
Calculation of the Learning Curve ofBayes Optimal Classi�cation Algorithmfor Learning a Perceptron With NoiseManfred OpperInstitut fuer Theoretische PhysikJustus-Liebig-Universitaet GiessenGiessen, Germanymaopper@dgihrz01.bitnet David HausslerComputer and Information SciencesU.C. Santa CruzSanta Cruz, CA 95064haussler@cis.ucsc.eduAbstractThe learning curve of Bayes optimal classi�-cation algorithm when learning a perceptronfrom noisy random training examples is cal-culated exactly in the limit of large trainingsample size and large instance space dimen-sion using methods of statistical mechanics.It is shown that under certain assumptions,in this \thermodynamic" limit, the probabil-ity of misclassi�cation of Bayes optimal algo-rithm is less than that of a canonical stochas-tic learning algorithm, by a factor approach-ing p2 as the ratio of number of trainingexamples to instance space dimension grows.Exact asymptotic learning curves for both al-gorithms are derived for particular distribu-tions. In addition, it is shown that the learn-ing performance of Bayes optimal algorithmcan be approximated by certain learning al-gorithms that use a neural net with a layerof hidden units to learn a perceptron.1 IntroductionExtending a line of research initiated by ElizabethGardner [Gar88, GD88], exceptional progress has beenmade in recent years in applying the methods of statis-tical mechanics to the analysis of the process of learn-ing from random examples, as exempli�ed in the learn-ing algorithms used to train neural networks. Recentwork [DSW+87] [HLW88] [BH89] [VJP89] [LTS89][GT90] [HS90] [STS90] [OKKN90] has focused onquantifying what is known in the neural net litera-ture as the generalization performance of learning al-gorithms. This is the probability that the learningalgorithm will correctly predict the classi�cation of anew random instance, after it has seen a certain num-ber of random classi�ed instances, called training ex-amples. In other literature, this is referred to as theprobability of a mistake or the expected 0-1 loss.Most neural net learning algorithms make predictionson novel instances by selecting a hypothesis, repre-sented by couplings or "synaptic" weights of a neural

network, that performs well on the training examples.A canonical algorithm of this type, which we call theGibbs algorithm1, was studied from a statistical me-chanics perspective in [GT90, HS90, STS90], and ina more abstract setting in [LW89] (as the random-ized weighted majority algorithm) and [HKS91]. Fornoise-free training examples, the extreme "zero tem-perature" version of this algorithm simply chooses ahypothesis at random from among those that are con-sistent with all the training examples, as in [Maa91].Here we apply similar methods from statistical physicsto study Bayes optimal classi�cation algorithm, a spe-cial case of the weighted majority algorithm [Lit89,LW89, Vov90] (see also [DMW88]). Further inves-tigation of the Bayes and Gibbs algorithms appearsin [HKS91], from both an information theory and aVapnik-Chervonenkis theory perspective.The performance of any learning algorithmwill dependon the target function, i.e. the input/output mappingto be learned. In the Bayesian approach, variability inthe selection of target function is modeled by assum-ing an a priori probability distribution over possibletarget functions. When there is noise in the examples,a priori information about the nature of this noise isalso incorporated. One then seeks a learning algorithmthat will give the best average generalization perfor-mance (i.e. minimumaverage loss) on target functionsand noise processes selected according to this a prioridistribution. This is what Bayes optimal classi�cationalgorithm does. The performance of Bayes algorithmprovides the natural standard against which other al-gorithms may be compared.In this paper we derive expressions for the average gen-eralization performance for both Bayes algorithm andthe Gibbs algorithm for the simplest neural network:the single layer perceptron. We assume that a tar-get perceptron is selected at random according to aprior distribution, and that noisy training examplesare generated from this target, where classi�cation la-bel of each example is ipped independently with someprobability 0 � � � 1=2. The noise-free case (� = 0)was investigated previously in [OH91].1This algorithm was called the Boltzmann algorithm in[OH91].



In the noisy case, one can measure the probability ofmisclassi�cation as either the probability that a mis-take is made in predicting the noisy label, or the prob-ability that a mistake is made predicting the underly-ing classi�cation label, before the noise is added. Bothof these are with respect to the random choice of thetarget concept, the random choice of the training in-stances, the random noise added to the training in-stances, the random choice of the test instance, andany internal randomization in the algorithm. Let usadopt the latter probability as our notion of the prob-ability of misclassi�cation here and in the followingparagraph. (We look at both notions in this paper.)Let N denote the dimension of the instance space, mthe number of training examples and � = m=N . Weshow that as m;N ! 1 such that � remains con-stant, the probability of misclassi�cation after m ran-dom training examples for the Gibbs algorithm is afactor p2 from the optimal performance of Bayes al-gorithm, asymptotically as � becomes large. Here wemake minimal assumptions on the the a priori densityon the weight space used to select the target function,and on the density used to select the training exam-ples.When the latter densities are chosen to be uniform onthe surface of the sphere, then we can give explicitformulae for the probability of misclassi�cation as afunction of �. For large � and noise-free training ex-amples, this probability is approximately 0:44=� forBayes algorithm and 0:62=� for the Gibbs algorithm.These results show that the general upper bounds de-rived in [HKS91] for the performance of the Bayes andGibbs algorithms on hypothesis spaces of �nite VCdimension are tight to within a relatively small con-stant in this case. When the training examples arecorrupted by random classi�cation noise with rate �,the asymptotic probability of misclassi�cation for theGibbs algorithm is given by C(�)=�, where the func-tion C(�) is (actually C(�)(1 � 2�)2) is as plotted inFigure 4. As mentioned above, we show that the prob-ability of misclassi�cation for Bayes algorithm is lessby a factor of p2.It turns out that Bayes algorithm is di�cult to imple-ment on a neural network, so we also look at a series oflearning algorithms that approximate the performanceof Bayes algorithm. These algorithms use a neural net-work with a layer of n hidden units between the inputand output, for n = 1; 3; 5; : : :, where the output nodejust takes a majority vote of the hidden units. Forn = 1 we get the Gibbs algorithm, and as n ! 1,the performance of these algorithms approaches Bayesoptimal.

2 Results2.1 Basic De�nitionsIn the simple binary classi�cation learning problem weconsider, one tries to learn a target function f� thatmaps from a set X (the instance space) into f�1;+1g.Here we take X to be the N-dimensional space of realvectors and consider each component x(i) of ~x 2 Xto be the state of an input node for a neural networkon instance ~x. Each possible setting of the vector ofweights ~w in the neural network de�nes a classi�cationfunction f~w fromX into f�1;+1g. For the case of thesingle layer perceptronf~w(~x) = sign (~w � ~x=pN );where sign (x) = +1 if x > 0 and sign (x) = �1 ifx � 0. The division by pN is not really necessaryhere, but it will be convenient later, since we restrictthe weight vector to the sphere ~w � ~w = N , and thise�ectively normalizes ~w to unit length.Learning a perceptron was recently investigated byseveral authors from a statistical mechanics perspec-tive [VJP89, Gyo90b, GT90, OKKN90]. We look ata simple model of learning where we assume that thefunction f� can be learned perfectly by the neural net-work, i.e. f� = f~w� for some weight vector ~w�. We willcall ~w� the target vector. In the process of learning weassume that a target vector ~w� is selected at randomand a sequence of instances xm+1 = (~x1; ~x2; : : : ; ~xm+1)is selected at random. Noisy classi�cation labels�m+1(~w�; �m+1) = �m+1 = (�1; �2; : : : ; �m+1) aregenerated, where �k = �kf~w�(~xk), k = 1; 2; : : : ;m+ 1,and �m+1 = (�1; �2; : : : ; �m+1) is a sequence of inde-pendent identically distributed f�1g-valued randomnoise variables. We assume that �k = �1 with prob-ability � and �k = +1 with probability 1 � �, where0 � � � 1=2. Thus the sign of each classi�cation labelis ipped independently with probability �. We call �the noise rate.Given only training examples(~x1; �1); (~x2; �2); : : : ; (~xm; �m)and instance ~xm+1, the learning algorithm must pre-dict the label �m+1. The generalization error �(m;�)of the learning algorithm is the probability that it pre-dicts wrong, as a function of the training sample sizem and the noise rate �. Note that in this formulationthe object is to predict the noisy classi�cation label.Clearly no algorithm can achieve a success rate betterthan � at this task.An alternate formulation is to consider the generaliza-tion error to be the probability that the prediction ofthe learning algorithm on instance ~xm+1 di�ers fromthe underlying noise-free classi�cation f~w� (~xm+1). Wedenote this probability by �(m;�). It is clear that�(m;�) = (1 � �)�(m;�) + �(1� �(m;�))= � + (1 � 2�)�(m;�); (1)



so either one of these quantities is easily obtained fromthe other.2.2 Posterior DensityFor now, let us assume that the instance sequencexm+1 is �xed and the only randomization is over thechoice of the target vector ~w�, which is chosen accord-ing to an a priori density d�(~w�), and the sequence ofnoise events �m+1, which is chosen as described above.For each m � 1 let�(~w; �m) = �(~w; �m(~w�; �m))be the number of times in the �rst m examples that�i = �if~w� (~xi) 6= f~w(~xi), i.e. the number of labels in�m = (�1; : : : ; �m) that are predicted incorrectly bythe hypothesis represented by ~w.Fix a constant � > 0. The constant � plays the roleof an inverse temperature from a statistical mechan-ics viewpoint; large � represents low temperature andsmall � represents high temperature. From a learningpoint of view, � will govern the tradeo� between good-ness of �t to the sample data and a priori plausibilityof the hypothesis. Large � will force the algorithm,when predicting �m+1, to use hypotheses that �t the�rst m examples well (i.e. those with low �), even ifthey are a priori unlikely to be the target. Small � willallow the combined e�ects of the a priori most likelyhypotheses to carry more weight, so long as they don'thave too large a �.Speci�cally, for each m de�ne the posterior densityd�m(~w) = d�(~w)e���(~w;�m(~w�;�m))=Zm;whereZm = Z(�m) = Z(xm ; �m(~w�; �m))= Z e���(~w;�m(~w�;�m))d�(~w)is the normalizing constant for this density. In sta-tistical mechanics, Zm is called the partition func-tion. Note that in the posterior density, the (unnor-malized) weight of a hypothesis is reduced exponen-tially in proportion to the number of times it is in-correct on the training sequence, as in the weightedmajority algorithm [LW89]. For noise rate �, wecan easily show that when � = ln((1 � �)=�), thedensity d�m is the correct Bayesian posterior den-sity over all possible target vectors ~w, assuming theprior density is d�(~w) and we are given the ex-amples (~x1; �1); (~x2; �2); : : : ; (~xm; �m). (This is alsoshown in [Lit89]). This means that for any (mea-surable) set of weight vectors W , R~w2W d�m(~w) isthe conditional probability that the target vectorwas chosen from W , given the observed examples(~x1; �1); (~x2; �2); : : : ; (~xm; �m). To see this, �rst calcu-late the unconditional probability of the label sequence

�m by conditioning over possible targets ~w, weightedby the prior. This givesPr(�m) = Z ��(~w;�m)(1� �)m��(~w;�m)d�(~w)= (1� �)mZ e���(~w;�m)d�(~w)= (1� �)mZm: (2)ThereforePr(~w� 2W j�m) = Pr(�mj~w� 2 W ) Pr(~w� 2W )Pr(�m)= R~w2W ��(~w;�m)(1 � �)m��(~w;�m)d�(~w)(1 � �)mZm= R~w2W e���(~w;�m)d�(~w)Zm= Z~w2W d�m(~w):In the limit when � =1 (the zero temperature limit),the posterior density d�m is zero everywhere excepton the set f~w : f~w(~xk) = f~w�(~xk); for k = 1; : : : ;mgof all weight vectors that are consistent with the �rstm training examples. This is called the version spacein the AI literature [Mit82]. Thus in the zero temper-ature limit, all hypotheses that contradict even onetraining example are eliminated from consideration.The volume of the remaining version space, as a frac-tion of the volume of the original hypothesis space, isgiven by the partition function Zm, which in this caseis just the measure of the version space under the apriori density d�. (For the zero temperature case thisvolume is denoted by Vm in [OH91, HKS91].) Even inthe �nite � case, it is useful to think of Zm as a kind ofa posteriori volume measure on the hypothesis space,which decreases as the number m of training examplesincreases.2.3 Gibbs and Bayes AlgorithmsIn order to make its prediction on the instance ~xm+1,the Gibbs algorithm chooses a hypothesis ~w at randomaccording to the posterior density d�m on the hypoth-esis space and predicts according to this hypothesis.This is the stochastic learning algorithm discussed in[GT90, STS90, LW89].LetZrightm = Zf~w:f~w (~xm+1)=�m+1g e���(~w;�m(~w� ;�m))d�(~w);i.e. the a posteriori volume (after the �rst m examples)of those hypotheses that predict correctly on the m +1st example. LetZwrongm = Zf~w:f~w(~xm+1)6=�m+1g e���(~w;�m(~w�;�m))d�(~w);



i.e. the a posteriori volume of those that predictwrong. ClearlyZm = Zrightm + Zwrongm :Note also thatZm+1 = Zrightm + e��Zwrongm :Hence Zm � Zm+1 = (1� e��)Zwrongm :Thus, since the Gibbs algorithm chooses its hypothesisat random according to the posterior density d�m, itmakes a mistake in predicting �m+1 with probabilityZwrongmZm = 11� e�� �1� Zm+1Zm � : (3)A similar formulation has been obtained in [LTS89]and [LW89].The average generalization error of the Gibbs algo-rithm, when the target vector ~w� is chosen at randomby d�(~w�) and the noise sequence �m+1 is generatedrandomly with noise rate �, but the �rst m + 1 in-stances xm+1 = (~x1; : : : ; ~xm+1) are �xed, is thus givenby �Gibbs(xm+1; �)= 11� e�� �1� Z(xm+1; �m+1)Z(xm; �m) �~w�;�m+1= 11� e�� �1� Zm+1Zm �~w�;�m+1 ; (4)where hi~w�;�m+1 denotes integration over d�(~w�) andaverage over the noise values �1; : : : �m+1.The present formulation treats integrations over ~w andaverages over ~w� and �m+1 in a nonsymmetric way. Tofacilitate the subsequent calculations we can removethis asymmetry by replacing the average over targetsand noise by an equivalent average over all possiblelabelings �m = (�1; �2; : : : ; �m) 2 f�1gm. We do soby �xing � = ln((1 � �)=�) as above. Note that thisimplies that 1� � = 11 + e�� : (5)Then since Zm = Z(�m), from Equation (2) we havePr(�m) = Z(�m)(1 + e��)m : (6)Thus from Equation (4) we get�Gibbs(xm+1; �)= 11� e�� X�m+12f�1gm+1 Pr(�m+1)�1� Zm+1Zm �= 1(1 + e��)m+1(1� e��) �X�m+12f�1gm+1 Z(�m+1)�1� Z(�m+1)Z(�m) � : (7)

If the goal is to maximize the probability of a correctprediction, it turns out that the Gibbs algorithm isnot the best algorithm to use. The best possible pre-diction for �m+1 would be obtained by calculating thetotal posterior probability, given the �rst m trainingexamples, of all ~w's that would predict +1 on ~xm+1and comparing this with the corresponding posteriorprobability for �1. One then chooses the output withlargest posterior probability. Since the noise rate �is at most one half, this clearly maximizes the proba-bility of a correct prediction. This strategy is knownas Bayes optimal classi�cation algorithm or Bayes al-gorithm for short. In its general form, where � isnot necessarily set according to the noise rate �, thealgorithm is called the weighted majority algorithm[Lit89, LW89].It is clear that Bayes algorithm makes an mistake inpredition only when Zwrongm � Zrightm . A little algebrashows that this is equivalent to1 + e��2 � Zm+1Zm � 0:Thus the average generalization error for Bayes algo-rithm is the expectation of2��1 + e��2 � Zm+1Zm �when the target ~w� and the noise sequence �m+1 arerandomly chosen, where �(x) is the unit step function,i.e. �(x) = 1 if x � 0, �(x) = 0 if x < 0.As above, we can write this in a more symmetric form:�Bayes(xm+1; �)= ���1 + e��2 � Zm+1Zm ��~w�;�m+1 (8)= 1(1 + e��)m+1 �X�m+12f�1gm+1 Z(�m+1)��1 + e��2 � Z(�m+1)Z(�m) �When learning a perceptron, the hypothesis used byBayes algorithm cannot itself be represented by a per-ceptron. However, we can construct a network withone hidden layer for which the average generalizationerror converges to �Bayes as n, the number of units inthe hidden layer, goes to in�nity. To do this we trainan odd number n of perceptrons independently us-ing the Gibbs algorithm and make them hidden units.Each hidden unit output �(i), i = 1; : : : ; n, is passed to2Here we assume that the probability that 1+e��2 =Zm+1Zm is zero, so it doesn't matter what value we choosefor �(0). A more general treatment is given in [HKS91].



a �xed output perceptron that computes the majorityfunction �maj = sign (Pni=1 �(i)) as the �nal output.Using Equation (3), for a �xed target concept ~w�, theprobability that k perceptrons make the right predic-tion on ~xm+1 and n� k the wrong prediction is givenby the binomial distributionak= �nk��1� 1� Zm+1=Zm1� e�� �k�1� Zm+1=Zm1� e�� �n�k= 1(1� e��)n�nk��Zm+1Zm � e���k�1� Zm+1Zm �n�kThus the probability that the majority vote makes amistake in prediction is Pbn=2ck=0 ak. It follows that theaverage generalization error of the learning algorithmwith n hidden units is given by�n(xm+1; �) = *bn=2cXk=0 ak+~w�;�m+1 (9)As n!1,Pbn=2ck=0 ak converges to��12 � 1� Zm+1=Zm1� e�� � = ��1 + e��2 � Zm+1Zm �whenever 1�Zm+1=Zm1�e�� 6= 1=2. Taking the expectationwith respect to ~w� and �m+1, as in (9), we recover inthis limit the average generalization error of Bayes al-gorithm given in (8). Thus by varying the number nof hidden units, we de�ne a sequence learning of algo-rithms with average generalization errors �n(xm+1; �),n = 1; 3; 5; : : : with �1(xm+1; �) = �Gibbs(xm+1; �) and�1(xm+1; �) = �Bayes(xm+1; �).2.4 Calculation of the Learning CurvesIn the following we now assume that the instances~x1; ~x2; : : : ; ~xm+1 are drawn independently at randomfrom an N -dimensional probability distribution. Inparticular, we assume that for each i and j, where1 � i; j � N , the cartesian components xk(i) andxk(j) of ~xk, k = 1; 2; : : :;m+1, are i.i.d. random vari-ables with zero mean and �nite covariance Cij. Thismeans that the coordinate system is chosen such thatthe mean of the distribution on the instance space is atthe origin. For each n, the average generalization errorfor the n hidden unit learning algorithm is denoted by�n(m;�) = 
�n(xm+1; �)�xm+1 , where hixm+1 denotesthe average over the random selection of ~x1; : : : ; ~xm+1.For each m letYm = Y (xm+1; �m+1(~w�; �m+1)) = Z(xm+1; �m+1)Z(xm; �m)From Equation (9) it is clear that for each n, the av-erage generalization error �n(m;�) can be written as

the expectation of a polynomial function of Ym. Thisexpectation can be calculated from the positive inte-ger moments of the random variable Ym. To facilitatethis calculation, we abbreviate the the rth moment ofYm byy(m; r) = 
hY r(xm+1; �m+1(~w�; �m+1))i~w�;�m+1�xm+1Averaging directly over possible label sequences �m+1we obtainy(m; r)= * X�m+12f�1gm+1 Pr(�m+1)Zr(xm+1; �m+1)Zr(xm; �m) +xm+1= 1(1 + e��)m+1 * X�m+12f�1gm+1 Zr+1(xm+1; �m+1)Zr(xm; �m) +xm+1(10)for r = 0; 1; 2 : : :, using Equation (6).The speci�c calculation of y(m; r) for the perceptronand subsequent reconstruction of �n(m;�) is somewhatlengthy, so we only sketch it. First one �nds that forthe perceptron,Zr+1(xm+1; �m+1)= Z r+1Ya=1 d�( ~wa)m+1Yk=1 r+1Ya=1(e�� + (1� e��)�(( ~wa � ~xk)�k=pN))(11)The expression Zr+1(xm+1 ;�m+1)(1+e�� )(m+1)(r+1) can be interpreted asthe probability that r+1 independent random replicasof the network weights and noise values give the sameoutput �1; : : : ; �m+1 on inputs ~x1; : : : ; ~xm+1.We use Equations (10) and (11) to calculate y(m; r).However, we can calculate y(m; r) exactly only in thelimit of large instance space dimension N , and thenonly by making some further assumptions on the dis-tribution over the instance space and the prior den-sity d� on the hypothesis space. In particular, weassume that for almost all sets of r + 1 vectors ~wa,a = 1; : : : ; r + 1, drawn randomly and independentlyaccording to d�, the random vector with componentsua(~x) = ~wa � ~x=pN , a = 1; : : : ; r + 1, obeys the mul-tivariate central limit theorem, i.e. for large N , thejoint probability density of the ua is approximately amultivariate Gaussian distribution, and in the limit asN ! 1 it is exactly Gaussian. Since we are assum-ing also that the mean of the distribution over ~x isthe origin, for all ~w the means of the correspondingrandom variables ua are zero. These assumptions aresatis�ed for a wide class of distributions. For example,they hold asymptotically for large N when the distri-bution over the instance space is discrete and uniformover the Boolean cube f�1gN , and the density d� is asymmetric function of the cartesian components w(j),



with �nite variance. This includes a uniform distribu-tion on the sphere of radius pN , as well as a discrete,uniform distribution on the Boolean cube. The sameresults hold for the case when the distribution on theinstance space is also continuous and uniform on thesphere.For ~w1; : : : ; ~wr+1 drawn randomly from d�, let the r+1by r + 1 matrix-valued random variable Q be de�nedby Qab = N�1( ~waC ~wb), for 1 � a; b;� r + 1, whereC = fCijg is the N by N covariance matrix for thedistribution on the instance space. Under our Gaus-sian assumption, Qab is the covariance of the randomvariables ua(~x) = ~wa � ~x=pN and ub(~x) = ~wb � ~x=pN .We can now carry out the average over the m+1st in-stance in (10) and its two possible outputs �m+1 = �1explicitly. The resulting expression can be reexpressedas an average over targets and noise. We �ndy(m; r) = 2(2�)� r+12 (1 + e��)�1 �Z 1�1 r+1Ya=1 dua(e�� + (1� e��)�(ua)) �*(detQ)� 12 exp(�12Xa;b ua(Q�1)abub)+Q ; (12)where we de�ne the auxiliary average hf(fQabg)iQ fora function f asZ Ya�bdQabf(fQabg)�(fQabg)and the density3� =�DR Qr+1a=1 d�m( ~wa)Qa�b �(Qab �N�1( ~waC ~wb))E~w�;�m�xmis the joint probability density, averaged over all targetconcepts, noise and training instances, for the r(r +1)=2 weighted inner products Qab of r + 1 vectors ~wataken randomly from the posterior distribution afterthe �rst m training examples.Let � = m=N . We will calculate the limit y(�; r) ofy(m; r) as m;N ! 1 with � held constant. To dothis, we make the crucial assumption of replica sym-metry [MPV87]. This means that for any pair a; b ofdistinct replicas and for a typical sequence of labels,N�1( ~waC ~wb) becomes self-averaging, i.e. nonuctu-ating, and converges to a �xed single orderparameterQ1(�), which only depends on the probability distri-butions of ~x and ~w�.Replacing also the diagonal elements Qaa by the valueQ0(�), under this assumption the whole average in3Here we use Dirac's � function, which is the general-ized function de�ned as the kernel that (for well behavedfunctions f) yields f(x) = R1�1 dt f(t)�(x� t).

(12) reduces to the value at Qab = Q1(�) and Qaa =Q0(�) respectively.Let q(�) = Q1(�)=Q0(�)and (�) =pq(�)=(1� q(�)):Inserting the replica symmetric ansatz into (12), one�nally obtainsy(�; r)= 21 + e�� Z 1�1Dt [e�� + (1� e��)H(t(�))]r+1(13)with Dt = (2�)�1=2exp(�t2=2)dt and H(z) = R1z Dt.Note that the distribution of instances and targets en-ter the result only through q(�). Before calculatingq(�) for a speci�c distribution on the instance spaceand prior measure d�(~w), we derive a general relationbetween �Gibbs and �Bayes.First, let F (Ym) be any polynomial of Ym (such asthe polynomial Pbn=2ck=0 ak from Section 2.3) and forevery � > 0 let �F� denote the limit of the expecta-tion of F (Ym) as m;N ! 1 with � = m=N heldconstant. This expectation is with respect to the ran-dom choice of the instances, target concept and noisevalues. Equation (13) enables us to calculate �F�. Inparticular, ifF (Ym) = c0 + c1Ym + : : :+ cnY nmthen �F� = c0y(�; 0) + c1y(�; 1) + : : :+ cny(�; n):It then follows from (13) that�F� = 21 + e�� Z 1�1Dt Ĥ(t; �)F �Ĥ(t; �)� ; (14)where Ĥ(t; �) = e�� + (1� e��)H(t(�)):This result is easily extended to any function F thatcan be approximated by polynomials, including the �function.To apply this result, let �n(�; �) denote the limit of�n(m;�) as m;N ! 1 with � = m=N , and similarlyfor �Gibbs(�; �) and �Bayes(�; �). Then fromEquations(9) and (14), using the fact that H(�x) = 1 � H(x)and � = e��1+e�� , after some lengthy algebra we obtain



�n(�; �) =�+ (2� 4�) bn=2cXk=0 �nk�Z 1�1 ~H(t; k; �)Dt;(15)where~H(t; k; �) = Hk+1(t(�))(1 �H(t(�)))n�k:For n = 1 and n =1 this yields�Gibbs(�; �)= � + (2 � 4�) Z 1�1DtH(t(�)) [1�H(t(�))]= � + (1 � 2�)��1 arccos(q(�)) (16)and�Bayes(�; �)= � + (2� 4�) Z 1�1DtH(t(�))� [1� 2H(t(�))]= � + (1� 2�)��1 arccos(pq(�)) (17)FromEquation (1), we can now also calculate the prob-ability that these algorithms incorrectly predict theunderlying noise-free classi�cation f~w�(~xm+1). We get�Gibbs(�; �) = (�Gibbs(�; �)� �)1� 2� = ��1 arccos(q(�))(18)and�Bayes(�; �) = (�Bayes(�; �)� �)1� 2� = ��1 arccos(pq(�))(19)It should be noted that q(�) implicitly depends on thenoise rate �. However, by eliminating q(�) one arrivesat the result�Bayes(�; �) = ��1 arccos �cos1=2(��Gibbs(�; �))� : (20)Remarkably, this functional relation does not dependon the noise rate �. From Equation (15) one �ndsthat the same is true for all �n(�; �) = (�n(�;�)��)1�2� asfunctions of �Gibbs(�; �).In Figure 1 we show �n(�; �) as a function of�Gibbs(�; �) for n = 1; 3; 7; 21;1. For large �, the gen-eralization error �n(�; �) converges to zero for all n. In

the same limit the ratio �Gibbs(�; �)=�Bayes(�; �) con-verges to p2. On the other hand, for � = 0, both al-gorithms have generalization error 0:5, which is equiv-alent to random guessing. However, as � grows posi-tive, the generalization error of Bayes algorithm dropsmuch faster from its random guessing value than thegeneralization error of the Gibbs algorithm. For small� we have0:5� �Bayes(�; �) � (�(0:5� �Gibbs(�; �))) 12 :Finally, we give results for a uniform spherical dis-tribution on the instance space, i.e. Cij = �ij , andcorresponding uniform spherical prior distribution onthe target vector ~w� (see Figure 2). In this case the or-der parameter q(�) becomes identical to the Edwards-Anderson parameter [KS78]. It naturally appears inthe calculation of the averaged free energy F (m). Thisis de�ned by�F (m)= �DhlnZmi~w�;�mExm= � 1(1 + e��)m * X�m2f�1gm Z(�m) lnZ(�m)+xm(21)Using the replica trick, this is given by�F (m)= � limn!1 @@n ln* X�m2f�1gm Zn(�m)+xmBy a calculation similar to that in [GT90], one �ndsq(�) by extremizing the expressionf(�) = limm;N!1;m=N=���F (m)=N= 12 ln(1� q(�)) + 12q(�)+ 2�1 + e�� Z 1�1 Ĥ(t; �) ln Ĥ(t; �)Dt(22)where Ĥ(t; �) = e�� + (1� e��)H(t(�)):Plugging this value of q(�) into (18) and (19), andsolving for large �, we �nd that �Gibbs(�; �) � C(�)=�and �Bayes(�; �) � 1p2C(�)=� as � goes to 1, whereC(�) = � p2(1� 2�)�1R1�1 z exp(�12z2) ln[�+ (1� 2�)H(z)]dz :(23)



Note that for all � the asymptotic behavior of thelearning curve is � ��1. A slower convergence (��� 12 ) of the generalization error has been predictedin [GT90] for a deterministic learning algorithm thattries to learn a perceptron with noise by minimizingthe number of errors on the �rst m examples. Thoughthe type of noise discussed in [GT90] is not the same asours, we expect that the use of a nonzero temperaturein the algorithm is essential in obtaining faster conver-gence. A similar result has been given in [Gyo90b].The function C(�)(1�2�)2 is shown in Figure 4. SinceC(0) � 0:62, as a special case we obtain the generaliza-tion error without classi�cation noise: �Gibbs(�; 0) �0:62=� = 0:62N=m, as in [OH91]. As already noted,the corresponding Bayes value is smaller by a factor ofp2.In Figure 2 the generalization errors for the noise-freecase � = 0 are depicted as functions of �. As � ap-proaches 0, the deviation 0:5� �Bayes(�; 0) of the gen-eralization error of Bayes algorithm from purely ran-dom guessing is � (2�=�3) 12 , which has in�nite slopeat � = 0, whereas for the Gibbs algorithm this quan-tity is linear in � with slope � 2=�2.The positive moments of the random variable Ym con-tain more information than just the di�erent valuesof generalization errors of the learning algorithms wehave examined. For example, consider the randomvariable 11� e�� (1� Ym) ;which is the probability that the Gibbs algorithmmakes the wrong prediction on the m + 1st classi�ca-tion label for �xed training instances, target functionand noise values. The distribution of Ym gives theuctuations of this random variable when the traininginstances, target function and noise values are drawnat random. Using (14), from q(�) we can obtain thecomplete probability density of Ym as m;N ! 1 for�xed m=N = �. We denote this density by f(Y�).We �nd for the � = 0 case thatf(Y�) = 2Y�(�) exp[�12 t2(1� (�)2)] (24)where t is the solution of Y� = H(t(�)).In Figure 5 we show f(Y�) for 3 values of q = q(�),namely q = 0:1; 0:3; 0:7. Here we have dropped thedependence of q on � for convenience.For small q, f is approximately a Gaussian centeredaround Y� = 12 :f(Y�) � q� 12 exp"�12 �Y� � 12�2 2�=q#

Thus for small q, which means small � when � = 0,the volume Zm is partitioned in two subvolumes of ap-proximately equal size. This means that the learningalgorithm (Bayes or Gibbs) does not do signi�cantlybetter than random guessing.For all values of q < 12 , the density f(Y�) goes to zeroas Y� ! 1. At q = 12 , the behavior of the densityf changes dramatically, and for all values of q > 12 ,the density f(Y�) goes to in�nity as Y� ! 1. Thismeans that it is more likely that there is only a smallreduction in the volume from Zm to Zm+1, and thusthe learning algorithm has a higher probability of pre-dicting correctly. In fact, for any � > 0, as q ! 1 theprobability that Ym � 1 � � converges to zero, givingperfect generalization in this limit.The largest uctuations of Ym appear for q = 12 . Inthis case (�) = 1 and from Equation (24) we simplyget f(Y�) = 2Y�for 0 � Y� � 1.We have also estimated the density f for �nite m;Nby performing numerical simulations on perceptrons.The calculation of Zm at � = 0 for a �xed samplecan be easily performed when the prior distributionon the weight vectors ~w is uniform on the Booleancube f�1gN . Using this distribution on the weightvectors, when the instances are distributed uniformlyon the sphere, replica symmetry is known to be valid at� = 0 for values of � up to � 1:245. Above this value adiscontinuous transition to perfect generalization takesplace [Gyo90a]. Figures 6 and 7 display results of oursimulations form = 4; N = 14 andm = 16; N = 20 re-spectively, averaged over many samples. The smoothcurves are the theoretical predictions from Equation(24). The histograms represent the experimental re-sults. The range of Y� was partitioned into equal widthbins. The height plotted for each bin the fraction oftimes the value of Y� lands in the bin divided by thewidth of the bin.It is also interesting to study the learning curves in theopposite limit � ! 0 or �! 12 in more detail. In thiscase �Gibbs(�; �) and �Bayes(�; �) have the asymptoticscaling �Gibbs(�; �) � gGibbs(�2�)and �Bayes(�; �) � gBayes(�2�);where the functions gGibbs and gBayes are calculatedby expanding (22) for small �.This high temperature and high noise limit results in amuch simpler equation for q(�) when the distributionon instances and prior on weights are both uniform onthe sphere:



q(�)s1 + q(�)1� q(�) � ��22� :Solving numerically we obtain the results of Figure 3.For �2�!1 we �nd�Gibbs(�; �) � 4�2� � 1(1� 2�)2�;which is the dashed line in Figure 3. It follows fromthis and Equation (1) that�Gibbs(�; �) � � + 2�� � � + 1(1� 2�)�:In [STS90] related results are given for the Gibbs al-gorithm in a general but somewhat di�erent setting.3 ConclusionOur results show that in the limit the relationship be-tween the generalization error of the Bayes and theGibbs algorithms is independent of the particular as-sumptions made about the densities used to choose thetarget perceptron and to generate the training exam-ples, as long as the latter distribution has ~0 mean, acentral limit theorem holds and the replica symmetryassumptions made above are valid. This also holds forthe approximations to Bayes algorithm we have de-�ned using neural nets with a layer of hidden unitsand a majority gate output unit as well. Our experi-mental results show the formulas derived in the limitare already fairly accurate for relatively small samplesize and instance space dimension, at least for somesimple cases. We expect that the quantitative relation-ships shown in Figure 1 are quite robust, and that inpractice, this use of 2-layer nets with majority outputmay give better generalization performance in manycircumstances.AcknowledgementsHelpful discussions with Haim Sompolinsky, NaftaliTishby and Michael Kearns are greatfully acknowl-edged. D. Haussler's research was supported by ONRgrant N00014-91-J-1162. Part of this work was donewhile M. Opper was visiting the Physics department ofthe University of California at Santa Cruz. He wouldlike to thank them for their hospitality.References[BH89] E. Baum and D. Haussler. What size netgives valid generalization? Neural Compu-tation, 1(1):151{160, 1989.[DMW88] Alfredo DeSantis, George Markowski, andMark N. Wegman. Learning probabilis-tic prediction functions. In Proceedings
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Figure captionsFigure 1: Generalization errors of the n-hiddenunit network with majority output as a function of�Gibbs(�) for n = 1; 3; 7; 21;1. The case n = 1 (diago-nal line) corresponds to the Gibbs algorithm itself, andthe case n = 1 (lowest curve) corresponds to Bayesoptimal algorithm. The results are independent of �,so this parameter is omitted.Figure 2: Generalization errors of the n-hidden unitnetwork with majority output at � = 0 as a function of� for n = 1; 3; 7;1, assuming a spherically symmetricdistribution on target vectors and instances. The casen = 1 (highest solid curve) was recently calculated in[GT90] and corresponds to the Gibbs algorithm. Thecase n = 1 (lowest solid curve) corresponds to Bayesoptimal algorithm.Figure 3: Learning curves for Gibbs (upper solidline) and Bayes (lower solid line) algorithm in thehigh temperature limit � ! 0, assuming a spheri-cally symmetric distribution on target vectors and in-stances. The dashed line is the asymptotic approxi-mation g(�2�) � 4�2� for the Gibbs learning curve.Figure 4: The function C(�)(1 � 2�)2 de�ned byEquation (23).Figure 5: Probability density f(Y�) for q(�) = 0:1(bell-shaped curve) q(�) = 0:3 (atter curve) andq(�) = 0:7 (curve peaked at 1).Figure 6: Probability density from numerical simu-lations of perceptrons with weight vectors on Booleancube, for m = 4 and N = 14. The smooth curve isthe theoretical prediction. See further explaination intext.Figure 7: Same as Figure 6, but with m = 16 andN = 20.


