas for further investigation with more refined models. They are none the less
suggestive of improved design trade-offs for RISC system implementations. Although it does
appear that MCM implementations will typically suffer a performance loss over monolithic,
the loss can be expected to be small. The increased resistance of on-chip interconnection
appears relatively closely matched to the chip-crossing delay penalty for flip-chip MCM
interconnection, and should be relatively unaffected by scaling to smaller die. It even may
be possible to achieve higher performance with MCM in some instances, such as when the
improved die yields are used to justify larger caches and when the higher pin count and
routing capacities are used to improve cache hierarchy bandwidths.

43

6. Conclusion

We have prototyped an early analysis tool for exploring cache architecture and imple-
mentation technology. The current study only touches on the large design space made
available for trade-off analysis by early analysis tools. Although based on numerous as-
sumptions regarding input parameters and subject to first-order model accuracy, the case
studies have identified and quantified many trade-offs in cache design for RISC micropro-
cessor based systems. Insight into various trends and expected performance differences has
also been provided. After verifying the model on two test cases, we quantified MCM bene-
fits in comparison to printed circuit boards and noted the improvement possible by utilizing
early analysis bridging architectural and technology choices. We also compared monolithic
and MCM implementations with one and two level caches, evaluated other cache organi-
zation parameters, and considered the impact of package pin constraints. Comparison to
two additional processors was also made. From the results of this investigation, we have
made suggestions for extensions to the model to improve accuracy and detail, moving the
model towards a practical design tool. These preliminary results show that MCM should
suffer a 10% or less performance loss in comparison to monolithic implementation. In some
instances MCM may even offer higher performance than monolithic implementation, partic-
ularly where the increased yield resulting from MCM implementation with multiple smaller
die is used to justify larger caches and/or when 2-level caches are both implemented on
MCM removing bandwidth restrictions.

The first case studies looked at the Hewlett Packard PA-RISC system which operates
at 66 MHz and utilizes printed circuit boards, and an experimental system operating at
250 MHz utilizing MCM technology [KSBT91]. Verification results were good, projected
system clock frequencies being off approximately 10%. Comparison of model results for the
RS/6000 and R4000 based systems showed similar agreement. Assuming aggressive leading
edge printed circuit board technologies, it is projected that MCM technology would improve
performance by 10 to 50%. The additional benefits of using early analysis to optimize cache
sizing specifically for the MCM environment were roughly 10%. Comparative performance
between monolithic (single chip) and MCM implementations differed significantly from case
to case, and was particularly sensitive to refill bandwidth. For an hypothetical MCM version
of the PA-RISC system, a monolithic implementation offered higher performance for cache
sizes below 16 K bytes (instruction and data cache, totaling 32 K bytes). At the expense
of caches several times larger, an MCM implementation was shown in one instance to out
perform monolithic by 10% where refill bandwidth is restricted. Other cases show monolithic
implementations exceeding MCM performance by 5 to 10%. Considering greatly increased
die yield from multiple smaller die, it may be possible to justify the cost of larger caches and
improve the relative performance between MCM and monolithic implementations. Case
studies also suggest that a secondary cache will be desirable, even when memory with
similar access time is used at both levels, with performance improvements of up to 15%. By
permitting flip-chip die mounting, MCM may also reduce pin constraints on refill bandwidth,
allowing a 15% performance improvement in one case.

This work has shown the importance of early analysis, optimizing the RISC memory
hierarchy to the MCM environment. Qur analysis approach permits quick exploration of
trade-offs and identification of trends without lengthy timing analysis from layout extrac-
tions and detailed system simulations. This permits analysis in the early design phases,

42 5. Future Model Development

5.5 Power

Die power can be estimated via the SUSPENS model. For driver power estimation (',
the sum of all driver and line capacitances, can be calculated separately for each cache and
the processor. The SUSPENS equation is again modified for the bused interconnect — Ry
(average interconnection length) is replaced by L, and the number of lines and drivers
is not multiplied by the number of cache chips and output fanout, but the number of pad
capacitances is based on the number of cache chips):

1-5Y
Cm = Np(3ﬁ0” + (1 + Nc)Cpad + Lmtcmt)
Power per unit of frequency is then calculated for later frequency adjustment with the die
power by omitting fs in the SUSPENS equation:

P, 1

7, = aliCnVi
where Fy is the average portion of output drivers switching per cycle. The SUSPENS die
power model should be included, and extended to allow for short-circuit and static power.
The module model includes power for the output drivers, and the power model for bipolar
drivers should also be included.

5.4. Propagation Delay and Qutput Drivers 41

Several minor refinements could also be investigated, such as sub-block refill. Since
on a cache miss only one line is replaced, refill width B, might be limited to < R (or
perhaps R times ratio of speeds). An explicit model of main memory organization (width,
interleaving, bus access, etc.) may also be desirable. The early analysis model is currently
set up primarily for optimization of cache miss rate versus propagation delays. FEstimates
of resulting system performance could be improved somewhat by taking time granularity
into account, i.e. a cache miss will incur a penalty which is a multiple of the CPU cycle
time.

5.4 Propagation Delay and Output Drivers

The propagation delay model in our rapid prototype tool is a simple RC model based on
SUSPENS. An actual design tool should use a lumped RLC model, with multiple sections
for each intermediate pad on data, address, and control buses. Distributed RLC and other
more advanced signal propagation analysis should be used later in the design effort to more
accurately predict timing, and to project noise and crosstalk. Within our first-order model,
several extensions would be useful.

Extending the P/I model to include stacked die could be particularly important. The
increased packaging density afforded by ‘3-d memory’ could substantially improve the
performance of MCM systems over planar monolithic implementations. The extension
should be relatively straightforward, the development of estimations of the interconnection
lengths, resistance, and loading capacitance.

Optimum output driver technology selection and driver chain sizing can be important
in maximizing the advantages of MCM implementation. As discussed, output driver chain
delay could be refined, the method presented in [KV87] being an alternative to that in
SUSPENS. Initial review indicates that the two methods are approximately equivalent in
both numerical result and calculation methodology, suggesting that the SUSPENS model
remains a good first-order approximation. It may also be desirable to size the output inverter
chain so that the final Ry, = Z, — RinsLins, maximizing speed while still approximating
critical series damping.

It would be very desirable to extend the model to include the option of bipolar output
drivers as a result of trends towards BiCMOS (bipolar drivers for long and/or heavily loaded
on-chip lines and chip outputs). This could be especially important for on-chip cache trade-
offs. SUSPENS includes a current mode logic (CML) model for gate delay, T}, which would
have to be extended to an output driver chain if more than one stage is required. The model
also includes loading capacitance. T, is almost directly proportional to capacitive loading
and would be particularly sensitive to (4, so that the propagation delay model would
also have to be reconsidered. CMI, gate delay is also roughly proportional to gate current,
Ipc. The SUSPENS model is for all gates being bipolar, and sets Ipc to the maximum
possible within the package power dissipation constraint to maximize speed.! The addition
of bipolar drivers to the model (i.e. BiCMOS) would thus allow speed-power tradeoffs,
provided a power calculation is added to the model.

! According to SUSPENS, this power constraint gives 1um CMOS a speed advantage over even 1um GaAs
bipolar for chips above a quarter million transistors at 10 W dissipation limit.

40 5. Future Model Development

We can then compute the chip data width in bits ', and the chip depth in kilobytes, Cy,

SR
Cu=7F.
K
Cd - C—j}

which can then be used to estimate the number of pins
N, = 1.5(4+ Cy +1g(1024Cy)).

The 1.5 multiplier allows for one power and one ground pin for every 4 signal lines (this
could be reduced for lower power, slower memory). The next constant is an estimation for
the number of control pins. The next term is the number of data pins, and the last term
is the number of address pins. The first model included a term in determining the effective
footprint of \/N,P,, where P, is the pad pitch. This is appropriate for MCM flip-chip
mounting. For printed circuit boards, packaging similar to quad flat packs are assumed and
the term is replaced by %Pp. Although potentially useful for estimating pin count for a
die model, the pin count adjustments alone had negligible effect on model results for several
test cases.

5.2 Explicit On-chip Cache

One can use the SUSPENS model and coefficients for die model interconnect, or alter-
natively WSI P/I model and coefficients if one wants to assume wide traces / additional
metal layer for long lines on large sub-micron die. The option of BICMOS, bipolar drivers
for long (cache address, data, and control) lines, discussed in a later section, can also be
important for analysis of monolithic versus MCM implementations.

5.3 Explicit Second Level Cache

In this report we did not investigate details of the second level of cache, but rather
made an estimation of effective access time for a reasonable sized direct mapped unified
(mixed data and instruction) cache. It would be very desirable to allow exploration of
secondary cache sizing and organization, interacting with primary cache characteristics and
performance.

The model in [Hig90] covers multi-level cache. Such extensions are needed to allow the
option of assigning each level to on-chip, on-MCM, or on-PCB, and more importantly for
analyzing sizing interactions between the two levels. Higbie’s model computes miss rates per
instruction executed, and assumes that each cache level is independent of the others. Under
Higbie’s assumptions, the same miss rate equations can be applied to each level, with no
information from other levels. This may not be the case, however. In many instances trace
simulations suggest that the second level cache has a shielding effect; whatever behavior
is exhibited by a single level cache may show on the secondary cache in a two level cache
system. Omne of the two levels may capture most of the locality, reducing the effects of
associativity and/or line size.

39

5. Future Model Development

The following suggestions are for future model development. Calibration of the existing
cache model with actual RISC architectures is particularly important. ldeally, this effort
would include superscalar processors, and incorporate more specific architectural features
such as pipeline breaks and replacement policy. Verification of the Ty, and T,y models
against SPICE simulations would also be appropriate. A future die model could be based
on SUSPENS and [MQF91], and a detailed access time model is needed. Global place and
route could be used to improve interconnect estimations, with more detailed simulations of
propagation delay and noise.

5.1 Cache Die: Area, Yield, Speed, Pins

The first model makes the simplifying assumptions of constant cache access time (Tierm),
and area directly proportional to size (5). This is not the case in practice. In discussing
an area model, Mulder et al. ([MQF91]) show that line size and associativity affect cache
overhead (tags and status bits) to give total area variations of 20 to 40% over data or
instruction storage alone. Although the previous parametric study indicates this will affect
performance by only 1 to 3% at optimally sized caches (10 to 15% for caches several times
larger than optimum), die size can be critical in projecting yield for on-chip caches. It would
be desirable to include the area model of [MQF91] in any subsequent early analysis model.
The yield equation from SUSPENS and others could also be included.

Cache die area can in turn affect access time. A curve fit of typical results presented in

[SMF191] for CMOS SRAM gave the following relationship:
Tern = &+ b(\/ﬁ— c)

where B is the number of memory bits and «, b, and ¢ are coefficients. Quadrupling total
number of bits per die roughly doubles access time, and the form of the equation suggests
a fixed logic delay plus a propagation delay proportional to the dimension of one die edge.
An access time model would also allow investigation of optimal die sizing for large off-CPU
caches. In addition to direct use of such an empirical approach, this suggests a model
could be based on the SUSPENS die model utilizing an equivalent logic depth for storage
cell, driver, amplifier, and comparator. Propagation delay could be estimated by taking
Line = D., with propagation delay linear in L;,; (driver resistance dominated, and/or
intermediate buffers). The empirical fit is for SRAM only, and does not include the other
logic of a cache system. Effect of cache organization on access time at the memory subsystem
level (address decoders, control, etc.) should also be considered. This would give a model
where cache area is a function of 5, R, B,,, N., a, 3, and die technology. Memory access
time would be a function of die area, interconnection technology, and cache organization.

In performing parametrics on cache size and R, it was observed that the fixed memory
die parameters were often invalidated, particularly for small, wide caches and large memory
chips. One option considered was to ignore internal chip organization (with resulting effects
on die size and access time) and add the following simple adjustments for pin count. Where
K is now total number of kilobits per die,

38

4. Extended Case Studies

Alternative fs | Total Die Area A A A
D=0 | D=.5 | D=1.
1-level 16K, monolithic 82.7 | 1.797 1.80 | 4.38 | 10.57
1-level 16K, MCM 79.0 | 2(.56) + 2(.325) 1.797 | 224 | 2.86
1-level 32K, MCM 83.2 | 2(.56) + 4(.325) 2.42 | 3.00 | 3.77
1-level 64K, MCM 86.4 | 2(.56) + 8(.325) 3.72 | 4.53 | 5.58
1-level 128K, MCM 87.5 | 2(.56) + 16(.325) || 6.32 | 7.59 | 9.19
2-level 4&32K, mono&MCM | 109.6 | 1.293 +4(.325) 2.59 | 4.02 | 6.59
2-level 4&32K, mono&PCB 92.2 | 1.293 +4(.325) 2.59 | 4.02 | 6.59
AT AT AT
Alternative D=0 | D=.5 | D=1.
1-level 16K, monolithic 2.18 | 5.30 | 12.78
1-level 16K, MCM 2.24 | 2.84 | 3.62
1-level 32K, MCM 2.91 | 3.61 | 4.53
1-level 64K, MCM 4.31 5.2 6.46
1-level 128K, MCM 7.22 | 8.68 | 10.50
2-level 4&32K, mono&MCM | 2.36 | 3.67 | 6.01
2-level 4&32K, mono&PCB 2.81 | 4.36 | 7.15

Table 4.2: Effective Area-Time for Alternatives

(area-time) advantages are similar. Indeed, for the specific cases compared, the increased

cache area to give greater performance than a monolithic implementation can be justified

when die yields are taken into account. The analysis also indicates that a 2-level cache

can provide a large performance improvement (roughly 30%) over single-level cache even
when memory speeds are the same at both levels when coupled with reducing refill width

restrictions. This is, however, at a slightly poorer area-time metric.

4.6. Yield 37

r--r—-—-——"™>"~>"~>"~>">"7>"7¥7"7¥7¥7¥7¥7¥7¥ 7™ 7~ 7~ 7™ =777 A

| |

| |

| 45 |

50 16K | 128
i CPU + Icache i
msc | 30 ! 2nd

| | Level

: : Cache

| |

! 16K :

| MMU Dcache |

l l

| |

I A I

l l

L e e e e e e - — _I 76

1in. MCM
Figure 4.8: University of Michigan Case
Die Type Area | Yield Yield
em? | D=.5| D=

on-chip memory tile .084
off-chip memory 325 .85 .72
processor (2 die, each) .560 .76 57
monolithic, 2-level cache (4K) | 1.293 .52 27
monolithic, 1-level cache (16K) | 1.797 A1 A7

Table 4.1: Die Area and Yields

With the previous monolithic and 2-level cache analysis results we can look at some of
the cost tradeoffs. In Table 4.1 we estimate the yields for the various die involved at .35 pm
minimum feature size. A defect rate of .5 defects per em? is typical of stable processes and
chip designs (third year), while 1 defect per em? is typical for the second year of production
and an appropriate average for short lifetime products [SM91]. For the larger, monolithic
die, the yield penalty is clearly visible.

Table 4.6 presents an area-time metric for several alternatives chosen from the previous
case studies. Instruction and data caches are taken as the same size, so that total cache
memory is twice that given in the table. For all cases except the 2-level cache, B, is 8
bytes. For the 2-level case, B, is 32 bytes, taking advantage of high flip- chip pin counts.
Total die area shows the die area for processor and memory chips, in ¢m?. The ‘A’ columns
show the effective die processing area required, taking yield into account. For the ‘D=0’
column, this is the same as total die area. The ‘AT’ columns present the area-time metric,

1004/ f;.

At equivalent cache sizes (16 K bytes each for instruction and data caches), MCM has
an almost 2 to 1 ‘cost” advantage at a defect rate of .5 per em?. With a defect rate of 1
per cm?, the advantage approaches 4 to 1. Even more interestingly, the ‘cost-performance’

36 4. Extended Case Studies

MSC
r A
| |
36 l
I 8K :
! CPU Icache !
9 1|y |
- us I
|| int !
system | !
SK |
bus ! [
| MMU Dcache !
l l
L e = _I
R4000PC 197 pins
MSC
r A
| |
36 : |
| K |
! CPU Icache !
94 | bus csh | 207 L2nd1
<A =——~——=| Leve
|| int ctl : Cache
system : SK |
bus ! |
: MMU Dcache !
l l
L e = _I
R4000SC,MC 447 pins

Figure 4.7: R4000 Block Diagram and Package Pins

cache levels are on PCB, but performance would be reduced over MCM and signal integrity
would be a major concern.

4.6 Yield

A key advantage of MCM over monolithic implementation is the greatly increased yield
possible with multiple smaller die. The standard formula for yield is given by [Bak90] and

others as
Y = ¢ 4D

where A is die area in ¢m? and D is the defect rate in defects per em?. With yield inversely
exponential in die area, the effect can be dramatic. From yield, an effective silicon area
requirement can be determined and used as a cost metric. In addition to showing the cost
benefits of MCM, this allows trade-off of larger MCM cache sizes to improve performance.

4.5. Pin Constraints 35
4.5 Pin Constraints

The prior case studies can be used to quantify the importance of packaging pin con-
straints. In the following analysis we assume a motherboard style workstation implementa-
tion which includes all main memory. The recently introduced R4000 RISC chip served as a
basis of leading edge packaging [SC91b]. The R4000 is also similar to our other monolithic
cases, with CPU, FPU, and caches integrated on a single large chip, as shown in Figure 4.7.
The key pin count requirement is for access to the secondary cache. A single-level cache
version of the chip, the R4000PC is available in a 179 pin package, which includes 94 pins
for accessing the system bus and 36 miscellaneous control and clocking pins. Restriction
to the system bus greatly increases cache refill time, and this chip version is intended for
low end cost sensitive applications. The SC and MC versions of the chip add 207 lines for
secondary cache access: 128 bit data path, 23 bits error correction code (ECC), 25 tag bits,
21 address bits, and 10 control lines. This results in a 447 pin package which none the less
is considered economically feasible (1993 projected price $300 to $500 [SC91b]). Pin counts
for MCM packages of the sizes considered in this study are similar. We will thereby assume
that a refill width of 64 bits is economical, and a width as large as 128 bits is practical for
high performance systems, across any packaging partition.

Figure 4.8 shows the high performance University of Michigan verification case, with
similar data path pin count requirements across the packaging partitions®. Indeed, the
MCM boundary is very similar to the chip boundary for the R4000, and the resulting
packages would be quite similar. This is unfortunate, as the key bandwidth requirements
are across the MCM package, which still faces significant pinout constraints as opposed to
flip-chip mounted die crossings within the module. This suggests the potential importance
of including a secondary cache on the MCM with flip-chip mounting for the processor.

Here we will ignore other parameters of cache organization which may affect pin require-
ments, such as cache line width and associativity, and look specifically at refill bandwidth.”
For a single level cache with main memory on the same PCB, pin constraints are essentially
the same for crossing chip or MCM boundaries, and is constrained primarily by the system
bus data width (typically 32 or 64 bits). For a 2-level cache with the first level on-chip,
the die boundary limits refill width. For single chip packaging (secondary cache on PCB),
refill is constrained to 64 to 128 bits (B, of 8 to 16 bytes). With flip-chip mounting on
MCM, pin count is far less constrained, allowing B,, of 32 or more bytes. This can result
in improvements in the range of 15% (from the prior analysis, increasing B,, from 8 to 32
bytes raises f; from 97 to 110 MHz, a 13% improvement).

The prior analysis shows that 2-level caches are undesirable if both caches are on MCM
and memory speeds are similar, which is unfortunate as such an implementation would
place almost no constraints on refill width®. For cases where 2-level caching is used and a
much faster (but more expensive or lower density memory) is used for the first level, the
relaxation of B,, pin constraints offered by MCM could provide performance benefits even
greater than for the above monolithic example. A similar argument would apply if both

6 Miscellaneous and cache control pin counts were estimated based on the R4000.

"Main memory organization, such as interleaving, memory, and bus data widths may also be pin and
route capacity constrained, but are not within the topic of this report.

8 Utilizing flip-chip mounting, with both levels on the MCM substrate and composed of multiple chips.

34 4. Extended Case Studies

are expected in .b um CMOS, also shown in Figure 4.6. Here we use the optional 32
byte line width, and allow 32 byte refill bandwidth if both levels are on MCM. Results are
similar to those at .8 pm. MCM primary cache has lower performance than monolithic for
oversized caches, with no significant difference at near optimal sizing. Without secondary
cache, on-chip primary cache offers slightly higher (approximately 4%) at the planned 64 K
byte (each) planned on-chip sizes. At optimal (128 K bytes each) sizing, the performance

difference is closer to 8%.

90
MCM g5 Monolithic
O 92.]ev © 9lev
80 — 11
A -lev
1-lev 75f -
S Z
fs, MHz 70
65
60
5] .
4K SK 16K 32K 64K 128K 256K 512K
primary cache size
(a) Current (.8u)
140 T
MCM 430 T Monolithic
O 2lev 1 © 9lev
120 — 1
-lev
A 1-1eV 110 T f -
59 Z
fs, MHz 100 T
90 T
80 T
70
4K SK 16K 32K 64K 128K 256K 512K
primary cache size
(b) .5u

Figure 4.6: R4000 Cache Sizing

4.4. MIPS R4000 33

38 T 1T 38

36 | 1 36
° pCB 341 134 o meum
fs, MHz 32 T T 32 fs, MHz

30 T 1T 30

28 T 1 28

| | | | | |
2 | | | | | | 26
4K SK 16K 32K 64K 128K 256K 512K
cache size

(a) Current (1u)

100 T 1100
95 T 1T 95
o PCB 90 T T 90
fs, MHz 85 T 18 o vom
80 L T 80 f,, MHz
7T T 75 = monolithic
70 T 1T 70
| | | | | |
65 1 1 1 1 1 1 65
4K SK 16K 32K 64K 128K 256K 512K
cache size
(b) .35u
110 T T 110
105 T E/E/E’_E\EI T 105
100 T 1100
95 T T 95
[s» MHz 1 | o MCM
90 90 f,, MHz
85 __/\ T 85 = monolithic
80 T T 80
-5 — s

4K SK 16K 32K 64K 128K 256K 512K
primary cache size

With Secondary Cache
Figure 4.5: IBM RS/6000 Cache Sizing

32 4. Extended Case Studies

13 em?. Scaled to .35 um, the base system (8 K byte instruction and 64 K byte data
caches) could fit on a die 1.25 cm on a side. Figure 4.5b includes a monolithic option.
Note that due to the much larger processor area (superscalar architectural enhancements,
inclusion of memory management and input-output unit), the MCM implementation has
much higher performance than a monolithic version. At larger cache sizing, MCM offers
over 30% performance improvement, over 15% when restricted to equivalent cache size.
Much of the performance advantage would be lost if the data cache were reduced due to
on-chip size restrictions, and as previously discussed VLSI enhancements could be applied
to improve monolithic performance. This does suggest that on-chip instruction cache and
an off-chip data cache is worthy of consideration for superscalar systems.

Figure 4.5¢ considers the addition of a secondary cache. The MCM case places both
primary and secondary cache on the MCM, and assumes a 256 K byte data cache. Im-
provement is slight, around 6%. With primary caches on-chip (monolithic, data cache 32
K bytes), performance improvement is greater (around 11%), but performance is still less
than an all-MCM implementation.

4.4 MIPS R4000

The previous test cases have been complex, high performance systems more similar to
minicomputers than microprocessor systems. Here we look at a contemporary microproces-
sor, the MIPS R4000. The R4000 is particularly interesting as a monolithic system with
on-chip cache, with support for an off-chip secondary cache. In this section we take a first
look at sizing and MCM versus monolithic implementations. The next section describes the
R4000 in more detail, in terms of pin constraints for supporting secondary cache.

Advance information on the R4000 was taken from [SC91a]. Using .8 pum CMOS
the 64 bit processor operates at 100 MHz internally and 50 MHz externally giving 62
SPECmarks with a large secondary cache. 8 K byte on-chip instruction and data caches
are included, with line sizes of 16 or 32 bytes. True to the RISC philosophy, the chip is
extremely small, only .29 ¢m?, including primary caches, MMU, and second level cache
control. The on-chip caches take up only about 11% of the die area. The cache areas were
separated out, with pincount and access time estimated for input to the spreadsheet. With
50 MHz external frequency, secondary cache C.; was taken as 20 ns. Processor critical
path delay was estimated by working backwards from our system model taking a 10 ns
cycle time, equal cpu and cache times, and 1.7 ns propagation delay from a first iteration
(10 = %(Tmem +Tepy+1.7)). Cross checking with ‘main memory’ access time set to 0 ns gave
96 MHz. With 20 ns ‘main memory’ (secondary cache) our model gave f; of approximately
78 MHz. This appears reasonable in comparison to the published SPECmark.

Figure 4.6a shows a sizing analysis, keeping data cache the same size as the instruction
cache. The model gives optimal cache size of 32 to 64 K bytes each, indicating that
restricting on-chip caches to 8 K incurs an 8% performance penalty even in the presence
of a secondary cache. Due to the small processor die area, placing primary cache on MCM
offers no advantage, providing performance essentially identical to on-chip cache for near
optimal sizes with the cache organization given. The R4000 also comes in a version without
secondary cache support. Removing secondary cache and assuming a relatively simple
main memory (60 ns access chips, 2-way interleaving, and 10 ns logic and propagation
delay) reduces performance significantly. At optimal sizings, the 2-level caching provides a
15% performance improvement, a few percent more at equal cache sizing. Future versions

4.3. IBM RS/6000 31

trace pitch of .0635 cm (25 mils) and .17 PGA pin centers. The processor core is composed
of 9 die, including the instruction cache and the 4 data cache chips. The remaining chips
are the FPU, "FXU’ (primarily integer processor), MCU, and IOU (input output). The
multiple processor chips would normally require the inclusion of inter-chip propagation
delays. However, block diagrams show that the system has been carefully partitioned so
that the only chip crossings on critical paths are between are between the FXU (or FPU)
and cache, as included in our model. Clock skew is closely managed over the processor
core by the use of impedance controlled lines of balanced length and loading. Critical path
for the processor was taken as the path latch — register file — comparator — multiplexor
— latch, with delay for each item taken as the average of minimum and maximum values
from the IBM published figures. The processor is not tied up during cache line refill. We
therefore modify our system model slightly. For the other case studies we include the full
refill time, for simpler microprocessor implementation. For the IBM RS/6000, we return to
Higbie’s method of taking the average delay for access contention (processor versus refill) as
% the busy time, the factor of% being returned to the term for cache refill time in the Co
calculation. Main memory is 4 words wide, with 4 way interleaving. Access time was based
on the published through put of 400 M bytes per second and the 16 byte width.

Model results are close to the actual system performance, too close to be claimed as
accuracy for the model. The actual PCB area for the processor core is 361 ¢m?, our model
result 389 ¢m?, only an 8% difference. This is particularly encouraging, as the area is
wiring dominated so that the SUSPENS footprint calculation is included. Setting main
main memory access time to 0 ns in order to determine clock cycle time gives 41.7 MHz.
This is a negligible difference from the 41.5 MHz cycle of the recent Models 550 and 950,
but almost 40% faster than the 30 MHz of the other models. The published delays for
the processor macros, from which our processor critical path time was estimated, have an
almost 2 to 1 range. Using the maximum times, our model projects a clock speed of 37.1
MHz, 23% faster than 30 MHz and 11% slower than 41.5 MHz. It is not known why the
macro delays vary by so much, nor to what degree IBM may have derated clock speeds of
earlier models for reasons such as reliability and manufacturing tolerance. A sizing analysis
resulted in an optimum instruction cache size of 16 K bytes (for a constant 64 K byte
data cache size), twice that of the actual system, but with a performance difference of less
than 2%. Recall that f, includes the effect of cache misses, but not superscalar execution.
Interpolating MIPS figures for 30 MHz models indicates 56 MIPS for a 41 MHz system.

Limited data was also available to assess transfer of the design to MCM. Published data
indicates a line pitch of 26 um for the IBM MCM process, roughly twice of the SUSPENS
generic data. Assuming that line widths were also doubled, and approximately the same
thickness, we estimated one-half the line resistance and twice the line capacitance. Similar
to our earlier sizing case study, we kept data cache at 64 K bytes, and varied instruction
cache size as shown in Figure 4.5a. As before, MCM offers significant speed-up, but at
the expense of much larger caches. It is expected that IBM will switch to MCM only in
conjunction with a die scaling, to give a 100 MHz system ([Cos91]. Using a scaling to .35 pm
(the current RS/6000 being 1 pm CMOS) was applied to access times and die areas, with
results shown in Figure 4.5b. Here, data cache size was held constant at 128 K bytes for
PCB implementation and 512 K for MCM. Performance difference for MCM is considerably
improved, nearly 50% better than PCB, including larger cache sizing for MCM. At the same
instruction cache size of 16 K bytes, MCM offers a 20% performance improvement. At 1
pum, the RS/6000 system core is much too large for a monolithic implementation, almost

30 4. Extended Case Studies

110 T 110
105 T T 105
100 T T 100
fs, MHz 95 7 T 95 f,, MHz
90 T 90
85 T T 85
80 T T 80
| | | | |
75 ' ' ' ' ' 75

4K SK 16K 32K 64K 128K 256K 512K
1st level cache size
°© 1st level monolithic, 2nd level MCM
O 1st level monolithic, 2nd level PCB

(a) Refill Width 8 Bytes, Both Levels

110 110
105 7] T 105
100 T 100
fs, MHz 95 T 95 f,, MHz
90 T 90
85 T 85
&0 T 80
| | | | | |
75 1 1 1 1 1 1 75

4K SK 16K 32K 64K 128K 256K 512K
1st level cache size
© 1st level monolithic, 2nd level MCM
O 1st level monolithic, 2nd level PCB

(b) Refill Width 8 Bytes First Level, 16 Bytes Second Level

Figure 4.4: Two Level Cache Performance

instruction cache access time. Assuming balanced cache access times, the 4 ns estimated
difference between the instruction cache and the larger data cache chips was added as a new
term, Tj, into the effective access time (C¢y) of the instruction cache. As for the other case
studies, output driver chain delays were deducted from the access times to permit more
accurate and detailed modeling of interconnection delays.

The data cache is 64 K bytes, comprised of 4 chips, with 4-way set associativity and a
line size of 128 bytes. Other data was also taken directly from the references, including PCB

4.3. IBM RS/6000 29

great where “3 dimensional” memory packaging (stacked die) provides even greater improve-
ments, and may even permit main memory on the MCM for small systems. Pin constraints
also play a role in determining the utility of multi-level caches.

It is possible to analyze performance of 2-level cache using the current spreadsheet. The
mixed (data and instruction) cache miss rate formula is substituted in to the model, and C
calculated (the rest of the model is ignored). The resulting C¢; can then be input into the
regular spreadsheet as if T},.,, for the main memory, and the first level of cache modeled.
Here we take HP PA-RISC based model and use the same memory parameters for both
levels of cache.®

Figure 4.4 summarizes two of the four possible combinations of first level cache on-
versus off-chip and second level on-MCM versus on-PCB. With the first level cache on-chip,
optimum size is now smaller (4 to 8 K bytes), and performance is increased over a single
level cache by about 15%. Note also that placing secondary cache on MCM versus PCB
has a smaller effect, around 5% with constrained refill width, less with wider refill.

Placing primary cache on-MCM results in a cache sizes approximately that of the
secondary, which is interpreted as meaning that a 2-level cache is not appropriate for this
case. This is disappointing, as placing both levels on MCM with flip-chip die mount would
greatly relieve refill width constraints, increasing performance. A 2-level cache with both
levels on MCM may none the less be advantageous when faster (and perhaps lower density)
primary cache chips are used. The design space is very large and must await further analysis,
ideally with an explicit 2-level cache model allowing interplay of sizing between the first and
second levels and cache organization, along with more detailed die and driver modeling.

4.3 IBM RS/6000

We can further explore cache issues, providing data points at a few more locations in
the large design space, with a case study of the 32 bit high-performance version of the
IBM RS/6000 system. With a multiple chip superscalar processor, we are stretching our
cache model, but results appear reasonable and only a few additional approximations were
introduced. Design and performance data were taken from several sources, [BGM90,Gro90,
BW89,SRM*89, TSPT89,Cos91,IBM90]. Numerous parameters differ from the previous case
studies.

The instruction cache is 8 K bytes, with 2-way associativity and a 64 byte line. The
processor is superscalar, and 4 words are fetched from the instruction cache each cycle and
several instructions can be issued and executed each cycle. It is not clear that the cache
miss ratio model is applicable in this case, although coefficients described by Higbie as
appropriate for contemporary ‘parallel scalar’ processors are used. This is a particularly
important area for future model calibration against trace based simulations. Note that our
current model computes only the the cycle time, adjusted for cache misses, irrespective of
cycles per instruction. The IBM instruction cache chip includes branch processor logic, so
area for the cache alone was estimated for input to our spreadsheet. Cache speeds were
estimated from our empirical correlation derived from [SMFT91]. Our estimate for the data
cache chip coincided exactly with IBM’s published data, so the correlation was used for the

®An actual cache would likely use faster memory at the first level, slower at the second, and still slower
main memory for reasons of cost. Here we use the same speed for both cache levels to emphasize benefits
without respect to reducing the size of the more expensive faster cache.

28 4. Extended Case Studies

100

95
O MCeM

° MCM 3-d
fs, MHz

[90— monolithic
85 fs, MHz

F 80

75

70 70

65 | | | | | | 65
4K SK 16K 32K 64K 128K 256K 512K

cache size (Bw = 16)

Figure 4.3: Enhanced Monolithic and MCM, .35 pm

as well as the cost-performance goals of a particular design. Early analysis tools should prove
useful in guiding the development of particular technologies, identifying crucial versus less
important technology parameters. In most cases, relative performance between these two
alternatives is not great so that yield and other cost-related issues may dominate any choice.

4.2 Two-Level Cache

Having considered on- versus off-chip cache for systems with a single level of cache,
we now consider how the trends differ with a second level of cache providing much faster
refill times for the first level. Cache is often thought of as primarily a cost saving measure,
exploiting locality of reference to allow a small memory of expensive fast chips with a much
larger backing memory of slow inexpensive chips to perform as if the entire memory was
comprised of fast chips. There are also physical constraints, however, which irrespective of
cost force the use of cache and may lead to the use of multi-level caches. Larger memory
requires larger area, resulting in increased propagation delay (7,4). In many cases T},4 alone
would exceed access time requirements for the memory, and a cache would be required
irrespective of chip speed. In order to meet miss rate requirements, the resulting cache may
be so large that even for the fastest SRAMs available, T},q plus memory access time exceeds
processor timing requirements, necessitating an additional level of cache. For example, the
4 ns access time for the University of Michigan system limits cache size for the available 32
K bit GaAs chips. It is not always physically possible to get a cache large enough and “close
enough” to meet both hit time and miss rate requirements in order to meet the effective
access time required by the processor. As Hennessy puts it, multilevel caching is required
when hit time limits the size of the primary [HJ91]. This is particularly important for very
high performance designs where advanced technology with relatively lower integration levels
(such as GaAs) is required for speed, and where power dissipation limits packing density.
[Men91] reports a trend towards a first level on-chip cache with a second level off-chip cache,
the first level cache taking advantage of higher integration to reduce propagation delay and
cost.

Offering significant reductions in propagation delay, chip-crossing penalty, and increased
packing density, MCMs may alter these design trade-offs. Differences could be especially

4.1. On-Chip Versus Off-Chip Cache 27

for architectural enhancements such as more advanced multipliers or memory management
units, superscalar and other architectural advances. This is particularly so as the miss
rate curve flattens out for larger cache sizes. A further discussion of this issue, as well as
other benefits of monolithic implementation (such as quicker system design) can be found

in [HJ91].

170 T170

160 1160

150 T150
OMceMm 140 1140 — monolithic
Js, MHz 130 _]_130 fs, MHz

120 7120

110 7110

4K SK 16K 32K 64K 128K 256K 512K

cache size (Bw=8)

Figure 4.2: Comparative Performance, CMOS System at .35 pm

As mentioned above, VLSI designers have several options to improve monolithic per-
formance, such as BiICMOS drivers, intermediate drivers along long lines, and additional
metallization layers. MCMs also have a few more aggressive options. For MCM pad capac-
itance, we have been assuming 1 pF, corresponding to a more or less conventional input-
output design with full esd (electro-static discharge) protection. Esd protection can be
reduced, eliminating as much as % of the pad capacitance. ‘3-D’ memory, where DRAM
die are stacked 16 or more chips high, can greatly reduce interconnection lengths and the
associated delay.

For higher power cache SRAMs, we take a stack of 8 die as an arbitrary limit for thermal
dissipation. Even at .05” vertical spacing, such a stack would have a height of less than
1 c¢m, with propagation delay of less than .2 ns. We can therefore neglect the vertical
interconnection and approximate the 3-D memory as die with 8 times the density and 8
times the pad capacitance. Reducing the esd protection as well gives (1)(8)(1) = 2 pF
equivalent pad capacitance. We can also approximate the monolithic enhancements by
using the WSI parameters from SUSPENS and values for Ry and (% which approximate

the intrinsic gate delay for bipolar drivers. This gives the results shown in Figure 4.3.

The figure shows that more aggressive MCM packaging can indeed raise performance
to exceed that of monolithic implementations, but at the cost of much larger caches.
Applying BiCMOS drivers to both the monolithic and MCM cases raises the performance
of each, with MCM still offering higher performance with larger cache sizes. If, however,
we modify the monolithic VLSI parameters by adding a final layer of thick metallization
for long interconnects, as is done in some WSI processes, the relative performance switches
— monolithic implementation shows some 3% higher performance with similar cache sizes.

We have seen that with variations in VLSI and MCM technology parameters and cache
organization, either MCM or monolithic implementations can show higher performance.
The relative merits of each can be highly dependent on the evolution of the two technologies,

26 4. Extended Case Studies

90
I~ 85
n 80

oo MeM
70 ¢ MH

I~ 65 ~ monolithic
60
| | | | |

55 I I I I I I 55
4K K 16K 32K 64K 128K 256K 512K
cache size

°PCB
fs» MHz

(a) Refill Width 8 Bytes

°PCB o MCM
Js» MHz Js» MHz
" monolithic

55 1 1 1 1 1 1 55
4K K 16K 32K 64K 128K 256K 512K
cache size

(b) Refill Width 16 Bytes
Figure 4.1: Cache Sizing and Performance, Monolithic versus MCM

One can also consider the effect of minimum feature size scaling. The SUSPENS tables
scale R, almost linearly? with A, and D, scales by % With L;,: proportional to D,
this implies that propagation delay will remain approximately constant as chips are scaled
down. If the MCM feature sizes are held constant as scaled die are used, MCM performance
should increase somewhat in relation to monolithic. This is confirmed in Figure 4.2 for the
prior case at B, of 8 bytes for instruction and data cache, scaled to .35 pm. At the larger
cache sizes, MCM performs some 9% better with .35 ym die than with .7 gm. At smaller,
equivalently sized caches, MCM still has lower performance than monolithic, but the gap is
closing. Greater die sizes with higher transistor counts resulting from processor architecture
enhancements may further close this gap. This suggests an additional consideration for
monolithic cache sizing. Although future process technology should provide sufficient
transistor count for large on-chip caches, it may prove preferable to use the transistors

With some variation from directly linear, around 20% at a 2:1 scaling, which can be compensated by
other scaling effects such as gate capacitance, and by circuit design.

4.1. On-Chip Versus Off-Chip Cache 25

To a first approximation die area, including tags, is directly proportional to 5, with 2 to 1
variations of R and associativity resulting in 1 to 4% differences in area.

In this section we look at systems with a single level of cache, comparing performance for
on-chip (monolithic) versus off-chip (on MCM) implementation. As sufficient information
regarding die technology parameters were unavailable for the University of Michigan GaAs
system, the following analysis was based on the HP PA-RISC system. Resulting cache
sizes will be smaller than for conventional microprocessor systems due to the PA-RISC’s
advanced, high bandwidth main memory subsystem. Based on the number of transistors
and die size, we estimate minimum feature size () to be 1.3um. Even with 2 chips for the
processor (CPU and FPU), die area is quite large (approximately 1.7 ¢m?). Further, our
memory area and models are based on chips currently in use, approximately .7 ym in the
instances used. Scaling memory up to the 1.3 pm for a monolithic processor would clearly
penalize performance. We therefore scaled the processor to .7 um.

Our model incorporates only overall parameters for the CPU, such as die dimension (D)
and critical path delay (7%,), and these were directly scaled for analysis at smaller feature
sizes. Cache memory die area and access time were also directly scaled with feature size,
after removing output driver delay as described for the P/I model. For the monolithic case,
a smaller memory ‘tile” of 4 K by 8 bits (versus 8 K by 16 bits for off-chip) was chosen to
allow smaller on-chip cache and better sizing resolution.! The parameters Py, Ny, Py, Z,,
and vm were taken from the SUSPENS data. (% and R; were derived as previously
discussed.? In all cases, data cache and instruction cache were the same size to simplify
analysis and presentation of results.® As set associativity improves performance for smaller
caches, 2-way set associativity was used as a middle ground.

The results are summarized in Figure 4.1. Refill width had a significant effect, so 3
parametric runs are shown. The implications will be discussed later, in terms of pin con-
straints. Monolithic implementation is clearly superior to on-PCB cache in all cases and
sizes. The case for monolithic versus MCM implementation is not so clear, however. At
small cache sizes (< 16 K bytes each for data and instruction cache) monolithic provides
higher performance, but high on-chip line resistance as well as slightly higher line capaci-
tance causes performance to fall off much faster than for MCM at larger caches. Depending
on refill width, a larger off-chip cache on MCM may offer 10% higher performance, at the
expense of caches up to 8 times larger. For the same cache sizes (8 to 16 K byte), on-chip
cache shows some 10% higher performance, in line with [Men91].

Cache set associativity can also effect the relative performance. BICMOS output drivers
could improve MCM performance, but could be also be used in long-line drivers in mono-
lithic implementations.

!Note that the off-chip access time is around twice that of the processor. Here we are making a trade-off
between larger die access time versus more die and higher pin capacitance. Including propagation delay, the
mismatch between cache access and processor critical path is less than 10%.

2 Prior runs did not adjust Cy, and R, to the specific minimum feature size (A) for processor and memory,
but instead used an intermediate 1 gm. In the prior studies, this was irrelevant, as the values are used only
for driver delay, which was deducted from chip delays, then the exact same number was added in as part of
interconnection delay. Here, we will be exploring differences in A, and the refinements are included.

JReduction of data cache size from the larger optimum represents only a few percent reduction in
performance and may in fact be the most cost-effective sizing.

24 4. Extended Case Studies

4. Extended Case Studies

Several analyses were made extending beyond the original framework of the spreadsheet
model. Although this required additional assumptions and approximations, the studies serve
to further show the large design space opened up by early analysis tools. These studies also
begin to quantify the various trends and tradeofls, and identified specific requirements and
priorities for further tool development.

The results below suggest that MCM has a performance penalty < 10% over monolithic
implementation, and in some cases may offer improved performance. These are, however,
preliminary results, and the final vote must await more detailed models of memory and
processor die speed and area, output drivers, and more detailed analysis of specific processor
systems.

4.1 On-Chip Versus Off-Chip Cache

The choice between monolithic and multichip processors as discussed in [Men91] is
currently a hotly debated issue. Several points concerning the placement of cache on or off
the processor chip have already been mentioned, with a key issue being the size limitation
with current levels of integration. Current on-chip caches, although perhaps adequate for
single tasks and embedded applications, are clearly inadequate for multitasking workstations
as seen in the prior cache sizing optimization. However, this will not always be the case. By
the end of the decade, chips with 10 to 100 million transistors should be feasible, allowing
on-chip caches of 128 K bytes to 1 M byte or more. As we will see, this should prove
more than adequate, especially as a primary cache used in conjunction with an on-MCM
secondary cache. With the reduced cost associated with the higher yield of smaller die, a
CPU chip with cache controller and off-CPU cache memory chips may be more cost effective.

Other issues must also be addressed. Hennessy indicates on-chip cache will be faster
than on-MCM, as a result of avoiding chip crossing entirely and utilizing wide on-chip
buses [HJ91]. However, an on-chip cache will require a wide refill bandwidth to the off-chip
secondary or main memory ([Men91]). As package pin count is expected to scale much more
slowly than die device count, single chip pin count is likely to remain a severe constraint.
Flip-chip mounting on an MCM may become the only way to provide the necessary pin count
and routing capability required for a monolithic processor with on-chip primary caches.

Having included all propagation delay terms in our interconnection model, as discussed
previously, we can use our spreadsheet to evaluate monolithic (full processor and cache on
a single chip) versus MCM implementation. For the monolithic microprocessor we treat the
cache memory ‘chips’ as tiles (discrete area steps) on the processor die. Routing delay within
a tile is included in Ty (6. Them = Tiogic+1pa). A curve fit to memory access times given
in [SMF191] gave results in the form of T}, = a—l—b(x/ﬁ—c) where B is total number of bits
and a, b, and ¢ are coefficients. This supports the first order approximation of a fixed (logic)
delay plus an internal routing delay proportional to die edge dimension. The spreadsheet
then adds propagation delay for interconnecting the tiles. By using interconnect parameters
from CMOS die technology rather than MCM technology, performance and sizing of on-chip
caches can be approximated. For the monolithic case, gate capacitance is used in lieu of pad
capacitance. Die and tile areas are based on [MQF91], taking optimum 5, R, and 2-way set
associativity to give accurate area estimates for the mid-points of the parametric analyses.

3.6. Cache Line Width, Refill Bandwidth 23

14 T 7
o 12 T 6 .
miss IO 5
rate, T 4 Tpd,
8
% ns
0 6 - 3
4 T 2
2 T 1
| | | | | |
0 | | | | | | 0
2K 4K 8K 16K 32K 64K 128K 256K
instruction cache size, bytes
(a) Miss Rate and Access Time, PCB
14 T 7
o 12 T 6 -
miss IO 5
rate, T 4 Tpd,
8
% ns
0 6 - 3
4 T 2
2 T 1
| | | | | |
0 | | | | | | 0

2K 4K SK 16K 32K 64K 128K 256K
instruction cache size, bytes

(b) Miss Rate and Access Time, MCM

200
180
160

o pop MO T
fo, MHz 12007

100 T
80 T 80
60 I I I I I I 60

2K 4K 8K 16K 32K 64K 128K 256K

instruction cache size, bytes

(¢) Instruction Cache Optimization

Figure 3.2: GaAs System Sizing Results

22

7

o 6
miss 5
rate, 4
% 3
2

1

0

3. Case Studies

(a) Miss Rate and Access Time, PCB

7

o 6
miss 5
rate, 4
% 3
2

1

0

(b) Miss Rate and Access Time, MCM

70

65

60

°PCB 55
fs, MHz 50
45

40

35

(¢) Instruction Cache Optimization

| | | | | |
| | | | | |
SK 16K 32K 64K 128K 256K 512K 1M
instruction cache size, bytes
| | | | | |
| | | | | |
SK 16K 32K 64K 128K 256K 512K 1M
instruction cache size, bytes
i
| | | | |
| | | | | |
SK 16K 32K 64K 128K 256K 512K 1M

instruction cache size, bytes

Figure 3.1: CMOS System Sizing Results

S RN W ke Ot Oy

S RN W ke Ot Oy

[70
65
[60
L 55

50

45
40

35

Tpd,
ns

“ MM
fs, MHz

3.6. Cache Line Width, Refill Bandwidth 21

widths, declining somewhat for large R and B,,. Optimization was made judgementally as
the knee of the curve. This resulted in an R of 64 and 8 bytes for instruction and data
cache respectively, B,, of 64 and 8 bytes, and a size of 64 and 256 K bytes. This optimiza-
tion improved F. from 65.6 MHz to 76.2 MHz, a 16% improvement. For the University of
Michigan system, the starting assumptions (R of 16 and 16 bytes, B, of 16 and 16 bytes,
and size of 32 and 64 K bytes for instruction and data cache) proved optimum. Here, how-
ever, performance for R declined rapidly for line widths greater than 16 bytes, revealing a
clear optimum. Model behavior for cache R and B,, can be complex. For R, performance
often declined for increasing R, an effect sometimes called “cache pollution,” and optimum
line length for data cache was often equal to the data word length. Performance normally
showed asymptotic improvement with B, for data cache, but in some instances the curve
was flat, and B, equal to data word size was used.

20 3. Case Studies

rate for larger caches is offset by increased propagation delays resulting from longer signal
lines and higher capacitive loading from pads for additional memory chips. This results
in optimum cache sizes smaller than one would choose from miss rates alone. For MCM
packaging, propagation delays are smaller and increase more slowly with cache size than for
PCB. This results in optimal cache sizes being larger for MCM packaged systems. For the
GaAs system, we ignore potential signal integrity problems of operating a PCB around 150
MHz and simply compare cache sizing and potential performance improvement. For both
systems, the reduced propagation delay from MCM technology resulted in larger cache sizes
being optimal. Analysis resulted in optimal cache sizes much smaller than ‘conventional
wisdom’ would suggest. Note, however, that in addition to including propagation delay
into the analysis both systems have very fast backing memory for cache misses. In the
case of the HP system, an advanced main memory provides very high refill rates, and the
University of Michigan system has a second level of cache.

For the 66 MHz PA-RISC system on PCB, minimal TPI occurred with a 64 K byte
instruction cache and 128 K byte data cache. With MCM packaging, the sizing rose to 128
K byte instruction and 256 K byte data caches. At the smaller caches, f; was 56.3 MHz for
PCB, 63.6 for MCM. For the larger caches, f; was 65.6 MHz for MCM. Without resizing
cache specifically for the MCM environment, the technology change alone gives a 13% speed
improvement. Resizing for MCM offered a 3% further improvement.

Performance improvements are more noticeable for the 250 MHz Michigan system.
Here, generic MCM parameters were used rather than the BCB technology. In the PCB
environment, optimal cache size was modeled to be an 8 K byte instruction cache and
16 k byte data cache. For the MCM environment, the results were 32 K bytes and 64 K
bytes, respectively. For this system, the switch to MCM without cache resizing results in an
25% improvement and the “multilevel optimization” resizing results in an additional 11%
improvement.

3.6 Cache Line Width, Refill Bandwidth

In addition to access and propagation times, memory hierarchy bandwidths are also
important and may benefit from the reduced pin constraints and increased routing capacity
offered by MCMs. Typically, propagation delay is most critical in the communication
between cache and the processor (to minimize cycle time), and data width most critical
between cache and main memory (to minimize refill time). At the first level, a cache
line provides much of the functionality of an instruction or data prefetch. For a large R,
much of the prefetch may go unused, however. Actual prefetch methods seek to avoid this
penalty, and are clearly preferable over simply increasing R. Further, a larger line width
reduces miss rates, but increases refill time on a miss and also reduces the number of lines
in the cache, increasing conflict misses. This results in an optimum point, beyond which
performance is reduced. Up to a point, increased refill width was seen in the parametric
study to significantly improve performance, or alternatively permit the use of slower memory
in the secondary cache or main memory. For a full cache optimization, parametrics were
run iteratively for S (size), R (cache line width), and B,, (refill width) for both instruction
and data caches for the HP system on MCM. Here we address performance irrespective of
interconnection constraints.

For the HP PA-RISC instruction cache, performance continues to improve asymptoti-
cally with increases in R and/or B,,. For data cache the performance was level for small

3.5. Cache Size 19

and number of pins estimated. An iteration of the spreadsheet was used to calculate output
driver delay, which was then deducted from memory access and cpu critical path times.
The Michigan processor utilizes a two level cache, so an effective access time was calculated
using the system model equations discussed previously. The MCM parameters were taken
mostly from [KSB191] and [OBL*91], for a Polycon BCB (benzocyclobutene) technology
utilizing flip-chip die attach. Other parameters were taken from [Bak90].

As the processor utilizes GaAs direct-coupled FET logic, the SUSPENS CMOS output
driver model was retained, with Ry, and ('}, adjusted for GaAs versus silicon. This does not
appear to have introduced any significant errors, projected Tp4s being within 20% of that
reported in [KSBT91]. A design in progress, data from the Michigan group’s most recent
publication was used in instances of design and analysis differences.

The details of our analysis are given in Appendix A. Here we compare results of our
first-order model with those of their post layout SPICE circuit and detailed architectural
simulations. Direct comparison is more difficult for this verification, as their architectural
model combines cycles per instruction (CPI) with cache misses whereas our model includes
only cache miss effects and not the effects of instructions which require more than one cycle.
At their optimized first level cache sizing of 16 K bytes for instruction and data caches,
their simulations predict a cycle time of 3.85 ns, ignoring secondary cache. Setting “main
memory” cycle time to 0 in our model gives T PI 3.51 ns, a 9% difference. At their cache
sizing, our effective system frequency, fs, was 188.2 MHz. Their system performance figure
of 155 MIPS includes both cache miss and instructions requiring more than 1 processor
cycle. Working backwards from their CPI and cache miss simulations gives an estimated
1.37 CPI excluding cache miss. Adjusting our fs by this factor gives 137 MIPS for a 11%
error. Qur individual cache miss rate projections differ significantly from their simulations,
however. Our model projects miss rates of 8% and 3.8% for instruction and data caches
respectively, whereas their simulation results in 1.8% and 6.9% respectively. The differences
may be attributable to differences in work load and task switching as well as model error. A
parametric run on cache sized gave an optimum of 32 k bytes instruction and 64 k bytes data
cache when effective access time to the secondary cache is included, with a 3% difference in
system performance.

3.5 Cache Size

One of the most significant parameters for memory hierarchy design is of course cache
sizing. It is vital that the cache be large enough reduce the miss rate to a tolerable level.
Otherwise, the miss rate penalty (main memory access and cache line refill) becomes a key
bottleneck and performance suffers significantly. If it is too large, propagation delay can
dominate. Historically, small on-chip caches have been backed up by larger caches off-chip.
High miss rates for restricted on-chip cache sizes have resulted in the choice of off-chip cache
as the sole cache on at least one occasion ([Men91]). By reducing the time penalty for chip
crossing, as well as signal propagation delay, MCM can be expected to alter trade-offs in
favor of larger off-chip caches.

Parametric runs were made to estimate optimum cache sizes for test cases based on the
Hewlett Packard PA-RISC system, and the research system at the University of Michigan
([KSBT91]). Each case was analyzed for advanced (10 mil pitch) printed circuit board
(PCB) and thin film MCM. Results are shown in Figures 3.1 and 3.2. In both figures the
data cache size was held constant at the optimal sizing. For both systems, the reduced miss

18 3. Case Studies

change with altered cache size were greater than with parameter change alone (maximum
of 25% versus 14% for A, and 15% versus 4% forB). This indicates these parameters are
particularly important, and should be calibrated for particular processor architectures and
work loads.

3.3 Hewlett Packard PA-RISC

The HP PA-RISC system was chosen as a verification point for under 100 MHz, with
published design information readily available. The PA-RISC is a CMOS RISC micropro-
cessor system, implemented on printed circuit board (PCB) technology, with large single
level cache. With 128 K byte instruction cache and 256 K byte data cache, it is reported
as operating at 66 MHz.

Our model verification analysis is given in Appendix A. Cache and system architectural
parameters were based on [Hig90] as described above, with cache line sizes estimated at 16
and 32 bytes for instruction and data cache respectively. Additional system information was
taken from [FMD7¥91] and [HJTT91], with processor critical path time estimated from CPU
frequency. Cache chip parameters were based on Texas Instruments data sheets, combining
data and tag storage, with die size estimated. An iteration of the spreadsheet was used
to calculate the output driver delay, which was then deducted from the memory and cpu
times. Die information for the CPU and FPU were taken from [FMD%91], and averaged for
two uniform chips as input to our first-order model. Packaging and interconnect parameters
were based on aggressive PCB technology at 10 mil wiring pitch and 50 mil pad pitch with
5 pF per pad.! Ry was from MOSIS fabrication run data, and C} was determined as
described previously. The remaining P/I parameters were taken from [Bak90]. Package
footprints assumed PLCC chip carriers at 50 mil pitch.

At the given cache sizes (128 k byte instructions, 256 k byte data), the model predicted
an operating frequency of 53.7 MHz versus the published 66 MHz. Our “system frequency”,
however, includes the effect of cache misses. Ignoring cache misses by setting main memory
access time to 0 gives 61 MHz for an error of 7%%. Using the model to optimize instruction
cache size gave an optimum of 64 K bytes for instruction cache and 128 K byte data cache,
versus the published 128 and 256 K bytes, but the difference in system performance between
the two sizes was less than 5%. These differences may be attributable to system parameter
assumptions, workload and task switching differences, and main memory access times in
addition to model accuracy. Our model input for main memory access time was based on
sustained throughput, and does not explicitly model the PA-RISC systems 155 ns setup
latency.

3.4 University of Michigan RISC

An experimental GaAs direct-coupled FET RISC processor under development at the
University of Michigan ([KSBT91,0BL*191]) was used as a verification case above 100 MHz
utilizing MCM technology.

Cache and architectural parameters were taken from [Hig90] as described above. Cache
memory speed and organization were taken from [OBL191] and [KSB*91], with die size

!As suggested in [HJ91], MCM should be compared to other advanced alternatives, not “business as
usual.”

3.2. Sensitivity Study 17

importance of this parameter and the importance of having a cache system that does not
block the processor on write misses. As one would expect, processor and cache access times
were also critical, but only affecting performance some 20% even for wide variations in
time. Main memory access time had a similar degree of impact. Cache line (refill block)
size and refill bandwidth are also important, with up to 20% influence on performance. As
expected, 2- and 4-way cache set associativity is important for smaller caches (7 to 13% for
8 k byte), but less valuable for caches of hundreds of kilobytes (less than 2 percentage points
improvement, at increased cost and access time penalties not considered here). This can
be expected to vary widely with different workload assumptions, particularly those without
multi-tasking. The system B parameter is also important (up to 15% influence), with the
A parameter less critical (typically 4%). The architectural factor, A had only a 3% effect
over the range of reasonable values.

Driver and propagation delay are also especially important. The off-chip driver transistor
characteristics can influence performance up to 20%, although this was a somewhat extreme
comparison (CMOS versus bipolar output driver chains, both sized to match Z,). Cpqq is
also important, with a performance impact of up to 15%. Together, these suggested a closer
look at the Ty, and T),q models, as previously discussed. Subsequently, the initial model was
modified to treat the multiple pads on the cache address and data busses as a distributed
loads and additional capacitance was added to the (', from [Bak90] to account for drain
and interconnect in addition to gate capacitance.

The number of cache memory chips, a result of device integration level (which will be
lower for fast, advanced technologies such as GaAs) affected performance by some 3 to 6%.
Chip footprint size affected performance by up to 5%, but only when packaging density was
not routing limited.

Since memory die sizes were estimated and were not adjusted for different cache or-
ganizations, this was further investigated. A model for estimating total cache die area is
presented in [MQF91]. Manual calculation of the area model agreed with our estimates to
within 15%. [MQF91] indicates that tag, status bits, and control overhead cause total cache
die area to vary by at most 20 to 30% with typical variations in line size and associativity.
We therefore made an additional parametric run with die areas increased by 25%. This did
not affect optimal sizing, but as expected performance declined faster for larger cache sizes.
For the multichip module GaAs system, performance at optimal cache sizing was affected
by only 1%, with only a 4% difference at instruction cache sizing 4 times the optimal. The
PCB case was unaffected, single chip packaging dominating die size. Since caches are often
implemented with separate data and tag memory chips, a parametric with 25% more mem-
ory chips was also made, for both MCM and PCB cases. Again, optimum cache sizing was
not affected but performance at the optimum sizing reduced by 2 to 3%. At 4 times the
optimum cache size, the die count change reduced performance 9 to 13%. Memory access
time also changes with die size and cache organization, suggesting that these effects should
be included in more detailed models.

Z, also had influence up to 5%, largely through output driver sizing effects. Other
parameters had less than 1% effect, and are mostly P/I technology factors.

In many cases, cache sizing was re-optimized to determine the effect of parameter changes
on optimum cache size. With reasonable parameter changes, optimum cache size didn’t
change by more than a factor of 2 in any instance, and impact on performance was similar
to, or less than the parameter change alone, cache size change often compensating for some
of the parameter’s effects. For the system parameters A and B, however, performance

16 3. Case Studies

3. Case Studies

This chapter presents a series of case studies using the first order model, beginning with
a sanity check of the cache model followed by a parameter sensitivity study and an informal
verification. Cache sizing, line width, and refill bandwidth are then explored.

3.1 Cache Model Checking

Derived from VAX simulations and having a large number of coefficients and architec-
tural factors, the cache model was first checked against typical cache performance for RISC
systems. The general literature (see [Men91], others) indicates that for these systems, cache
miss rates can be as high as 25% for small on-chip caches, but can be reduced to .5-2.5%
with large off-chip caches.

As covered previously, Higbie’s coefficients and values for parameters were used through-
out our model. Several were adjusted, in line with Higbie’s discussion, to apply the model
to RISC systems. Ay was taken as .9. Ay is given as 1 for the VAX, “approximately 17
for RISC, and < 1 for scientific and engineering environments in [Hig90]. Similarly, 5 was
advised as being 1 for read misses only, 0 for all cache misses, and < 1 for larger register
sets. A 3 of 0 is appropriate where a write miss does not stall the processor, and resulted
in the closest calibration and verification. Also, in the mixed cache miss rate equation, the
coefficient 3 was reduced to 2.8 and .75 to .73 following Higbie’s suggestion that these should
be somewhat less, but were rounded for “ease of remembering.” Although we have not cal-
ibrated the model against trace based simulation of specific RISC systems, the discussion
in [Hig90] leads us to believe the adjusted model and results are applicable. A greater
variation might be expected from workload assumptions and trace sources and lengths than
from the architectural parameters.

With these coeflicients and parameters, miss rates of 22 to 29% were obtained for 4
to 8 k byte instruction caches with processor stalled on write misses, and 1% to 2%% for
128 k byte instruction caches, in line with general experience with RISC systems. Closer
agreement with published miss rates could be obtained with further adjustments but we
did not wish to risk over fitting or make large changes to the coeflicients and parameters.
The full model was then verified against two systems, as described later.

3.2 Sensitivity Study

A parametric study was performed using a preliminary version of the spreadsheet to
evaluate parameter sensitivity. This study served to indicate which options have the greatest
impact and provide a better understanding of the model. In addition to identifying key
issues for optimization, crucial model elements were identified for further verification and
refinement. The base case was the 250 MHz University of Michigan system described
below, with optimized cache sizing. This system represents an intermediary between current
advanced workstations and future very high performance systems.

As one might expect, the most important parameter was cache sizing. Data cache sizing
affected performance by as much as 33%, greater than even the combined differences of
MCM versus PCB packaging (21%). Instruction cache sizing had a smaller impact, less
than 11%. The cache model § also had a large effect, up to 27%, indicating both the

2.5. System Model 15

Tmem
r—--=-=-=-=-=-=-=-- A
I |
Tmcm iIlStI’ [Tmcm
cache

L <H CPU |

critical path

address instr
lgt ch latch
|
Tcpu

Figure 2.5: System Timing

to include the time to determine a cache miss before accessing main memory. The SUS-
PENS model includes the output driver chain, varying them with P /I technology choice.
Their delay is therefore not included in 7'y, and Tr,,. It is also assumed for the two-chip
processor case studies in this report that the critical path does not cross a chip boundary,
so that output driver and propagation delays between processor chips are excluded.

For a single level cache system, effective cache access time is then:

R Tmain

Ce = Tmem 2Tmcm Cmr_
t + + B. B,

where By, is the cache refill width (in bytes), 745 is effective main memory access time,
and B} is main memory interleave. The three terms thereby correspond to cache access time
(excluding output drivers), output driver and interconnection delay, and line refill time.

System time per instruction becomes:

TPI =

1 Tmain
p—f(TPIb + max(A X CetivB X Cetd) + Bk (A X Cmri + B X Cm?“d)

where py is the pipelining factor (number of stages), and A and B are architectural factors.
The three terms multiplied by the reciprocal of the pipeline factor are processor critical
path delay, T'PI,, effective cache access time, maz(A X Ceyy, B X Ceyq, and main memory
access time for cache misses. Higbie discusses A and B as being processor architecture and
compiler dependent and < 1. For contemporary superscalar RISC microprocessors (“highly
parallel scalar”), Higbie gives values of .95 and .75 for A and B respectively. For a “fully
serial” processor microarchitecture, they would both be 1.

System performance is denoted as fs, the effective system frequency, defined as ﬁ
where T PI is time per instruction and includes cache misses. Since the cache miss rates are
misses per instruction and T'P[includes memory references, f;, is a rough a approximation
of system MIPS (millions of instructions per second), ignoring instructions which take more
than 1 cycle, input-output, and virtual memory.

14 2. Analysis Method

end. The number of input pads is taken as the SUSPENS coefficient for net fanout, F..
This gives the approximation

(Ra+ R)((Fe +1)Cpaa + Ci)
and multiplying out gives
Ry(F. + 1)Chaa+ RaCi + Ri(F. 4+ 1)Craq + R C;.

We observe that the output pad is not charged through R; and that the line R;C; should be
treated as a m-section. Letting Rqy = Z, (driver matched to line impedance) and deriving
R; and C; from per unit length values gives

1
Zo(Fc + 1)Cpad + ZoCintLint + RinthCpadLint + §Rznt02ntl/z2nt

to which the same driver chain and time of flight terms as in the cache case are added.

2.5 System Model

The purpose of the system model is to combine the estimated propagation delays with
the predicted cache performance and other architectural parameters to produce a projection
of system level performance. In this study input-output restrictions on system performance
are assumed to be a result of device speed and latency, rather than by P/I technology, and
are ignored. Our system model is based largely on [Hig90], and also includes elements of
the analysis in [OBL*91] and [KSB*91]. The SUSPENS system level model is too basic
for our use, including only simple module power and frequency calculations, with system
frequency simply the minimum of the module frequency and all chip frequencies.

[KSBT91] computes system frequency as %(Tmcm + Topu + Lrnem), where % is the cache
access pipelining factor (1/number of stages), Ty, is the round round trip propagation
delay (address from CPU to memory, data from memory to CPU in the case of a read),
Tpem is the access time of the cache memory, and 7,, is the critical path delay through
the processor. This is shown in Figure 2.5. As discussed in [OBLT91] and others, the
critical path typically includes the conditional branch path, where information must pass
through the instruction latch, register file, comparator, address multiplexor, and address
latch. In a balanced processor design, it can be assumed that other critical path delays will
be approximately equal, so a single T,, is used in our first-order analysis.

Higbie’s system model bases a cache’s access time on the miss rate and block refill
contention, then combines these times with main memory access and other architectural
factors. T'PI is determined by the T'PI, (corresponding to the processor critical path delay
of Kayssi) of the processor plus the memory hierarchy access time minus recovered time.
Recovered time includes speedup from instruction decode overlapping miss penalties and
reduced contention in an emptying pipeline after a miss. The model is more completely
discussed in [Hig90], including extension to multi-level caches.

We combine the architectural model of [Hig90] with the technology (propagation delay)
model of [OBL191] and [KSBT91], and adjust the model to explicitly include refill band-
width. We also extend the model to account for RISC microprocessors accessing data and
instruction caches simultaneously (Harvard architecture). Higbie’s model is also modified

2.4. Packaging and Interconnect Model 13

Multiplying out gives
2}zdc(pad + RdCe + 2]%ic(pad + RiCe-

Referring back to the physical situation in Figure 2.4, it is necessary to correct the initial
approximation. First, for the 3rd term of the above equation, we see that only one pad is
charged through R; so the factor of 2 should be removed. Second, the last term represents
the distributed resistance and capacitance of the line. This can be more accurately modeled
as a m-network of n sections, and taking the limit as n — oo gives %RZCB.

Rdr

T O OO o179 T >
T T T T T G
(output)

Rdr

R;
1 \/\/\/\/\ o L
T T % T

Figure 2.4: Propagation Delay Model

Adding in the output driver chain delay and time of flight from SUSPENS and calcu-
lating R; and C; from resistance and capacitance per unit length of interconnect and the
previously computed L;,; gives

Lint
vm

1
Tpd = 15(N - 1)RtTCtT + 2Zoc(pad + ZoCe + Rintcpadl/int + §RintCeLz2m§ +

where Ry = Z, for impedance matching and

Ce = Cint + (NC - 1)Cpad‘
Lint
Propagation delay is not added to T.,, as it is assumed the critical path will be on a
single chip in the case of the two-die processors used in the case studies. Where this not
the case, a delay computation slightly different from that above can be similarly developed.
Here we assume that multiple pads are not evenly distributed along the length of a line, and
approximate by assuming one pad at the driver end and multiple input pads at the opposite

12 2. Analysis Method

2.4.1 Driver Delay

Propagation delay is of course a key parameter for this early analysis, as confirmed in
a sensitivity study. On inspection, the output driver delay (7},) portion of the SUSPENS
calculation appeared too small. The model however is essentially the same as in [PH91],
multiplying the intrinsic delay of a minimally sized inverter times the number of stages
times the sizing ratio between stages. The SUSPENS data table used in the prior analysis
uses the capacitance of a single gate for (%, which the model then multiplies by 3 to
account for both p and n transistors and their relative sizes. Examination of an inverter
layout, as well as other timing models such as in [KV87] shows that drain and interconnect
capacitances should also be included. All loading capacitances together for a minimal sized
gate in 1 micron CMOS was estimated at 33 to 75 fF, which corresponds to the 50 fF value
used in [PH91]. A value of 17 fF (50 fF divided by the SUSPENS model factor of 3) was
used for later analyses. This gave results more in line with values such as in [SM91] and
[PHO1]. Driver delay increased more for PCB conditions than for MCM conditions, slightly
increasing the predicted advantages for MCM.

2.4.2 Propagation Delay

A sensitivity study (see Section 3.2) also showed the importance of pad capacitance.
Since the first model simply lumped the multiple pads of a memory array together, a more
refined model is desirable for the caches. Further, in preparing for the analysis of mono-
lithic (cache on the processor chip) versus MCM (cache separate from the processor chip)
implementation, a discrepancy between the SUSPENS die propagation and P /I propagation
models was noted. The P/I equation, presented above, omitted two terms present in the die
model, one for charging the line capacitance through the driver transistor and the second
for charging the load (pad) capacitance through the line resistance. Although negligible
for printed circuit boards, these terms could be significant for MCMs. Also, by including
all terms, the same model can be used for both on-and off-chip cache propagation delays.
The following derivation treats the intermediate bus pads as distributed capacitance and
more closely matches typical values for line delay, such as in [SM91] and [PH91]. The model
also showed good agreement with SPICE simulations of series terminated lines at critical
damping, with a single terminal pad.

When the driving resistance is greater than or equal to the line characteristic impedance,
a transmission line in a CMOS system can be approximated by

(Rd + Ri)(Cl + Ci)

where Ry is the thevin equivalent of the driving transistor, C; is the load capacitance, and
R; and C; are the resistance and capacitance of the interconnect line. Multiplying out this
approximation and adding terms for output inverter chain delay and time of flight gives the
SUSPENS die propagation delay model.

For a cache memory array, intermediate pads on the address, data, and control lines
give the physical situation depicted in the upper part of Figure 2.4. Our model adds the
intermediate pad capacitances® to the line capacitance, giving an equivalent interconnect
capacitance, C,. Including the driver output and final load pad gives

(Rd + Ri)(QCpad + Ce)-

50Or gate capacitance in the case of monolithic implementation.

2.4. Packaging and Interconnect Model 11

a more detailed discussion. As described above, average interconnection length and delay
are calculated separately for the instruction cache, data cache, and processor.

Average wiring length for calculating area requirements included in the die “footprint”
is:
o 9 Nn 0.5 -1 1— Nn—0.75 1— 477—1
Ry = o 0.5 - =07 1
9% 4n=05_1 1 —47=07 71 _ N7

Where there are less than 2 chips in a subgroup, Ry is taken as 1.

The footprint is:
N P,
F, = maz{D,, —2"p"w RM /N, P,, FP..}

for the caches, with the assumption all lines are buses (no trace fanout), and

F. RuN,P,
P = D., V/NcP,, FP,
p = maz{ F.+1 EuN, }

for the processor (the original SUSPENS equation).

The subsection dimension (instruction cache, data cache, or processor) is simply D,, =
v/ N.Fp and the average interconnection length for each given our typical floorplan is:

Lint = 1-5Dmcache + -5Dmp7°oc

Propagation delay was originally calculated as the reciprocal of SUSPENS’s f,,, as
follows.

Tpd = 15(- 1)RtrCtr + 2CpoLdZ + Rththmt + Z?ZZ

The first term represents the output driver chain delay, the second the capacitive loading of
the pads, the third the distributed RC of the interconnect line?, and the last term the time
of flight. N is the number of stages in the output drivers, estimated as 1 + 111(%—?)/111(5).
Output driver chain delay is thus based on the intrinsic delay of a minimum sized inverter
times the number of stages. The factor of 15 is an implicit assumption of pMOS transistor
sizing of twice that of an nMOS transistor (R, C}, being for a single nMOS transistor) which
multiplies capacitance by 3, and an assumed factor of 5 size multiple between stages.® It
is also implicitly assumed that the final output stage will be matched to the impedance of
the interconnect, hence the use of Z, in determining N and in the second term of the delay
equation.

Initially, our model increased the number of pads to coincide with that of the bused
memory chips. Inspection of results of the parametric study revealed omissions in this
model, which were corrected as discussed below.

*The term 1/2 was omitted in the text of [Bak90].

®The ideal factor for minimizing delay is e, but a factor of 5 greatly reduces area with negligible delay
penalty.

10 2. Analysis Method

2.4 Packaging and Interconnect Model

Given the number of die with their associated speed and area, and a P/I technology,
the P/I model must compute propagation delay (7},4) for each of the caches separately.
Ideally, global placement and topological routing could be performed for key die and buses,
with other estimators for control and other lines, followed by by circuit simulation on
the resulting line lengths, termination, etc. For our initial pre-netlist model, we choose
estimation methods based on SUSPENS ([Bak90]).

The SUSPENS module model was modified, however, to be specific to RISC cache
characteristics and to calculate propagation delays for the two caches and the processor
separately. First, different chip sizes are allowed for instruction cache, data cache, and
processor. Necessary wiring capacity for estimating chip “footprints®” are also calculated
separately. Secondly, rather than basing average interconnect length on Rent’s rule, a
particular layout is assumed, as shown in Figure 2.3. This is topologically the same
layout used in [KSB*91], and typical of processor—cache layouts. The instruction and data
caches are calculated as separate, uniform arrays of chips. Area is based on the respective
die footprints, and an aspect ratio of 1:1 is assumed. Lines are assumed to be data or
address buses as shown in Figure 2.3, with control lines routed similarly. This gives average
interconnect length as 1.5v/A. + .5\/A_p where A. is the total cache area and A, the total
processor area. For multilevel caches, the typical layout can be applied recursively.

instruction cache data cache

--4--F-4---1-4--|| _CPU.FPU...

Figure 2.3: Cache Interconnection Length

In addition to the die specification, the P/I model uses the following user inputs. F P,
is die footprint, in cm, which is typically the packaging dimension for printed circuit board
single-chip packages, and the die size plus manufacturing clearance for MCM. A system-
level Rents’ coefficient, 7, is also input for estimating wiring capacity area requirements
for each die. F. is chip output fanout, and F, is an estimation of routing efficiency.
Choice of P/I technology (MCM, PCB, etc.) and feature sizes determine the parameters
Py, Ny, Py, Zy, Cpads Rint, Cint and vm as described in [Bak90]. Ry and Cy (minimum
sized transistor resistance and capacitance respectively) are also input, for use in estimating
number of driver stages and the associated delay.

As with the cache model, we will simply present the model equations here, with brief
mention wherever they differ from those of SUSPENS. The reader is referred to [Bak90] for

®In the SUSPENS P/I model, die footprint includes the routing area associated with each die.

2.3. Die Model 9

CPU...
] first level
instr data cache
] second level
mixed cache
Main
Memory

Figure 2.2: RISC Memory Hierarchy

D, | die size, cm

N, | number of pins

Ky | cache chip depth, kilobytes
Wy | cache chip width, bytes

Table 2.1: Die Input Parameters

2.3 Die Model

Our current tool does not include a die model. Use of existing chips is assumed, and
Table 2.1 shows the inputs for instruction cache, data cache, and processor chips. The
number of cache memory chips (N.) for the instruction and data caches are calculated from
the total cache size and the input cache chip depth and width. It is assumed the cache
controller is included in the processor chip(s).

For systems using custom die, estimations of the above parameters (as well as power
and other metrics) would be needed. It would also be necessary to incorporate models of
die area, access time, and pin count based on cache organization (associativity, line width,
etc.) to more accurately investigate these trade-offs. This will be particularly important
for evaluating whether or not cache should be integrated into the processor chip.

The use of fixed die parameters with simple calculation of number of chips from cache
total size has a potential for introducing errors. Small caches with large R and B, may
violate the memory chip organization (data width and number of words). Although total
die area would be approximately correct, pin count could differ significantly. The pin count
adjustment discussed later for model enhancements was tried in a few instances. The cases
studies are not routing limited, however?, with most cases showing no change. As the largest
change observed was well under 1%, our current model was not modified.

2N, is used only in computing die foot print area, based on routing capacity needs.

8 2. Analysis Method

For a data cache:

«

mrd = {1 — 8)}A 7571

1.

For a mixed data and instruction cache the coefficients were adjusted slightly from those
in [Hig90] as described in the Model Verification section:

«

Corvrm = 2.84,.73°73{1 —
/ { (1042 —5)2 425

1.

It is important to remember that for these equations and throughout this report cache
miss rates are per instruction, not per memory reference.

User input includes an architectural factor, Ay, cache size (9) in bytes, and line width
(R) in bytes. Two other factors are also input. The first, a, is a flag indicating cache set
associativity. An a of 0 indicates direct mapped. Two way associativity is indicated by
an a of .5 for instruction cache, 1 for data cache, and 1.5 for mixed cache. For four way
associativity, the corresponding values are 1, 1, and 1.5. The second, 3, is 0 for read misses
only and 1 for all cache misses. As Higbie discusses, f < 1 is appropriate for processors
such as RISC with large register sets, and § = 0 where a cache write miss does not stall
the processor.

Although based on the VAX architecture and workload, Higbie discusses the model’s
applicability to RISC based systems and the appropriate parameter adjustments. In par-
ticular, the large register set for RISC processors reduces the number of memory references
per instruction!, so that the key architectural parameter, Ay, is approximately the same as
for the VAX. As mentioned, workload and language have significant effect. The VAX work-
load used in Higbie’s study is more typical of multi-user computing (by including context
switching, and operating system) than a single engineering or scientific application suite.
The results can therefore be taken as appropriate for general workstation use, but not nec-
essarily for long single-task runs of computationally intensive scientific or engineering codes,
or compilation.

Figure 2.2 shows a two level cache system typical of high performance RISC systems.
Separate instruction and data caches are used at the first level, to provide simultaneous
instruction and data access. Some systems use a secondary cache, to further buffer between
the very high speed processor and much slower main memory. In the current spreadsheet
implementation of our system model, a single level of separate instruction and data cache is
assumed. A two-level cache system can be modeled by calculating an effective access time (as
described in the System Model section) using the above mixed cache miss ratio formula, and
input as if main memory access time. [Hig90] presents a full model for multi- level cache
systems. For Higbie’s multi-tasking work load, set associativity offers little performance
advantage over direct mapped at cache sizes above 64 K bytes, while introducing significant
design complexity and additional logic delay. Most of our analyses therefore assume direct
mapped caches, unless small cache sizes are anticipated. Although appropriate for our
early analysis research, the model should be calibrated to a particular work loads, RISC
architecture and approximate cache design (via trace based simulation) before use as a
design development tool.

!Most data reads and writes are met by the register set.

2.2. Cache Model 7

cache miss rates

model

user die delays system
input model model

propagation
P/1

delays
model v

Figure 2.1: Overview of Model

2.2 Cache Model

The cache model predicts miss ratios based on user input of cache size and organization.
Using memory trace based simulations would present several problems. Cache performance
is highly dependent on system workload (single task scientific computation versus multi-user
business applications processing are somewhat extreme examples). In addition to the often
difficult task of obtaining or synthesizing an appropriate trace, formatting the trace data
to be compatible with a particular system simulator can be a significant effort. Although
trace based simulations of a million or so instructions require only a few minutes execution
time, tens to hundreds of millions of instructions are often needed to properly characterize a
multi-tasking workload and the number of parametric runs for an investigation can be in the
hundreds of combinations. We believe it is beneficial for a system designer to have access
to an interactive analysis tool (response time in seconds) to make initial explorations and
develop a general understanding of are the key design issues, as a preface to more detailed
trace based simulations later in the design effort. For these reasons, we have chosen to use
the empirical analysis method presented in [Hig90] to provide quick, interactive parametric
analysis. [Hig90] discusses the derivation and justification of several closed-form equations
for estimating cache miss rates as a percentage of instructions executed. Rather than
describe the derivation in detail, the cache equations are presented below, and the user is
referred to [Hig90] for a detailed discussion.

For an instruction cache, the miss ratio is:

«

(I0+5—5)2425

Couri = 3A;. 7772755731 — 1

where s =g 5.

6 2. Analysis Method

2. Analysis Method

This chapter presents the analytical model. After presenting the organization of the
model, each section is discussed in detail. The cache miss-rate model is based on empirical
studies by Lee Higbie, with coefficients adjusted for RISC based system. A die model is not
currently included, and parameters are directly input. The interconnection model is based
on Bakoglu’s SUSPENS, and a new trace length model typical of memory chip arrays is
given. Intermediate pads on the data, address, and control buses are taken into account,
extending the SUSPENS model. The system model combines the miss-rate and propagation
delays into a system performance estimate, also based on Higbie’s work, modified to be more
specific to RISC systems.

2.1 Overall View

Our early analysis model builds on prior work by Lee Highbie at Digital Equipment
Corp. ([Hig90]), H.B. Bakoglu of IBM ([Bak90]), and researchers at the University of
Michigan ([OBL*91,KSB*91]). These researchers summarize system performance as a
function of cycle time, T, which depends on device and interconnect delays, and cycles
per instruction, C'PI, which depends on processor architecture and cache miss rates. As
shown in Figure 2.1, our early analysis begins with estimation of cache miss rates, followed
by logic and propagation delays from the die model. The packaging and interconnect (P /I)
model then estimates system propagation delays. The miss-rates and delays are combined
in a basic system model of performance, which includes other architectural parameters.
The input parameters and outputs of each model are discussed in the following sections.
The current analysis tool is a first-order model implemented as a spread sheet, which
offers some important first looks at the many technology—architecture interactions of RISC
system memory hierarchies. Second order effects, such as the impact of cache line size and
associativity on total memory die area, pinout and access time, are not included in this
initial model.

The cache performance analysis is based on correlation methods presented in [Hig90] for
predicting miss rates based on cache size, line width, refill width, associativity, and write
method. We make minor adjustments to the architectural coeflicients to more closely match
RISC system characteristics, as recommended in [Hig90]. Our packaging and interconnect
(P/I) model is based on SUSPENS ([Bak90]), which incorporates empirical and first order
physical models. We modify and extend the P/I model in several ways. First, we permit
different die sizes and footprints for the instruction and data caches and CPU. Interconnec-
tion lengths are based on a typical floorplan rather than random placement. SUSPENS uses
only gate capacitance in computing output driver delay, whereas our model also includes
drain and interconnect capacitance. The model is also extended to account for the numer-
ous pads on each address, data, and control line in a memory array. Their capacitance is
treated as part of the distributed line capacitance. The model for system performance is
also based on [Hig90]. We extend the model to combine driver and propagation delay in
the effective cache access time and base line refill time on actual refill data path width. A
factor is added to account for the pipelining of instruction and address latching, and the
model is modified to account for simultaneous access to instruction and data caches in RISC
architectures.

choices, and the effects of yield on cost performance. Variations on the cache systems for
the IBM RS/6000 and the MIPS R4000 are also considered. Future development to more
properly address these issues and further refine the model are given in Section 5. The final
section summarizes our results, which demonstrate the benefits of utilizing an interactive
analysis tool to quickly explore a wide variety of options very early in a system’s design.
Our case studies suggest that MCM will lead to larger off-chip caches. These preliminary
results also suggest that the performance penalty for placing caches on MCM rather than
on a monolithic microprocessor will be relatively small and that high performance systems
are likely to benefit from a small on-chip cache and a large secondary cache on MCM. The
increased routing capacity provided by MCM, when combined with the greater pin out ca-
pacity of flip-chip mounting, can also improve performance through architectural changes
such as larger cache line size and refill bandwidth.

4 1. Introduction

1. Introduction

This report presents an early analysis tool for RISC cache systems. Using a rapid proto-
type of the tool, we explore the implications of designing RISC system memory hierarchies
specifically for MCM. We define early analysis as the evaluation of system trade offs, in-
cluding implementation technology effects, at pre-netlist stages of design development. This
permits analysis to begin at the highest levels of description with little or no CAD entry.
This encourages the consideration of architecture and technology interactions at the earliest
feasibility and specification stages. Analyzing the outcome of design decisions before actu-
ally undertaking design and fabrication offers several benefits. Risk and design time can be
reduced by identifying limiting factors earlier in the design development. Further, including
technology and architectural interactions permits optimization of the whole system, not just
at a particular design level. This is particularly important when utilizing new packaging
and interconnection technologies such as multichip modules (MCMs) where for maximum
performance and cost-effectiveness it will be necessary to do more than just “miniaturize
printed circuit boards.” As RISC microprocessors increase in speed, it becomes increasingly
difficult to provide instructions and data fast enough and the cache becomes one of the
critical elements of system design. MCM’s reduced propagation delay and greater intercon-
nection capabilities can significantly affect cache sizing and organization, mitigating much
of this problem. Issues of signal integrity and portion of cycle time in interconnect delays
suggest MCM technology will become critical as clock speeds pass 100 MHz.

Prior optimizations combining architectural and implementation issues have for the most
part relied on post-layout simulation from extracted data, as in [KSBT91]. The goal of
our work has been to provide quantitative analysis more refined than rules of thumb, but
requiring only high-level, pre-netlist, information as input. Existing technology evaluation
tools such as SUSPENS ([Bak90]) provide early analysis of device and propagation delay, but
include only minimal architectural evaluation. Cache evaluation methodologies such [Hig90]
provide system level modeling, but omit interconnection delays. Our analysis combines these
two models, and adds new enhancements specific to RISC and cache. The combined analysis
method utilizes correlation methods to predict cache performance and empirical wiring
models with basic interconnection performance analysis are used to estimate packaging and
interconnection effects. The cache miss rates, signal propagation delays, and device access
and cycle times are then combined in a simple system model to predict effective cycle time.
This approach includes packaging and interconnection technology effects in the architectural
optimization of the memory hierarchy. The resulting first order model has been implemented
as a spreadsheet and used in several case studies to provide a quantitative grasp of RISC
system memory hierarchy design for MCM.

In the next section we describe the analysis model, which combines an empirical model
for cache miss rates with a first order calculation of propagation delays. A system model
combines these results with architectural parameters to estimate system performance met-
rics. Section 3 describes informal verification of the model (on the Hewlett-Packard PA-
RISC system and an experimental system at the University of Michigan), and discusses the
results of using the prototype tool to evaluate cache sizing, line width, and refill bandwidth.
In Section 4 we make use of further input approximations to evaluate design trade-offs some-
what beyond the original intent of the prototype tool. This provides further exploration in
the large design space which can be made available by an early analysis tool, and includes
issues such as on- versus off-chip cache, two level caching, pin constraints on architectural

LIST OF TABLES

List of Tables

2.1 Die Input Parameters

4.1 Die Area and Yields

4.2 Effective Area-Time for Alternatives

2

LIST OF FIGURES

List of Figures

2.1
2.2
2.3
2.4
2.5

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Overview of Model e 7
RISC Memory Hierarchy o 0 o 9
Cache Interconnection Length L. 10
Propagation Delay Model o o oL 13
System Timing L 15
CMOS System Sizing Results oo 0oL 22
GaAs System Sizing Results o oo L 23
Cache Sizing and Performance, Monolithic versus MCM 26
Comparative Performance, CMOS System at .35 ym 27
Enhanced Monolithic and MCM, 35 pm 28
Two Level Cache Performance 30
IBM RS/6000 Cache Sizing 33
R4000 Cache Sizing o 34
R4000 Block Diagram and Package Pins 36

University of Michigan Case 37

CONTENTS 1

Contents
1. Introduction 4
2. Analysis Method 6
2.1 Overall View e 6
2.2 Cache Model e 7
2.3 DieModel e 9
2.4 Packaging and Interconnect Model Lo, 10
2.4.1 Driver Delay e 12
2.4.2 Propagation Delayo oo oo 12
2.5 System Model L 14
3. Case Studies 16
3.1 Cache Model Checking 16
3.2 Sensitivity Study oL 16
3.3 Hewlett Packard PA-RISC 18
3.4 University of Michigan RISC 18
3.6 CacheSize e 19
3.6 Cache Line Width, Refill Bandwidth 20
4. Extended Case Studies 24
4.1 On-Chip Versus Off-Chip Cache. 24
4.2 Two-Level Cacheo 28
4.3 IBM RS/6000o e 29
4.4 MIPS R4000 e e e 32
4.5 Pin Constraints e e e e 35
4.6 Yield 36
5. Future Model Development 39
5.1 Cache Die: Area, Yield, Speed, Pins 39
5.2 Explicit On-chip Cache 40
5.3 Explicit Second Level Cache 40
5.4 Propagation Delay and Qutput Drivers. 41
5.5 Power e e e e e e e e e 42
6. Conclusion 43
References 45

A. Sample Analyses 47

Early System Analysis of Cache
Performance for RISC Systems:
MCM Design Trade-Offs

James D. Roberts
Dr. Wayne W.-M. Dai

UCSC-CRL-92-02
3/6/92

Board of Studies in Computer Engineering

University of California at Santa Cruz
Santa Cruz, CA 95064

ABSTRACT

This report presents a prototype early analysis tool for exploring trade-offs in
cache architecture and packaging and interconnection (P/I) technology for RISC
microprocessor based systems. We define early analysis as the evaluation of sys-
tem trade-offs, including implementation technology effects, at pre-netlist phases of
development. Prior work in cache performance estimation and P/I modeling are
combined and extended to be more specific to RISC systems. After describing the
model, several case studies are presented. Although limited by the accuracy of the
first-order model as well as by assumptions and estimations regarding input data,
these studies indicate general trends and quantify several important trade-offs for
multi-chip module systems. MCM characteristics favor larger off-chip caches, with
improved performance as well as yield advantages. When combined with flip-chip
mounting, MCM technology also permits cache system architectural changes which
can significantly improve performance. The prototype is not intended as a design
tool, but rather to demonstrate the utility and importance of an interactive early
analysis tool, combining architecture and implementation technology issues. Sug-
gestions for future tool development are made.

