BORG: A Reconfigurable Prototyping Board
using Field-Programmable Gate Arrays

Pak K. Chan? Martine D.F. Schlag! and Marcelo Martin*
Computer Engineering
University of California, Santa Cruz

Santa Cruz, California 95064

Abstract

Field-Programmable Gate Arrays (FPGA) pro-
vide a medium to accelerate the process of proto-
typing digital designs. For designs with multiple
FPGAs that need to be connected together, the
bottleneck is now the process of wire-wrapping,
bread-boarding, the construction of a printed
circuit board, or the construction of a multi-chip
module, which cannot be carried out until all
FPGA designs are routed. It is because locking
or preassigning I/0O blocks often prevent FPGA
placement /routers from completing the routing.

We exploit the reprogrammability of FPGAs
and use them for routing. To experiment with
the idea, we constructed a PC-based prototyping
board that contains two “user” FPGAs, two
routing FPGAs, and a fifth FPGA that imple-
ments the glue logic to the PC bus. To facilitate
the design process using the new prototyping
board, we developed algorithms and tools that
automatically configure the routing FPGAs. We
describe the options that we have examined dur-
ing the development of this board, and how we
arrive at some design decisions.

The toolset, user FPGAs, and the routing
FPGAs and the reprogrammability of the FP-
GAs serve to further reduce the time/cost of
constructing prototypes using FPGAs.

*Supported in part by NSF Grant MIP-9111607

tSupported in part by NSF Presidential Young Inves-
tigator Grant MIP-8896276

tSupported by NSF REU Supplement 1991

§The authors are grateful to the support and cooper-
ation of Xilinx, Inc.

1 Programmable interconnect

Prototyping is a critical phase of the design of
a digital system. The traditional techniques of
connecting the parts in the prototype are wire-
wrapping and bread-boarding, which are often
time consuming and error-prone.

To alleviate this problem, some prototyping
boards have PC-interface logic built-in to the
FPGA prototyping boards [1, 2]. Connections
between parts on the prototyping boards still
require manual wiring.

We desire a prototyping board with electron-
ically programmable interconnect between the
parts. The board has the benefits of being easily
alterable, reprogrammable; automatic, reusable,
and correct.

Consider a prototype that requires two user
FPGAs ‘X1’ and ‘X2’ as shown in Figure 1.

Physical Wires

X1 X2

Figure 1: Two FPGAs need connections using
external wires

One way of introducing programmable inter-
connect between ‘X1’ and ‘X2’ is having a pro-
grammable chip ‘R’ with double the amount of
I/Os available inserted between ‘X1’ and ‘X2’.
This 1s depicted in Figure 2. For example, if
‘X1’ and ‘X2’ each has 84 pins, then ‘C’ has
to have at least 168 pins (actually, the next
available standard package is 175 pins). This
scheme doesn’t really solve the problem, there
are two arguments against it. First, why not

simply use the 168-pin package to accommodate
the logic of ‘X1’ and ‘X2’7 Second, it won’t work
if each of ‘X1’ and ‘X2’ has 168 pins.

Physical Wires Physical Wires

On-chip wires
- = = = N

- — = —C

X1 TIITLAR X2

Figure 2: Two FPGAs need connections using
on-chip wires, using one big chip for interconnect

We examine the idea of using two routing chips
‘R1’ and ‘R2’ to serve as interconnects between
‘X1’ and ‘X2’; as shown in Figure 3. In this
case, all chips have the same number of I/0
pads. The main issue is to determine the physical
wiring pattern among the chips. We consider two
possibilities:

By faces: The pins on the west face of ‘X1’
are physically connected to corresponding
pins on the east face of ‘R1°, and so forth,
forming a torus of connections among the
faces.

Alternating: The even number pins of ‘X1’ are
physically connected to the even number
pins of ‘R1’, the odd number pins of ‘X1’
are connected to the odd pads of ‘R2’.

So far, we have simplified the problem some-
what. In fact, the routing chip ‘R1’ needs to
spend some pins to interact with the PC, and a
static RAM is attached to ‘R2’. This precludes
the full connectivity between ‘X1’ and ’X2’°. This
issue will be addressed in the next section.

On-chip wires Physical Wires

X1 X2

Z 5,
L

Physical Wires

Figure 3: FPGAs need connections using on-chip
wires, using two chips for interconnect

2 Algorithms for pad
re-assignment

In the BORG design process, the final step
of wire-wrapping or bread-boarding the connec-
tions between the user FPGAs, the PC interface
and peripheral devices, 1s replaced by the task
of configuring the two routing FPGAs to achieve
these interconnections.

Unfortunately, since the pins of the FPGAs
are hardwired on the board, some of the pad
assignments produced by the place and route
tools may need to be altered. For the routing
FPGAs to achieve the required interconnects,

1. each net assigned to pads on both user
FPGAs must be assigned to pads wired to
the same routing chip, and

2. each net between the user FPGAs and the
PC or a peripheral device, must be assigned
to a pad wired to the appropriate routing
FPGA for the host or peripheral device
connection.

The nets must first be assigned to pads of the
user FPGAs in a manner consistent with these
two conditions, for it to be possible to configure
the two routing FPGAs to achieve the required
interconnect. Hence it might be necessary to
reassign the user FPGA pads to meet conditions
1 and 2. This reassignment of pads on the
two user FPGAs must be handled carefully as
relocating nets can easily make a dense design
unroutable.

Pad assignment (or pin assignment) can be
represented as a matching problem on a bipartite
graph where the nets and pads are the vertices,
and there is an edge between a pad and a
net if the net can be assigned to that pad,
as shown in Figure 4. A maximum matching
for this graph provides a pad assignment for
each net, if there is one. When more than
one maximum matching is possible, weights can
be assigned to the edges in such a way that
finding a maximum weight matching yields a
pad reassignment whose total cost is minimized.
This problem (also know as the linear assignment
problem) is well understood and can be solved
both by linear programming and specialized
algorithms [3, 4].

Assigning nets to pads of the two user FPGAs
in order to satisfy conditions 1 and 2 above
involves solving two such bipartite matching

Matching

INET N

Nets 6/8 lolle} i

Figure 4: General pad assignment problem and
matching on a bipartite graph

problems, one on each user FPGA with the
additional constraint:

If all pads wired to ‘R1’ are of color 1
and those wired to ‘R2” are of color 2,
then each net must be assigned to pads
of the same color.

Nets which must be assigned to a pad wired to
a specific routing FPGA can be easily handled
in this framework by merely deleting edges from
the net’s vertex to pads of the wrong color. We
call these nets forced nets.

Unfortunately, the algorithms for the bipartite
matching problem do not readily extend to this
problem. The basic technique of searching for an
augmenting path fails since moving a net to a pad
of a different color may also require moving the
net to a pad of the other color on the other user
FPGA. Hence augmenting a matching, in this
case, consists of finding augmenting subgraphs
in both bipartite graphs in which neither or both
pads of each net switch color except for the nets
which originally did not satisfy condition 1 or 2,
see Figure 5.

The bipartite matching problem can also be
solved using network flow techniques. How-
ever, adapting this view to solve our problem
yields a two-commodity flow problem. In general
graphs, the two commodity flow problem is NP-
complete. Whether or not there is a polynomial
time to solve it for the shallow graphs corre-
sponding to our matching problem is open. Our
approach has been to look for a limited type of
augmenting subgraphs to improve the current
matching. The types of subgraphs considered
are:

Sliding path: this is an augmenting path con-
sisting of pads all of the same color and
ending with a currently unassigned pad.
Figure 6 illustrates the pad reassignment
using this technique. The arrows indicate
the direction of reassignment.

nassigned
ads

BEFORE
Figure 6: Sliding path

AFTER

pP1 P2 P3 P4
O=xR O

BEFORE
Figure 7: Ping-pong subgraph

AFTER

Ping-Pong subgraph: this is an augmenting
subgraph formed by a sequence of pairs of
pads alternating between the two user FP-
GAs which can exchange nets. Specifically,
a sequence of distinct pads

P1,P2,491,92,P3,P4, 43,44, ---

such that for each i, 1) pa—1 and py
are pads of the opposite color which can
exchange net assignments, 2) ¢;—1 and ¢
are pads of the opposite color which can
exchange net assignments, 3) pa; and g2;-1
are assigned to the same net, and 4) ¢a
and pa;41 are assigned to the same net.
The path must terminate either with an
unassigned pad, a pad whose net is currently
assigned to two pads of opposite color, or
a sequence of pads forming a sliding path
of the right color. Figure 7 illustrates a
pad reassignment using this technique. The
double arrows indicate the swap.

Using only ping-pong subgraphs and providing
each pad with a neighbor of the opposite color
to swap nets with, guarantees the existence of
a legal net assignment when there are no forced

pPr P2 P3s P4 Ps Ps

L

1=

il Ik

O

i

-
X1

R2

Figure 5: Pad reassignment problem as dual matching on bipartite graphs

nets. This observation supports the use of the
alternating wiring board as described below.

Reassigning the pads on a densely populated
FPGA may make it difficult to re-route. To min-
imize the movement of pads, our algorithm starts
with the initial pad assignment and attempts to
augment it progressively by allowing swaps of
increasing distance. This is controlled by con-
structing the bipartite matching graphs based
on a swap-window parameter. The parameter
can be set and increased independently on the
two user FPGAs. This can be used to limit pad
movement on one FPGA more than the other
if it will be more difficult to re-route than the
other. Once an assignment satisfying conditions
1 and 2 has been found, the pad assignment can
be improved by performing a weighted bipartite
matching among all pads of the same color.

We experimented with two different board
wirings and three designs. The two board wiring
configurations we considered were:

Face aligned pads: The north and south faces
of the user FPGAs are assigned to the north
and south faces of the two routing FPGAs,
and etc, forming a torus.

Alternating pads: On each user FPGA the
usable pads alternate color.

Note that each of these board wiring configu-
rations actually provide the symmetric configu-
ration as well since the the two user FPGAs are
interchangeable. We tried three designs which
had the characteristics illustrated in Table 1.

The designs using XC3020pc84 packages did
not require any placement iterations; the origi-
nal placements were simply rerouted using the

new pad assignments. The XC3042pc84 design
required both placement and routing iterations.
This design was difficult to place and route even
when the pad assignment was not fixed.

3 Features of BORG

We highlight some features available in the new
prototyping board:

1. 7-segment displays, LEDs, push buttons
. stand-alone mode with serial download

2
3. standard 8-bit PC bus I/O interface
4

. 25-pin external connectors (not available in
the wire-wrapped prototype as shown in
Figure 8)

5. small sea of holes proto-area for additional
parts (not available in the wire-wrapped
prototype as shown in Figure 8)

6. dual-ported 8K static RAM

A wire-wrapped prototype of the prototyping
board is shown in Figure 8. A 84-pin FPGA
X(C3020 ‘X0’ serves as the “glue” logic between
the PC. It is also responsible for supplying the
bit streams to configure the other four FPGAs
using the peripheral mode [5].

Acknowledgements

This work 1s supported in part by the National
Science Foundation. The authors are grateful
to Xilinx Inc., DATA I/O Corporation, OrCAD,
and ALDEC for their generous support and
donations. We are also indebted to Bill Stevens
for his technical support throughout the project.

package CLBs 10Bs forced | swap-window | place & routing iterations

nets | alt. face alt. face
amUl | XC3020pc84 43 27 6 1 6 0,1 0,1
amU2 | XC3020pc84 62 21 0 1 6 0,2 0,1
rjUl XC3020pc84 41 30 10 1 6 0,1 0,1
rjU2 XC3020pc84 48 20 0 1 6 0,1 0,2
malUl | XC3020pc84 58 40 9 4 8 0,1 0,1
malU2 | XC3042pc84 116 52 21 4 8 5,1 6,2

Table 1: Results of two different wiring configurations

O OOOO | connector | ©)
— P~ T A
1 | OO00O0O0OOOO0 |
1] | 00000000000 ! |:|
1 | OO00O0O00OOO0O0 |
SRAM
1] : 00000000000 : X1 R1
1 ;| OOOO0O0000O00O0
: 00000000000 : PR
00000000000
PB
L4 Lo R2 X2 20
%20 PROM
O O
Figure 8: A prototype of the BORG Prototyping board
References [5] XILINX: The Programmable Gate Array

Data Book. 2100 Logic Drive, San Jose,

[1] A. El Gamal, “Protozone: The PC-Based CA 95124, 1991.

ASIC Design Frame, User’s Guide,” Tech.
Rep. SISL90-777, Stanford Information Sys-
tems Laboratory, Stanford University, Aug.
1990.

[2] F. Pirri and O. Bigalli, “A hardware pro-
grammable generic interface for the IBM
PC,” tech. rep., Dipartimento Di Ingegne-
ria Elettronica of the Universita’ Di Firenze,
Italy, Sept. 1990.

[3] C. H. Papadimitriou and K. Steiglitz, Combi-
natorial Optimization: Algorithms and Com-
plexity. Prentice Hall, 1982.

[4] B. Preas and M. Lorenzetti, Physical Design
Automation of VLSI Systems. Benjamin
Cummings, 1988.

