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ABSTRACT

Optimizing compilers produce code that impedes source-level debugging. Examples are given in which
optimization changes the behavior of a program even when the optimizer is correct, showing that in some
circumstances it is not possible to completely debug an unoptimized version of a program. Source-level
debuggers designed for unoptimized code may mislead the debugger user when invoked on optimized code.
One situation that can mislead the user is a mismatch between where the user expects a breakpoint to be
located and the breakpoint’s actual location. This mismatch may occur due to statement reordering and
discontiguous code generated from a statement. This paper describes a mapping between statements and
breakpoint locations that ameliorates this problem. The mapping enables debugger behavior on optimized
code that approximates debugger behavior on unoptimized code closely enough that the user need not make
severe changes in debugging strategies. Another situation that can mislead the user is when optimization has
caused the value of a variable to be noncurrent— to differ from the value that would be predicted by a close
reading of the source code. This paper gives and proves a method of determining when this has occurred,
and shows how a debugger can describe the relevant effects of optimization. The determination method is
more general than previously published methods. The information a compiler must make available to the
debugger for this task is also described.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging — debugging
aids; D.2.6 [Software Engineering]: Programming Environments; D.3.4 [Programming Languages]: Proces-
sors — code generation, compilers, optimization

General Terms: Algorithms, Languages

Additional Keywords and Phrases: debugging, compiler optimization, reaching definitions, noncurrent vari-

ables
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Original Source Code After Constant Propagation After Dead-Store Elimination
X = expression; X = expression; X = expression;

X = constant; X = constant;

y = X; y = constant; y = constant,;

Figure 1.1: Potentially Confusing Optimizations

1 Introduction

A source-level debugger should have the capability of setting a breakpoint in a program at the executable
code location corresponding to a source statement. When a breakpoint at some point P is reached,
presumably the user wishes to examine the state of the program, often by querying the value of a variable V.
Commonly available debuggers, upon receiving such a query, will display the value in V'’s storage location.
Unfortunately, this value may be misleading due to optimization. For example, due to a code motion
optimization, an assignment to V may have been done earlier than the source code would lead one to expect.
Since one aspect of debugging is examining potential anomalies, the debugger user may expend time and
effort attempting to determine why V contains the value that has been displayed when the source code

suggests that V should contain some other value.

Figure 1.1 is an example of such a situation caused by constant propagation followed by dead store
elimination. Assume that the only use of x following the assignment of constant to x is the assignment
of x to y. Constant propagation removes that use of x as shown in the second column of the figure. With
that use eliminated, the assignment of constant to x may be eliminated as shown in the third column. If
a breakpoint is reached anywhere following the eliminated assignment to x and the debugger is asked to
display the value of x, typical debuggers will display expression. The user, looking at the original source
code, may be confused by the fact that the displayed value is not constant, or may believe wrongly that

the value being assigned to y is expression.

Optimization may also introduce confusion over where execution is suspended in the program being de-
bugged. The straightforward mapping of statement boundaries onto machine-code locations in unoptimized

code is insufficient for optimized code.

The source-level debugger user probes the state of a halted executable while looking at the source code
from which 1t was compiled. Much of the user’s activity consists of inference based on the source code
and the state information provided by the debugger. This state information includes the location at which
execution is halted and the values of variables. One implicit assumption is that the value of each variable in
the halted executable corresponds one-to-one to the value that would be predicted by examining the source
code and knowing the relevant context, such as within which iteration of a loop execution is suspended.
Another implicit assumption is that the location at which execution 1s halted corresponds to a location in

the source code specified by the user. These assumptions may be violated by the presence of optimization,
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and the inferences that the user draws may be incorrect.

This undesirable sitnation may sometimes be avoided by disabling optimizations when debugging.! At

best this is inconvenient, because it requires extra compilation steps. At worst, however, it may be impossible.

Optimization May Change the Behavior of a Program

A program compiled with optimization enabled may behave differently from the same program compiled
with optimization disabled — that is, when optimization is turned off, the bug may go away. Optimizations
are correctness-preserving transformations which, if the compiler is correct, will not change the behavior of
a correct program. However, a program that is being debugged is certifiably not a correct program, and

correctness-preserving transformations are not guaranteed to preserve the behavior of an incorrect program.

It is a misconception that if optimization changes the behavior of a program, the compiler must be

incorrect.? There are two circumstances in which correct optimization may change the behavior of a program.

e Loose semantics:
A language may contain constructs whose semantics allow multiple correct translations with distinct
behaviors. Most common general purpose programming languages do contain such constructs. The
most commonly known area of “loose semantics” is evaluation order, but there are others. A correct
optimized translation of a program containing code with loose semantics may have different behavior

from a correct unoptimized translation of that program.

e Buggy programs:

A correct optimized translation of a program containing a bug may have different behavior from a
correct unoptimized translation of that program. This is a commonly overlooked case that is important
because a program that is being debugged is known to have bugs.

It is common for even experienced software engineers to be surprised at the fact that a program can
behave one way when optimized and a different way when unoptimized when it has been compiled with a
correct compiler. Consider the compiler writer’s perspective:

It is no sin to make a wrong program worse.
— W. M. McKeeman
Figures 1.2 and 1.3 are simple examples of programs with bugs. The following text describes how optimization

can affect them.

In Figure 1.2, the bug is benign when the program is unoptimized, but has an effect when unnecessary

stores are eliminated. The bug is to write past the end of an array, overwriting the character c. In the absence

IThere is at least one highly optimizing compiler [Pic90] that, when compiling with optimizations disabled, still performs
live/dead analysis, constant propagation, copy propagation, and global register allocation, any of which can confuse a source-
level debugger.

2If the compiler is incorrect, there are three options: get a different compiler, get the broken compiler fixed, or work around
the bug. In practice the first two options may not be viable. The third option requires the programmer to find the code that
causes the compiler bug to show up and replace it with semantically equivalent code on which the compiler functions correctly.
The programmer still has to debug the (incorrectly) optimized code! Even if the choice is made to get a fixed compiler, the
programmer typically has to debug the optimized code enough to convince the compiler vendor that it is a compiler bug.
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int 1i;
char a, b[10], c;

void overwrite_c() {
a = getchar();

c = a;
for (i=0; i<=10; i++) {
b[i]l = ’\0’;
}
c = a;

if (¢ == ’\0’) {
program misbehaves

}
}

Figure 1.2: Optimization Changes Program Behavior: Example 1

of optimization, c is subsequently set to its previous value and the bug goes unnoticed. In the presence of
optimization, the bug affects the behavior of the program: the optimizer eliminates the second assignment
into ¢ because it can determine that in a correct program, ¢ would already contain the to-be-assigned value.

Note that this situation can occur with statements that are arbitrarily far apart in the source code, so
long as the optimizer can determine that a has not been modified between the first and second assignment

mnto c.

In Figure 1.3, the bug (writing one byte past the end of b) has an effect when the program is not
optimized. Tt is benign (“goes away”) when data fetches are optimized by aligning data structures on 4
byte boundaries.? If each data object is aligned to a four byte boundary, there will be two bytes of padding
between the end of array b and character ¢, and the bug will have no effect on program behavior. If data
objects are not aligned, there will be no padding between b and c; ¢ will be overwritten.

Optimization can change the behavior of a program. It is therefore necessary, upon occasion, to either
debug optimized code or never optimize the code. Were it not for the confusion optimization can introduce
into debugging, debugging optimized code would generally be preferable to debugging unoptimized code and
adding recompilation steps.* Zellweger [Zel84] introduced terms for two methods of removing or ameliorating
the confusion introduced into the debugging process by optimization. The preferred method is to have the
debugger responses to queries and commands on an optimized version of a program be identical to its
responses to the same set of queries and commands on an unoptimized version of the program. This is
known as providing ezpected behavior. It may not always be possible to provide expected behavior, so the

next best thing is to provide truthful behavior, in which the debugger avoids misleading the user, either by

3Note that program misbehavior, which is the external evidence of the bug, could occur when the program is not optimized
and go away when the program s optimized by changing the sense of the conditional — that is, by adding another bug. What
is important is that the behavior changes depending on the presence or absence of optimization.

4The additional recompilation step associated with debugging unoptimized code is not a one-time cost for the program, but
a cost for each debugging session.
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int 1i;
char b[10], c;

void walk_on_c() {
¢ = getchar();
for (i=0; i<=10; i++) {
b[il = ’\0’;
}
if (¢ == ’\0’) {
program misbehaves
}
}

Figure 1.3: Optimization Changes Program Behavior: Example 2

describing in some fashion the optimizations that have occurred or by warning the user that it cannot give
a correct answer to the command or query. There is a range of truthful behavior, some useful and some not
so useful. Appropriate truthful behavior 1s discussed in Section 2. Some solution to the problem addressed

in this paper (exemplified by Figure 1.1) is necessary for providing expected or truthful behavior.

Approaches to the Problem

General approaches to the problem have been:

e to restrict the optimizations performed by the compiler to those that do not provoke the problem

(IWS78], [Z390]),

e to recompile, without optimization, during an interactive debugging session, the region of code that is

to be debugged ([FM80], [ZJ90]), and

e to have the compiler provide information about the optimizations that it has performed and to have
the debugger use that information to provide appropriate behavior ([WS78], [Hen82], [Ze83a], [Ze83b],
[Zel84], [CMRR8S8], [PS88], [Cop90], [ZJ90], [PS92]).

A larger problem is lowering the cost of debugging production quality software. Much if not most production
quality software produced in this country is heavily optimized, and the first approach would result in
compilers that would not get used; their use would degrade the quality of the software. The second approach
requires a software engineering environment that provides incremental compilation. Such environments
are not in general use and even should they become commonplace, the approach is unacceptable because

optimization may change the behavior of the program.

This work follows the third approach. Some of the previous work that has taken this approach has
resulted in compiler/debugger pairs that are able to provide acceptable behavior when debugging optimized
code because the debuggers have been specialized to handle the particular optimizations performed by the
compiler. Because much of the industry allows compilers and debuggers to be mixed and matched, solutions

that do not require the compilers and debuggers to be tightly coupled are preferable. Section 7 defines one
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possible interface between a compiler and a debugger for the problem addressed in this paper. If such an

interface is used, the debugger need not be specialized to a particular set of optimizations.

Overview

If the value in a variable’s storage location is suitable to be displayed to the user, the variable is current.
The remainder of this paper describes how to determine whether a variable is current at a breakpoint — the
problem of currentness determination, first introduced by Hennessy [Hen82]. The fundamental idea behind
our solution to the currentness determination problem is the following: if the definitions of a variable V' that
“actually” reach a point P are not the ones that “ought” to reach P, V is not current at P. The definitions
of V that actually reach P are those that reach P in the version of the program executing under debugger
control. The definitions of V' that ought to reach P are those that reach P in a strictly unoptimized version

of the program.®

The required sets of definitions of V' that reach any point in a program (optimized or
unoptimized) can be computed using slight modifications of standard compiler technology (Aho and Ullman
[AUTT]). If the sets of definitions of V' that reach P differ in the optimized and unoptimized version of the
program, then V is not current. The debugger can use the sets of definitions to describe, in source-level
terms, why V is not current. Unfortunately, if the two sets of definitions are equal it is still possible that V'
is not current. This is discussed further in Section 4.3.

In order to determine a variable’s currentness:

1. The compiler must generate a set of debug records relating statements to code addresses; these debug
records are ordered in two flow graphs, one representing the program before optimization and the other
representing the program after optimization.

2. The flow graphs are used to compute reaching definitions, which are in turn used to create reaching
sets (sets of definitions that reach a breakpoint location).

3. The reaching sets are compared to compute the currentness of variables.

The focus of the paper is how reaching sets are used to compute the currentness of a variable at a

breakpoint.

Section 2 defines a breakpoint model that is appropriate for optimized code. The determination of
appropriate breakpoint locations is discussed, as are appropriate debugger capabilities at a breakpoint,
because these are more complex than their counterparts for unoptimized code.

Section 3 defines the terminology that is used throughout the rest of this work. This section also provides
motivational examples.

Section 4 describes a solution to the problem of currentness determination. Such a solution is necessary
to provide the debugger capabilities discussed in section 2. It also describes how this solution can be used

to provide helpful truthful behavior when expected behavior cannot be provided.®

50One compilation of the program is sufficient to provide the information with which to compute both the definitions that
ought to reach P and those that actually reach P.

61t is trivial to provide (useless) truthful behavior. Simply always give a warning that the code has been optimized. This is
of course unacceptable.
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Section 5 shows the correctness of the solution.

Section 1 briefly describes a problematic special case.

Section 7 describes the data structures that must be produced by the compiler (the debug records and
flow graphs).

Section 8 summarizes and discusses the accuracy of the results.
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2 Breakpoint Model

In an unoptimized translation of a program, code is generated for every source code statement in the order
in which it appears in the source code, and the code generated from most statements is contiguous.” It is
possible to halt unoptimized code at a point that corresponds exactly to a statement boundary in the source
code by halting at (before execution of) the first instruction generated from the statement. When execution
is suspended at statement S in unoptimized code, all “previous” statements have completed, that is, all code
that was generated from statements on the path to S has been executed. No “subsequent” statements have
begun, that is, no code that was generated from any statement on the path from S (including code generated
from S itself) has been executed. Because of the straightforward nature of the translation, the value in
each variable’s location matches the value of the variable that would be predicted by a close reading of the
source code. Users not versed in optimizing technology expect these characteristics to hold when execution
is suspended at a statement boundary.

The state of a suspended program is the context in which debugging takes place, called the actual
debugging context. In contrast, the expected debugging context is the state that would be predicted by an
examination of the source code of a program suspended at an identified point. The actual debugging context

matches the expected debugging context for an unoptimized program suspended at a statement boundary.

2.1 Treatment of Program Traps

The actual debugging context may not match the expected debugging context, even for unoptimized code,
if the program halts on a non-statement boundary, which can happen due to a trap (an error condition).® A
program may trap in the middle of an update to a variable, leaving that variable in a decidedly unexpected
state. The most important piece of information when a program traps is “What statement caused the
trap?”, that is, which statement generated the instruction that trapped. This information can be provided
by tagging each instruction with a reference to the statement that generated it. This can be encoded in a
table by listing the address of the first instruction of each set of contiguous instructions generated from a
source statement with a reference to that source statement, thus the trap location reporting problem can be
solved by a simple extension of the line table currently emitted by most compilers. The remainder of this

paper considers programs that are suspended at source-level user-specified locations (breakpoints) only.

2.2 Debugger Capabilities at a Breakpoint in Optimized Code

Optimization may well make it impractical to provide the user with the expected debugging context.

Because code may be reordered or eliminated and the instructions generated from a given source statement

"Code generated from looping or branching statements is typically not contiguous. However, this lack of contiguity is present
in the source code as well as the generated code. It can cause debugging anomalies in unoptimized code. For example, placing
a breakpoint at a C for loop can cause several commonly available debuggers to either break once before loop entry or break
each time through the loop, depending on the presence or absence of initialization code.

8 A program can also halt on a non-statement boundary due to machine-level debugging — single stepping machine instructions
or breaking at arbitrary code addresses. This work is concerned with source-level debugging, not machine-level debugging.
Sections 2.3 and 2.4 define allowable breakpoint locations for source-level debugging.



8 2. Breakpoint Model

may not be contiguous, when execution is suspended at statement S in optimized code, no matter what code
location is chosen to represent S, some of the code from previous statements may not yet have been executed

and some of the code from subsequent statements may have been executed early.

The debugger user makes inferences based upon the source code and the state of the halted program.
This is problematic for debugging optimized code because the inferences are also based upon the implicit

assumption that the actual debugging context is equivalent to the expected debugging context.

Of course, 1t 1s not possible to prevent a user from making invalid inferences, regardless of the presence
of optimization. The best the debugger can do is provide a means of determining when optimization has
broken an otherwise valid chain of inference, that is, when an inference that would be valid in the absence
of optimization is invalid in its presence. To this end, the debugger acts satisfactorily upon optimized code
if at a breakpoint it can report the ways in which the actual debugging context differs from the expected
debugging context.

At a breakpoint, the user should be informed of salient differences between the actual debugging context
and the expected debugging context. If the user asks to see the value of a variable, the debugger should offer
information as to whether its value would be misleading, and why. The user should be able to ask whether
a given statement has been executed out of order, and if so, whether i1t has been executed early or will be
executed late. These capabilities allow the user the same power to probe the state of an optimized program
at a breakpoint that is available currently for unoptimized programs, because they license valid inferences
based on the source code and the state of the suspended program and they provide information that can be

used to prevent invalid inferences.

Only those effects of optimization that affect the validity of the user’s inferences need to be reported by
the debugger. As noted by Coutant et al [CMR88], much of the optimization performed upon a program is
irrelevant to the user. It is only optimization that affects user-visible entities, such as source code variables
and statement flow-of-control, that the user needs to be informed about. Informing the user of optimization
on compiler temporaries is likely to make the debugging job harder, not easier. The same is true of
optimization of code generated from the right-hand-side of assignments — the store of the result affects
the state of the program as seen from the source-level view, but how that result is computed does not affect
the source-level view of program state. Similarly, optimization of an expression whose result determines the
outcome of a conditional branch should be invisible to the user if the branch itself is unaffected.® Many
statements that start earlier in optimized code than in unoptimized code do so due to code motion of
parts of the statements (such as address computations) that are irrelevant to the user’s inquiry.!® Though
the optimization of these statements does cause the actual debugging context to differ from the expected

debugging context, it does not invalidate user inferences, therefore it is not necessary for the debugger to

9 There are circumstances in which it is important for the debugger to reveal the effects of optimization at this level of detail,
such as allowing the user to track down a code-generation bug. In such circumstances, it is appropriate to shift to machine-level
debugging.

10Note that this code motion is not irrelevant to trap location reporting. If an address computation is moved up out of a loop,
and the computation traps, the user should be informed that the trap occurred in the statement that the address computation
originated in.
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report that these statements have begun early. Statements that begin early due to source-level-invisible
optimization but that otherwise exhibit no source-level-visible effects from optimization are not considered

to be executed out of order.

2.3 Breakpoint Locations (Representative Instructions)

Commonly, when setting a breakpoint on a statement, the debugger user wants to break exactly once
each time the statement is executed at some location that corresponds to the statement boundary. This
is problematic for optimized code, but not providing or closely approximating this capability puts a heavy
burden on the user not well-versed in optimizer technology. The capability i1s necessary to support two
common debugging strategies: running until a selected statement is reached, and stepping through the
program statement by statement.

In Section 2.1°s treatment of program traps, every instruction generated from a statement is associated
with that statement. This is possible and appropriate because the program may trap at an arbitrary
location that is mapped back to the source code. A breakpoint is specified in source terms and must be
mapped onto the machine code. It is inappropriate to associate every instruction generated from a statement
with that statement for the purposes of setting breakpoints, because if the instructions are not contiguous,
many breakpoints may be reached for a single statement. In contrast, Streepy [Str91] describes a source-
code/breakpoint-location mapping that allows breakpoints to be set at various levels of granularity, including
expressions, basic blocks, and subroutines. In the debugger described by Streepy, when a statement is selected
as the level of granularity, a breakpoint is set at the beginning of each sequence of contiguous instructions
generated from the statement. Under the mapping described in this section, the instruction generated from
a statement S that best corresponds to the statement boundary is selected to represent S, and is called the
representative instruction for S. The address of this instruction is a breakpoint location for S.'' Where no
confusion will result, the representative instruction itself may be referred to as the breakpoint location. The
mapping described herein is not in conflict with that described by Streepy [Str91]; each enables debugger
capabilities missing from the other. This paper does not concern itself further with breakpoints for language
entities other than statements, except to state that the results hold in the presence of such breakpoints.

The choice of a machine instruction as the breakpoint location for a statement should be based on why the
user wants to break at that statement. It may be that the user sets a breakpoint at some statement within
a loop because it looks like a convenient place to see how the program state is changing on subsequent
iterations of the loop. There may be nothing about the chosen statement relevant to the user’s purpose
except its location within the loop. If that statement were moved out of the loop by optimization, it would

be appropriate to set the breakpoint where it used to be, so the breakpoint would be reached each time

11Tn the most common case, a single instruction will serve as the breakpoint location for a statement. Statements with
multiple side effect on user variables will require multiple breakpoint locations, one for each side effect. Optimizations that
cause code duplication may require breakpoint location duplication as well — procedure integration (inlining), partial redundancy
elimination, and loop unwinding are examples. Even in unoptimized code some statements may require more than a single
instruction to represent their breakpoint locations. Loop constructs are an example. The appropriate location to break the first
time (before the loop is entered) may be at a different instruction than the appropriate location to break subsequently (each
time through the loop).
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Unoptimized Optimized
Semantic Breakpoint /a =5
while (condition) while (condition) {
5 <= Syntactic Breakpoint — o
a=5;
b = fen(); b = fen();

} }

Figure 2.1: Semantic and Syntactic Breakpoint Locations

through the loop. On the other hand, the user may set a breakpoint at some statement to check the values
of variables used in an expression in that statement. In that case, if the statement were moved out of the
loop by optimization, it would be appropriate to set the breakpoint where it ended up, so the values the

debugger displays are the actual values used in the expression.

Zellweger [Zel84] introduced the terms syntactic and semantic breakpoints. If no code motion or elimi-
nation has occurred, these are identical. In the presence of code motion or elimination, the order in which
syntactic breakpoints are reached reflects the syntactic order of source statements; the syntactic breakpoint
for statement n is prior to or at the same location as the syntactic breakpoint for statement n + 1. It will
be at the same location if the code for n 1s moved or eliminated. If the code generated from statement n is

moved out of a loop, a syntactic breakpoint for n remains inside the loop.!?

The semantic breakpoint location for a statement is the point at which the action specified by the
statement takes place. This does not preserve any particular order. If the code generated from a statement
is contiguous, the semantic breakpoint location is the location at which the code for the statement has ended
up. If the code generated from statement S is discontiguous, the semantic breakpoint location is the location

at which the instruction chosen to represent S has ended up.

Figure 2.1 provides an example of the syntactic and semantic breakpoints for a loop from which opti-

mization has moved an invariant statement.

The choice of a breakpoint location for a statement S affects the correspondence between the actual
debugging context and the expected debugging context considerably. Zellweger [Zel84] has a discussion of
possible semantic breakpoint locations for statements whose generated code is discontiguous. The view taken
in this work is that the best breakpoint location for a programming language construct is the location that
corresponds most closely to the source level view of the program. The breakpoint location for a statement
should be the address of the instruction that most closely reflects the effect of the statement on user-visible

entities (program variables and control flow). For each construct in a programming language, the breakpoint

12 There are circumstances under which a syntactic breapoint for a statement may be undefined. Section 7.4 describes how
syntactic and semantic breakpoint locations are determined under the breakpoint model summarized in Section 2.4.
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Source Code Resulting Instruction Sequence
(Ha=b+ ¢ load b R1
(2)d=e*f; BlﬁloadeR?

mpy f R2

add ¢ R1

store a R1

B2 = store d R2

Figure 2.2: Breakpoint Location Choices for Statement (2)

location (equivalently, the representative instruction) should be chosen appropriately.

For statements involving program-variable updates, the instruction that stores into the variable is the
right choice.'® This is illustrated by figure 2.2, which gives a fragment of source code and an optimized
sequence of instructions that could result. One might want to break at statement (2) and examine a. If the
first instruction generated from a statement is the representative instruction for that statement, a breakpoint
at statement (2) would suspend execution at Bl, resulting in examining a when it has not yet had b + ¢
stored into it. If, instead, the store instruction (B2) is the representative instruction for an assignment, the

breakpoint will be reached at B2 and the store into a will have occurred.™

For control-flow statements (branching or looping constructs), the instruction that accomplishes the
control transfer (typically a conditional branch) is the appropriate choice; it provides a natural sequence
point for program dependences. Consider the code fragment in figure 2.3. The computation of (b + ¢ * d)
can be computed before the assignment into a, however, the jump to the then or else case must follow the

assignment if correctness is to be maintained.

2.4 A Summary of the Proposed Breakpoint Model

A debugger may have the capability of suspending the execution of a program at an arbitrary instruction.
The results described in the remainder of this paper do not hold at arbitrary instructions. The points at which
the results hold are termed wvalid breakpoints and constitute the breakpoint model used in the remainder of
the paper. The set of valid breakpoints is the set of representative instructions as described above: for a
variable modification that appears in the source code, the store into the variable is the associated breakpoint.
An assignment that has side effects will have more than one associated breakpoint. For branching and looping

constructs, the branch instruction is the associated breakpoint. The C statement

13 A “store” in this context need not be a store into a memory location. It can be a computation into a register, or a register
copy, if that is the instruction that accomplishes the action of the source statement.

141f the optimizer has reversed the order of the stores into a and d, then there is no way to choose a representative instruction
for statement (2) that gives expected results; either a or d will have an unexpected value.
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Unoptimized Optimized
Rl=b+c*d
a = X; a = Xj
if (b+c¢*d) if (R1)
e = a; € = aj
else else
e = -a; e = -a;

bl

Figure 2.3: The Branch is a Sequence Point for Dependences

if ((1 = j+4) == k)

has three representative instructions (and therefore three breakpoint locations), one at the store into j, one
at the store into i, and one at the branch to the then or else case. Choosing the store as the breakpoint
location for variable modifications is crucial to the correctness of the work presented in the remainder of the
paper. Additional breakpoints, such as those described by Streepy [Str91], could easily be incorporated into
this model.

The remainder of this paper assumes only syntactic breakpoints are available, because space constraints do
not permit a complete discussion of the additional complexity needed to handle semantic breakpoints. Section
1 briefly discusses the problems raised by semantic breakpoints. However, the proposed breakpoint model
supports both syntactic and semantic breakpoints. This does not increase the number of breakpoint locations,
but 1t affects the mapping between source-level specifications of breakpoints and breakpoint locations. A
source-level specification of a breakpoint is a specification of its type (syntactic or semantic) and a reference
to a statement or side effect within a statement. This work does not specify a user interface, so it does not

describe the form of such a reference.'®

15 An implementation could accept a statement reference (such as a line number) and set breakpoints at every valid breakpoint
contained therein. The user would not need to specify the type of breakpoint nor the side effect within a statement. However,
for some statements the debugger would gain control more than once during the execution of the statement, and the location
at which the debugger gains control may not be the location the user expects. As always, the debugger should provide enough
information that the user is not misled. The advantage of this scenario is that user that is naive about optimization can still
use the debugger effectively. The debugger could even gently educate the naive user about the different types of breakpoints.
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3 Currentness

When the user asks the debugger to display the value of a variable, the user is misled if optimization has
caused the value displayed to be different from the value that would be predicted by examining the source

code.

The actual value of a variable V when execution is suspended at a breakpoint is the value in V'’s storage
location. A variable’s ezpected value when execution is suspended at a breakpoint is the value that would
be predicted by examining the source code and knowing the relevant context, such as within which iteration
of a loop execution is suspended. Abstractly, this would-be-predicted value is the value that would be given

to the variable if the program were running on a machine whose instruction set is the source language.

In unoptimized code, at each breakpoint the expected value of every variable is identical to its actual
value. In optimized code, as we have seen, the actual value of a variable at some point may differ from its
expected value at that point. Hennessy [Hen82] introduced the terms current, noncurrent, and endangered
to describe the relationship between a variable’s actual value and its expected value at a valid breakpoint.
This relationship i1s described on the basis of a static analysis, one that inherently cannot use information

about how the breakpoint was reached.

Informally, a variable V is current at a breakpoint B if its actual value at B is guaranteed to be the
same as its expected value at B no matter what path was taken to B. Examples of current variables are
given in Figures 3.1 and 3.2. All examples use program flow graphs. Nodes in the flow graphs represent
basic blocks and edges represent basic block connectivity. For clarity of exposition, the example graphs
are minimal (for example, there is at most one instruction within a basic block), and thus they describe
programs that do nothing interesting. The language of the examples includes assignment (a = x denotes
the assignment of x into a) and a distinguished symbol bkpt which represents the instruction at which
the breakpoint has been reached. Assignment instructions with the same right hand side assign the result
of the equivalent computations into the left hand side; this is how the relationship between assignments
in the unoptimized code and assignments in the optimized code is shown. While a statement in a source
language that corresponds to either an assignment or a breakpoint may compile to more than a single machine
instruction, assignments and breakpoints appearing in flow graphs are referred to as instructions, because a

single representative instruction is chosen for each statement.

The examples are better understood as flow graph pieces that contain all the relevant information about
a variable at a breakpoint. Thus an example flow graph is representative of the family of flow graphs that
contain the example graph with arbitrary other edges, nodes, and instructions, so long as these additional

elements do not change which definitions of shown variables reach shown points within the example graph.

Figure 3.1 shows the simplest case of a variable that is current at a breakpoint. There is a single
assignment into a prior to the breakpoint, and this assignment is unaffected by optimization. There is only
one way to reach bkpt in both versions of the program, and in both versions, along the only path to bkpt,

a receives its value from the same assignment.
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Unoptimized Optimized
a=Xx a =X
bkpt bkpt

Figure 3.1: Variable a is current at bkpt: the simplest example

Unoptimized Optimized

bkpt bkpt

Figure 3.2: Variable a is current at bkpt in the presence of relevant optimization

A variable may be current at a breakpoint even if optimization has affected assignments into the variable.
Figure 3.2 shows a case in which an assignment into a has been moved. Variable a is still current at bkpt,
because the code motion has not changed the fact that along each path a receives its value from the same

assignment 1n the unoptimized and optimized versions of the program.

V' is noncurrent at B if its actual value at B may differ from its expected value at B no matter what
path is taken to B (though the two values may happen to be the same on some particular input). Figure 3.3
1s a simple example of a noncurrent variable, and could be a result of dead store elimination. There is only
one way to reach bkpt in both versions of the program. There is a single assignment into a prior to the
breakpoint in the unoptimized code, but in the optimized code there is no corresponding assignment into a

along the only path to bkpt.

Code motion can also make a variable noncurrent. In Figure 3.4, the assignment into a reaches bkpt in

the unoptimized code but does not reach bkpt in the optimized code, thus a is noncurrent at bkpt.

V' is endangered at B if there is at least one path to B along which V’s actual value at B may differ from

its expected value at B. Endangered includes noncurrent as a special case.
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Unoptimized Optimized
a=x
bkpt bkpt

Figure 3.3: Variable a is noncurrent at bkpt: the simplest example

Unoptimized Optimized
a=x
bkpt bkpt
a=x

Figure 3.4: Variable a is noncurrent at bkpt due to code motion

In Figure 3.5, along the left-hand path the assignment into a that reaches bkpt in the unoptimized code
corresponds to the assignment into a that reaches bkpt in the optimized code, but along the right-hand path
this is not the case. a is endangered by virtue of the right-hand path, and is not noncurrent by virtue of the
left-hand path.

The use of the terms current and noncurrent extends to particular paths: in Figure 3.5, a i1s current
along the left-hand path and noncurrent along the right-hand path. When execution is suspended at bkpt
during some particular run of the program, a is either current or noncurrent, depending on the path taken
to bkpt. However, static analysis cannot determine which, because knowledge of the path taken is absent. A
debugger that does not save execution history information can do no better than static analysis. Complete
information about the execution path taken could be large, and collecting it could be invasive and time
6

consuming, therefore we do not assume such information is available to the debugger.!

In order to talk about V’s currentness along a particular path, a path must be defined in such a way that

16How a debugger can collect the minimal information needed to determine whether an endangered variable is current or
noncurrent when execution is suspended at a breakpoint is an open question. I term this dynamic currentness determination.



16 3. Currentness

Unoptimized Optimized

bkpt bkpt

Figure 3.5: Variable a is endangered at bkpt

1t makes sense in both the unoptimized and optimized versions of the program, as optimization may modify

the program’s flow graph.

Definition 1: A path pis a pair < py, p, > where p,, is the sequence of basic blocks visited in an
execution of an unoptimized version of a program and p, is the sequence of logical blocks visited

in an execution of an optimized version of the same code on the same inputs.

The correspondence between basic blocks in p, and logical blocks in p, is as follows:
1. A block b, in p, may have no corresponding block in p, if optimization has caused all of

the code 1n b, to be moved or eliminated.

2. Those basic blocks introduced by optimization (such as loop pre-headers) have a single

successor, and such a block together with its successor form a single logical block.

3. There may be one block b, in p, corresponding to a sequence of blocks in p,, on condition
that if the first block in the sequence in p, is entered, execution will always proceed through
the entire sequence. In this circumstance, the single block b, is treated as a sequence of

logical blocks corresponding to the sequence in p,.'"

4. Multiple blocks b1, ba, ..., b, in p, (not necessarily contiguous) may correspond to multiple
instances of a single block b in p,, on condition that one of the b; is in p, iff b is at the
same point in the sequence p,. This is the correspondence needed for, say, loop unrolling
or inlining (procecedure integration).

5. A block by, in p, has one corresponding block b, in p, otherwise.

These correspondences may be combined, so for example, blocks in an unrolled loop may be coalesced.
Many classical sequential optimizations modify the flow graph only in ways that maintain these corre-
spondences. However, there is another correspondence that is desirable:
e Multiple blocks in p, corresponding to multiple blocks in p,, (other than such correspondences derivable
from the definition of a path) ; needed for, say a compiler that recognizes bubblesort and replaces it

with quicksort.

17 A method of embedding the pre-optimization block structure in the post-optimization flow graph is described in Section 4.3.
This method allows the logical blocks within b, to be distinguished.
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The results given in this paper may not hold in the presence of optimizations which require the latter
correspondence, While the bubblesort/quicksort example may seem far-fetched, on the one hand there are
compilers that recognize statement sequences in benchmarks (even across separate compilation units!) and
replace them with fast code, and on the other, debugging a production version of a program written in
a very-high-level language against a working prototype would require such correspondences. We have not

investigated whether parallelizing optimizations require such correspondences.

Parts of a path are of interest, i.e., a path to a breakpoint or a path from one point to another.

Definition 2: A path p to a block B is a subpath of a path p’ where p, is a prefix of p!, ending

in B and p, is a prefix of p/ ending in the logical block corresponding to that occurrence of B.

Definition 3: A path p from block A to block B is a subpath of a path p’ where p,, is a subsequence
of pl, starting at A and ending at B and p, is the subsequence of p/, starting at the logical block
corresponding to that occurrence of A and ending at the logical block corresponding to that

occurrence of B.

I speak loosely of a path to a breakpoint, or a path from one representative instruction to another.
In these cases, I mean a path to the block containing the breakpoint, or from the block containing one

representative instruction to the block containing the other.

Both assignments to a variable and side effects on that variable modify the value stored in that variable’s
location. These terms do not distinguish whether the source code or generated code is under discussion.
Furthermore, they do not distinguish between unoptimized generated code and optimized generated code.
These distinctions are needed in this work because it compares reaching definitions computed on unoptimized
code with reaching definitions computed on optimized code. Henceforth the term assignment refers to

assignments and side effects in the source code.

It is convenient to have a term definition that can denote either an assignment or its representative
instruction in unoptimized code. This does not introduce ambiguity because either one identifies the other,
and the order of occurrence is the same in the source code and unoptimized code generated from it. In
contrast, the term store denotes a representative instruction for an assignment in optimized code. As
with definitions, an assignment corresponds to a store, but unlike definitions, the order of occurrence of

assignments in the source code may differ from the order of occurrence of stores in the machine code.

An optimizing compiler may be able to determine that two assignments to a variable are equivalent
and produce a single instance of generated code for the two of them, or it may generate multiple instances
of generated code from a single assignment. Such optimizations essentially make equivalent definitions (or
stores) indistinguishable from one another. We will be concerned with determining whether a store that
reaches a breakpoint was generated from a definition that reaches the breakpoint. If definitions d and d’ are
equivalent, and store s was generated from d while s’ was generated from d’, the compiler is free to eliminate
s’ so long as s reaches all uses of d’. To account for this, s needs to be treated as if it was generated from

either d or d'.
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Definition 4: A definition of V is an equivalence class of assignments to V occurring in the
source code of a program that have been determined by a compiler to represent the same or
equivalent computations, or the representative instruction generated from any member of such

an equivalence class in an unoptimized version of the program.

Definition 5: A store into V is the set of representative instructions occurring in an optimized
version of a program that were generated from any member of the equivalence class denoted by

a definition.!®

We can now formally define some of the terms described previously.

Definition 6: A wariable V' is current at a breakpoint B along path p iff the store into V' that

reaches B along p, was generated from the definition of V' that reaches B along p,,.

Definition 7: V' is noncurrent at B along p iff the store into V' that reaches B along p, was not

generated from the definition of V' that reaches B along p,.

Definition 8: V' is current at B iff V is current at B along each path to B.
Definition 9: V' is noncurrent at B iff V is noncurrent at B along each path to B.
Definition 10: V' 1s endangered at B if it is noncurrent at B along at least one path to B.

3.1 Assignments Through Aliases

Definitions 6 through 10 assume a single definition or store reaches a breakpoint along any path. Consider
an assignment *P through a pointer (or through an array element where the index is a variable). When
execution 1s suspended at a breakpoint B, * P may be an alias for V. * P must be considered to be a definition
of V that reaches B. If *P is not an alias for V' in some particular execution, the value that V' contains at
the breakpoint came from whatever definition would have reached if *P were not present. Therefore, this
definition must also be considered to reach B. This is treated more formally in [Cop90] pp. 110-112. For
any language that allows such aliasing, the assumption of a single definition reaching along a given path does
not hold.

Our results hold for languages that allow aliasing with one restriction on the compiler. This section
describes the restriction and gives new definitions that take aliasing into account. However, for clarity of
exposition, in the remainder of the paper the simpler definitions are used.

If there are multiple definitions of V' that reach B along p, all of them but one (the one furthest from
B on p) must be assignments through aliases, because other kinds of assignments kill prior definitions. An
assignment through an alias is defined as such by its ambiguity about whether V is assigned into, because if
it can be determined that an assignment through a pointer does assign into V' every time, that assignment
kills prior definitions, and if it can be determined that an assignment through a pointer never assigns into

V', the assignment is not a definition of V.

18 A store is an equivalence class by the same equivalence relation applied to definitions (having been determined by a compiler
to represent the same or equivalent computations).
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A problem can arise if the last store into V' that reaches B along a path p is generated from a definition
of V other than the last that reaches B along p, that is, if the compiler has changed the order of assignments
along p. If V is live at B, changing the order of assignments into V that reach B along p changes the
semantics of the program, so the problem cannot arise. However, if V' is dead (but presumably some other
variable that also could be assigned into by the reaching store is live), the compiler is free to change the
order of such assignments.

The debugger could be burdened with determining that the order of assignments has not been changed,
but it is probably preferable to restrict the compiler so that it does not change the order of such assignments.
This 1s not a severe restriction on the compiler, because the conditions under which it is both correct and
advantageous to make such changes are unlikely to occur often, and it is expensive to determine that these
conditions have occurred. Under this restriction on the compiler, Definitions 6, 7 and 10 must be modified
and one definition must be added as follows to preserve the correctness of our work in the presence of multiple

assignments on a path:

Redefinition 1 (6): V is current at B along path p iff every store into V' that reaches B along p was
generated from a definition of V' that reaches B along p.

Redefinition 2 (7): V is noncurrent at B along p iff no store into V' that reaches B along p was generated
from a definition of V' that reaches B along p.

According to these definitions, V' may at the same time be neither current nor noncurrent along a path.

This happens when an assignment through an alias is eliminated.

Definition 11: V' 1s endangered at B along p if it is neither current nor noncurrent at B along
p.
Redefinition 3 (10): V 1s endangered at B if it is noncurrent or endangered at B along at least

one path to B.

We turn now to the problem of how to determine whether a variable is current.
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bkpt

Figure 4.1: One Definition Reaches But Not On All Paths

4 Currentness Determination

This section describes how to determine which state of currentness a variable is in at a breakpoint — the
problem of currentness determination.

Two sets of reaching definitions are needed to compute a variable V’s currentness at a breakpoint B:

e the set of stores into V that reach B, that is, the modifications to V that actually reach the point at

which execution is suspended, and

o the set of definitions of V' that reach B, that is, the definitions of V' that the user expects to have
reached the point at which execution is suspended.
These sets are called reaching sets.

Section 7 describes the information that is needed to compute these two sets of reaching definitions. A
number of variations on how to compute these sets of definitions exist, trading storage space and one-time
computation costs for speed at the point of the (interactive) query. The two most straightforward are that
they are pre-computed by the compiler or that they are computed by the debugger at the point of the query

about V. Regardless of what tool computes them, we assume in this section that they are available.

4.1 Case Analysis

The problem is straightforward when at least one of the reaching sets is a singleton set, so the analysis of
the problem is based on the cardinalities of the reaching sets. We ensure that the reaching sets be nonempty
(this ensures that some definition (store) for each variable reaches a breakpoint along every path) by defining
the beginning of the program or subroutine, that is, the start node of a connected component of a flow graph,
to be a null definition and a null store of every variable. This also ensures that if only one definition (store)
for a variable reaches a breakpoint, it reaches along all paths to the breakpoint, ruling out the situation
shown in Figure 4.1.

When exactly one store into V' and one definition of V' reach a breakpoint B, V is current if the store
was generated from the definition and noncurrent otherwise. If a single representation is used for stores and
definitions (as described in Section 7) it is sufficient to compare the reaching sets.

When one of the reaching sets is a singleton set and the other is larger, comparing the reaching sets is

still sufficient. Suppose one definition and many stores reach the breakpoint. At most one of the stores was
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One definition, d, reaches B Many definitions reach B
One store, s, reaches B || Was s generated from d7 Was s generated from one
of the definitions that reach?
Yes: current Yes: endangered
No: noncurrent No: noncurrent
Many stores reach B Was one of the stores generated from d7

Yes: endangered
No: noncurrent

Table 4.1: The Simple Cases

generated from the definition, so V is endangered.!® If none of the stores were generated from the definition,
V' is noncurrent. The case in which a single store and many definitions reach the breakpoint is analogous.
These three cases are summarized in Table 4.1.

In the fourth case, in which many definitions of and many stores into a variable reach a breakpoint,
comparison of the reaching sets alone is not sufficient to determine a variable’s currentness. The additional
work that is required to make the determination is described in Sections 4.3 and 4.4. Table 4.2 summarizes
this additional work. Before analyzing this more complex case, the next section briefly mentions how the

debugger can decribe the effects of optimization when a variable 1s endangered at a breakpoint.

4.2 When a Variable is Endangered

When the debugger is asked to display a variable, it determines whether the variable is current. If
the variable is current, the debugger displays its value without comment. If the variable is endangered, in
addition to displaying its value, the debugger can give the user some help in understanding why the value is
endangered. The general flavor of what the debugger can do 1s given by the following sample message that
might accompany the display of a variable a when the optimization shown in Figure 4.2 has occurred.

“Breakpoint 1 has been reached at line 339. a should have been set at line 327. However,

optimization has moved the assignment to a at line 342 to near line 336. a was actually set at
one of lines 327 or 342.”

The description of the effects of optimization will vary in specificity as the effects of optimization vary
in complexity. The information needed to produce such messages can be made available via the reaching
sets. The representation described in Section 7 provides the necessary information. Any representation of a
reaching set element that provides both a source reference (such as file name and line number) and the code

address of the representative instruction will do.

4.3 Multiple Stores and Multiple Definitions

Consider the case in which there are multiple definitions of V' and stores into V' that reach a breakpoint.

If there are any stores that reach that are not generated from definitions that reach, or any definitions that

19Definition 5 defines multiple machine stores generated from a single definition as a single store in our terminology.
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Unoptimized Optimized
a=y 327 a=y 327
336 a=x 336 (342)
bkpt 339 bkpt 339
a=x 342

Figure 4.2: The display of a could be accompanied by this message: “Breakpoint 1 has been reached
at line 339. a should have been set at line 327. However, optimization has moved the assignment
to a at line 342 to near line 336. a was actually set at one of lines 327 or 342.”

reach that did not generate stores that reach, V' is endangered (and possibly noncurrent) at the breakpoint.
Suppose the definitions of V' and stores into V' that reach match perfectly: every store that reaches is
generated from a definition that reaches and every definition that reaches generated a store that reaches.
If V were always current in this situation, comparing the reaching sets would be a complete solution to
the currentness determination problem. Unfortunately, V' may sometimes be endangered (possibly even
noncurrent) under these circumstances. Figure 4.3 gives examples of code motion after which the reaching
stores and definitions match perfectly. In one case, a is current, in another a is endangered, and in a third

a is noncurrent.?® Clearly, comparing the reaching sets is not sufficient to determine a’s currentness.

It is unacceptable to be overly conservative and claim that a variable V is endangered in such a case
because a debugger must provide good behavior on unoptimized code as well as on optimized code. In
unoptimized code, the stores that reach are always exactly those generated from the definitions that reach.
A debugger using such an algorithm on unoptimized code would claim that any variable that has definitions

on more than one path to B is endangered, when in fact no variables are endangered.

Section 4.4 describes how to determine V’s currentness precisely when multiple reaching stores and

definitions match perfectly. The method involves examination of program flow graphs and is potentially

20We assume that code motion may move code up or down but not sideways, that is, the compiler will move code only to an
ancestor or descendant block. This restriction is the reason for the complexity of the noncurrent example.
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Optimized: a is endangered

Unoptimized Optimized: a is current
a=x a=x 4= x
a=y
a=y a=y
Unoptimized Optimized: a is noncurrent
a—=Ww a=Ww
a =X a=y
a=7z
a=y a=z a=x
bkpt bkpt

Figure 4.3: Stores that Reach bkpt are Exactly Those Generated from Definitions that Reach bkpt
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costly, so it may be preferable to use an approximation to V'’s currentness at B that sacrifices accuracy for
ease of computation. Such an approximation should be conservative — it may occasionally incorrectly tell

you V is endangered, but it should never tell you that V' is current when V in fact is not.

There 1s such an approximation, which, if the compiler saves the appropriate information, is simple to
compute. The approximation is: If no relevant code motion has occurred, V is current at B. If such motion
15 found, V may be conservatively clavmed to be endangered at B. Relevant code motion is any motion across

block boundaries of stores generated from definitions that reach B.

Optimization can modify the shape of the flow graph, introducing or deleting node and edges. What
does motion across block boundaries mean when block boundaries are fluid? Block boundaries can be fixed
by the use of markers that are never moved by optimization. A marker i1s placed in the code stream at the
end of each block. Since optimization never moves these markers, in the optimized code they denote the
boundaries of blocks as they existed in the unoptimized code.?! If the markers are uniquely identified, it is
possible to determine which block contains a definition and which block contains the store generated from it;
essentially, this is a method of embedding the pre-optimization block boundaries into the post-optimization
flow graph.

It 1s not known how good this approximation is. However, because no code motion occurs in the absence of
optimization, this approximation works perfectly on unoptimized code. Furthermore, to get to the inaccurate

case there must be
e more than one definition of V reaching the breakpoint,
e more than one store into V' reaching the breakpoint,
e stores that reach must be precisely the stores generated from the definitions that reach, and

e optimization involving code motion across a block boundary of a reaching store must have occurred.
1.5mm]
If, in this case, a conservative response is not deemed sufficient, the graph examinations described in
Section 4.4 can be performed. Table 4.2 summarizes how to determine V’s currentness when multiple

definitions and multiple stores reach the breakpoint.

4.4 When All Else Fails

Let us examine the case in which comparing reaching sets does not give us an answer and relevant code

motion has occurred. We are now assuming the conditions enumerated above.

In general, V is current at B if every path to B that goes through a definition of V also goes through the
store into V' generated from that definition, and neither the definition nor store are subsequently killed. The
embedding of the pre-optimization block boundaries in the post-optimization flow graph from Section 4.3

allows us to proceed as if we have stores and definitions in a single graph.

211f a block is eliminated, its marker will be eliminated as well. This poses no problem, as we look to see what block a store
ended up in, not what ended up in a particular block.
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Many definitions reach B
Many stores reach B || Were any of the stores generated
from any of the definitions?

No: noncurrent

Yes: Were the stores exactly those
generated from the definitions, and
did every definition generate a store?

No: endangered
Yes: Was there any relevant code motion?

No: current
Yes: approximate with endangered, or
perform graph examination

Table 4.2: The Many-Many Case

V is current at B iff for all definition/store pairs d,s where d defines V' and s was generated from d the
following hold:
1. If s has been moved DOWN out of the block containing d then
(a) there is no path to s that did not go through d, and

(b) for all paths from d to B along which d reaches B, s reaches B.

2. If s has been moved UP out of the block containing d then
(a) there is no path to d that did not go through s, and
(b) for all paths from s to B along which s reaches B, d reaches B.

Notice that case 2 above is identical to case 1 with the roles of d and s reversed.

Figure 4.4 attempts to capture the restrictions pictorially on an example in which the store has moved
down. In the figure, d represents a definition of V' and s represents the store generated from it (similarly for
the primed versions).

Let the block containing bkpt be called Bottom. Let the block containing whichever of d and s is further
from Bottom (ignoring any back edges in the graphs) be called Top, and the other be called Middle. Then
we can state the conditions as

(a) there is no path to Middle that did not go through Top, and

(b) for all paths from Top to Bottom along which Top reaches Bottom, Middle reaches Bottom.
This in turn 1s equivalent to

(a) every path from the source of the flow graph to Middle passes through Top, and

(a) every path from Top to Bottom passes through Middle or through a block in which Top is killed.
Condition (a) can be tested by removing Top from the graph and determining whether there is a path from
the source block to Middle (using a standard graph technique such as breadth-first search).

Condition (b) can be tested by removing Middle and all blocks in which Top is killed from the graph and
determining whether there is a path from Top to Bottom. Definitions of V' are killed by other definitions of

V', and stores into V are killed by other stores into V. Note that, assuming Top contains a definition of V,
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bkpt

Figure 4.4: Paths if V is Current. Definitions of V' are represents by d, d’, and d’/; s and s’ represent
stores respectively generated from them.

removing every other block containing a definition of V' will give the same results as removing just those on
paths from Top to Bottom.
Thus V'’s currentness at B can be precisely determined in all circumstances, but in some cases an

examination of the flow graph must be made.
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5 Proof of Correctness

This section offers proofs of correctness of the case analysis summarized in Tables 4.1 and 4.2, with the

exception of the graph examination.

5.1 Notation

d denotes a definition and s denotes a store. D denotes the set of definitions of a variable V' that reach

a breakpoint B, and S denotes the set of stores into V' that reach B.

An equality test cannot compare a definition with a store, because they are two different types of entities.
The operator =, which represents the generates or generated from relation, is used to compare definitions

with stores:
Definition 12: d=s means s was generated from d.??
The domain of = extends to sets of definitions and stores:
Definition 13: D=5 means that |D| = |S| and each s € S was generated from a distinct d € D.

¢ maps a definition to the store it generates or a store to the definition it was generated from and then

assert set membership:

Definition 14: déS means the store generated from d is in S and s€ D means s was generated

from a definition in D.

Finally, A 1s used to describe the two sets that result from the intersection of a set of definitions with a

set of stores:
Definition 15: SaD = 8', D' which are maximal sets such that S" C S, D' C D, and D'=5".

Clearly |S'| = |D'|,s0 5" and D’ are empty is written SAD = @ (no s € S was generated from any d € D).

5.2 Correctness

Table 5.1 is a combination of Tables 4.1 and 4.2 using the notation defined in this section. This section

provides proofs of the assertions in the table, excepting the case requiring graph examination.

Theorem 1: Table 5.1 correctly determines the currentness of a variable V at a breakpoint B, excepting the

case requiring graph eramination.

The four entries in Table 5.1 are mutually exclusive and exhaustive. It suffices to prove that each entry
is correct. The proof is by case analysis where each case corresponds to an entry in Table 5.1. In the proof,

the cases are distinguished by the cardinalities of the reaching sets D and S.

221n an implementation, we suggest representing a definition and the store generated from it as one unit, which allows equality
to be used to compare a definition with a store.
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Definitions of V' that reach B

One (d) Many (D)
One (s) d=s7 seD?
Yes: current Yes: endangered
No: noncurrent No: noncurrent
Many (S) || desS? SaD =07

Yes: endangered | Yes: noncurrent
No: noncurrent No: S=D7?
No: endangered
Yes: Was there relevant code motion?
No: current
Yes: approximate with endangered, or
perform graph examination.

Table 5.1: The Cases Revisited

Let D = {d} and S = {s}. By the definitions of D and S, d reaches B along all paths to B, and s

reaches B along all paths to B.

(a) d=s: V is current at B by Definition 8.

(b) d#s: V is noncurrent at B by Definition 9.

2. |D]=1and |S]|>1
Let D = {d} and let s be the store into V such that d=s.

(a) s €5

= Ap a path along which s reaches B. V is noncurrent at B by Definition 9.

(b) se S

= dp along which s reaches B. d reaches B along p. V is not noncurrent at B by Definition 9.

S| >1 = 3¢ €S, 5 #s = d#s. Let p be a path along which s’ reaches B. p exists

by definition of S. d reaches B along all paths, and thus along p. V is endangered at B by

Definition 10.

3. |S|=1and |D|>1

This case 1s 1dentical to case 2 with the roles of S and D reversed.

4. |S| > 1land |D| > 1
This case is further divided by how well the definitions in D match the stores in S:

(a) SAD = (No store in S is generated from a definition in D)
=>Vse S, deD, d;ﬁs = Ap along which d, € D reaches B, s, € S reaches B, and dp=s,. V is

noncurrent at B by Definition 9.
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(b)

SAD # 0 and S£D
(At least one store in S is generated from a definition in D, but not all stores in S and definitions
in D can be paired such that the store is generated from the definition)
S;ZD = either
i. 3s € S such that Vd € D, d#s
Let p be a path along which s reaches B, and let d, € D be the definition that reaches B
along p. dp;Zs = V is endangered at B by Definition 10. Or

ii. 3d € D such that Vs € S, d#s
Let p be a path along which d reaches B, and let s, € S be the store that reaches B along p.
d;ésp = V is endangered at B by Definition 10.
Furthermore, SaD # § = Js € S, d € D such that d=s. The stronger claim that V is noncurrent
at B may not hold because there may be a path along which both s and d reach B. Figure 5.1 is
an example of such a situation. The claim that V' is not noncurrent at B may also not hold: there
may be no path along which both s and d reach B. Figure 5.2 is an example of such a situation.
D=5
We have seen in Figure 4.3 that in this case V' may be current, endangered, or noncurrent at B.
In the absence of relevant code motion, V' is current at B. That 1s, if D=S and no store into V'
that reaches B has been moved out of the basic block containing the definition of V' from which

that store was generated, V' is current at B.

Assume D=S and no relevant code motion has occurred. Assume further that V is endangered
at B. There must be some path p to B along which V is noncurrent. Let d € D be the definition
that reaches B along p. Js € S such that d=s. p comprises a sequence of blocks by, b1, ..., b,
with d in b; and B in b,,. By assumption, s is in b;.
i by =b,
Since s and B are in the same basic block, there is no other path by which s can reach B.
Since D=9, s reaches B = s reaches B along p = V 1is current along p by Definition 6, a
contradiction.
. b; # by
s and B are in distinct basic blocks. s must reach the exit of b; because if it did not, it could
not reach B along any path, yet s € S implies that it does reach B. V is noncurrent at B
along p = 3s’ € S such that s’ reaches B along p, s’ # s, and s’ kills s along p. s’ must
be in some block b; along p, ¢ < j <= n. Since D=5, 3d’ € D such that d'=s’. However,
d' cannot be in b; or it would have killed d along p, but by assumption d reaches B along p.

Therefore s’ has been moved out of the basic block containing d’, a contradiction.
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bkpt bkpt

Figure 5.1: SAD # @ and S;ZD and a is Current at bkpt along the Leftmost Path

bkpt bkpt

Figure 5.2: SAD # § and S;ZD and a is Noncurrent at bkpt
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6 When a Breakpoint has Moved

Semantic breakpoints introduce additional complexity into currentness determination. This section
merely outlines the difficulties. For a more complete discussion of currentness at semantic breakpoints,
see [Cop92].

When a semantic breakpoint is reached, the point in the optimized code at which execution is suspended
(and the user examines a variable’s actual value) may not correspond to the point at which the user expects
execution to be suspended (the point at which the user intended to examine the value). There are four
distinct situations that can arise with a semantic breakpoint for a statement S

1. The code for S has not been moved. The semantic breakpoint is the same as the syntactic breakpoint,

and no additional work is required for currentness determination.

2. The code for S has been moved. In a particular execution, the semantic breakpoint location and the

syntactic breakpoint location are reached along the same path.

3. The code for S has been moved. In a particular execution, the syntactic breakpoint location is reached
but the semantic breakpoint location is not. This is a source of unexpected behavior, but no additional
work is required for currentness determination because the user never gets to ask for the value of a

variable at the semantic breakpoint.

4. The code for S has been moved. In a particular execution, the semantic breakpoint location is reached

but the syntactic breakpoint location is not. This is unexpected behavior already.

In situations 2 and 4 we need to be able to compare the actual value of a variable at a representative
instruction R (the semantic breakpoint, where the user examines the value) with its expected value at a
representative instruction R’ # R (the syntactic breakpoint, where the user expects to be examining the
value). Our current definitions of current, noncurrent, and endangered do not cover these situations.

There is a further problem. Consider Figure 1.1. For bkpt to be reached in the optimized code, the right-
hand paths must be taken. If the unoptimized code is run on the same inputs, the right-hand paths will be
taken, so optimization does not affect the value a will have at the semantic breakpoint for bkpt: a is current
at bkpt. However, the reaching sets are D = {a=x,a=y,a=z} and S = {a = x,a = y}. Comparing the
reaching sets according to Table 5.1 gives the conclusion that a is endangered at bkpt. Thus the reaching

set comparison that is adequate for syntactic breakpoints is inadequate for semantic breakpoints.
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Unoptimized

Optimized

bkpt

bkpt

Figure 6.1: Oddly enough, a is current at bkpt
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7 Reaching-Definitions Support

The tool that computes the sets of definitions and stores that are needed to compute a variable’s
currentness needs information about the definitions and stores and control flow of the program. If the
compiler 1s the tool that performs these computations, existing compiler data structures can be modified
for the task. In order to abstract the information needed solely for this task, this section assumes that
the compiler will provide the necessary information to the debugger, and the debugger will perform the

reaching-definitions computation.

7.1 Debug Records

The compiler provides the debugger with information about every declaration and statement in the
program. The collection of information about a statement (declaration) is called a debug record. Each debug
record for a statement represents a breakpoint location. Each debug record for an assignment represents (in
addition to the breakpoint location) a definition and the store generated from it. A distinct debug record is
produced for each modification to each program variable, so more than one debug record is produced for a

statement that has side effects.?® For example, the following code causes 6 debug records to be produced:

int a, b, c; (Produces three declaration debug records.)
a = 0; (Produces one statement debug record.)
b = ct++; (Produces two statement debug records: one for the

assignment into b, and one for the side effect on c.)

A debug record R for a statement S has the following fields:

Var(R) — a variable name,

Sref(R) — a source reference,

Cref(R) — a code reference,
Moved(R) — a flag, and

e Fquiv(R) — an equivalence class identifier.

The Var field identifies the variable assigned into by S. If S does not assign into a variable, the Var field
is null. The Sref field contains the source reference for S (file name and line number, and perhaps which
statement on the line, if the debugger is to handle lines with multiple statements). The Cref field contains
the address of the representative instruction for S (the breakpoint location for 5).2* 1If no instruction is
generated for S, the Cref field is null, unless the debug record describes a declaration, in which case the Cref

field contains the address of the instruction that allocates storage for the declared variable.?® The Moved

23More than one debug record is produced for a statement that has more than one location at which user-visible changes
occur. This is true of statements with side effects. It is also true of many loop constructs. A C for loop may have three places
of interest to the user corresponding to its three expressions, and each needs a debug record if the debugger is to be able to
break at each one.

24 The Crefis not the address of the storage location for a variable (a data address), but rather the address of the representative
instruction of a statement (a code address).

25The Cref for the declaration of a static variable contains the start address of the program.
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field encodes whether the code for S has been moved, and if so, whether it has been moved out of the basic
block in which it originated. The Egquiv(R) field records the equivalence class that a definition (Sref) and
store (Cref) fall into.?%

7.2 Flow Graphs

The compiler also provides the debugger with two representations of the control flow of the program.

A flow graph representing the basic block structure before optimization is called the source graph. Each
node in the source graph corresponds to a basic block and contains a sequence of (pointers to) debug
records®?, one for each statement and side effect within the block in the order in which they occur in the
unoptimized code.

A flow graph representing the basic block structure after optimization is called the object graph. Each
node in the object graph corresponds to a basic block and contains a sequence of (pointers to) debug records
that corresponds to the sequence of statements and side effects that have ended up in that block. The
basic block structure prior to optimization is embedded in the object graph through the use of markers
that are never moved by optimization. A marker is placed in the code stream at the end of each block
in the source graph before optimization is performed. The object graph is a copy of the source graph on
which optimizations have been tracked. In the object graph the markers denote the pre-optimization block
boundaries.

Control flow information can be used by a debugger for purposes other than currentness determination.
For example, statement stepping (often called source-line stepping) is one of the more difficult capabilities
to implement because it is difficult to determine where the next breakpoint(s) should be set. With control
flow information, this problem becomes simple. Using the program flow graphs and debug records described
in this section, the current breakpoint is at the Cref of the debug record R for the current statement. If R
is not the last record in its block in the object graph, the next breakpoint can be set at the Cref of the next
record. If R is the last record in its block, breakpoints can be set at the Crefs of the first record of each

successor block.

7.3 Reaching Definitions

The flow graphs are used to compute reaching definitions. We are interested in determining, for each
statement that defines a variable V' and reaches a breakpoint B in the the unoptimized code, whether its
corresponding object code reaches B. Both statement and breakpoint locations are represented with debug
records, so the desired determination can be made by computing which debug records representing definitions

of V' (or stores into V') reach the debug record representing the breakpoint B.

261f the compiler has determined that a set of definitions represents the same computation, all of the stores generated from
those definitions represent the same computation, thus the debug record, which represents both a definition and a store, needs
only a single field to represent both the equivalence class that the definition falls into and the equivalence class that the store
falls into.

27 There is a single set of debug records that is shared between the two flow graphs, however, for all intents and purposes the
nodes are treated as if they contain debug records as opposed to pointers to records.
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These reaching definitions are computed across, as well as within, basic blocks, so those records that
must reach B (such as definitions occurring prior to B in the same block) can be distinguished from records
that may reach B (definitions occurring on some but not all paths to B). The set of definitions that may
reach B is computed based on the Sref field of the debug records in the source graph. The set of stores that
may reach B is computed based on the Cref field of the debug records in the object graph.

The beginning of the program or subroutine (the start node of a connected component of a flow graph)
constitutes a null definition and store of each variable. This ensures that some definition (store) for each
variable reaches B along every path. This also ensures that if only one definition (store) for a variable reaches
B, it reaches along all paths to B.

In the absence of pointers and array references, reaching definitions could be computed using a standard
algorithm (Aho and Ullman [AU77]). This would produce at most one definition of a given variable at the
exit of a block. Using such an algorithm, an assignment through a pointer or array reference would kill all
pending definitions. This would destroy information required for currentness determination. In the presence
of pointers and array references, reaching definitions must be computed using a modified algorithm in which
an assignment through a pointer or array reference does not kill previous definitions, thus more than one

definition of a given variable may reach any point, including the exit of a block.

7.4 Semantic and Syntactic Breakpoint Locations

Under the representation described in Sections 7.1 and 7.2, the semantic breakpoint location for a

statement is the Cref of the debug record for that statement.

The syntactic breakpoint location L for a statement S is determined as follows:

If the representative instruction for .S has not been moved
L 1s the address of that instruction.
If that instruction has been moved
if the block that originally contained it does not appear at all in the optimized code,
L 1s undefined,
else if any representative instructions for statements following S within the block containing S
have not been moved,
L is the location of the first of these,

else L is the location of the last representative instruction within the block containing S
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8 Summary

It is not always possible to completely debug an unoptimized version of a program. Examples have been
given in which optimization changes the behavior of a program even when the optimizer is correct. This is

not a new result, but such examples have not previously appeared in the literature.

The mapping between statements and breakpoints used for unoptimized code is problematic for optimized
code. If such a mapping is used by a debugger on optimized code, the debugger is likely to mislead the
debugger user. This paper has described a mapping between statements and breakpoints that provides a
reasonable approximation to what the naive user would expect when used on optimized code (and provides
exactly what the naive user would expect on unoptimized code). The mapping allows the debugger user to
break where a statement occurs or execute a statement at a time on a program in which statements may have
been reordered and instructions generated from a statement are not necessarily contiguous. The mapping
enables debugger behavior that is more closely approximates the behavior provided by current debuggers on
unoptimized code than other proposed mappings, and thereby neither requires debugger users to be experts

on optimization nor requires users to modify their debugging strategies.

Using any such mapping, optimization can cause a debugger to provide an unexpected and potentially
misleading value when asked to display an endangered variable. A debugger must be able to determine
the currentness of a variable if it is to provide truthful behavior on optimized code. Hennessy [Hen82]
[CM91a] and Coutant et al [CMR88] give solutions to special cases of the currentness determination problem.
Table 8.1 summarizes a general solution to the problem for sequential optimizations. These results hold in
the presence of both local and global optimizations and require no information about which optimizations
have been performed.

This paper has described the information a compiler must make available to the debugger for this task,
as well as the nature of the information the debugger can provide to the debugger user when the user asks
for the value of an endangered variable.

For most optimizations, the results described in this paper are precise (i.e., a variable claimed to be
current is current, a variable claimed to be endangered is endangered, etc.) except when a variable is current
along all feasible paths but noncurrent along some infeasible path, in which case it will be claimed to be
endangered.?®

For some optimizations, the results may be conservative. These optimizations are those that duplicate
code in such a manner that the duplicates are not in the same equivalence class (two duplicates do not
represent equivalent computations, as in loop unrolling).?® Table 8.2 lists representative optimizations and
shows whether the results are precise or conservative on them.

The method to precisely determine a variable’s currentness in the most difficult case may be expensive

(see Section 4.4). Section 4.3 describes an inexpensive conservative approximation to the precise result in

28 An infeasible path is one that cannot be taken in any execution.

29 Strictly speaking, we have no results for such optimizations, as Definitions 1, 4 and 5 are not strong enough to cover such
optimizations. However, given a duplicated store s, assuming s&D gives reasonable but conservative results.



8. Summary

One definition, d, reaches B

Many definitions reach B

37

One store, || Was s generated from d7 Was s generated from one

s, of the definitions that reach?
reaches Yes: current Yes: endangered

B No: noncurrent No: noncurrent
Many Was one of the stores generated from d7 | Were any of the stores generated
stores from any of the definitions?
reach Yes: endangered No: noncurrent

B No: noncurrent Yes: Were the stores exactly those

generated from the definitions, and
did every definition generate a store?

No: endangered
Yes: Was there any relevant code motion?
No: current

Yes: approximate with endangered, or
perform graph examination

Table 8.1: The Four Cases

Optimization

Algorithm Accuracy

common subexpression elimination

Generally Precise

cross-jumping

Generally Precise

instruction scheduling

Generally Precise

other code motion

Generally Precise

partial redundancy elimination

Generally Precise

loop reordering

Generally Precise

induction-variable elimination

Generally Precise

loop fusion

Generally Precise

loop unrolling

Conservative

inlining (procedure integration)

Conservative

Table 8.2: Precision of Results on Representative Optimizations — Generally Precise means precise
except when a variable is current along all feasible paths but noncurrent along some infeasible path.

this case.

Once a debugger user has found a suspicious variable (one that due to program logic, not optimization,

contains an unexpected value), the next question is ‘How did it get that value?’. The sets of reaching

definitions used for currentness determination can be used in a straightforward manner to answer this

question (‘x was set at one of lines 323 or 351°). One direction for future research is how to efficiently be

even more helpful; how to give responses such as ‘x was set at line 566 to foo(y,z). At that point, z had
the value 3.141 (set at line 370) and y had the value 17; y was set at line 506 to y+bar(w).”. This was
called flowback analysis by Balzer [Bal69], and has been investigated by others ([MC91], [Kor88]); reaching
sets may be adaptable to this purpose.

Another research direction is dynamic currentness determination, which is how a debugger can collect
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the minimal execution history information needed to determine whether an endangered variable is current or
noncurrent when execution is suspended at a breakpoint. Useful in conjunction with this or as an alternative
is recovery, which is to have the debugger compute and display the value that a variable would have had if
optimization had not endangered the variable. And finally, an exciting possibility is extending the breakpoint

model and currentness determination techniques to parallel code, where noncurrent variables are common.
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