
Debugging Optimized CodeWithout Being MisledMax Copperman92-01May 8, 1992Board of Studies in Computer and Information SciencesUniversity of California at Santa CruzSanta Cruz, CA 95064abstractOptimizing compilers produce code that impedes source-level debugging. Examples are given in whichoptimization changes the behavior of a program even when the optimizer is correct, showing that in somecircumstances it is not possible to completely debug an unoptimized version of a program. Source-leveldebuggers designed for unoptimized code may mislead the debugger user when invoked on optimized code.One situation that can mislead the user is a mismatch between where the user expects a breakpoint to belocated and the breakpoint's actual location. This mismatch may occur due to statement reordering anddiscontiguous code generated from a statement. This paper describes a mapping between statements andbreakpoint locations that ameliorates this problem. The mapping enables debugger behavior on optimizedcode that approximates debugger behavior on unoptimized code closely enough that the user need not makesevere changes in debugging strategies. Another situation that can mislead the user is when optimization hascaused the value of a variable to be noncurrent| to di�er from the value that would be predicted by a closereading of the source code. This paper gives and proves a method of determining when this has occurred,and shows how a debugger can describe the relevant e�ects of optimization. The determination method ismore general than previously published methods. The information a compiler must make available to thedebugger for this task is also described.Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging | debuggingaids; D.2.6 [Software Engineering]: Programming Environments; D.3.4 [Programming Languages]: Proces-sors | code generation, compilers, optimizationGeneral Terms: Algorithms, LanguagesAdditional Keywords and Phrases: debugging, compiler optimization, reaching de�nitions, noncurrent vari-ables

1. Introduction 1Original Source Code After Constant Propagation After Dead-Store Eliminationx = expression; x = expression; x = expression;...x = constant; x = constant;...y = x; y = constant; y = constant;...Figure 1.1: Potentially Confusing Optimizations1 IntroductionA source-level debugger should have the capability of setting a breakpoint in a program at the executablecode location corresponding to a source statement. When a breakpoint at some point P is reached,presumably the user wishes to examine the state of the program, often by querying the value of a variable V .Commonly available debuggers, upon receiving such a query, will display the value in V 's storage location.Unfortunately, this value may be misleading due to optimization. For example, due to a code motionoptimization, an assignment to V may have been done earlier than the source code would lead one to expect.Since one aspect of debugging is examining potential anomalies, the debugger user may expend time ande�ort attempting to determine why V contains the value that has been displayed when the source codesuggests that V should contain some other value.Figure 1.1 is an example of such a situation caused by constant propagation followed by dead storeelimination. Assume that the only use of x following the assignment of constant to x is the assignmentof x to y. Constant propagation removes that use of x as shown in the second column of the �gure. Withthat use eliminated, the assignment of constant to x may be eliminated as shown in the third column. Ifa breakpoint is reached anywhere following the eliminated assignment to x and the debugger is asked todisplay the value of x, typical debuggers will display expression. The user, looking at the original sourcecode, may be confused by the fact that the displayed value is not constant, or may believe wrongly thatthe value being assigned to y is expression.Optimization may also introduce confusion over where execution is suspended in the program being de-bugged. The straightforward mapping of statement boundaries onto machine-code locations in unoptimizedcode is insu�cient for optimized code.The source-level debugger user probes the state of a halted executable while looking at the source codefrom which it was compiled. Much of the user's activity consists of inference based on the source codeand the state information provided by the debugger. This state information includes the location at whichexecution is halted and the values of variables. One implicit assumption is that the value of each variable inthe halted executable corresponds one-to-one to the value that would be predicted by examining the sourcecode and knowing the relevant context, such as within which iteration of a loop execution is suspended.Another implicit assumption is that the location at which execution is halted corresponds to a location inthe source code speci�ed by the user. These assumptions may be violated by the presence of optimization,

2 1. Introductionand the inferences that the user draws may be incorrect.This undesirable situation may sometimes be avoided by disabling optimizations when debugging.1 Atbest this is inconvenient, because it requires extra compilation steps. At worst, however, it may be impossible.Optimization May Change the Behavior of a ProgramA program compiled with optimization enabled may behave di�erently from the same program compiledwith optimization disabled { that is, when optimization is turned o�, the bug may go away. Optimizationsare correctness-preserving transformations which, if the compiler is correct, will not change the behavior ofa correct program. However, a program that is being debugged is certi�ably not a correct program, andcorrectness-preserving transformations are not guaranteed to preserve the behavior of an incorrect program.It is a misconception that if optimization changes the behavior of a program, the compiler must beincorrect.2 There are two circumstances in which correct optimizationmay change the behavior of a program.� Loose semantics:A language may contain constructs whose semantics allow multiple correct translations with distinctbehaviors. Most common general purpose programming languages do contain such constructs. Themost commonly known area of \loose semantics" is evaluation order, but there are others. A correctoptimized translation of a program containing code with loose semantics may have di�erent behaviorfrom a correct unoptimized translation of that program.� Buggy programs:A correct optimized translation of a program containing a bug may have di�erent behavior from acorrect unoptimized translation of that program. This is a commonly overlooked case that is importantbecause a program that is being debugged is known to have bugs.It is common for even experienced software engineers to be surprised at the fact that a program canbehave one way when optimized and a di�erent way when unoptimized when it has been compiled with acorrect compiler . Consider the compiler writer's perspective:It is no sin to make a wrong program worse.| W. M. McKeemanFigures 1.2 and 1.3 are simple examples of programs with bugs. The following text describes how optimizationcan a�ect them.In Figure 1.2, the bug is benign when the program is unoptimized, but has an e�ect when unnecessarystores are eliminated. The bug is to write past the end of an array, overwriting the character c. In the absence1There is at least one highly optimizing compiler [Pic90] that, when compiling with optimizations disabled, still performslive/dead analysis, constant propagation, copy propagation, and global register allocation, any of which can confuse a source-level debugger.2If the compiler is incorrect, there are three options: get a di�erent compiler, get the broken compiler �xed, or work aroundthe bug. In practice the �rst two options may not be viable. The third option requires the programmer to �nd the code thatcauses the compiler bug to show up and replace it with semantically equivalent code on which the compiler functions correctly.The programmer still has to debug the (incorrectly) optimized code! Even if the choice is made to get a �xed compiler, theprogrammer typically has to debug the optimized code enough to convince the compiler vendor that it is a compiler bug.

1. Introduction 3int i;char a, b[10], c;void overwrite_c() {a = getchar();c = a;for (i=0; i<=10; i++) {b[i] = '\0';}c = a;if (c == '\0') {program misbehaves}}Figure 1.2: Optimization Changes Program Behavior: Example 1of optimization, c is subsequently set to its previous value and the bug goes unnoticed. In the presence ofoptimization, the bug a�ects the behavior of the program: the optimizer eliminates the second assignmentinto c because it can determine that in a correct program, c would already contain the to-be-assigned value.Note that this situation can occur with statements that are arbitrarily far apart in the source code, solong as the optimizer can determine that a has not been modi�ed between the �rst and second assignmentinto c.In Figure 1.3, the bug (writing one byte past the end of b) has an e�ect when the program is notoptimized. It is benign (\goes away") when data fetches are optimized by aligning data structures on 4byte boundaries.3 If each data object is aligned to a four byte boundary, there will be two bytes of paddingbetween the end of array b and character c, and the bug will have no e�ect on program behavior. If dataobjects are not aligned, there will be no padding between b and c; c will be overwritten.Optimization can change the behavior of a program. It is therefore necessary, upon occasion, to eitherdebug optimized code or never optimize the code. Were it not for the confusion optimization can introduceinto debugging, debugging optimized code would generally be preferable to debugging unoptimized code andadding recompilation steps.4 Zellweger [Zel84] introduced terms for two methods of removing or amelioratingthe confusion introduced into the debugging process by optimization. The preferred method is to have thedebugger responses to queries and commands on an optimized version of a program be identical to itsresponses to the same set of queries and commands on an unoptimized version of the program. This isknown as providing expected behavior. It may not always be possible to provide expected behavior, so thenext best thing is to provide truthful behavior, in which the debugger avoids misleading the user, either by3Note that programmisbehavior, which is the external evidence of the bug, could occur when the program is not optimizedand go away when the program is optimized by changing the sense of the conditional | that is, by adding another bug. Whatis important is that the behavior changes depending on the presence or absence of optimization.4The additional recompilation step associated with debugging unoptimized code is not a one-time cost for the program, buta cost for each debugging session.

4 1. Introductionint i;char b[10], c;void walk_on_c() {c = getchar();for (i=0; i<=10; i++) {b[i] = '\0';}if (c == '\0') {program misbehaves}}Figure 1.3: Optimization Changes Program Behavior: Example 2describing in some fashion the optimizations that have occurred or by warning the user that it cannot givea correct answer to the command or query. There is a range of truthful behavior, some useful and some notso useful. Appropriate truthful behavior is discussed in Section 2. Some solution to the problem addressedin this paper (exempli�ed by Figure 1.1) is necessary for providing expected or truthful behavior.Approaches to the ProblemGeneral approaches to the problem have been:� to restrict the optimizations performed by the compiler to those that do not provoke the problem([WS78], [ZJ90]),� to recompile, without optimization, during an interactive debugging session, the region of code that isto be debugged ([FM80], [ZJ90]), and� to have the compiler provide information about the optimizations that it has performed and to havethe debugger use that information to provide appropriate behavior ([WS78], [Hen82], [Ze83a], [Ze83b],[Zel84], [CMR88], [PS88], [Cop90], [ZJ90], [PS92]).A larger problem is lowering the cost of debugging production quality software. Much if not most productionquality software produced in this country is heavily optimized, and the �rst approach would result incompilers that would not get used; their use would degrade the quality of the software. The second approachrequires a software engineering environment that provides incremental compilation. Such environmentsare not in general use and even should they become commonplace, the approach is unacceptable becauseoptimization may change the behavior of the program.This work follows the third approach. Some of the previous work that has taken this approach hasresulted in compiler/debugger pairs that are able to provide acceptable behavior when debugging optimizedcode because the debuggers have been specialized to handle the particular optimizations performed by thecompiler. Because much of the industry allows compilers and debuggers to be mixed and matched, solutionsthat do not require the compilers and debuggers to be tightly coupled are preferable. Section 7 de�nes one

1. Introduction 5possible interface between a compiler and a debugger for the problem addressed in this paper. If such aninterface is used, the debugger need not be specialized to a particular set of optimizations.OverviewIf the value in a variable's storage location is suitable to be displayed to the user, the variable is current.The remainder of this paper describes how to determine whether a variable is current at a breakpoint { theproblem of currentness determination, �rst introduced by Hennessy [Hen82]. The fundamental idea behindour solution to the currentness determination problem is the following: if the de�nitions of a variable V that\actually" reach a point P are not the ones that \ought" to reach P , V is not current at P . The de�nitionsof V that actually reach P are those that reach P in the version of the program executing under debuggercontrol. The de�nitions of V that ought to reach P are those that reach P in a strictly unoptimized versionof the program.5 The required sets of de�nitions of V that reach any point in a program (optimized orunoptimized) can be computed using slight modi�cations of standard compiler technology (Aho and Ullman[AU77]). If the sets of de�nitions of V that reach P di�er in the optimized and unoptimized version of theprogram, then V is not current. The debugger can use the sets of de�nitions to describe, in source-levelterms, why V is not current. Unfortunately, if the two sets of de�nitions are equal it is still possible that Vis not current. This is discussed further in Section 4.3.In order to determine a variable's currentness:1. The compiler must generate a set of debug records relating statements to code addresses; these debugrecords are ordered in two
ow graphs, one representing the program before optimization and the otherrepresenting the program after optimization.2. The
ow graphs are used to compute reaching de�nitions, which are in turn used to create reachingsets (sets of de�nitions that reach a breakpoint location).3. The reaching sets are compared to compute the currentness of variables.The focus of the paper is how reaching sets are used to compute the currentness of a variable at abreakpoint.Section 2 de�nes a breakpoint model that is appropriate for optimized code. The determination ofappropriate breakpoint locations is discussed, as are appropriate debugger capabilities at a breakpoint,because these are more complex than their counterparts for unoptimized code.Section 3 de�nes the terminology that is used throughout the rest of this work. This section also providesmotivational examples.Section 4 describes a solution to the problem of currentness determination. Such a solution is necessaryto provide the debugger capabilities discussed in section 2. It also describes how this solution can be usedto provide helpful truthful behavior when expected behavior cannot be provided.65One compilation of the program is su�cient to provide the information with which to compute both the de�nitions thatought to reach P and those that actually reach P .6It is trivial to provide (useless) truthful behavior. Simply always give a warning that the code has been optimized. This isof course unacceptable.

6 1. IntroductionSection 5 shows the correctness of the solution.Section 1 brie
y describes a problematic special case.Section 7 describes the data structures that must be produced by the compiler (the debug records and
ow graphs).Section 8 summarizes and discusses the accuracy of the results.

2. Breakpoint Model 72 Breakpoint ModelIn an unoptimized translation of a program, code is generated for every source code statement in the orderin which it appears in the source code, and the code generated from most statements is contiguous.7 It ispossible to halt unoptimized code at a point that corresponds exactly to a statement boundary in the sourcecode by halting at (before execution of) the �rst instruction generated from the statement. When executionis suspended at statement S in unoptimized code, all \previous" statements have completed, that is, all codethat was generated from statements on the path to S has been executed. No \subsequent" statements havebegun, that is, no code that was generated from any statement on the path from S (including code generatedfrom S itself) has been executed. Because of the straightforward nature of the translation, the value ineach variable's location matches the value of the variable that would be predicted by a close reading of thesource code. Users not versed in optimizing technology expect these characteristics to hold when executionis suspended at a statement boundary.The state of a suspended program is the context in which debugging takes place, called the actualdebugging context. In contrast, the expected debugging context is the state that would be predicted by anexamination of the source code of a program suspended at an identi�ed point. The actual debugging contextmatches the expected debugging context for an unoptimized program suspended at a statement boundary.2.1 Treatment of Program TrapsThe actual debugging context may not match the expected debugging context, even for unoptimized code,if the program halts on a non-statement boundary, which can happen due to a trap (an error condition).8 Aprogram may trap in the middle of an update to a variable, leaving that variable in a decidedly unexpectedstate. The most important piece of information when a program traps is \What statement caused thetrap?", that is, which statement generated the instruction that trapped. This information can be providedby tagging each instruction with a reference to the statement that generated it. This can be encoded in atable by listing the address of the �rst instruction of each set of contiguous instructions generated from asource statement with a reference to that source statement, thus the trap location reporting problem can besolved by a simple extension of the line table currently emitted by most compilers. The remainder of thispaper considers programs that are suspended at source-level user-speci�ed locations (breakpoints) only.2.2 Debugger Capabilities at a Breakpoint in Optimized CodeOptimization may well make it impractical to provide the user with the expected debugging context.Because code may be reordered or eliminated and the instructions generated from a given source statement7Code generated from looping or branching statements is typically not contiguous. However, this lack of contiguity is presentin the source code as well as the generated code. It can cause debugging anomalies in unoptimized code. For example, placinga breakpoint at a C for loop can cause several commonly available debuggers to either break once before loop entry or breakeach time through the loop, depending on the presence or absence of initialization code.8A program can also halt on a non-statement boundarydue tomachine-level debugging{ single steppingmachine instructionsor breaking at arbitrary code addresses. This work is concerned with source-level debugging, not machine-level debugging.Sections 2.3 and 2.4 de�ne allowable breakpoint locations for source-level debugging.

8 2. Breakpoint Modelmay not be contiguous, when execution is suspended at statement S in optimized code, no matter what codelocation is chosen to represent S, some of the code from previous statements may not yet have been executedand some of the code from subsequent statements may have been executed early.The debugger user makes inferences based upon the source code and the state of the halted program.This is problematic for debugging optimized code because the inferences are also based upon the implicitassumption that the actual debugging context is equivalent to the expected debugging context.Of course, it is not possible to prevent a user from making invalid inferences, regardless of the presenceof optimization. The best the debugger can do is provide a means of determining when optimization hasbroken an otherwise valid chain of inference, that is, when an inference that would be valid in the absenceof optimization is invalid in its presence. To this end, the debugger acts satisfactorily upon optimized codeif at a breakpoint it can report the ways in which the actual debugging context di�ers from the expecteddebugging context.At a breakpoint, the user should be informed of salient di�erences between the actual debugging contextand the expected debugging context. If the user asks to see the value of a variable, the debugger should o�erinformation as to whether its value would be misleading, and why. The user should be able to ask whethera given statement has been executed out of order, and if so, whether it has been executed early or will beexecuted late. These capabilities allow the user the same power to probe the state of an optimized programat a breakpoint that is available currently for unoptimized programs, because they license valid inferencesbased on the source code and the state of the suspended program and they provide information that can beused to prevent invalid inferences.Only those e�ects of optimization that a�ect the validity of the user's inferences need to be reported bythe debugger. As noted by Coutant et al [CMR88], much of the optimization performed upon a program isirrelevant to the user. It is only optimization that a�ects user-visible entities, such as source code variablesand statement
ow-of-control, that the user needs to be informed about. Informing the user of optimizationon compiler temporaries is likely to make the debugging job harder, not easier. The same is true ofoptimization of code generated from the right-hand-side of assignments { the store of the result a�ectsthe state of the program as seen from the source-level view, but how that result is computed does not a�ectthe source-level view of program state. Similarly, optimization of an expression whose result determines theoutcome of a conditional branch should be invisible to the user if the branch itself is una�ected.9 Manystatements that start earlier in optimized code than in unoptimized code do so due to code motion ofparts of the statements (such as address computations) that are irrelevant to the user's inquiry.10 Thoughthe optimization of these statements does cause the actual debugging context to di�er from the expecteddebugging context, it does not invalidate user inferences, therefore it is not necessary for the debugger to9There are circumstances in which it is important for the debugger to reveal the e�ects of optimization at this level of detail,such as allowing the user to track down a code-generation bug. In such circumstances, it is appropriate to shift to machine-leveldebugging.10Note that this code motion is not irrelevant to trap location reporting. If an address computation is moved up out of a loop,and the computation traps, the user should be informed that the trap occurred in the statement that the address computationoriginated in.

2. Breakpoint Model 9report that these statements have begun early. Statements that begin early due to source-level-invisibleoptimization but that otherwise exhibit no source-level-visible e�ects from optimization are not consideredto be executed out of order.2.3 Breakpoint Locations (Representative Instructions)Commonly, when setting a breakpoint on a statement, the debugger user wants to break exactly onceeach time the statement is executed at some location that corresponds to the statement boundary. Thisis problematic for optimized code, but not providing or closely approximating this capability puts a heavyburden on the user not well-versed in optimizer technology. The capability is necessary to support twocommon debugging strategies: running until a selected statement is reached, and stepping through theprogram statement by statement.In Section 2.1's treatment of program traps, every instruction generated from a statement is associatedwith that statement. This is possible and appropriate because the program may trap at an arbitrarylocation that is mapped back to the source code. A breakpoint is speci�ed in source terms and must bemapped onto the machine code. It is inappropriate to associate every instruction generated from a statementwith that statement for the purposes of setting breakpoints, because if the instructions are not contiguous,many breakpoints may be reached for a single statement. In contrast, Streepy [Str91] describes a source-code/breakpoint-location mapping that allows breakpoints to be set at various levels of granularity, includingexpressions, basic blocks, and subroutines. In the debugger described by Streepy, when a statement is selectedas the level of granularity, a breakpoint is set at the beginning of each sequence of contiguous instructionsgenerated from the statement. Under the mapping described in this section, the instruction generated froma statement S that best corresponds to the statement boundary is selected to represent S, and is called therepresentative instruction for S. The address of this instruction is a breakpoint location for S.11 Where noconfusion will result, the representative instruction itself may be referred to as the breakpoint location. Themapping described herein is not in con
ict with that described by Streepy [Str91]; each enables debuggercapabilities missing from the other. This paper does not concern itself further with breakpoints for languageentities other than statements, except to state that the results hold in the presence of such breakpoints.The choice of a machine instruction as the breakpoint location for a statement should be based on why theuser wants to break at that statement. It may be that the user sets a breakpoint at some statement withina loop because it looks like a convenient place to see how the program state is changing on subsequentiterations of the loop. There may be nothing about the chosen statement relevant to the user's purposeexcept its location within the loop. If that statement were moved out of the loop by optimization, it wouldbe appropriate to set the breakpoint where it used to be, so the breakpoint would be reached each time11In the most common case, a single instruction will serve as the breakpoint location for a statement. Statements withmultiple side e�ect on user variables will require multiple breakpoint locations, one for each side e�ect. Optimizations thatcause code duplicationmay require breakpoint location duplicationas well { procedure integration (inlining), partial redundancyelimination, and loop unwinding are examples. Even in unoptimized code some statements may require more than a singleinstruction to represent their breakpoint locations. Loop constructs are an example. The appropriate location to break the �rsttime (before the loop is entered) may be at a di�erent instruction than the appropriate location to break subsequently (eachtime through the loop).

10 2. Breakpoint Model
g

Unoptimized Syntactic BreakpointSemantic Breakpointwhile (condition) fa = 5;b = fcn();. . .g while (condition) fa = 5;b = fcn();. . .Optimized
Figure 2.1: Semantic and Syntactic Breakpoint Locationsthrough the loop. On the other hand, the user may set a breakpoint at some statement to check the valuesof variables used in an expression in that statement. In that case, if the statement were moved out of theloop by optimization, it would be appropriate to set the breakpoint where it ended up, so the values thedebugger displays are the actual values used in the expression.Zellweger [Zel84] introduced the terms syntactic and semantic breakpoints. If no code motion or elimi-nation has occurred, these are identical. In the presence of code motion or elimination, the order in whichsyntactic breakpoints are reached re
ects the syntactic order of source statements; the syntactic breakpointfor statement n is prior to or at the same location as the syntactic breakpoint for statement n + 1. It willbe at the same location if the code for n is moved or eliminated. If the code generated from statement n ismoved out of a loop, a syntactic breakpoint for n remains inside the loop.12The semantic breakpoint location for a statement is the point at which the action speci�ed by thestatement takes place. This does not preserve any particular order. If the code generated from a statementis contiguous, the semantic breakpoint location is the location at which the code for the statement has endedup. If the code generated from statement S is discontiguous, the semantic breakpoint location is the locationat which the instruction chosen to represent S has ended up.Figure 2.1 provides an example of the syntactic and semantic breakpoints for a loop from which opti-mization has moved an invariant statement.The choice of a breakpoint location for a statement S a�ects the correspondence between the actualdebugging context and the expected debugging context considerably. Zellweger [Zel84] has a discussion ofpossible semantic breakpoint locations for statements whose generated code is discontiguous. The view takenin this work is that the best breakpoint location for a programming language construct is the location thatcorresponds most closely to the source level view of the program. The breakpoint location for a statementshould be the address of the instruction that most closely re
ects the e�ect of the statement on user-visibleentities (program variables and control
ow). For each construct in a programming language, the breakpoint12There are circumstances under which a syntactic breapoint for a statement may be unde�ned. Section 7.4 describes howsyntactic and semantic breakpoint locations are determined under the breakpoint model summarized in Section 2.4.

2. Breakpoint Model 11
B2B1 store d R2mpy f R2load e R2store a R1add c R1load b R1(2) d = e * f;(1) a = b + c; Resulting Instruction SequenceSource Code

Figure 2.2: Breakpoint Location Choices for Statement (2)location (equivalently, the representative instruction) should be chosen appropriately.For statements involving program-variable updates, the instruction that stores into the variable is theright choice.13 This is illustrated by �gure 2.2, which gives a fragment of source code and an optimizedsequence of instructions that could result. One might want to break at statement (2) and examine a. If the�rst instruction generated from a statement is the representative instruction for that statement, a breakpointat statement (2) would suspend execution at B1, resulting in examining a when it has not yet had b + cstored into it. If, instead, the store instruction (B2) is the representative instruction for an assignment, thebreakpoint will be reached at B2 and the store into a will have occurred.14For control-
ow statements (branching or looping constructs), the instruction that accomplishes thecontrol transfer (typically a conditional branch) is the appropriate choice; it provides a natural sequencepoint for program dependences. Consider the code fragment in �gure 2.3. The computation of (b + c * d)can be computed before the assignment into a, however, the jump to the then or else case must follow theassignment if correctness is to be maintained.2.4 A Summary of the Proposed Breakpoint ModelA debugger may have the capability of suspending the execution of a program at an arbitrary instruction.The results described in the remainder of this paper do not hold at arbitrary instructions. The points at whichthe results hold are termed valid breakpoints and constitute the breakpoint model used in the remainder ofthe paper. The set of valid breakpoints is the set of representative instructions as described above: for avariable modi�cation that appears in the source code, the store into the variable is the associated breakpoint.An assignment that has side e�ects will have more than one associated breakpoint. For branching and loopingconstructs, the branch instruction is the associated breakpoint. The C statement13A \store" in this context need not be a store into a memory location. It can be a computation into a register, or a registercopy, if that is the instruction that accomplishes the action of the source statement.14If the optimizer has reversed the order of the stores into a and d, then there is no way to choose a representative instructionfor statement (2) that gives expected results; either a or d will have an unexpected value.

12 2. Breakpoint ModelR1 = b + c * dUnoptimized Optimizedif (R1)a = x;e = a;elsee = -a;e = -a;else e = a;if (b + c * d)a = x;Figure 2.3: The Branch is a Sequence Point for Dependencesif ((i = j++) == k)has three representative instructions (and therefore three breakpoint locations), one at the store into j, oneat the store into i, and one at the branch to the then or else case. Choosing the store as the breakpointlocation for variable modi�cations is crucial to the correctness of the work presented in the remainder of thepaper. Additional breakpoints, such as those described by Streepy [Str91], could easily be incorporated intothis model.The remainder of this paper assumes only syntactic breakpoints are available, because space constraints donot permit a complete discussion of the additional complexity needed to handle semantic breakpoints. Section1 brie
y discusses the problems raised by semantic breakpoints. However, the proposed breakpoint modelsupports both syntactic and semantic breakpoints. This does not increase the number of breakpoint locations,but it a�ects the mapping between source-level speci�cations of breakpoints and breakpoint locations. Asource-level speci�cation of a breakpoint is a speci�cation of its type (syntactic or semantic) and a referenceto a statement or side e�ect within a statement. This work does not specify a user interface, so it does notdescribe the form of such a reference.15
15An implementation could accept a statement reference (such as a line number) and set breakpoints at every valid breakpointcontained therein. The user would not need to specify the type of breakpoint nor the side e�ect within a statement. However,for some statements the debugger would gain control more than once during the execution of the statement, and the locationat which the debugger gains control may not be the location the user expects. As always, the debugger should provide enoughinformation that the user is not misled. The advantage of this scenario is that user that is naive about optimization can stilluse the debugger e�ectively. The debugger could even gently educate the naive user about the di�erent types of breakpoints.

3. Currentness 133 CurrentnessWhen the user asks the debugger to display the value of a variable, the user is misled if optimization hascaused the value displayed to be di�erent from the value that would be predicted by examining the sourcecode.The actual value of a variable V when execution is suspended at a breakpoint is the value in V 's storagelocation. A variable's expected value when execution is suspended at a breakpoint is the value that wouldbe predicted by examining the source code and knowing the relevant context, such as within which iterationof a loop execution is suspended. Abstractly, this would-be-predicted value is the value that would be givento the variable if the program were running on a machine whose instruction set is the source language.In unoptimized code, at each breakpoint the expected value of every variable is identical to its actualvalue. In optimized code, as we have seen, the actual value of a variable at some point may di�er from itsexpected value at that point. Hennessy [Hen82] introduced the terms current, noncurrent, and endangeredto describe the relationship between a variable's actual value and its expected value at a valid breakpoint.This relationship is described on the basis of a static analysis, one that inherently cannot use informationabout how the breakpoint was reached.Informally, a variable V is current at a breakpoint B if its actual value at B is guaranteed to be thesame as its expected value at B no matter what path was taken to B. Examples of current variables aregiven in Figures 3.1 and 3.2. All examples use program
ow graphs. Nodes in the
ow graphs representbasic blocks and edges represent basic block connectivity. For clarity of exposition, the example graphsare minimal (for example, there is at most one instruction within a basic block), and thus they describeprograms that do nothing interesting. The language of the examples includes assignment (a = x denotesthe assignment of x into a) and a distinguished symbol bkpt which represents the instruction at whichthe breakpoint has been reached. Assignment instructions with the same right hand side assign the resultof the equivalent computations into the left hand side; this is how the relationship between assignmentsin the unoptimized code and assignments in the optimized code is shown. While a statement in a sourcelanguage that corresponds to either an assignment or a breakpoint may compile to more than a single machineinstruction, assignments and breakpoints appearing in
ow graphs are referred to as instructions, because asingle representative instruction is chosen for each statement.The examples are better understood as
ow graph pieces that contain all the relevant information abouta variable at a breakpoint. Thus an example
ow graph is representative of the family of
ow graphs thatcontain the example graph with arbitrary other edges, nodes, and instructions, so long as these additionalelements do not change which de�nitions of shown variables reach shown points within the example graph.Figure 3.1 shows the simplest case of a variable that is current at a breakpoint. There is a singleassignment into a prior to the breakpoint, and this assignment is una�ected by optimization. There is onlyone way to reach bkpt in both versions of the program, and in both versions, along the only path to bkpt,a receives its value from the same assignment.

14 3. Currentnessa = xa = x OptimizedUnoptimized bkptbkptFigure 3.1: Variable a is current at bkpt: the simplest exampleUnoptimized Optimized
bkptbkpta = x a = x a = ya = y

Figure 3.2: Variable a is current at bkpt in the presence of relevant optimizationA variable may be current at a breakpoint even if optimization has a�ected assignments into the variable.Figure 3.2 shows a case in which an assignment into a has been moved. Variable a is still current at bkpt,because the code motion has not changed the fact that along each path a receives its value from the sameassignment in the unoptimized and optimized versions of the program.V is noncurrent at B if its actual value at B may di�er from its expected value at B no matter whatpath is taken to B (though the two values may happen to be the same on some particular input). Figure 3.3is a simple example of a noncurrent variable, and could be a result of dead store elimination. There is onlyone way to reach bkpt in both versions of the program. There is a single assignment into a prior to thebreakpoint in the unoptimized code, but in the optimized code there is no corresponding assignment into aalong the only path to bkpt.Code motion can also make a variable noncurrent. In Figure 3.4, the assignment into a reaches bkpt inthe unoptimized code but does not reach bkpt in the optimized code, thus a is noncurrent at bkpt.V is endangered at B if there is at least one path to B along which V 's actual value at B may di�er fromits expected value at B. Endangered includes noncurrent as a special case.

3. Currentness 15a = x OptimizedUnoptimized bkptbkptFigure 3.3: Variable a is noncurrent at bkpt: the simplest exampleOptimizedUnoptimizedbkpt bkpta = x
a = x

Figure 3.4: Variable a is noncurrent at bkpt due to code motionIn Figure 3.5, along the left-hand path the assignment into a that reaches bkpt in the unoptimized codecorresponds to the assignment into a that reaches bkpt in the optimized code, but along the right-hand paththis is not the case. a is endangered by virtue of the right-hand path, and is not noncurrent by virtue of theleft-hand path.The use of the terms current and noncurrent extends to particular paths: in Figure 3.5, a is currentalong the left-hand path and noncurrent along the right-hand path. When execution is suspended at bkptduring some particular run of the program, a is either current or noncurrent, depending on the path takento bkpt. However, static analysis cannot determine which, because knowledge of the path taken is absent. Adebugger that does not save execution history information can do no better than static analysis. Completeinformation about the execution path taken could be large, and collecting it could be invasive and timeconsuming, therefore we do not assume such information is available to the debugger.16In order to talk about V 's currentness along a particular path, a path must be de�ned in such a way that16How a debugger can collect the minimal information needed to determine whether an endangered variable is current ornoncurrent when execution is suspended at a breakpoint is an open question. I term this dynamic currentness determination.

16 3. CurrentnessOptimizedbkptbkptUnoptimizeda = x a = y a = xFigure 3.5: Variable a is endangered at bkptit makes sense in both the unoptimized and optimized versions of the program, as optimization may modifythe program's
ow graph.De�nition 1: A path p is a pair < pu; po > where pu is the sequence of basic blocks visited in anexecution of an unoptimized version of a program and po is the sequence of logical blocks visitedin an execution of an optimized version of the same code on the same inputs.The correspondence between basic blocks in pu and logical blocks in po is as follows:1. A block bu in pu may have no corresponding block in po if optimization has caused all ofthe code in bu to be moved or eliminated.2. Those basic blocks introduced by optimization (such as loop pre-headers) have a singlesuccessor, and such a block together with its successor form a single logical block.3. There may be one block bo in po corresponding to a sequence of blocks in pu, on conditionthat if the �rst block in the sequence in pu is entered, execution will always proceed throughthe entire sequence. In this circumstance, the single block bo is treated as a sequence oflogical blocks corresponding to the sequence in pu.174. Multiple blocks b1; b2; :::; bn in po (not necessarily contiguous) may correspond to multipleinstances of a single block b in pu, on condition that one of the bi is in po i� b is at thesame point in the sequence pu. This is the correspondence needed for, say, loop unrollingor inlining (procecedure integration).5. A block bu in pu has one corresponding block bo in po otherwise.These correspondences may be combined, so for example, blocks in an unrolled loop may be coalesced.Many classical sequential optimizations modify the
ow graph only in ways that maintain these corre-spondences. However, there is another correspondence that is desirable:� Multiple blocks in po corresponding to multiple blocks in pu (other than such correspondences derivablefrom the de�nition of a path) ; needed for, say a compiler that recognizes bubblesort and replaces itwith quicksort.17A method of embedding the pre-optimization block structure in the post-optimization
ow graph is described in Section 4.3.This method allows the logical blocks within bo to be distinguished.

3. Currentness 17The results given in this paper may not hold in the presence of optimizations which require the lattercorrespondence, While the bubblesort/quicksort example may seem far-fetched, on the one hand there arecompilers that recognize statement sequences in benchmarks (even across separate compilation units!) andreplace them with fast code, and on the other, debugging a production version of a program written ina very-high-level language against a working prototype would require such correspondences. We have notinvestigated whether parallelizing optimizations require such correspondences.Parts of a path are of interest, i.e., a path to a breakpoint or a path from one point to another.De�nition 2: A path p to a block B is a subpath of a path p0 where pu is a pre�x of p0u endingin B and po is a pre�x of p0o ending in the logical block corresponding to that occurrence of B.De�nition 3: A path p from block A to block B is a subpath of a path p0 where pu is a subsequenceof p0u starting at A and ending at B and po is the subsequence of p0o starting at the logical blockcorresponding to that occurrence of A and ending at the logical block corresponding to thatoccurrence of B.I speak loosely of a path to a breakpoint, or a path from one representative instruction to another.In these cases, I mean a path to the block containing the breakpoint, or from the block containing onerepresentative instruction to the block containing the other.Both assignments to a variable and side e�ects on that variable modify the value stored in that variable'slocation. These terms do not distinguish whether the source code or generated code is under discussion.Furthermore, they do not distinguish between unoptimized generated code and optimized generated code.These distinctions are needed in this work because it compares reaching de�nitions computed on unoptimizedcode with reaching de�nitions computed on optimized code. Henceforth the term assignment refers toassignments and side e�ects in the source code.It is convenient to have a term de�nition that can denote either an assignment or its representativeinstruction in unoptimized code. This does not introduce ambiguity because either one identi�es the other,and the order of occurrence is the same in the source code and unoptimized code generated from it. Incontrast, the term store denotes a representative instruction for an assignment in optimized code. Aswith de�nitions, an assignment corresponds to a store, but unlike de�nitions, the order of occurrence ofassignments in the source code may di�er from the order of occurrence of stores in the machine code.An optimizing compiler may be able to determine that two assignments to a variable are equivalentand produce a single instance of generated code for the two of them, or it may generate multiple instancesof generated code from a single assignment. Such optimizations essentially make equivalent de�nitions (orstores) indistinguishable from one another. We will be concerned with determining whether a store thatreaches a breakpoint was generated from a de�nition that reaches the breakpoint. If de�nitions d and d0 areequivalent, and store s was generated from d while s0 was generated from d0, the compiler is free to eliminates0 so long as s reaches all uses of d0. To account for this, s needs to be treated as if it was generated fromeither d or d0.

18 3. CurrentnessDe�nition 4: A de�nition of V is an equivalence class of assignments to V occurring in thesource code of a program that have been determined by a compiler to represent the same orequivalent computations, or the representative instruction generated from any member of suchan equivalence class in an unoptimized version of the program.De�nition 5: A store into V is the set of representative instructions occurring in an optimizedversion of a program that were generated from any member of the equivalence class denoted bya de�nition.18We can now formally de�ne some of the terms described previously.De�nition 6: A variable V is current at a breakpoint B along path p i� the store into V thatreaches B along po was generated from the de�nition of V that reaches B along pu.De�nition 7: V is noncurrent at B along p i� the store into V that reaches B along po was notgenerated from the de�nition of V that reaches B along pu.De�nition 8: V is current at B i� V is current at B along each path to B.De�nition 9: V is noncurrent at B i� V is noncurrent at B along each path to B.De�nition 10: V is endangered at B if it is noncurrent at B along at least one path to B.3.1 Assignments Through AliasesDe�nitions 6 through 10 assume a single de�nition or store reaches a breakpoint along any path. Consideran assignment �P through a pointer (or through an array element where the index is a variable). Whenexecution is suspended at a breakpoint B, �P may be an alias for V . �P must be considered to be a de�nitionof V that reaches B. If �P is not an alias for V in some particular execution, the value that V contains atthe breakpoint came from whatever de�nition would have reached if �P were not present. Therefore, thisde�nition must also be considered to reach B. This is treated more formally in [Cop90] pp. 110-112. Forany language that allows such aliasing, the assumption of a single de�nition reaching along a given path doesnot hold.Our results hold for languages that allow aliasing with one restriction on the compiler. This sectiondescribes the restriction and gives new de�nitions that take aliasing into account. However, for clarity ofexposition, in the remainder of the paper the simpler de�nitions are used.If there are multiple de�nitions of V that reach B along p, all of them but one (the one furthest fromB on p) must be assignments through aliases, because other kinds of assignments kill prior de�nitions. Anassignment through an alias is de�ned as such by its ambiguity about whether V is assigned into, because ifit can be determined that an assignment through a pointer does assign into V every time, that assignmentkills prior de�nitions, and if it can be determined that an assignment through a pointer never assigns intoV , the assignment is not a de�nition of V .18A store is an equivalence class by the same equivalence relation applied to de�nitions (having been determined by a compilerto represent the same or equivalent computations).

3. Currentness 19A problem can arise if the last store into V that reaches B along a path p is generated from a de�nitionof V other than the last that reaches B along p, that is, if the compiler has changed the order of assignmentsalong p. If V is live at B, changing the order of assignments into V that reach B along p changes thesemantics of the program, so the problem cannot arise. However, if V is dead (but presumably some othervariable that also could be assigned into by the reaching store is live), the compiler is free to change theorder of such assignments.The debugger could be burdened with determining that the order of assignments has not been changed,but it is probably preferable to restrict the compiler so that it does not change the order of such assignments.This is not a severe restriction on the compiler, because the conditions under which it is both correct andadvantageous to make such changes are unlikely to occur often, and it is expensive to determine that theseconditions have occurred. Under this restriction on the compiler, De�nitions 6, 7 and 10 must be modi�edand one de�nition must be added as follows to preserve the correctness of our work in the presence of multipleassignments on a path:Rede�nition 1 (6): V is current at B along path p i� every store into V that reaches B along p wasgenerated from a de�nition of V that reaches B along p.Rede�nition 2 (7): V is noncurrent at B along p i� no store into V that reaches B along p was generatedfrom a de�nition of V that reaches B along p.According to these de�nitions, V may at the same time be neither current nor noncurrent along a path.This happens when an assignment through an alias is eliminated.De�nition 11: V is endangered at B along p if it is neither current nor noncurrent at B alongp.Rede�nition 3 (10): V is endangered at B if it is noncurrent or endangered at B along at leastone path to B.We turn now to the problem of how to determine whether a variable is current.

20 4. Currentness Determinationbkpta = xFigure 4.1: One De�nition Reaches But Not On All Paths4 Currentness DeterminationThis section describes how to determine which state of currentness a variable is in at a breakpoint { theproblem of currentness determination.Two sets of reaching de�nitions are needed to compute a variable V 's currentness at a breakpoint B:� the set of stores into V that reach B, that is, the modi�cations to V that actually reach the point atwhich execution is suspended, and� the set of de�nitions of V that reach B, that is, the de�nitions of V that the user expects to havereached the point at which execution is suspended.These sets are called reaching sets.Section 7 describes the information that is needed to compute these two sets of reaching de�nitions. Anumber of variations on how to compute these sets of de�nitions exist, trading storage space and one-timecomputation costs for speed at the point of the (interactive) query. The two most straightforward are thatthey are pre-computed by the compiler or that they are computed by the debugger at the point of the queryabout V . Regardless of what tool computes them, we assume in this section that they are available.4.1 Case AnalysisThe problem is straightforward when at least one of the reaching sets is a singleton set, so the analysis ofthe problem is based on the cardinalities of the reaching sets. We ensure that the reaching sets be nonempty(this ensures that some de�nition (store) for each variable reaches a breakpoint along every path) by de�ningthe beginning of the program or subroutine, that is, the start node of a connected component of a
ow graph,to be a null de�nition and a null store of every variable. This also ensures that if only one de�nition (store)for a variable reaches a breakpoint, it reaches along all paths to the breakpoint, ruling out the situationshown in Figure 4.1.When exactly one store into V and one de�nition of V reach a breakpoint B, V is current if the storewas generated from the de�nition and noncurrent otherwise. If a single representation is used for stores andde�nitions (as described in Section 7) it is su�cient to compare the reaching sets.When one of the reaching sets is a singleton set and the other is larger, comparing the reaching sets isstill su�cient. Suppose one de�nition and many stores reach the breakpoint. At most one of the stores was

4. Currentness Determination 21One de�nition, d, reaches B Many de�nitions reach BOne store, s, reaches B Was s generated from d? Was s generated from oneof the de�nitions that reach?Yes: current Yes: endangeredNo: noncurrent No: noncurrentMany stores reach B Was one of the stores generated from d?Yes: endangeredNo: noncurrentTable 4.1: The Simple Casesgenerated from the de�nition, so V is endangered.19 If none of the stores were generated from the de�nition,V is noncurrent. The case in which a single store and many de�nitions reach the breakpoint is analogous.These three cases are summarized in Table 4.1.In the fourth case, in which many de�nitions of and many stores into a variable reach a breakpoint,comparison of the reaching sets alone is not su�cient to determine a variable's currentness. The additionalwork that is required to make the determination is described in Sections 4.3 and 4.4. Table 4.2 summarizesthis additional work. Before analyzing this more complex case, the next section brie
y mentions how thedebugger can decribe the e�ects of optimization when a variable is endangered at a breakpoint.4.2 When a Variable is EndangeredWhen the debugger is asked to display a variable, it determines whether the variable is current. Ifthe variable is current, the debugger displays its value without comment. If the variable is endangered, inaddition to displaying its value, the debugger can give the user some help in understanding why the value isendangered. The general
avor of what the debugger can do is given by the following sample message thatmight accompany the display of a variable a when the optimization shown in Figure 4.2 has occurred.\Breakpoint 1 has been reached at line 339. a should have been set at line 327. However,optimization has moved the assignment to a at line 342 to near line 336. a was actually set atone of lines 327 or 342."The description of the e�ects of optimization will vary in speci�city as the e�ects of optimization varyin complexity. The information needed to produce such messages can be made available via the reachingsets. The representation described in Section 7 provides the necessary information. Any representation of areaching set element that provides both a source reference (such as �le name and line number) and the codeaddress of the representative instruction will do.4.3 Multiple Stores and Multiple De�nitionsConsider the case in which there are multiple de�nitions of V and stores into V that reach a breakpoint.If there are any stores that reach that are not generated from de�nitions that reach, or any de�nitions that19De�nition 5 de�nes multiple machine stores generated from a single de�nition as a single store in our terminology.

22 4. Currentness Determination
(342)Unoptimized Optimized

bkpt
a = y
a = x

327 336339342 339 336327a = xa = y
bkptFigure 4.2: The display of a could be accompanied by this message: \Breakpoint 1 has been reachedat line 339. a should have been set at line 327. However, optimization has moved the assignmentto a at line 342 to near line 336. a was actually set at one of lines 327 or 342."reach that did not generate stores that reach, V is endangered (and possibly noncurrent) at the breakpoint.Suppose the de�nitions of V and stores into V that reach match perfectly: every store that reaches isgenerated from a de�nition that reaches and every de�nition that reaches generated a store that reaches.If V were always current in this situation, comparing the reaching sets would be a complete solution tothe currentness determination problem. Unfortunately, V may sometimes be endangered (possibly evennoncurrent) under these circumstances. Figure 4.3 gives examples of code motion after which the reachingstores and de�nitions match perfectly. In one case, a is current, in another a is endangered, and in a thirda is noncurrent.20 Clearly, comparing the reaching sets is not su�cient to determine a's currentness.It is unacceptable to be overly conservative and claim that a variable V is endangered in such a casebecause a debugger must provide good behavior on unoptimized code as well as on optimized code. Inunoptimized code, the stores that reach are always exactly those generated from the de�nitions that reach.A debugger using such an algorithm on unoptimized code would claim that any variable that has de�nitionson more than one path to B is endangered, when in fact no variables are endangered.Section 4.4 describes how to determine V 's currentness precisely when multiple reaching stores andde�nitions match perfectly. The method involves examination of program
ow graphs and is potentially20We assume that code motion may move code up or down but not sideways, that is, the compiler will move code only to anancestor or descendant block. This restriction is the reason for the complexity of the noncurrent example.

4. Currentness Determination 23
bkpt

a = xa = yOptimized: a is endangeredOptimized: a is current
a = y a = x

bkptbkpt
a = xa = y

Unoptimized

bkpt
a = w a = xa = y a = z a = za = y a = x

a = w
bkpt

Unoptimized Optimized: a is noncurrent
Figure 4.3: Stores that Reach bkpt are Exactly Those Generated from De�nitions that Reach bkpt

24 4. Currentness Determinationcostly, so it may be preferable to use an approximation to V 's currentness at B that sacri�ces accuracy forease of computation. Such an approximation should be conservative { it may occasionally incorrectly tellyou V is endangered, but it should never tell you that V is current when V in fact is not.There is such an approximation, which, if the compiler saves the appropriate information, is simple tocompute. The approximation is: If no relevant code motion has occurred, V is current at B. If such motionis found, V may be conservatively claimed to be endangered at B. Relevant code motion is any motion acrossblock boundaries of stores generated from de�nitions that reach B.Optimization can modify the shape of the
ow graph, introducing or deleting node and edges. Whatdoes motion across block boundaries mean when block boundaries are
uid? Block boundaries can be �xedby the use of markers that are never moved by optimization. A marker is placed in the code stream at theend of each block. Since optimization never moves these markers, in the optimized code they denote theboundaries of blocks as they existed in the unoptimized code.21 If the markers are uniquely identi�ed, it ispossible to determine which block contains a de�nition and which block contains the store generated from it;essentially, this is a method of embedding the pre-optimization block boundaries into the post-optimization
ow graph.It is not known how good this approximation is. However, because no code motion occurs in the absence ofoptimization, this approximationworks perfectly on unoptimized code. Furthermore, to get to the inaccuratecase there must be� more than one de�nition of V reaching the breakpoint,� more than one store into V reaching the breakpoint,� stores that reach must be precisely the stores generated from the de�nitions that reach, and� optimization involving code motion across a block boundary of a reaching store must have occurred.1.5mm]If, in this case, a conservative response is not deemed su�cient, the graph examinations described inSection 4.4 can be performed. Table 4.2 summarizes how to determine V 's currentness when multiplede�nitions and multiple stores reach the breakpoint.4.4 When All Else FailsLet us examine the case in which comparing reaching sets does not give us an answer and relevant codemotion has occurred. We are now assuming the conditions enumerated above.In general, V is current at B if every path to B that goes through a de�nition of V also goes through thestore into V generated from that de�nition, and neither the de�nition nor store are subsequently killed. Theembedding of the pre-optimization block boundaries in the post-optimization
ow graph from Section 4.3allows us to proceed as if we have stores and de�nitions in a single graph.21If a block is eliminated, its marker will be eliminated as well. This poses no problem, as we look to see what block a storeended up in, not what ended up in a particular block.

4. Currentness Determination 25Many de�nitions reach BMany stores reach B Were any of the stores generatedfrom any of the de�nitions?No: noncurrentYes: Were the stores exactly thosegenerated from the de�nitions, anddid every de�nition generate a store?No: endangeredYes: Was there any relevant code motion?No: currentYes: approximate with endangered, orperform graph examinationTable 4.2: The Many-Many CaseV is current at B i� for all de�nition/store pairs d,s where d de�nes V and s was generated from d thefollowing hold:1. If s has been moved DOWN out of the block containing d then(a) there is no path to s that did not go through d, and(b) for all paths from d to B along which d reaches B, s reaches B.2. If s has been moved UP out of the block containing d then(a) there is no path to d that did not go through s, and(b) for all paths from s to B along which s reaches B, d reaches B.Notice that case 2 above is identical to case 1 with the roles of d and s reversed.Figure 4.4 attempts to capture the restrictions pictorially on an example in which the store has moveddown. In the �gure, d represents a de�nition of V and s represents the store generated from it (similarly forthe primed versions).Let the block containing bkpt be called Bottom. Let the block containing whichever of d and s is furtherfrom Bottom (ignoring any back edges in the graphs) be called Top, and the other be called Middle. Thenwe can state the conditions as(a) there is no path to Middle that did not go through Top, and(b) for all paths from Top to Bottom along which Top reaches Bottom, Middle reaches Bottom.This in turn is equivalent to(a) every path from the source of the
ow graph to Middle passes through Top, and(a) every path from Top to Bottom passes through Middle or through a block in which Top is killed.Condition (a) can be tested by removing Top from the graph and determining whether there is a path fromthe source block to Middle (using a standard graph technique such as breadth-�rst search).Condition (b) can be tested by removing Middle and all blocks in which Top is killed from the graph anddetermining whether there is a path from Top to Bottom. De�nitions of V are killed by other de�nitions ofV , and stores into V are killed by other stores into V . Note that, assuming Top contains a de�nition of V ,

26 4. Currentness Determinationd00(6= d)s0(6= s)d0(6= d) sd
bkptFigure 4.4: Paths if V is Current. De�nitions of V are represents by d, d0, and d00; s and s0 representstores respectively generated from them.removing every other block containing a de�nition of V will give the same results as removing just those onpaths from Top to Bottom.Thus V 's currentness at B can be precisely determined in all circumstances, but in some cases anexamination of the
ow graph must be made.

5. Proof of Correctness 275 Proof of CorrectnessThis section o�ers proofs of correctness of the case analysis summarized in Tables 4.1 and 4.2, with theexception of the graph examination.5.1 Notationd denotes a de�nition and s denotes a store. D denotes the set of de�nitions of a variable V that reacha breakpoint B, and S denotes the set of stores into V that reach B.An equality test cannot compare a de�nition with a store, because they are two di�erent types of entities.The operator ~=, which represents the generates or generated from relation, is used to compare de�nitionswith stores:De�nition 12: d~=s means s was generated from d.22The domain of ~= extends to sets of de�nitions and stores:De�nition 13: D ~=S means that jDj = jSj and each s 2 S was generated from a distinct d 2 D.~2 maps a de�nition to the store it generates or a store to the de�nition it was generated from and thenassert set membership:De�nition 14: d~2S means the store generated from d is in S and s~2D means s was generatedfrom a de�nition in D.Finally, ~\ is used to describe the two sets that result from the intersection of a set of de�nitions with aset of stores:De�nition 15: S~\D = S0, D0 which are maximal sets such that S0 � S, D0 � D, and D0 ~=S0.Clearly jS0j = jD0j, so S0 and D0 are empty is written S~\D = ; (no s 2 S was generated from any d 2 D).5.2 CorrectnessTable 5.1 is a combination of Tables 4.1 and 4.2 using the notation de�ned in this section. This sectionprovides proofs of the assertions in the table, excepting the case requiring graph examination.Theorem 1: Table 5.1 correctly determines the currentness of a variable V at a breakpoint B, excepting thecase requiring graph examination.The four entries in Table 5.1 are mutually exclusive and exhaustive. It su�ces to prove that each entryis correct. The proof is by case analysis where each case corresponds to an entry in Table 5.1. In the proof,the cases are distinguished by the cardinalities of the reaching sets D and S.22In an implementation, we suggest representing a de�nition and the store generated from it as one unit, which allows equalityto be used to compare a de�nition with a store.

28 5. Proof of CorrectnessDe�nitions of V that reach BOne (d) Many (D)Stores into One (s) d~=s? s~2D?V that Yes: current Yes: endangeredreach B No: noncurrent No: noncurrentMany (S) d~2S? S~\D = ;?Yes: endangered Yes: noncurrentNo: noncurrent No: S ~=D?No: endangeredYes: Was there relevant code motion?No: currentYes: approximate with endangered, orperform graph examination.Table 5.1: The Cases RevisitedProof 1:1. jDj = jSj = 1Let D = fdg and S = fsg. By the de�nitions of D and S, d reaches B along all paths to B, and sreaches B along all paths to B.(a) d~=s: V is current at B by De�nition 8.(b) d~6=s: V is noncurrent at B by De�nition 9.2. jDj = 1 and jSj > 1Let D = fdg and let s be the store into V such that d~=s.(a) s 62 S)69p a path along which s reaches B. V is noncurrent at B by De�nition 9.(b) s 2 S) 9p along which s reaches B. d reaches B along p. V is not noncurrent at B by De�nition 9.jSj > 1) 9s0 2 S, s0 6= s) d~6=s0. Let p be a path along which s0 reaches B. p existsby de�nition of S. d reaches B along all paths, and thus along p. V is endangered at B byDe�nition 10.3. jSj = 1 and jDj > 1This case is identical to case 2 with the roles of S and D reversed.4. jSj > 1 and jDj > 1This case is further divided by how well the de�nitions in D match the stores in S:(a) S~\D = ; (No store in S is generated from a de�nition in D)) 8s 2 S, d 2 D, d~6=s) 69p along which dp 2 D reaches B, sp 2 S reaches B, and dp ~=sp. V isnoncurrent at B by De�nition 9.

5. Proof of Correctness 29(b) S~\D 6= ; and S ~6=D(At least one store in S is generated from a de�nition in D, but not all stores in S and de�nitionsin D can be paired such that the store is generated from the de�nition)S ~6=D) eitheri. 9s 2 S such that 8d 2 D, d~6=sLet p be a path along which s reaches B, and let dp 2 D be the de�nition that reaches Balong p. dp ~6=s) V is endangered at B by De�nition 10. Orii. 9d 2 D such that 8s 2 S, d~6=sLet p be a path along which d reaches B, and let sp 2 S be the store that reaches B along p.d~6=sp) V is endangered at B by De�nition 10.Furthermore, S~\D 6= ;) 9s 2 S, d 2 D such that d~=s. The stronger claim that V is noncurrentat B may not hold because there may be a path along which both s and d reach B. Figure 5.1 isan example of such a situation. The claim that V is not noncurrent at B may also not hold: theremay be no path along which both s and d reach B. Figure 5.2 is an example of such a situation.(c) D ~=SWe have seen in Figure 4.3 that in this case V may be current, endangered, or noncurrent at B.In the absence of relevant code motion, V is current at B. That is, if D ~=S and no store into Vthat reaches B has been moved out of the basic block containing the de�nition of V from whichthat store was generated, V is current at B.Assume D ~=S and no relevant code motion has occurred. Assume further that V is endangeredat B. There must be some path p to B along which V is noncurrent. Let d 2 D be the de�nitionthat reaches B along p. 9s 2 S such that d~=s. p comprises a sequence of blocks b0, b1, : : : , bnwith d in bi and B in bn. By assumption, s is in bi.i. bi = bnSince s and B are in the same basic block, there is no other path by which s can reach B.Since D ~=S, s reaches B) s reaches B along p) V is current along p by De�nition 6, acontradiction.ii. bi 6= bns and B are in distinct basic blocks. s must reach the exit of bi because if it did not, it couldnot reach B along any path, yet s 2 S implies that it does reach B. V is noncurrent at Balong p) 9s0 2 S such that s0 reaches B along p, s0 6= s, and s0 kills s along p. s0 mustbe in some block bj along p, i < j <= n. Since D ~=S, 9d0 2 D such that d0 ~=s0. However,d0 cannot be in bj or it would have killed d along p, but by assumption d reaches B along p.Therefore s0 has been moved out of the basic block containing d0, a contradiction.

30 5. Proof of Correctness
a = ya = x

bkpt bkpt
a = x a = zFigure 5.1: S~\D 6= ; and S ~6=D and a is Current at bkpt along the Leftmost Path

a = ya = x
bkpt bkpt

a = xa = zFigure 5.2: S~\D 6= ; and S ~6=D and a is Noncurrent at bkpt

6. When a Breakpoint has Moved 316 When a Breakpoint has MovedSemantic breakpoints introduce additional complexity into currentness determination. This sectionmerely outlines the di�culties. For a more complete discussion of currentness at semantic breakpoints,see [Cop92].When a semantic breakpoint is reached, the point in the optimized code at which execution is suspended(and the user examines a variable's actual value) may not correspond to the point at which the user expectsexecution to be suspended (the point at which the user intended to examine the value). There are fourdistinct situations that can arise with a semantic breakpoint for a statement S:1. The code for S has not been moved. The semantic breakpoint is the same as the syntactic breakpoint,and no additional work is required for currentness determination.2. The code for S has been moved. In a particular execution, the semantic breakpoint location and thesyntactic breakpoint location are reached along the same path.3. The code for S has been moved. In a particular execution, the syntactic breakpoint location is reachedbut the semantic breakpoint location is not. This is a source of unexpected behavior, but no additionalwork is required for currentness determination because the user never gets to ask for the value of avariable at the semantic breakpoint.4. The code for S has been moved. In a particular execution, the semantic breakpoint location is reachedbut the syntactic breakpoint location is not. This is unexpected behavior already.In situations 2 and 4 we need to be able to compare the actual value of a variable at a representativeinstruction R (the semantic breakpoint, where the user examines the value) with its expected value at arepresentative instruction R0 6= R (the syntactic breakpoint, where the user expects to be examining thevalue). Our current de�nitions of current, noncurrent, and endangered do not cover these situations.There is a further problem. Consider Figure 1.1. For bkpt to be reached in the optimized code, the right-hand paths must be taken. If the unoptimized code is run on the same inputs, the right-hand paths will betaken, so optimization does not a�ect the value a will have at the semantic breakpoint for bkpt: a is currentat bkpt. However, the reaching sets are D = fa = x; a = y; a = zg and S = fa = x; a = yg. Comparing thereaching sets according to Table 5.1 gives the conclusion that a is endangered at bkpt. Thus the reachingset comparison that is adequate for syntactic breakpoints is inadequate for semantic breakpoints.

32 6. When a Breakpoint has Moved
OptimizedUnoptimized a = y a = x a = y

bkpt
OptimizedUnoptimized a = y a = x a = ybkpta = z a = xa = x a = zFigure 6.1: Oddly enough, a is current at bkpt

7. Reaching-De�nitions Support 337 Reaching-De�nitions SupportThe tool that computes the sets of de�nitions and stores that are needed to compute a variable'scurrentness needs information about the de�nitions and stores and control
ow of the program. If thecompiler is the tool that performs these computations, existing compiler data structures can be modi�edfor the task. In order to abstract the information needed solely for this task, this section assumes thatthe compiler will provide the necessary information to the debugger, and the debugger will perform thereaching-de�nitions computation.7.1 Debug RecordsThe compiler provides the debugger with information about every declaration and statement in theprogram. The collection of information about a statement (declaration) is called a debug record. Each debugrecord for a statement represents a breakpoint location. Each debug record for an assignment represents (inaddition to the breakpoint location) a de�nition and the store generated from it. A distinct debug record isproduced for each modi�cation to each program variable, so more than one debug record is produced for astatement that has side e�ects.23 For example, the following code causes 6 debug records to be produced:int a, b, c; (Produces three declaration debug records.)a = 0; (Produces one statement debug record.)b = c++; (Produces two statement debug records: one for theassignment into b, and one for the side e�ect on c.)A debug record R for a statement S has the following �elds:� Var(R) | a variable name,� Sref(R) | a source reference,� Cref(R) | a code reference,� Moved(R) | a
ag, and� Equiv(R) | an equivalence class identi�er.The Var �eld identi�es the variable assigned into by S. If S does not assign into a variable, the Var �eldis null. The Sref �eld contains the source reference for S (�le name and line number, and perhaps whichstatement on the line, if the debugger is to handle lines with multiple statements). The Cref �eld containsthe address of the representative instruction for S (the breakpoint location for S).24 If no instruction isgenerated for S, the Cref �eld is null, unless the debug record describes a declaration, in which case the Cref�eld contains the address of the instruction that allocates storage for the declared variable.25 The Moved23More than one debug record is produced for a statement that has more than one location at which user-visible changesoccur. This is true of statements with side e�ects. It is also true of many loop constructs. A C for loop may have three placesof interest to the user corresponding to its three expressions, and each needs a debug record if the debugger is to be able tobreak at each one.24The Cref is not the address of the storage location for a variable (a data address), but rather the address of the representativeinstruction of a statement (a code address).25The Cref for the declaration of a static variable contains the start address of the program.

34 7. Reaching-De�nitions Support�eld encodes whether the code for S has been moved, and if so, whether it has been moved out of the basicblock in which it originated. The Equiv(R) �eld records the equivalence class that a de�nition (Sref) andstore (Cref) fall into.267.2 Flow GraphsThe compiler also provides the debugger with two representations of the control
ow of the program.A
ow graph representing the basic block structure before optimization is called the source graph. Eachnode in the source graph corresponds to a basic block and contains a sequence of (pointers to) debugrecords27, one for each statement and side e�ect within the block in the order in which they occur in theunoptimized code.A
ow graph representing the basic block structure after optimization is called the object graph. Eachnode in the object graph corresponds to a basic block and contains a sequence of (pointers to) debug recordsthat corresponds to the sequence of statements and side e�ects that have ended up in that block. Thebasic block structure prior to optimization is embedded in the object graph through the use of markersthat are never moved by optimization. A marker is placed in the code stream at the end of each blockin the source graph before optimization is performed. The object graph is a copy of the source graph onwhich optimizations have been tracked. In the object graph the markers denote the pre-optimization blockboundaries.Control
ow information can be used by a debugger for purposes other than currentness determination.For example, statement stepping (often called source-line stepping) is one of the more di�cult capabilitiesto implement because it is di�cult to determine where the next breakpoint(s) should be set. With control
ow information, this problem becomes simple. Using the program
ow graphs and debug records describedin this section, the current breakpoint is at the Cref of the debug record R for the current statement. If Ris not the last record in its block in the object graph, the next breakpoint can be set at the Cref of the nextrecord. If R is the last record in its block, breakpoints can be set at the Crefs of the �rst record of eachsuccessor block.7.3 Reaching De�nitionsThe
ow graphs are used to compute reaching de�nitions. We are interested in determining, for eachstatement that de�nes a variable V and reaches a breakpoint B in the the unoptimized code, whether itscorresponding object code reaches B. Both statement and breakpoint locations are represented with debugrecords, so the desired determination can be made by computing which debug records representing de�nitionsof V (or stores into V) reach the debug record representing the breakpoint B.26If the compiler has determined that a set of de�nitions represents the same computation, all of the stores generated fromthose de�nitions represent the same computation, thus the debug record, which represents both a de�nition and a store, needsonly a single �eld to represent both the equivalence class that the de�nition falls into and the equivalence class that the storefalls into.27There is a single set of debug records that is shared between the two
ow graphs, however, for all intents and purposes thenodes are treated as if they contain debug records as opposed to pointers to records.

7. Reaching-De�nitions Support 35These reaching de�nitions are computed across, as well as within, basic blocks, so those records thatmust reach B (such as de�nitions occurring prior to B in the same block) can be distinguished from recordsthat may reach B (de�nitions occurring on some but not all paths to B). The set of de�nitions that mayreach B is computed based on the Sref �eld of the debug records in the source graph. The set of stores thatmay reach B is computed based on the Cref �eld of the debug records in the object graph.The beginning of the program or subroutine (the start node of a connected component of a
ow graph)constitutes a null de�nition and store of each variable. This ensures that some de�nition (store) for eachvariable reaches B along every path. This also ensures that if only one de�nition (store) for a variable reachesB, it reaches along all paths to B.In the absence of pointers and array references, reaching de�nitions could be computed using a standardalgorithm (Aho and Ullman [AU77]). This would produce at most one de�nition of a given variable at theexit of a block. Using such an algorithm, an assignment through a pointer or array reference would kill allpending de�nitions. This would destroy information required for currentness determination. In the presenceof pointers and array references, reaching de�nitions must be computed using a modi�ed algorithm in whichan assignment through a pointer or array reference does not kill previous de�nitions, thus more than onede�nition of a given variable may reach any point, including the exit of a block.7.4 Semantic and Syntactic Breakpoint LocationsUnder the representation described in Sections 7.1 and 7.2, the semantic breakpoint location for astatement is the Cref of the debug record for that statement.The syntactic breakpoint location L for a statement S is determined as follows:If the representative instruction for S has not been movedL is the address of that instruction.If that instruction has been movedif the block that originally contained it does not appear at all in the optimized code,L is unde�ned,else if any representative instructions for statements following S within the block containing Shave not been moved,L is the location of the �rst of these,else L is the location of the last representative instruction within the block containing S.

36 8. Summary8 SummaryIt is not always possible to completely debug an unoptimized version of a program. Examples have beengiven in which optimization changes the behavior of a program even when the optimizer is correct. This isnot a new result, but such examples have not previously appeared in the literature.The mapping between statements and breakpoints used for unoptimized code is problematic for optimizedcode. If such a mapping is used by a debugger on optimized code, the debugger is likely to mislead thedebugger user. This paper has described a mapping between statements and breakpoints that provides areasonable approximation to what the naive user would expect when used on optimized code (and providesexactly what the naive user would expect on unoptimized code). The mapping allows the debugger user tobreak where a statement occurs or execute a statement at a time on a program in which statements may havebeen reordered and instructions generated from a statement are not necessarily contiguous. The mappingenables debugger behavior that is more closely approximates the behavior provided by current debuggers onunoptimized code than other proposed mappings, and thereby neither requires debugger users to be expertson optimization nor requires users to modify their debugging strategies.Using any such mapping, optimization can cause a debugger to provide an unexpected and potentiallymisleading value when asked to display an endangered variable. A debugger must be able to determinethe currentness of a variable if it is to provide truthful behavior on optimized code. Hennessy [Hen82][CM91a] and Coutant et al [CMR88] give solutions to special cases of the currentness determination problem.Table 8.1 summarizes a general solution to the problem for sequential optimizations. These results hold inthe presence of both local and global optimizations and require no information about which optimizationshave been performed.This paper has described the information a compiler must make available to the debugger for this task,as well as the nature of the information the debugger can provide to the debugger user when the user asksfor the value of an endangered variable.For most optimizations, the results described in this paper are precise (i.e., a variable claimed to becurrent is current, a variable claimed to be endangered is endangered, etc.) except when a variable is currentalong all feasible paths but noncurrent along some infeasible path, in which case it will be claimed to beendangered.28For some optimizations, the results may be conservative. These optimizations are those that duplicatecode in such a manner that the duplicates are not in the same equivalence class (two duplicates do notrepresent equivalent computations, as in loop unrolling).29 Table 8.2 lists representative optimizations andshows whether the results are precise or conservative on them.The method to precisely determine a variable's currentness in the most di�cult case may be expensive(see Section 4.4). Section 4.3 describes an inexpensive conservative approximation to the precise result in28An infeasible path is one that cannot be taken in any execution.29Strictly speaking, we have no results for such optimizations, as De�nitions 1, 4 and 5 are not strong enough to cover suchoptimizations. However, given a duplicated store s, assuming s~62D gives reasonable but conservative results.

8. Summary 37One de�nition, d, reaches B Many de�nitions reach BOne store, Was s generated from d? Was s generated from ones, of the de�nitions that reach?reaches Yes: current Yes: endangeredB No: noncurrent No: noncurrentMany Was one of the stores generated from d? Were any of the stores generatedstores from any of the de�nitions?reach Yes: endangered No: noncurrentB No: noncurrent Yes: Were the stores exactly thosegenerated from the de�nitions, anddid every de�nition generate a store?No: endangeredYes: Was there any relevant code motion?No: currentYes: approximate with endangered, orperform graph examinationTable 8.1: The Four CasesOptimization Algorithm Accuracycommon subexpression elimination Generally Precisecross-jumping Generally Preciseinstruction scheduling Generally Preciseother code motion Generally Precisepartial redundancy elimination Generally Preciseloop reordering Generally Preciseinduction-variable elimination Generally Preciseloop fusion Generally Preciseloop unrolling Conservativeinlining (procedure integration) ConservativeTable 8.2: Precision of Results on Representative Optimizations| Generally Precise means preciseexcept when a variable is current along all feasible paths but noncurrent along some infeasible path.this case.Once a debugger user has found a suspicious variable (one that due to program logic, not optimization,contains an unexpected value), the next question is `How did it get that value?'. The sets of reachingde�nitions used for currentness determination can be used in a straightforward manner to answer thisquestion (`x was set at one of lines 323 or 351'). One direction for future research is how to e�ciently beeven more helpful; how to give responses such as `x was set at line 566 to foo(y,z). At that point, z hadthe value 3.141 (set at line 370) and y had the value 17; y was set at line 506 to y+bar(w).'. This wascalled
owback analysis by Balzer [Bal69], and has been investigated by others ([MC91], [Kor88]); reachingsets may be adaptable to this purpose.Another research direction is dynamic currentness determination, which is how a debugger can collect

38 8. Summarythe minimal execution history information needed to determine whether an endangered variable is current ornoncurrent when execution is suspended at a breakpoint. Useful in conjunction with this or as an alternativeis recovery, which is to have the debugger compute and display the value that a variable would have had ifoptimization had not endangered the variable. And �nally, an exciting possibility is extending the breakpointmodel and currentness determination techniques to parallel code, where noncurrent variables are common.

References 39References[AU77] A. V. Aho, J. D. Ullman, \Principles of Compiler Design," Addison-Wesley, Menlo Park, CA, 1977.[ASU86] A. V. Aho, R. Sethi, J. D. Ullman, \Compilers Principles, Techniques, and Tools," Addison-Wesley,Menlo Park, CA, 1986.[Bal69] R. M. Balzer, \EXDAMS - EXtendable Debugging and Monitoring System," Proceedings of AFIPSSpring Joint Computer Conference, Vol 34 pp. 125-134, 1969.[CM91a] M. Copperman, C. E.McDowell, \A Further Note on Hennessy's \SymbolicDebugging of OptimizedCode", UCSCTechnical Report UCSC-CRL-91-04, February 1991. Submitted for publication toACMTransactions on Programming Languages and Systems[CM91b] M. Copperman, C. E. McDowell, \Debugging Optimized Code Without Surprises," Proceedings ofthe Supercomputer Debugging Workshop , Albuquerque, November 1991.[Cop90] M. Copperman, \Source-Level Debugging of Optimized Code: Detecting Unexpected Data Values,"University of California, Santa Cruz technical report UCSC-CRL-90-23, May 1990.[Cop92] M. Copperman, \Source-Level Debugging of Optimized Code Without Surprises," Doctoral thesis,unpublished draft from University of California, Santa Cruz, 1992.[CMR88] D. Coutant, S. Meloy, M. Ruscetta \DOC: a Practical Approach to Source-Level Debugging ofGlobally Optimized Code," Proceedings of the SIGPLAN `88 Conference on Programming LanguageDesign and Implementation, pp. 125-134, 1988.[FM80] P. H. Feiler, R. Medina-Mora, \An Incremental Programming Environment," Carnegie Mellon Uni-versity Computer Science Department Report, April 1980.[Hen82] J. Hennessy, \Symbolic Debugging of Optimized Code," ACM Transactions on Programming Lan-guages and Systems, Vol. 4, No. 3, pp. 323-344, 1982.[Kor88] B. Korel, \PELAS Program Error-Locating Assistant System," IEEE Transactions on SoftwareEngineering, Vol. 14, No. 9, pp. 1253-1260, September 1988.[MC88] B. Miller, J. Choi, \A Mechanism for E�cient Debugging of Parallel Programs," Proceedings ofthe SIGPLAN/SIGOPS Workshop on Parallel and Distributed Debugging, pp. 125-134, Madison,Wisconsin, 1988.[MC91] B. Miller, J. Choi, \Techniques for Debugging Parallel Programs with Flowback Analysis," ACMTransactions on Programming Languages and Systems, Vol. 13, No. 4, pp. 491-530, 1991.[Pic90] D. Pickens, MetaWare Incorporated, Santa Cruz, CA, personal communication regarding theMetaWare High C compiler.[PS88] L. L. Pollack, M. L. So�a, \High Level Debugging with the Aid of an Incremental Optimizer," HawaiiInternational Conference on System Sciences, January 1988.[PS92] L. L. Pollack,M. L. So�a, \Incremental GlobalReoptimization of Programs," Draft fromDepartmentof Computer Science, University of Pittsburgh, May 1991. To appear in ACM Transactions onProgramming Languages and Systems in 1992.

40 References[Str91] L. Streepy, \CXdb A New View On Optimization," Proceedings of the Supercomputer DebuggingWorkshop , Albuquerque, November 1991.[WS78] H. S. Warren, Jr., H. P. Schlaeppi, \Design of the FDS interactive debugging system," IBM ResearchReport RC7214, IBM Yorktown Heights, July 1978.[Ze83a] P. Zellweger, \Interactive Source-Level Debugging of Optimized Programs," Research Report CSL-83-1 , Xerox Palo Alto Research Center, Palo Alto, CA, Jan. 1983.[Ze83b] P.Zellweger, \An InteractiveHigh-LevelDebugger forControl-FlowOptimizedPrograms," SIGPLANNotices, Vol. 18, No. 8, pp. 159-172 Aug. 1983.[Zel84] P. Zellweger, \Interactive Source-Level Debugging of Optimized Programs," Research Report CSL-84-5, Xerox Palo Alto Research Center, Palo Alto, CA, May 1984.[ZJ90] L.W. Zurawski, R. E. Johnson, \Debugging Optimized CodeWith Expected Behavior," Unpublisheddraft from University of Illinois at Urbana-Champaign Department of Computer Science, August1990.

