
BORG: A Recon�gurable Prototyping Boardusing Field-Programmable Gate ArraysPak K. Chan�, Martine D.F. Schlagy, and Marcelo MartinzxComputer EngineeringUniversity of California, Santa CruzSanta Cruz, California 95064AbstractField-Programmable Gate Arrays (FPGA) pro-vide a medium to accelerate the process of proto-typing digital designs. For designs with multipleFPGAs that need to be connected together, thebottleneck is now the process of wire-wrapping,bread-boarding, the construction of a printedcircuit board, or the construction of a multi-chipmodule, which cannot be carried out until allFPGA designs are routed. It is because lockingor preassigning I/O blocks often prevent FPGAplacement/routers from completing the routing.We exploit the reprogrammability of FPGAsand use them for routing. To experiment withthe idea, we constructed a PC-based prototypingboard that contains two \user" FPGAs, tworouting FPGAs, and a �fth FPGA that imple-ments the glue logic to the PC bus. To facilitatethe design process using the new prototypingboard, we developed algorithms and tools thatautomatically con�gure the routing FPGAs. Wedescribe the options that we have examined dur-ing the development of this board, and how wearrive at some design decisions.The toolset, user FPGAs, and the routingFPGAs and the reprogrammability of the FP-GAs serve to further reduce the time/cost ofconstructing prototypes using FPGAs.�Supported in part by NSF Grant MIP-9111607ySupported in part by NSF Presidential Young Inves-tigator Grant MIP-8896276zSupported by NSF REU Supplement 1991xThe authors are grateful to the support and cooper-ation of Xilinx, Inc.

1 Programmable interconnectPrototyping is a critical phase of the design ofa digital system. The traditional techniques ofconnecting the parts in the prototype are wire-wrapping and bread-boarding, which are oftentime consuming and error-prone.To alleviate this problem, some prototypingboards have PC-interface logic built-in to theFPGA prototyping boards [1, 2]. Connectionsbetween parts on the prototyping boards stillrequire manual wiring.We desire a prototyping board with electron-ically programmable interconnect between theparts. The board has the bene�ts of being easilyalterable, reprogrammable, automatic, reusable,and correct.Consider a prototype that requires two userFPGAs `X1' and `X2', as shown in Figure 1.Physical Wires X2X1Figure 1: Two FPGAs need connections usingexternal wiresOne way of introducing programmable inter-connect between `X1' and `X2' is having a pro-grammable chip `R' with double the amount ofI/Os available inserted between `X1' and `X2'.This is depicted in Figure 2. For example, if`X1' and `X2' each has 84 pins, then `C' hasto have at least 168 pins (actually, the nextavailable standard package is 175 pins). Thisscheme doesn't really solve the problem, thereare two arguments against it. First, why not1



simply use the 168-pin package to accommodatethe logic of `X1' and `X2'? Second, it won't workif each of `X1' and `X2' has 168 pins.ROn-chip wiresPhysical Wires Physical WiresX1 X2Figure 2: Two FPGAs need connections usingon-chip wires, using one big chip for interconnectWe examine the idea of using two routing chips`R1' and `R2' to serve as interconnects between`X1' and `X2', as shown in Figure 3. In thiscase, all chips have the same number of I/Opads. The main issue is to determine the physicalwiring pattern among the chips. We consider twopossibilities:By faces: The pins on the west face of `X1'are physically connected to correspondingpins on the east face of `R1', and so forth,forming a torus of connections among thefaces.Alternating: The even number pins of `X1' arephysically connected to the even numberpins of `R1', the odd number pins of `X1'are connected to the odd pads of `R2'.So far, we have simpli�ed the problem some-what. In fact, the routing chip `R1' needs tospend some pins to interact with the PC, and astatic RAM is attached to `R2'. This precludesthe full connectivity between `X1' and 'X2'. Thisissue will be addressed in the next section.
R2R1 Physical WiresPhysical WiresX1 X2On-chip wiresOn-chip wires

Figure 3: FPGAs need connections using on-chipwires, using two chips for interconnect

2 Algorithms for padre-assignmentIn the BORG design process, the �nal stepof wire-wrapping or bread-boarding the connec-tions between the user FPGAs, the PC interfaceand peripheral devices, is replaced by the taskof con�guring the two routing FPGAs to achievethese interconnections.Unfortunately, since the pins of the FPGAsare hardwired on the board, some of the padassignments produced by the place and routetools may need to be altered. For the routingFPGAs to achieve the required interconnects,1. each net assigned to pads on both userFPGAs must be assigned to pads wired tothe same routing chip, and2. each net between the user FPGAs and thePC or a peripheral device, must be assignedto a pad wired to the appropriate routingFPGA for the host or peripheral deviceconnection.The nets must �rst be assigned to pads of theuser FPGAs in a manner consistent with thesetwo conditions, for it to be possible to con�gurethe two routing FPGAs to achieve the requiredinterconnect. Hence it might be necessary toreassign the user FPGA pads to meet conditions1 and 2. This reassignment of pads on thetwo user FPGAs must be handled carefully asrelocating nets can easily make a dense designunroutable.Pad assignment (or pin assignment) can berepresented as a matching problem on a bipartitegraph where the nets and pads are the vertices,and there is an edge between a pad and anet if the net can be assigned to that pad,as shown in Figure 4. A maximum matchingfor this graph provides a pad assignment foreach net, if there is one. When more thanone maximum matching is possible, weights canbe assigned to the edges in such a way that�nding a maximum weight matching yields apad reassignment whose total cost is minimized.This problem (also know as the linear assignmentproblem) is well understood and can be solvedboth by linear programming and specializedalgorithms [3, 4].Assigning nets to pads of the two user FPGAsin order to satisfy conditions 1 and 2 aboveinvolves solving two such bipartite matching2



MatchingPadsNetsFigure 4: General pad assignment problem andmatching on a bipartite graphproblems, one on each user FPGA with theadditional constraint:If all pads wired to `R1' are of color 1and those wired to `R2' are of color 2,then each net must be assigned to padsof the same color.Nets which must be assigned to a pad wired toa speci�c routing FPGA can be easily handledin this framework by merely deleting edges fromthe net's vertex to pads of the wrong color. Wecall these nets forced nets.Unfortunately, the algorithms for the bipartitematching problem do not readily extend to thisproblem. The basic technique of searching for anaugmenting path fails since moving a net to a padof a di�erent color may also require moving thenet to a pad of the other color on the other userFPGA. Hence augmenting a matching, in thiscase, consists of �nding augmenting subgraphsin both bipartite graphs in which neither or bothpads of each net switch color except for the netswhich originally did not satisfy condition 1 or 2,see Figure 5.The bipartite matching problem can also besolved using network ow techniques. How-ever, adapting this view to solve our problemyields a two-commodity ow problem. In generalgraphs, the two commodity ow problem is NP-complete. Whether or not there is a polynomialtime to solve it for the shallow graphs corre-sponding to our matching problem is open. Ourapproach has been to look for a limited type ofaugmenting subgraphs to improve the currentmatching. The types of subgraphs consideredare:Sliding path: this is an augmenting path con-sisting of pads all of the same color andending with a currently unassigned pad.Figure 6 illustrates the pad reassignmentusing this technique. The arrows indicatethe direction of reassignment.

AFTERBEFORENetsPadsPads UnassignedPadsFigure 6: Sliding pathq4q3q1q2 p4p3p2p1PadsNetsPads BEFORE AFTERFigure 7: Ping-pong subgraphPing-Pong subgraph: this is an augmentingsubgraph formed by a sequence of pairs ofpads alternating between the two user FP-GAs which can exchange nets. Speci�cally,a sequence of distinct padsp1; p2; q1; q2; p3; p4; q3; q4; :::such that for each i, 1) p2i�1 and p2iare pads of the opposite color which canexchange net assignments, 2) q2i�1 and q2iare pads of the opposite color which canexchange net assignments, 3) p2i and q2i�1are assigned to the same net, and 4) q2iand p2i+1 are assigned to the same net.The path must terminate either with anunassigned pad, a pad whose net is currentlyassigned to two pads of opposite color, ora sequence of pads forming a sliding pathof the right color. Figure 7 illustrates apad reassignment using this technique. Thedouble arrows indicate the swap.Using only ping-pong subgraphs and providingeach pad with a neighbor of the opposite colorto swap nets with, guarantees the existence ofa legal net assignment when there are no forced3



p6p5p4p3p2p1
q6q5q4q3q2q1R1R2X1 X2 PadsNetsPadsFigure 5: Pad reassignment problem as dual matching on bipartite graphsnets. This observation supports the use of thealternating wiring board as described below.Reassigning the pads on a densely populatedFPGA may make it di�cult to re-route. To min-imize the movement of pads, our algorithm startswith the initial pad assignment and attempts toaugment it progressively by allowing swaps ofincreasing distance. This is controlled by con-structing the bipartite matching graphs basedon a swap-window parameter. The parametercan be set and increased independently on thetwo user FPGAs. This can be used to limit padmovement on one FPGA more than the otherif it will be more di�cult to re-route than theother. Once an assignment satisfying conditions1 and 2 has been found, the pad assignment canbe improved by performing a weighted bipartitematching among all pads of the same color.We experimented with two di�erent boardwirings and three designs. The two board wiringcon�gurations we considered were:Face aligned pads: The north and south facesof the user FPGAs are assigned to the northand south faces of the two routing FPGAs,and etc, forming a torus.Alternating pads: On each user FPGA theusable pads alternate color.Note that each of these board wiring con�gu-rations actually provide the symmetric con�gu-ration as well since the the two user FPGAs areinterchangeable. We tried three designs whichhad the characteristics illustrated in Table 1.The designs using XC3020pc84 packages didnot require any placement iterations; the origi-nal placements were simply rerouted using the

new pad assignments. The XC3042pc84 designrequired both placement and routing iterations.This design was di�cult to place and route evenwhen the pad assignment was not �xed.3 Features of BORGWe highlight some features available in the newprototyping board:1. 7-segment displays, LEDs, push buttons2. stand-alone mode with serial download3. standard 8-bit PC bus I/O interface4. 25-pin external connectors (not available inthe wire-wrapped prototype as shown inFigure 8)5. small sea of holes proto-area for additionalparts (not available in the wire-wrappedprototype as shown in Figure 8)6. dual-ported 8K static RAMA wire-wrapped prototype of the prototypingboard is shown in Figure 8. A 84-pin FPGAXC3020 `X0' serves as the \glue" logic betweenthe PC. It is also responsible for supplying thebit streams to con�gure the other four FPGAsusing the peripheral mode [5].AcknowledgementsThis work is supported in part by the NationalScience Foundation. The authors are gratefulto Xilinx Inc., DATA I/O Corporation, OrCAD,and ALDEC for their generous support anddonations. We are also indebted to Bill Stevensfor his technical support throughout the project.4



package CLBs IOBs forced swap-window place & routing iterationsnets alt. face alt. faceamU1 XC3020pc84 43 27 6 1 6 0,1 0,1amU2 XC3020pc84 62 21 0 1 6 0,2 0,1rjU1 XC3020pc84 41 30 10 1 6 0,1 0,1rjU2 XC3020pc84 48 20 0 1 6 0,1 0,2maU1 XC3020pc84 58 40 9 4 8 0,1 0,1maU2 XC3042pc84 116 52 21 4 8 5,1 6,2Table 1: Results of two di�erent wiring con�gurations
PROM PBPBconnectorX1 X2R1R2 SRAM3020X0Figure 8: A prototype of the BORG Prototyping boardReferences[1] A. El Gamal, \Protozone: The PC-BasedASIC Design Frame, User's Guide," Tech.Rep. SISL90-???, Stanford Information Sys-tems Laboratory, Stanford University, Aug.1990.[2] F. Pirri and O. Bigalli, \A hardware pro-grammable generic interface for the IBMPC," tech. rep., Dipartimento Di Ingegne-ria Elettronica of the Universita' Di Firenze,Italy, Sept. 1990.[3] C. H. Papadimitriou and K. Steiglitz, Combi-natorial Optimization: Algorithms and Com-plexity. Prentice Hall, 1982.[4] B. Preas and M. Lorenzetti, Physical DesignAutomation of VLSI Systems. BenjaminCummings, 1988.

[5] XILINX: The Programmable Gate ArrayData Book. 2100 Logic Drive, San Jose,CA 95124, 1991.
5


