Calculation of the Learning Curve of
Bayes Optimal Classification Algorithm
for Learning a Perceptron With Noise

Manfred Opper
Institut fuer Theoretische Physik
Justus-Liebig-Universitaet Giessen
Giessen, Germany
maopper@dgihrz01.bitnet

Abstract

The learning curve of Bayes optimal classifi-
cation algorithm when learning a perceptron
from noisy random training examples is cal-
culated exactly in the limit of large training
sample size and large instance space dimen-
sion using methods of statistical mechanics.
It is shown that under certain assumptions,
in this “thermodynamic” limit, the probabil-
ity of misclassification of Bayes optimal algo-
rithm is less than that of a canonical stochas-
tic learning algorithm, by a factor approach-
ing v/2 as the ratio of number of training
examples to instance space dimension grows.
Exact asymptotic learning curves for both al-
gorithms are derived for particular distribu-
tions. In addition, it is shown that the learn-
ing performance of Bayes optimal algorithm
can be approximated by certain learning al-
gorithms that use a neural net with a layer
of hidden units to learn a perceptron.

1 Introduction

Extending a line of research initiated by Elizabeth
Gardner [Gar88, GD88], exceptional progress has been
made in recent years in applying the methods of statis-
tical mechanics to the analysis of the process of learn-
ing from random examples, as exemplified in the learn-
ing algorithms used to train neural networks. Recent
work [DSW*87] [HLWS88] [BH89] [VIP89] [LTS89]
[GT90] [HS90] [STS90] [OKKN90] has focused on
quantifying what is known in the neural net litera-
ture as the generalization performance of learning al-
gorithms. This is the probability that the learning
algorithm will correctly predict the classification of a
new random instance, after it has seen a certain num-
ber of random classified instances, called training ez-
amples. In other literature, this is referred to as the
probability of a mustake or the expected 0-1 loss.

Most neural net learning algorithms make predictions
on novel instances by selecting a hypothesis, repre-
sented by couplings or ”"synaptic” weights of a neural

David Haussler
Computer and Information Sciences
U.C. Santa Cruz
Santa Cruz, CA 95064

haussler@cis.ucsc.edu

network, that performs well on the training examples.
A canonical algorithm of this type, which we call the
Gibbs algorithm', was studied from a statistical me-
chanics perspective in [GT90, HS90, STS90], and in
a more abstract setting in [LW89] (as the random-
ized weighted majority algorithm) and [HKS91]. For
noise-free training examples, the extreme ”zero tem-
perature” version of this algorithm simply chooses a
hypothesis at random from among those that are con-
sistent with all the training examples, as in [Maa91].
Here we apply similar methods from statistical physics
to study Bayes optimal classification algorithm, a spe-
cial case of the weighted majority algorithm [Lit89,
LW89, Vovi0] (see also [DMW88]). Further inves-
tigation of the Bayes and Gibbs algorithms appears
in [HKS91], from both an information theory and a
Vapnik-Chervonenkis theory perspective.

The performance of any learning algorithm will depend
on the target function, i.e. the input/output mapping
to be learned. In the Bayesian approach, variability in
the selection of target function i1s modeled by assum-
ing an a priori probability distribution over possible
target functions. When there 1s noise in the examples,
a priori information about the nature of this noise is
also incorporated. One then seeks a learning algorithm
that will give the best average generalization perfor-
mance (i.e. minimum average loss) on target functions
and noise processes selected according to this a prior:
distribution. This is what Bayes optimal classification
algorithm does. The performance of Bayes algorithm
provides the natural standard against which other al-
gorithms may be compared.

In this paper we derive expressions for the average gen-
eralization performance for both Bayes algorithm and
the Gibbs algorithm for the simplest neural network:
the single layer perceptron. We assume that a tar-
get perceptron is selected at random according to a
prior distribution, and that noisy training examples
are generated from this target, where classification la-
bel of each example is flipped independently with some
probability 0 < A < 1/2. The noise-free case (A = 0)
was investigated previously in [OH91].

!This algorithm was called the Boltzmann algorithm in

[OH91].

In the noisy case, one can measure the probability of
misclassification as either the probability that a mis-
take is made in predicting the noisy label, or the prob-
ability that a mistake is made predicting the underly-
ing classification label, before the noise is added. Both
of these are with respect to the random choice of the
target concept, the random choice of the training in-
stances, the random noise added to the training in-
stances, the random choice of the test instance, and
any internal randomization in the algorithm. Let us
adopt the latter probability as our notion of the prob-
ability of misclassification here and in the following
paragraph. (We look at both notions in this paper.)
Let N denote the dimension of the instance space, m
the number of training examples and &« = m/N. We
show that as m, N — oo such that « remains con-
stant, the probability of misclassification after m ran-
dom training examples for the Gibbs algorithm is a
factor v/2 from the optimal performance of Bayes al-
gorithm, asymptotically as o becomes large. Here we
make minimal assumptions on the the a prior: density
on the weight space used to select the target function,
and on the density used to select the training exam-
ples.

When the latter densities are chosen to be uniform on
the surface of the sphere, then we can give explicit
formulae for the probability of misclassification as a
function of a. For large v and noise-free training ex-
amples, this probability is approximately 0.44/« for
Bayes algorithm and 0.62/« for the Gibbs algorithm.
These results show that the general upper bounds de-
rived in [HKS91] for the performance of the Bayes and
Gibbs algorithms on hypothesis spaces of finite VC
dimension are tight to within a relatively small con-
stant in this case. When the training examples are
corrupted by random classification noise with rate A,
the asymptotic probability of misclassification for the
Gibbs algorithm is given by C(A)/«, where the func-
tion C'(A) is (actually C(A)(1 — 2X)?) is as plotted in
Figure 4. As mentioned above, we show that the prob-
ability of misclassification for Bayes algorithm is less

by a factor of v/2.

It turns out that Bayes algorithm is difficult to imple-
ment on a neural network, so we also look at a series of
learning algorithms that approximate the performance
of Bayes algorithm. These algorithms use a neural net-
work with a layer of n hidden units between the input
and output, for n = 1,3,5, ... where the output node
just takes a majority vote of the hidden units. For
n = 1 we get the Gibbs algorithm, and as n — oo,
the performance of these algorithms approaches Bayes
optimal.

2 Results

2.1 Basic Definitions

In the simple binary classification learning problem we
consider, one tries to learn a target function f* that
maps from a set X (the instance space) into {—1,+1}.
Here we take X to be the N-dimensional space of real
vectors and consider each component z(¢) of ¥ € X
to be the state of an input node for a neural network
on instance #. Each possible setting of the vector of
weights @ in the neural network defines a classification
function fz from X into {—1,+1}. For the case of the
single layer perceptron

fa() = sign (& - Z/VN),
where sign (z) = +1 if £ > 0 and sign(z) = —1 if
2 < 0. The division by V/N is not really necessary
here, but it will be convenient later, since we restrict

the weight vector to the sphere @ - & = N, and this
effectively normalizes & to unit length.

Learning a perceptron was recently investigated by
several authors from a statistical mechanics perspec-
tive [VIP89, Gyo90b, GT90, OKKN90]. We look at
a simple model of learning where we assume that the
function f* can be learned perfectly by the neural net-
work, i.e. f* = fiz« for some weight vector &*. We will
call &* the target vector. In the process of learning we
assume that a target vector @* is selected at random
and a sequence of instances x™T = (#1, 75, ..., 1)
is selected at random. Noisy classification labels
oL@ gt = o™t = (09,09,...,0m11) are
generated, where oy = 5 fg (Zp), k= 1,2,...,m+ 1,
and n™*t = (91,n2,...,)m+1) is a sequence of inde-
pendent identically distributed {£1}-valued random
noise variables. We assume that 7, = —1 with prob-
ability A and 7 = 41 with probability 1 — A, where
0 < A < 1/2. Thus the sign of each classification label
is flipped independently with probability A. We call A
the nouse rate.

Given only training examples
(fla Ul)a (fZa UZ)a ey (fma Um)

and instance #,41, the learning algorithm must pre-
dict the label oy,41. The generalization error €(m, A)
of the learning algorithm is the probability that it pre-
dicts wrong, as a function of the training sample size
m and the noise rate A. Note that in this formulation
the object is to predict the noisy classification label.

Clearly no algorithm can achieve a success rate better
than A at this task.

An alternate formulation is to consider the generaliza-
tion error to be the probability that the prediction of
the learning algorithm on instance 41 differs from
the underlying noise-free classification fg=(Zm41). We
denote this probability by 6(m, A). Tt is clear that

e(m,) = (1—N)8(m,A) + A1 = 8(m, \))
A+ (1= 2X)6(m, A), (1)

so either one of these quantities is easily obtained from
the other.

2.2 Posterior Density

For now, let us assume that the instance sequence
x™*1 is fixed and the only randomization is over the
choice of the target vector w*, which is chosen accord-
ing to an a priori density du(@*), and the sequence of
noise events !, which is chosen as described above.
For each m > 1 let

A(W,0™) = A(W, o™ (&, ™))

be the number of times in the first m examples that
o; = nifa«(#;) # fa(Zs), i.e. the number of labels in
o™ = (61,...,0m) that are predicted incorrectly by

the hypothesis represented by .

Fix a constant § > 0. The constant 5 plays the role
of an inverse temperature from a statistical mechan-
ics viewpoint; large 3 represents low temperature and
small 3 represents high temperature. From a learning
point of view, 8 will govern the tradeoff between good-
ness of fit to the sample data and a prior: plausibility
of the hypothesis. Large § will force the algorithm,
when predicting 6,41, to use hypotheses that fit the
first m examples well (i.e. those with low A), even if
they are a priori unlikely to be the target. Small 7 will
allow the combined effects of the a prior: most likely
hypotheses to carry more weight, so long as they don’t
have too large a A.

Specifically, for each m define the posterior density

dpm (W) = du(u’;’)e_ﬁA(vam(w*,nm))/Zm’
where
Im = Z(@™) = Z(T, (T, ™))
= /e—ﬁﬁ(wyam(w*m’"))dﬂ(w)

i1s the normalizing constant for this density. In sta-
tistical mechanics, Z,, is called the partition func-
tion. Note that in the posterior density, the (unnor-
malized) weight of a hypothesis is reduced exponen-
tially in proportion to the number of times it i1s in-
correct on the training sequence, as in the weighted
majority algorithm [LW89]. For noise rate A, we
can easily show that when # = In((1 — A)/A), the
density dp,, 1s the correct Bayesian posterior den-
sity over all possible target vectors @, assuming the
prior density is du(@) and we are given the ex-
amples (#1,01), (#2,02),...,(Zm,0m). (This is also
shown in [Lit89]). This means that for any (mea-
surable) set of weight vectors W, fweW dptm () is
the conditional probability that the target vector
was chosen from W, given the observed examples
(Z1,01), (X2,02),...,(Fm,0m). To see this, first calcu-
late the unconditional probability of the label sequence

o™ by conditioning over possible targets @, weighted
by the prior. This gives

Pr(c™) = /AA<W”>(1_A)m—MyU"‘)dﬂ(w)
= (= [e
= (1=A)"Zp. (2)
Therefore

Pr(o™|w* € W) Pr(w* € W)
Pr(o™)

Pr(@* € W|o™) =

Jaew X201 = 2T AT dp ()

(1= N Zn,

faoew 7477 ()
Zm

In the limit when 8 = oo (the zero temperature limit),
the posterior density du,, is zero everywhere except
on the set {0 : fg(#r) = fo=(&y), for k =1,...,m}
of all weight vectors that are consistent with the first
m training examples. This is called the version space
in the AT literature [Mit82]. Thus in the zero temper-
ature limit, all hypotheses that contradict even one
training example are eliminated from consideration.
The volume of the remaining version space, as a frac-
tion of the volume of the original hypothesis space, is
given by the partition function Z,,, which in this case
1s just the measure of the version space under the a
priori density dy. (For the zero temperature case this
volume is denoted by V,, in [OH91, HKS91].) Even in
the finite G case, 1t is useful to think of 7, as a kind of
a posteriori volume measure on the hypothesis space,
which decreases as the number m of training examples
increases.

2.3 Gibbs and Bayes Algorithms

In order to make its prediction on the instance #p41,
the Gibbs algorithm chooses a hypothesis @ at random
according to the posterior density dy,, on the hypoth-
esis space and predicts according to this hypothesis.
This is the stochastic learning algorithm discussed in

[GT90, STS90, LW89].
Let

Z’%ght:/{*f o }e—mw,amw*,nm))dﬂ(@),
T f g (Emt1)=0m41

i.e. the a posteriori volume (after the first m examples)
of those hypotheses that predict correctly on the m +
1st example. Let

Zurong — / e~ BAM™ (" 0™) (),
{0:fg(Tmag1)ZOms1}

i.e. the a posterior: volume of those that predict
wrong. Clearly

Zm — Zright 4 guwrong
m m :
Note also that
g1 = Z000E =P gurong,

Hence

= (1 —e P)gurens,

Thus, since the Gibbs algorithm chooses its hypothesis
at random according to the posterior density dpy,, it
makes a mistake in predicting .41 with probability

guwrong 1 Zm+1
n = 1-— .
Tm 1 _eP (Zm) 3)
A similar formulation has been obtained in [LTS89]
and [LW89).

Zm — 4Lm+41

The average generalization error of the Gibbs algo-
rithm, when the target vector w* is chosen at random
by dpu(@*) and the noise sequence n™*! is generated
randomly with noise rate A, but the first m + 1 in-
stances x™T = (¥4, ..., F41) are fixed, is thus given

by

GGZ'bbs(Xm-I—1) /\)

B 1 <1 Z(Xm+1’0.m+1)>
[—c P 2,0 [gy

1 A
= 7 <1 - > , (4)
1 — € Zm w*,nm‘*'l
where ()g+ ,m+1 denotes integration over du(w*) and
average over the noise values 11, ... 9m41.

The present formulation treats integrations over 0 and
averages over " and ™! in a nonsymmetric way. To
facilitate the subsequent calculations we can remove
this asymmetry by replacing the average over targets
and noise by an equivalent average over all possible
labelings 6™ = (61,09,...,0m) € {£1}". We do so
by fixing 5 = In((1 — A)/A) as above. Note that this
implies that

1
1-A=—.
1_1_6_@ (5)
Then since Z, = Z(¢™), from Equation (2) we have
Z(c™)
Pr(c™")= —————.
o™ = AT ()

Thus from Equation (4) we get
eqinps(xX" T N)

1
T 10 Z

omtle{1}mtt
1
(14 e=A)ym+1(1 —e=5)

> Z(a™Hh (1 - %) . ()

omtle{+1}m+1

Pr(o™t!) (1 -z

If the goal is to maximize the probability of a correct
prediction, it turns out that the Gibbs algorithm is
not the best algorithm to use. The best possible pre-
diction for ¢, 41 would be obtained by calculating the
total posterior probability, given the first m training
examples, of all @’s that would predict +1 on #,41
and comparing this with the corresponding posterior
probability for —1. One then chooses the output with
largest posterior probability. Since the noise rate A
is at most one half, this clearly maximizes the proba-
bility of a correct prediction. This strategy is known
as Bayes optimal classification algorithm or Bayes al-
gorithm for short. In its general form, where G is
not necessarily set according to the noise rate A, the
algorithm 1s called the weighted majority algorithm
[Lit89, LW89].

It is clear that Bayes algorithm makes an mistake in
predition only when Z¥rond > 7zright = A little algebra
shows that this is equivalent to

1+ e~ P Zm+1
2 Zm

> 0.

Thus the average generalization error for Bayes algo-
rithm is the expectation of?

o 1+ e~ P B Zm+1
2 Zm
1

when the target w* and the noise sequence p™*t! are
randomly chosen, where ©(z) is the unit step function,

ie. O(r)=1ifx>0,0(x)=0if 2 <0.

As above, we can write this in a more symmetric form:

€Bayes (Xm+1 ’ A)

. 1+ e~ P Zm+1
B <® (2 B Zm a* nm+1 (8)
1

(1+e=F)mtl
—p
Z Z(O’m+1)®<1+26 _

omtie{£1}m+1

)

When learning a perceptron, the hypothesis used by
Bayes algorithm cannot itself be represented by a per-
ceptron. However, we can construct a network with
one hidden layer for which the average generalization
error converges to €payes as n, the number of units in
the hidden layer, goes to infinity. To do this we train
an odd number n of perceptrons independently us-
ing the Gibbs algorithm and make them hidden units.
Fach hidden unit output o(i), ¢ = 1,...,n, is passed to

e -5
“Here we assume that the probability that 1++ =
% is zero, so it doesn’t matter what value we choose

form®(0). A more general treatment is given in [HKS91].

a fixed output perceptron that computes the majority
function o,,,; = sign (Z?:l o(i)) as the final output.
Using Equation (3), for a fixed target concept &, the
probability that & perceptrons make the right predic-
tion on #,41 and n — k the wrong prediction is given
by the binomial distribution

ag

Thus the probability that the majority vote makes a

mistake in prediction 1s anz/ozj ap. It follows that the

average generalization error of the learning algorithm
with n hidden units is given by

ln/2]
en(x™H N = < Z ak> (9)
et

k=0

As n — oo, Z}En:/oﬂ ay converges to

U 1= Zngr /20 (14e P Zpi
®< -)_G)(2 Z,

2 1—e P

% # 1/2. Taking the expectation
with respect to w* and n™*! as in (9), we recover in
this limit the average generalization error of Bayes al-
gorithm given in (8). Thus by varying the number n
of hidden units, we define a sequence learning of algo-
rithms with average generalization errors e, (x™+1),
n=1,3,5 ... with e(x™*t1 A) = egipps(x™ T, A) and
€0 (Xm+1) A) = 6Bayes(xm-l—l) A)

whenever

2.4 Calculation of the Learning Curves

In the following we now assume that the instances
£1,%3,...,8me1 are drawn independently at random
from an N-dimensional probability distribution. In
particular, we assume that for each ¢ and j, where
1 < i,j < N, the cartesian components (i) and
zp(j) of &p, bk =1,2,...,m+1, are i.i.d. random vari-
ables with zero mean and finite covariance Cj;. This
means that the coordinate system is chosen such that
the mean of the distribution on the instance space is at
the origin. For each n, the average generalization error
for the n hidden unit learning algorithm is denoted by
en(m,A) = <en(xm+1,/\)>xm+1, where ()xm+1 denotes

the average over the random selection of Z1, ..., Fm41.
For each m let
Z(Xm+1 0.m+1)
Y. =V Xm+1’0,m+1 117*, m+1 — ’
m (())) Z(Xm, O'm)

From Equation (9) it is clear that for each n, the av-
erage generalization error €,(m, A) can be written as

n\ (| _ L= Zms1/Zm = Zos1)2 \"TF
k 1—e b 1—e8

_ L (0 (Zmer o\ () P\
T (=P \k)\ Zn Zom

the expectation of a polynomial function of Y,,. This
expectation can be calculated from the positive inte-
ger moments of the random variable Y,,,. To facilitate
this calculation, we abbreviate the the rth moment of
Y by

y(m’ 7“) — <<YT(Xm+1,O'm+1(lE*, 7]m+1))>15*,77m+1 >Xm+1

Averaging directly over possible label sequences o™ t!
we obtain

y(m,r)

>

omtle{+1}m+1

Z7(x™, o™)

or m+1 m+1
Pr(0m+1)—(x) >

Xm+1
Zr+1 (Xm+1 , 0.m+1)

2.

: <
= —-Bym+1
(1+6) om+lg{t1}m+1

for r =0,1,2... using Equation (6).

Z7(x™, o™)

The specific calculation of y(m,r) for the perceptron
and subsequent reconstruction of €, (m, A) is somewhat
lengthy, so we only sketch it. First one finds that for
the perceptron,

Zr-l-l (Xm-l-l , a_m-l-l)

> (10)

Xm+1

r41 m+1r+1
= [TLant [T I+ 0= e 00000 e VD)

k=1 a=1

rligmtl _m4l .
(1+€_§)(m+’1‘7)(r+1) can be interpreted as
the probability that »+ 1 independent random replicas
of the network weights and noise values give the same
output ¢1,...,0m41 On inputs &, ..

The expression

S Tml-

We use Equations (10) and (11) to calculate y(m, r).
However, we can calculate y(m, r) exactly only in the
limit of large instance space dimension N, and then
only by making some further assumptions on the dis-
tribution over the instance space and the prior den-
sity dp on the hypothesis space. In particular, we
assume that for almost all sets of » + 1 vectors w,,
a=1,...,7r4+ 1, drawn randomly and independently
according to du, the random vector with components
ua(%) = Wy - &/VN, a=1,...,7+ 1, obeys the mul-
tivariate central limit theorem, 1.e. for large N, the
joint probability density of the u, is approximately a
multivariate Gaussian distribution, and in the limit as
N — oo 1t 1s exactly Gaussian. Since we are assum-
ing also that the mean of the distribution over & is
the origin, for all & the means of the corresponding
random variables u, are zero. These assumptions are
satisfied for a wide class of distributions. For example,
they hold asymptotically for large N when the distri-
bution over the instance space is discrete and uniform
over the Boolean cube {£1}?V and the density du is a
symmetric function of the cartesian components w(j),

(11)

with finite variance. This includes a uniform distribu-
tion on the sphere of radius V/N, as well as a discrete,
uniform distribution on the Boolean cube. The same
results hold for the case when the distribution on the
instance space is also continuous and uniform on the
sphere.

For oy, ..., @W,41 drawn randomly from dy, let the r41
by r + 1 matrix-valued random variable) be defined
by Qup = N™Y(w,Cuy), for 1 < a,b, < r+ 1, where
C = {Cy;} is the N by N covariance matrix for the
distribution on the instance space. Under our Gaus-
sian assumption, (Qq; 1s the covariance of the random
variables g (%) = W, - i"/\/ﬁ and uy(Z) = o - i"/\/ﬁ
We can now carry out the average over the m+ 15! in-
stance in (10) and its two possible outputs o1 = +1
explicitly. The resulting expression can be reexpressed
as an average over targets and noise. We find

y(m,r) = 2(27)_%(1 + e—ﬁ)—l

oo r+1
/ I 7)0(ua)) -
<(det Q)_%exp(—%zua(Q_l)abub)>) (12)
ab Q

where we define the auxiliary average (f({Qas}))¢ for
a function f as

/ [T dQur{Quhe({Qu})

a<b

ﬁ—l— 1—e™

and the density?®

b =

<<f I_IT-I-1 dptm (W Hagb 6(Qab — N_l(u?'aCuTb))> . m> then
wr,n X

is the joint probability density, averaged over all target
concepts, noise and training instances, for the r(r +
1)/2 weighted inner products Qq; of r + 1 vectors wy
taken randomly from the posterior distribution after
the first m training examples.

Let o = m/N. We will calculate the limit y(ea, r) of
y(m,r) as m, N — oo with « held constant. To do
this, we make the crucial assumption of replica sym-
metry [MPV8&7]. This means that for any pair a,b of
distinct replicas and for a typical sequence of labels,
N~1(w,Cw,) becomes self-averaging, i.e. nonfluctu-
ating, and converges to a fixed single orderparameter
Q1(«), which only depends on the probability distri-
butions of & and w*.

Replacing also the diagonal elements Q. by the value
Qo(e), under this assumption the whole average in

*Here we use Dirac’s § function, which is the general-
ized function defined as the kernel that (for well behaved
functions f) yields f(z) = fjooo dt f()é(z —t).

(12) reduces to the value at Qqp = Q1(v) and Qg =
Qo(«) respectively.

Let
q() = Qu(a)/Qo(e)

(@) = V(o) /(1 - g(a)).

Inserting the replica symmetric ansatz into (12), one
finally obtains

and

y(e, r)
= s [e - e
(13)

with Dt = (27)~ 2 eap(—t?/2)dt and H(z = [Dt.

Note that the distribution of instances and targets en-
ter the result only through ¢(«). Before calculating
q(«) for a specific distribution on the instance space
and prior measure du(w), we derive a general relation
between €g;pps and €payes-

First, let F(Y,,) be any polynomial of ¥, (such as

the polynomial Z,En:/ozj ap from Section 2.3) and for
every o > 0 let F,, denote the limit of the expecta-
tion of (V) as m, N — oo with & = m/N held
constant. This expectation i1s with respect to the ran-
dom choice of the instances, target concept and noise
values. Equation (13) enables us to calculate Fy,. In
particular, if

F(Ym)=co+e1Ym+...+e,Y)

m

Fo = coy(a, 0) + cry(a, 1) + ...
It then follows from (13) that

+ cny(a, n).

o e .
P = m/_oo Dt H(t,a)F (H(t,a)) ,

where
H(t,o) = e P + (1 — e P)H(ty(a)).

This result is easily extended to any function F' that
can be approximated by polynomials, including the ©
function.

To apply this result, let e,(a, A) denote the limit of
en(m,A) as m; N — oo with &« = m/N, and similarly
for egipps (v, A) and €gayes(e, A). Then from Equations
(9) and (14), using the fact that H(—z) = 1 — H(x)

and A = 1_‘?__?, after some lengthy algebra we obtain

en(a, A) =
[n/2]
A (2-40) >
k=0

(Z) /_O; H(t,k, @)Dty

(15)
where
(1, k, @) = H*+'(9()(1 = H{tr(a)))"~".

For n = 1 and n = oo this yields

6Gibbs(oh/\)
= A+ (2-4y / Dt H(ty(c)) [1 = H(ty(e))]

A+ (1 =207 Larceos(g(a)) (16)

and

€Bayes (0, A)
= A+(2-4N)) /00 Dt Hty(a)O[1 — 2H (ty(a))]
= A+ (1 =207 tarccos(y/q(a)) (17)
From Equation (1), we can now also calculate the prob-

ability that these algorithms incorrectly predict the
underlying noise-free classification fg«(Zmy1). We get

(EGibbs(a, /\) — /\)

= 7 arccos(q(a))

baivps(a, A) =

1—-2A
(18)
and
ayes ,A - /\ —
bBayes (@, A) = (Bay 1(_0[2;) — gt arccos(/¢(a))

(19)
Tt should be noted that ¢(«) implicitly depends on the
noise rate A. However, by eliminating ¢(«) one arrives

at the result

8Bayes(, A) = 71 arccos (COSl/Z(ﬂ'(SGibbs(Oz, /\))) .
(20)

Remarkably, this functional relation does not depend
on the noise rate A. From Equation (15) one finds

that the same is true for all é,(a,) = % as

functions of dgspss(cx, A).

In Figure 1 we show é,(a,A) as a function of
Sgives(cr, A) forn = 1,3,7,21, co. For large o, the gen-
eralization error 8, (a, A) converges to zero for all n. In

the same limit the ratio dgipes(cr, A)/8Bayes (e, A) con-
verges to v/2. On the other hand, for @ = 0, both al-
gorithms have generalization error 0.5, which is equiv-
alent to random guessing. However, as « grows posi-
tive, the generalization error of Bayes algorithm drops
much faster from its random guessing value than the
generalization error of the Gibbs algorithm. For small
a we have

0.5 — (SBayes(a, /\) ~ (71'(05 - 6Gibbs(aa /\))) :

S5

Finally, we give results for a uniform spherical dis-
tribution on the instance space, i.e. Cj; = 0;;, and
corresponding uniform spherical prior distribution on
the target vector &* (see Figure 2). In this case the or-
der parameter ¢(«) becomes identical to the Edwards-
Anderson parameter [KST8]. It naturally appears in
the calculation of the averaged free energy F(m). This
is defined by

BF(m)
= = {0 Zn)ge),

1
:‘m<z

ome{tl}™

Z(Um)an(Um)>

(21)
Using the replica trick, this is given by
BE(m)

.0 s m
= —ALHll 6_nln< Z Z" (o)>
ome{t1}m™

By a calculation similar to that in [GT90], one finds
q(«) by extremizing the expression

fla) = myN%ii%/N:a—ﬁF(m)/N
1 1
= (1 —q(a)) + 5a()
2 o .
-I-H_%/_OO H(t, o) In H(t,) Dt
(22)
where

H(t,o) = e P + (1 — e P)H(ty(a)).

Plugging this value of ¢(«) into (18) and (19), and
solving for large «, we find that 8gipps(or, A) & C(A)/
and dpayes(ar, A) & %C’(/\)/a as « goes to co, where

V2(1 =201
[zexp(—=322)In[A + (1 — 2X\)H(2)]dz
(23)

c) = —

Note that for all A the asymptotic behavior of the
learning curve is & a~!. A slower convergence (~
a_%) of the generalization error has been predicted
in [GTI0] for a deterministic learning algorithm that
tries to learn a perceptron with noise by minimizing
the number of errors on the first m examples. Though
the type of noise discussed in [GT90] is not the same as
ours, we expect that the use of a nonzero temperature
in the algorithm is essential in obtaining faster conver-
gence. A similar result has been given in [Gyo90b].

The function C(A)(1—2X)? is shown in Figure 4. Since
C'(0) =~ 0.62, as a special case we obtain the generaliza-
tion error without classification noise: 8gipps(er,0) =
0.62/a = 0.62N/m, as in [OH91]. As already noted,

the corresponding Bayes value is smaller by a factor of

V2.

In Figure 2 the generalization errors for the noise-free
case A = 0 are depicted as functions of a. As « ap-
proaches 0, the deviation 0.5 — €payes(cv, 0) of the gen-
eralization error of Bayes algorithm from purely ran-
dom guessing is ~ (2a/7), which has infinite slope
at @ = 0, whereas for the Gibbs algorithm this quan-
tity is linear in o with slope ~ 2/72.

The positive moments of the random variable Y,,, con-
tain more information than just the different values
of generalization errors of the learning algorithms we
have examined. For example, consider the random
variable

1
1—e b (-

which 1s the probability that the Gibbs algorithm
makes the wrong prediction on the m + 1st classifica-
tion label for fixed training instances, target function
and noise values. The distribution of Y, gives the
fluctuations of this random variable when the training
instances, target function and noise values are drawn
at random. Using (14), from ¢(«) we can obtain the
complete probability density of Y,, as m, N — oo for
fixed m/N = . We denote this density by f(Va).

We find for the A = 0 case that

Vi),

2Y, 1
% exp[—=t*(1 -

CSepl gt (@)

f(Ya) =

where ¢ is the solution of Y, = H(ty(«)).

In Figure 5 we show f(Y,) for 3 values of ¢ = ¢(«),
namely ¢ = 0.1,0.3,0.7. Here we have dropped the
dependence of ¢ on « for convenience.

For small ¢, f is approximately a Gaussian centered
1.

around Y, = 3:

2
F(Ya) m g7 exp [—% (Yoz - %) QW/Q]

Thus for small ¢, which means small o when A = 0,
the volume 7, is partitioned in two subvolumes of ap-
proximately equal size. This means that the learning
algorithm (Bayes or Gibbs) does not do significantly
better than random guessing.

For all values of ¢ < %, the density f(Y,) goes to zero

as Yy, — 1. At ¢ = %, the behavior of the density

f changes dramatically, and for all values of ¢ > %,

the density f(Y,) goes to infinity as Y, — 1. This
means that it is more likely that there is only a small
reduction in the volume from 7., to Zp41, and thus
the learning algorithm has a higher probability of pre-
dicting correctly. In fact, for any € > 0, as ¢ — 1 the
probability that Y, < 1 — e converges to zero, giving
perfect generalization in this limit.

The largest fluctuations of Y,, appear for ¢ = % In
this case y(a) = 1 and from Equation (24) we simply

get
f(Yoz) = 2Yoz

for 0 <Y, <1.

We have also estimated the density f for finite m, N
by performing numerical simulations on perceptrons.
The calculation of Z,, at A = 0 for a fixed sample
can be easily performed when the prior distribution
on the weight vectors « is uniform on the Boolean
cube {£1}". Using this distribution on the weight
vectors, when the instances are distributed uniformly
on the sphere, replica symmetry is known to be valid at
A = 0 for values of & up to & 1.245. Above this value a
discontinuous transition to perfect generalization takes
place [Gyo90a]. Figures 6 and 7 display results of our
simulations form = 4, N = 14 and m = 16, N = 20 re-
spectively, averaged over many samples. The smooth
curves are the theoretical predictions from Equation
(24). The histograms represent the experimental re-
sults. The range of Y, was partitioned into equal width
bins. The height plotted for each bin the fraction of
times the value of Y, lands in the bin divided by the
width of the bin.

It is also interesting to study the learning curves in the
opposite limit 5 — 0 or A — % in more detail. In this
case 0gipps (v, A) and Spayes (e, A) have the asymptotic
scaling

baives(a, A) & ggins(B7ar)
and
6Bayes(aa A) R gBayes(Bza)’

where the functions ggises and gpayes are calculated
by expanding (22) for small 3.

This high temperature and high noise limit results in a
much simpler equation for ¢(«) when the distribution
on instances and prior on weights are both uniform on
the sphere:

14 q(@)

(@) o

)| ———— A ——.

1 1—g(e) 27

Solving numerically we obtain the results of Figure 3.
For #%o — oo we find

SR S

Ba (1—2X)2%a’

which is the dashed line in Figure 3. It follows from
this and Equation (1) that

2 1
ipbs(,A) A+ — A+ ——.
€Gibs (v, A) +ﬁa +(1_2/\)a
In [STS90] related results are given for the Gibbs al-
gorithm in a general but somewhat different setting.

baivps (0, A) &

3 Conclusion

Our results show that in the limit the relationship be-
tween the generalization error of the Bayes and the
Gibbs algorithms is independent of the particular as-
sumptions made about the densities used to choose the
target perceptron and to generate the training exam-
ples, as long as the latter distribution has 0 mean, a
central limit theorem holds and the replica symmetry
assumptions made above are valid. This also holds for
the approximations to Bayes algorithm we have de-
fined using neural nets with a layer of hidden units
and a majority gate output unit as well. Our experi-
mental results show the formulas derived in the limit
are already fairly accurate for relatively small sample
size and instance space dimension, at least for some
simple cases. We expect that the quantitative relation-
ships shown in Figure 1 are quite robust, and that in
practice, this use of 2-layer nets with majority output
may give better generalization performance in many
circumstances.

Acknowledgements

Helpful discussions with Haim Sompolinsky, Naftali
Tishby and Michael Kearns are greatfully acknowl-
edged. D. Haussler’s research was supported by ONR
grant N00014-91-J-1162. Part of this work was done
while M. Opper was visiting the Physics department of
the University of California at Santa Cruz. He would
like to thank them for their hospitality.

References

[BH89] E. Baum and D. Haussler. What size net
gives valid generalization? Neural Compu-

tation, 1(1):151-160, 1989.

Alfredo DeSantis, George Markowski, and
Mark N. Wegman. Learning probabilis-
tic prediction functions. In Proceedings

[DMWSg]

[DSW+87]

[Gar88]

[GDSg]

[GTI0]

[Gyo90a)

[Gyo90b]

[HKS91]

[HLWSS]

[HS90]

[KS78]

[Lit89)]

[LTS89)]

of the 1988 Workshop on Computational
Learning Theory, pages 312-328, San Ma-
teo, CA, 1988. Published by Morgan Kauf-

mann.

J. Denker, D. Schwartz, B. Wittner,
S. Solla, R. Howard, L. Jackel, and J. Hop-
field. Automatic learning, rule extraction
and generalization. Complex Syst., 1:877—
922, 1987.

E. Gardner. The space of interactions in
neural networks. J. Physics A, 21:257-270,
1988.

E. Gardner and B. Derrida. Optimal stor-
age properties of neural network models.

J. Physics A, 21:271-284, 1988.

G. Gyorgyi and N. Tishby. Statistical the-
ory of learning a rule. In K. Thuemann
and R. Koeberle, editors, Neural Networks
and Spin Glasses. World Scientific, 1990.

G. Gyorgyi. First order transition to per-
fect generalization in a neural network
with binary synapses. Phys. Rev. A,
41:7097, 1990.

G. Gyorgyi. Inference of a rule by a neural
network with thermal noise. Phys. Rev.

Lett., 64:2957, 1990.

D. Haussler, M. Kearns, and R. Schapire.
Bounds on the sample complexity of
Bayesian learning using information the-
ory and the VC dimension. In Proceedings
of the Fourth Workshop on Computational
Learning Theory, 1991.

D. Haussler, N. Littlestone, and M. War-
muth. Predicting 0,1-functions on ran-
domly drawn points. In Proceedings of the
29th Annual Symposium on the Founda-
tions of Computer Science, pages 100-109.
IEEE, 1988.

D. Hansel and H. Sompolinsky. Learn-
ing from examples in a single-layer neural
network. Furophys. Lett., 11(7):687-692,
1990.

S. Kirkpatrick and D. Sherrington. Infinite
ranged models of spin glasses. Phys. Rev.
B, 17:4384, 1978.

N. Littlestone. Mistake Bounds and Log-
arithmic Linear-threshold Learning Algo-
rithms. PhD thesis, University of Calif.,
Santa Cruz, 1989.

E. Levin, N. Tishby, and S. Solla. A sta-
tistical approach to learning and general-
ization in neural networks. In R. Rivest,
editor, Proc. 2nd Workshop on Compu-
tational Learning Theory. Morgan Kauf-
mann, 1989.

[LW89]

[Maa91]

[Mit82]

[MPV87]

[OHO1]

[OKKN90]

[STS90]

[VIP89]

[Vov90]

N. Littlestone and M. Warmuth. The
weighted majority algorithm. In 30th An-
nual IEEE Symposium on Foundations of
Computer Science, pages 256-261, 1989.

Wolfgang Maass. On-line learning with
an oblivious environment and the power
of randomization. In Proceedings of
the Fourth Workshop on Computational
Learning Theory, 1991.

T. M. Mitchell. Generalization as search.
Art. Intell., 18:203-226, 1982.

M. Mezard, G. Parisi, and M.A. Virasoro.
Spin Glass Theory and Beyond, volume 9
of Lecture Notes in Physics. World Scien-
tific, 1987.

M. Opper and D. Haussler. Generaliza-
tion performance of Bayes optimal classifi-
cation algorithm for learning a perceptron.
Physical Review Letters, May 1991. to ap-
pear.

M. Opper, W. Kinzel, J. Kleinz, and
R. Nehl. On the ability of the opti-
mal percepton to generalize. J. Phys. A.:
Math.Gen., 23:1.581-1.586, 1990.

H. Sompolinsky, N. Tishby, and H.S. Se-
ung. Learning from examples in large
neural networks. Phys. Rev. Lett., 65:1683—
1686, 1990.

F. Vallet, J.Cailton, and P.Refregier. Lin-
ear and nonlinear extensions of the pseudo
inverse for learning Boolean functions. Eu-

rophys. Lett., 9:315-320, 1989.

Volodimir Vovk. Aggregating strategies.
In Proceedings of the 3nd Workshop on
Computational Learning Theory, pages
371-383. published by Morgan Kaufmann,
1990.

Figure captions

Figure 1: Generalization errors of the n-hidden
unit network with majority output as a function of
8gives() for n = 1,3,7,21, 00. The case n = 1 (diago-
nal line) corresponds to the Gibbs algorithm itself, and
the case n = oo (lowest curve) corresponds to Bayes
optimal algorithm. The results are independent of A,
so this parameter is omitted.

Figure 2: Generalization errors of the n-hidden unit
network with majority output at A = 0 as a function of
a for n = 1,3,7, 00, assuming a spherically symmetric
distribution on target vectors and instances. The case
n = 1 (highest solid curve) was recently calculated in
[GT90] and corresponds to the Gibbs algorithm. The
case n = oo (lowest solid curve) corresponds to Bayes
optimal algorithm.

Figure 3: Learning curves for Gibbs (upper solid
line) and Bayes (lower solid line) algorithm in the
high temperature limit 8 — 0, assuming a spheri-
cally symmetric distribution on target vectors and in-
stances. The dashed line 1s the asymptotic approxi-
mation g(3%a) ~ ﬁ;la for the Gibbs learning curve.
Figure 4: The function C(A)(1 — 2X)? defined by
Equation (23).

Figure 5: Probability density f(Ya,) for ¢(«) = 0.1
(bell-shaped curve) ¢(«) = 0.3 (flatter curve) and
q(«) = 0.7 (curve peaked at 1).

Figure 6: Probability density from numerical simu-
lations of perceptrons with weight vectors on Boolean
cube, for m = 4 and N = 14. The smooth curve is
the theoretical prediction. See further explaination in
text.

Figure 7: Same as Figure 6, but with m = 16 and
N = 20.

