
=* ��� *=

=* Simulate Step() �� Perform one simulation step time advancement.

Dequeue all events to be run at the current time and update the

net values. Then Enq Sinks() of all nets which changed to generate

the next round of events. *=

=* ��� *=

void Simulator::Simulate Step() f

== make these static so they don't get re�allocated every call!;

static Event Class *e;

static Net Class *net;

static Basis *tempobj;

static Queue Changed Nets;

int e count=0; == number of events that were executed at this time step

=* dequeue events, update net values, and enqueue changed nets *=

while (EventQ.Not Empty() && (EventQ.Get Next Key() <= Get Sim Time())) f

e = (Event Class *) EventQ.Deq();

net = (Net Class *) e�>Get Net();

net�>Set Pending Event(net�>Get Pending Event()�1);

net�>Set Value(e�>Get New Value());

Changed Nets.Enq Head((Any Type) net);

delete e; =* free up memory space *=

e count ++;

g

== inc. the total overall event count

event count += e count;

fprintf(history st,"%d %d\n",Get Sim Time(),e count);

== For all nets which have changed value, put their sinks onto;

== the PostQ for consideration for generating new events. Objects

== are only added to the PostQ IF they are not already there, thus

== eliminating unnecessary event generation.

while (Changed Nets.Not Empty()) f

net = (Net Class *) Changed Nets.Deq Tail();

=* enqueue all objects connected to the changed wire *=

net�>Enq Sinks();

g

== All objects on the PostQ can now process their inputs and enqueue

== new events onto the event queue.

while (PostQ.Not Empty()) f

tempobj = (Basis *) PostQ.Deq Head();

tempobj�>Process Input();

g

g

39

=* ��� *=

=* set value help() �� Set the value of a net. This routine is tri�state

smart. It relies on the bit encoding of the net values, and also

assumes that all objects connected have a Get Outvalue() function by

doing a wired�and function. *=

=* ��� *=

static Any Type set value help(Any Type d) f

Basis *obj;

obj = (Basis *) d;

int val;

val = obj�>Get Outvalue(local ID);

if ((val==XXXXXXX) jj (retval==XXXXXXX)) retval = XXXXXXX;

== Relies on the fact that z=3, x=2, so z&z = z, z&1=1, z&0=0

else retval = retval & val;

g

=* ��� *=

=* Set Value() �� Set the value of a net, and rise=fall times.

This is tri�state aware. If the net is tristate, it will look at all

the sources and do a wired�and function on them. *=

=* ��� *=

void Net Class::Set Value(int val) f

if (type==SIMPLE NET) f

if ((un.simple.value.Get Value() == 0) && (val==1))

rise time = Get Sim Time();

if ((un.simple.value.Get Value() == 1) && (val==0))

fall time = Get Sim Time();

if (Get Tristate()) f

=* examine all the sources and set value to wired�and *=

retval = ZZZZZZZ;

local ID = (int) Get ID Addr();

Sources.Iterate(set value help);

un.simple.value.Set Value(retval);

g

else un.simple.value.Set Value(val);

g

else fprintf(error st,"Net %s was not SIMPLE. Couldn't set value\n",

Get Name());

g

Figure 30: Assigning Tri-state Values to Nets

38

5.4 Tri-state Net Updating

Tri-state nets are more complex to update than normal nets. When there is a change on a tri-state net, it

is necessary to examine the outputs of all source objects connected to that net, and, by clever selection of

the value representation of ZZZZZZZ and XXXXXXX, performing a wired-AND operation on those sources.

Figure 30 is the source code for updating the value of a net.

5.5 Simulation Loop

The main event-processing simulation loop is implemented in Simulate Step() (see Figure 5.5). There are

three separate phases in one simulation step. First, all events at the current simulation time are dequeued

and the nets associated with those events are put on a queue of changed nets. The new values of the nets

are also set in this loop. In the second phase, the sink objects of all of the changed nets are enqueued onto

a Post Queue. The reason for putting items onto this queue is so that only unique net changes will be

enqueued. Finally, in the last phase, all of the items on the Post Queue perform a Process Input(), which

will place the next group of events onto the EventQ.

5.6 Comments

Simulation time is very fast for designs with .eqn objects, but gate-level objects need to be faster. This is a

by-product of the large overhead induced by managing the event queue.

The current user interface to the simulator is a non-interactive command script. It would be nice if an

interactive X-windows interface could be built around the simulator.

The simulator only supports unit-delay simulations, however, in the future, variable-delay simulations might

be supported. This would, however, cause the simulator to grow slower, unless improved event-processing

algorithms and pro�ling are used.

37

=* Constructor *=

INV::INV(char *n, Net Class *out, Net Class *i1):Basis(INV,1,n) f

input1 = i1;

output = out;

g;

=* Process Input() �� update internal value *=

void INV::Process Input() f

value = !(input1�>Get Value());

EventQ.Post Event(output, value, Get Delay());

g;

=* Print Info() �� Output information about the inverter *=

void INV::Print Info(FILE *out) f

fprintf(out,"INV: %s in: %d out: %d\n",Get Name(),input1�>Get Value(),

output�>Get Value());

g;

Figure 28: Code Implementing INV Class

class Driver : public Simulator {

private:

assoc_list *driver_ports;

public:

Driver(assoc_list *p) : Simulator() { driver_ports = p; }

#include "run_driver.cc"

};

Figure 29: Code Implementing Driver Class

36

class Net Class: public Basis f

private:

int pending event=0; =* is an event scheduled to run? *=

int Tristate=0; =* is the net connected to a tbuf? *=

int rise time= �1; =* last time the net changed to high *=

int fall time= �1; =* last time the net changed to low *=

int type= SIMPLE NET; =* SIMPLE NET or BUS NET *=

union f

struct f =* SIMPLE NET *=

Sig Class value;

gsimple;

struct f =* BUS NET *=

Net Class **net array;

int size, o�set;

gbus;

gun;

public:

Queue Sources, Sinks; =* queues of objects that drive or receive data *=

=* constructors *=

Net Class(char *n, int id);

Net Class(char *n, int id, int size in, int o�set in);

=* destructor� deallocates all sinks, sources, and the net class itself *=

~Net Class();

void Add Source(Basis *obj);

void Add Sink(Basis *obj);

=* Get=Set private variables, procedures excluded here for brevity *=

Basis * Get Sink(Basis *obj);

Basis * Get Source(Basis *obj);

void Post Bus Value(int bits, int num);

void Post Bus Uniform Value(int num);

void Post Uncond Bus Value(int bits, int num, int etime);

void Post Uncond Bus Uniform Value(int num, int etime);

void Enq Sinks();

void Print Info(FILE *out);

void Print Rnl(FILE *out);

void Print Sources();

void Print Sinks();

void Process Input();

Basis * Remove Source(Basis *src);

Basis * Remove Sink(Basis *sink);

g;

Figure 27: De�nition of Net Class

35

The ID number of the object should be unique. A global procedure named Generate ID() returns a unique,

monotonically increasing integer for that purpose.

5.3 Derived Objects

Figure 26 and Figure 27 show how objects are derived from the Basis class. Figure 28 shows the source code

that implements an inverter. Each simulation object has its own internal input/output/tri-state pointers

to Net Classes, and its own private internal value. The Process Input() procedure performs the object

function and enqueues a new event if necessary.

The Net Class uses a union to store either simple (one-bit) nets or buses (arbitrary size). A bus is

represented as an array of pointers to simple nets. The Net Class structure contains queues of source ob-

jects and sink objects. In the simulator, when an object is declared, it must connect itself to input nets (the

object is acting as a sink), or connect itself to output nets (source object). This information is then used

by the simulator to determine successive propagations of signal changes. It is necessary to store a net's last

rise time and fall time so that clocked objects can detect rising or falling edges. The other private variables

of the class should be self-explanatory.

class INV : public Basis f

private:

Net Class *input1, *output;

int value=0;

public:

=* Constructor *=

INV(char *n, Net Class *out, Net Class *i1);

void Process Input(); =* update internal value *=

void Print Info(ostream *out);

g;

Figure 26: De�nition of INV Class

Almost all simulation objects are de�ned similarly. In the case of gate de�nitions, instead of specifying

a di�erent simulation object for every kind of gate, two general-purpose gates, GATE2 (2-input gate) and

GATE5(5-input gate) were de�ned. These objects were initialized with the appropriate function pointer. 3-

and 4-input gates were then implemented as 5-input gates with the extra inputs assigned (HIGH or LOW)

in a manner that would leave the behavior of the gate una�ected.

Driver objects were de�ned di�erently. Since the driver object must have control of the simulation, it is

derived from the Simulator class, as shown in Figure 29. It was necessary to #include the main void run()

procedure, which is de�ned in the �le run driver.cc so that xnfwirec would compile it at the appropriate

time. There is an association list named driver ports containing net name/net pointer pairs. There is no

distinction made between inputs and outputs, so it is up to the programmer to use the nets in the appropriate

manner.

34

5.2 CLASS Basis

It was necessary to establish a common class for all objects in the simulator so that objects may be handled

in a uniform manner. All objects and nets in XS are derived from the Basis class. This class, shown in

Figure 25, contains information that is inherited by all simulation objects and nets. In the Basis class, there

class Basis f

private:

char * name; =* String Identi�er *=

int type; =* Object type *=

int ID; =* Unique identi�cation number *=

int delay; =* Signal propogation delay through this object *=

public:

=* Constructors *=

Basis();

Basis(int t, int d, char *n);

=* Destructor *=

virtual ~Basis();

int Get Delay();

int Get ID();

int * Get ID Addr();

char * Get Name();

virtual int Get Outvalue(int dummy);

int Get Type();

virtual void Print Info(ostream *out);

=* Process Input() �� Update internal data based on new input *=

virtual void Process Input();

=* Reset() �� response to a reset signal *=

virtual void Reset();

void Set Delay(int del);

void Set ID(int id);

void Set Name(char *s);

void Set Type(int t);

void Set Params(char *n, int t, int d);

g;

Figure 25: De�nition of class Basis

are several virtual functions Print Info(), Print Rnl(), Process Input(), Reset(), Get Outvalue(). These

functions allow each derived object to take its own speci�c action when the function is called. Print Info()

sends object information to an output stream. Print Rnl() sends RNL-compatible data to the RNL �le,

which contains the simulation trace. Process Input() performs allows the object or net to respond to a

change in the inputs. Finally, Get Outvalue() is used to resolve the proper value of tri-state nets.

33

== Pseudocode showing event generation and processing.

== in simulator.cc, Simulator::Run()

== ���������������������������������

while (Simulation Not Done) f

== in simulator.cc, Simulator::Cycle()

== �����������������������������������

while (Current Cycle Not Done) f

== in simulator.cc, Simulator::Simulate Step()

== ���

while (EventQ.Not Empty && (EventQ.Next Time() <= Get Sim Time())) f

ev = EventQ.Deq();

ev�>Get Net()�>Set Value(ev�>Get Value()); == update net value

Changed Nets.Enq Head(ev);

g

while (Changed Nets.Not Empty()) f

net = Changed Nets.Deq Tail();

== in net list.cc, Net Class::Enq Sinks()

== ��������������������������������������

for (obj=net�>Get First Sink(); obj=net�>Get Next Sink();

obj!=net�>Get Last Sink()) f

if (obj�>Get Type()== NET) EventQ.Post Event(net,value,delay);

else f

== in xnfobjects.cc, Basis::Process Input()

== ��

== �� function performed depends on the current object type

value = object function();

EventQ.Post Event(net,value,delay);

g

g

g

g

g

Figure 24: Event Generation and Processing

32

class Event Class f

private:

Net Class *net; =* a net which will be changed *=

int time; =* time at which the net will change value *=

int new value; =* value the net will change to *=

public:

=* Constructor *=

Event Class(Net Class *n, int nv, int t);

Net Class *Get Net();

int Get New Value();

int Get Time();

void Set Net(Net Class *n);

void Set New Value(int i);

void Set Time(int t);

=* ��� *=

=* Enqueue all events that will happen when net changes. These events

will be all wires that are connected to the "Sinks" of the current

net. This procedure call indirectly calls Process Inputs, which will

perform the actual event posting via Post Event(). *=

=* ��� *=

void Enq Sinks(Net Class *net);

g;

Figure 23: Event Class De�nition

31

4 Performance

The performance of XS varies greatly depending on the primitives which are used. By far the most e�-

ciently processed objects are FOREIGN .eqn devices. This is because each line in an .eqn �le is processed

as a whole, rather than as separate gates. This way, there is a substantial decrease in event-related runtime

overhead. Gates are the next most e�cient objects. Finally, CLBs are the least-e�ciently processed, due to

their complexity. It is expected that very few designs will use CLBs directly, and that FOREIGN .eqn �les

will be most common.

The table below shows the performance of the simulator on various benchmarks. It is worthwhile to note

that the \eps" (events per second) rating is not a very accurate performance metric. This is because .eqn

�les generate less events, yet run signi�cantly faster. In addition, XS does extensive �ltering of unnecessary

events, and so the eps rating may not be analogous to that of other simulators.

Benchmark Comments # of Nets # of Objects # of Events EPS RunTime(s)

eqnfa half gate half .eqn 160 102 147490 2344 62.9

eqnfa .eqn version 137 64 45563 3616 12.6

tetris gate version 822 834 116364 689 168.8

tetris .eqn version 717 653 93988 3494 26.9

tra�c .eqn version 28 19 5394 1860 2.9

treecomp .eqn version 145 109 212485 4691 45.3

A number of things were done to enhance the speed of XS. First, it was found that �le I/O was a ma-

jor bottleneck. The C++ streams were replaced with the more e�cient standard input/output C routines.

Next, the watch commands were streamlined so that net information was only printed upon a change in the

net, rather than at every simulation cycle. These changes roughly tripled the simulation speed. Another

improvement was inlining various queueing functions. The �nal improvement was considering each line of an

.eqn �le as one large object. This resulted in another factor of four speed improvement (but only for designs

which used .eqn �les).

5 Design Details

This section of the paper reveals some of the algorithms and data structures used in the simulator. It is

intended to give the reader some insight into how the simulator works, and should allow the reader to un-

derstand and modify the source code more readily.

5.1 Events

An event is considered to be a change in a net value at a given time. When such a change occurs, the event

is placed onto an event queue. This queue is a time-ordered doubly linked list. Events may be generated

by a FORCE command in test.script, by an object responding to an input change, or by a Driver. The

data structure for the event class is given in Figure 23. The Enq Sinks() procedure is the key procedure

used by the event-processing loop. It causes all of the sink objects of the given net to Process Inputs(),

which in turn will post new events for the next simulation timestep. The main simulation loop, described

in Section /refsimulator controls the event processing procedure, however, many of the details are hidden

within procedure calls. Figure 24 shows the �ner details of how events are generated and processed.

30

0.00 325.00 650.00 975.00 1300.001.00e-09

out

select<2>

select<1>

inputs<4>

inputs<3>

inputs<2>

inputs<1>

185.71
1114.29dt= 928.57

Runs: graph.rnl

F
i
g
u
r
e
2
2
:
N
M
U
X
:
S
i
m
u
l
a
t
i
o
n
R
e
s
u
l
t
s

2
9

void run() f

int notdone=1, data, select, time=0;

fprintf(output st,"RUNNING DRIVER!!!!\n");

== Put the events on the event queue.

for (data=0; data<16; data++) f

Change Bus Output Abs(4,data,"data",time);

for (select=0; select<4; select++) f

Change Bus Output Abs(2,select,"select",time);

time+=20;

g

g

== Simulate, 20 cycles at a time!

while (notdone) f

== Now let the simulator run for a while & settle

notdone=Cycle(20);

g

g

Figure 21: N MUX: Driver Implementation

28

<FOREIGN>

select

(int dsize, int ssize)

driver

data

ports = cons_al(1,2,"data",data,"select",select);

gen_driver_obj(new Driver(ports));

ACCESS([1:ssize],select)

Title:

Project:

Drawn by:

Drawing file: Date:

Page: of

University of California, Santa Cruz Santa Cruz, California

ACCESS([1:dsize],data)

#include "run_driver.h"

Figure 20: N MUX: Driver De�nition

27

inputs[1:bound]

(k)

(k)

ACCESS(SIMPLE, out)

if (n==1) {base_mux} else {recurse_mux}

ACCESS([1:n], select)

int upper= (1<<n);

int bound = (1<<k);

{recurse_mux}

Santa Cruz, CaliforniaUniversity of California, Santa Cruz

ofPage:

Date:Drawing file:

Drawn by:

Project:

Title:

int k=n-1;

select

out

n_mux

(int n)

inputs

select

out

n_mux

(int n)

inputs

outselect[1]

inputs[2]

inputs[1]

{base_mux}

ACCESS([1:(1<<n)], inputs)

inputs[(bound+1):upper]

select[1:(n-1)]

select[1:(n-1)]

select

out

n_mux

(int n)

inputs

out

select[n]

select[n]

Figure 19: N MUX: Bottom Level

26

(s)

(d,s)

select

out

n_mux

(int n)

inputs

out
(P)OB

inputs

LOCAL([1:s], select)

LOCAL([1:d], inputs)

int d=4, s=2;

testn_mux

<MAIN>

data

driver

(int dsize, int ssize)

select

<FOREIGN>

Title:

Project:

Drawn by:

Drawing file: Date:

Page: of

University of California, Santa Cruz Santa Cruz, California

LOCAL(SIMPLE, out)

Figure 18: N MUX: Top Level

25

3.3 nmux: A Driver Example

The �nal example demonstrates the use of a Driver. Here, the Driver is used to generate a complete set

of test vectors for a four to one multiplexor. Figure 18 shows the top level of the design. A Driver object

should be at the top level of the design. The design of the mux is shown in Figure 19. It has been recursively

de�ned so that any n-to-1 mux (where n is a power of 2) may be created. Figure 21 is the C++ code for

the Driver. It �rst places all of the necessary testing events onto the event queue, and then it runs the

simulation until there are no events left. One VERY IMPORTANT thing to know is that the only way to

place multiple events associated with the same net onto the event queue is to use the CHANGE xxxx ABS()

commands. These commands put a command on the queue at the given time (relative to time zero, rather

than relative to the current time) whether or not an event for the net already exists. The CHANGE xxxx()

commands will not enqueue multiple events on the queue, in order to improve the event-processing e�ciency

of the simulator.

24

0.00 55.00 110.00 165.00 220.001.00e-09

addr<1>

addr<2>

addr<3>

addr<4>

addr<5>

addr<6>

addr<7>

addr<8>

data<1>

data<2>

data<3>

data<4>

data<5>

data<6>

data<7>

data<8>

ce

rd_wr

oe_L

31.43
188.57dt= 157.14

Runs: graph.rnl

F
i
g
u
r
e
1
7
:
M
e
m
o
r
y
:
S
i
m
u
l
a
t
i
o
n
R
e
s
u
l
t
s

2
3

def_bus 3 cerwen ce rd_wr oe_L

def_bus 8 din din<1> din<2> din<3> din<4> din<5> din<6> din<7> din<8>

def_bus 8 data data<1> data<2> data<3> data<4> data<5> data<6> data<7> data<8>

def_bus 8 addr addr<1> addr<2> addr<3> addr<4> addr<5> addr<6> addr<7> addr<8>

watch cerwen 0 220

watch data 0 220

watch addr 0 220

// Write mem[0]=0

force din 0 1

force addr 0 1

force ce 0 1

force rd_wr 0 1

force oe_L 1 1

// Write mem[1]=2

force din 2 20

force addr 1 20

// Write mem[2]=4

force din 4 40

force addr 2 40

// Write mem[3]=7

force din 7 60

force addr 3 60

// Write mem[4]=10

force din 10 80

force addr 4 80

// Turn off chip enable, Will NOT write 7 into addr[4]

force din 7 100

force ce 1 100

force rd_wr 0 100

// Read back what's in mem[4] (should be 10)

force ce 0 120

force rd_wr 1 120

force oe_L 0 120

// Read back mem[1] (should be 1)

force addr 1 140

// Read back mem[2] (should be 2)

force addr 2 160

// Read back mem[3] (should be 4)

force addr 3 180

// Turn off output enable, to get ZZZZZZZ

force oe_L 1 200

Figure 16: Memory: test.script

22

== mem proc.cc �� a c�procedure which pretends to be a memory chip

#include <stdio.h>

== cc obj help.h �� This contains useful interface routines for

== handling net value accesses.

#include "cc_obj_help.h"

== These input parameters are standardized!!!

int mem proc(assoc list *outs, assoc list *ins, assoc list *constants)

f

char *name;

int dinval, doutval, ain, i;

static int initmem=0, words=0, bits=0, *memory;

== initialize the memory � Put i into memory[i];

if (!initmem) f

initmem=1;

words = (1<<(Access Constant("a_bits")));

bits = Access Constant("d_bits");

if (bits>32) f

fprintf(output st,"ERROR: Unable to make memory with words>32 bits!\n");

exit(�1);

g

== we have 1<<'a bits�1' words of memory

memory = (int *) malloc(words*sizeof(int));

for (i=0; i<words; i++) f memory[i] = i; g

Bus2Value("data_out",ZZZZZZZ);

g

== IF chip is active (ce L==0) then, we can continue;

if (Access Value("ce_L")==0) f

dinval = Access Bus Value("data_in");

ain = Access Bus Value("addr");

if (Access Value("readnotwr")==0) f

== *** WRITE mode, D=input ***;

memory[ain] = dinval;

Bus2Value("data_out",ZZZZZZZ);

g

else f

== *** READ mode, output=ZZZZZZZ ***;

doutval = memory[ain];

Change Bus Output(bits,doutval,"data_out");

g

g

g

Figure 15: Memory: mem proc.cc { C code Implementation

21

ACCESS(SIMPLE,readnotwr,ce_L)

al_in = cons_al(1,4,"addr",addr,"readnotwr",readnotwr,
"ce_L",ce_L,"data_in",data_in);

gen_cc_object(mem_proc,al_out,al_in,al_const);

ACCESS([1:a_bits], addr)

Santa Cruz, CaliforniaUniversity of California, Santa Cruz

ofPage:

Date:Drawing file:

Drawn by:

Project:

Title:

al_const = cons_al(0,2,"a_bits",a_bits,"d_bits",d_bits);

(int a_bits, int d_bits)

ce_L

readnotwr

addr

mem

<FOREIGN>

data_in

data_out

ACCESS([1:d_bits], data_in, data_out)

al_out = cons_al(1,1,"data_out",data_out);

#include "mem_proc.cc"

Figure 14: Memory: Device Lower Level

20

data

addr
readnotwr

ce_L

(int addr_bits, int data_bits)

oe_L
memory

Title:

Project:

Drawn by:

Drawing file: Date:

Page: of

University of California, Santa Cruz Santa Cruz, California

oe_L

notread

readnotwr

notreadreadnotwr

for (int i=1; i<=data_bits; i++) {tbufs}

ACCESS([1:addr_bits],addr)

ACCESS([1:data_bits],data)

data[i]

data[i] data_out[i]

data_in[i]

{tbufs}

(int a_bits, int d_bits)

ce_L

readnotwr

addr

mem

<FOREIGN>

data_in

data_out

(addr_bits, data_bits)

ACCESS(SIMPLE, ce_L, oe_L, readnotwr)

LOCAL([1:data_bits],data_in, data_out)

LOCAL(SIMPLE, notread)

Figure 13: Memory: Device Top Level

19

<MAIN>

testmemory

int bits = 8;

LOCAL(SIMPLE, rd_wr, ce, oe_L)

memory
oe_L

(int addr_bits, int data_bits)

ce_L

readnotwr
addr

data

(bits, bits)
ce

rd_wr

{ibufs}

for (int i=1; i<=bits; i++) {ibufs}

data[i]din[i]

rd_wr

Santa Cruz, CaliforniaUniversity of California, Santa Cruz

ofPage:

Date:Drawing file:

Drawn by:

Project:

Title:

LOCAL([1:bits],addr, data, din)

Figure 12: Memory: Top Testing Level

18

3.2 A C code Example: RAM Chip

The next example uses a C code object to implement a random access memory chip (Figure 12, Figure 13,

and Figure 14). C code objects cannot use tri-state nets, however, that limitation is easily avoided by cre-

ating an extra level in the hierarchy where tri-state bu�ers are used at the input/output interface of the

C code object (see Figure 13). When it is necessary to FORCE the value of a tri-state net, it is important

to make sure that the net being FORCEd is on the input of a TBUF. In Figure 12, if one were to try to

FORCE data[i], the simulation would be incorrect. This is because when a tri-state net value is updated, it

checks all of the object sources to the net to see what each source is generating. A dangling wire or a source

without a valid value would cause incorrect values to appear.

Figure 15 is the complete description of the behavior of the memory chip. Figure 16 is the simulation

control script. Note that once a value is FORCEd, it remains at that value unless another FORCE com-

mand overrides it. FORCE should only be used on input nets.

17

0.00 275.00 550.00 825.00 1100.001.00e-09

CLOCK_NET

reset

out<4>

out<3>

out<2>

out<1>

/counter_0/carry<1>

/counter_0/carry<2>

/counter_0/carry<3>

/counter_0/carry<4>

clk

157.14
942.86dt= 785.71

Runs: graph.rnl

F
i
g
u
r
e
1
1
:
C
o
u
n
t
e
r
:
S
i
m
u
l
a
t
i
o
n
R
e
s
u
l
t
s

1
6

start_clock 0

stop_clock 1100

connect_net CLOCK_NET, clk, 10;

reset is active high

force reset 0 20

def_bus 4 out out<4> out<3> out<2> out<1>

watch clk,0,1100

note that separators need not be whitespaces...

MUST use the hierarchical net name!

watch /counter_0/carry<4> 0 1100

watch /counter_0/carry<3>,0,1100

watch /counter_0/carry<2>; 0; 1100

watch /counter_0/carry<1> 0 1100;

watch out 0 1100

w reset 0 1100

w CLOCK_NET 0 1100

Figure 10: test.script File for Counter

15

carry[1]
clock

reset
count[1]

DFF

carry[i]
carry[(i-1)]

carry[(i-1)]

count[i]

reset

reset

clock DFF

CE

{position}

Title:

Project:

Drawn by:

Drawing file: Date:

Page: of

University of California, Santa Cruz Santa Cruz, California

ACCESS(SIMPLE, clock, reset)

ACCESS([1:bits], count)

for(int i=2;i<=bits;i++) {position}

LOCAL([1:bits], carry)

counter

clock

reset

count

(int bits)

Figure 9: Counter: Lower Level

14

clk

reset

GCLK

(n)

counter

clock

reset

count

(int bits)

count

IB

IB

(P)

LOCAL([1:n], out, count)
LOCAL(SIMPLE, clk, reset)

int n=8;

for (int i=1; i<=n; i++) {outpins}

Title:

Project:

Drawn by:

Drawing file: Date:

Page: of

University of California, Santa Cruz Santa Cruz, California

(P)

{outpins}

out[i]
(P)OB

count[i]

<main>

testcounter

Figure 8: Counter: Top Level

13

2.9 Miscellaneous

There are several pre-de�ned objects and nets which the simulator uses internally. The user should avoid

de�ning any objects or nets of the same name in their schematics. These include: CLOCK OBJ (a clock),

CLOCK NET (the net containing the clock output signal), HIGH NET (a net that always has a high logic

value), and LOW NET (a net that always has a low logic value). These objects are for internal use only,

and should never be used by the user, except for CLOCK NET, which should only be used in test.script to

connect the clock signal to the user's circuit.

The FORCE command in test.script should only be used on nets which have no source objects, or which are

connected to input pin sources. On nets which have source objects, after the FORCE has taken place, the

net value might be changed by the source object. A FORCE command should never be used on a dangling

tri-state net. Instead, one should FORCE the value of a normal net which is the input to a TBUF (tri-state

bu�er).

One additional �le which the simulator produces is netnames.txt. This �le contains a list of all of the

nets used in the system. One should consult this �le to determine the exact hierarchical name of any nets

that are to be WATCHed.

3 Examples

This section contains several examples showing how the simulator is used. All of the XDP �les and simulation

�les are included here.

3.1 A Clocked Example: Counter

The �rst example is a simple binary counter. The counter drawing is shown in Figure 8 and Figure 9. Notice

that the lower level counter de�nition is a not dependent on any XILINX-speci�c parts, or tied to any external

devices (such as input/output bu�ers, IOBs). This allows the lower level counter to be imported as a generic

part in many designs, without need for editing the description. Figure 10 shows the simulation control �le.

For clocked designs, it is necessary to specify the clock starting and ending times, and also to specify the net

to connect the clock to. This is shown in the �rst three lines of test.script. Then various nets are watched

and forced. Every script command is read in and placed in a command queue before simulation begins, so it

is not important what order the commands occur in the script. However, for WATCH commands, it is nice

to group buses together or in sequential order so that they appear together.

12

COMMAND (synonym) Argument 0 Argument 1 Argument 2

connect net (cn) src. net name dest. net time to start

connect obj (co) src. net name dest. obj time to start

def bus (db) bus size bus name arg2...argn: net name

disconnect net (dn) src. net name dest. net time start

disconnect obj (do) src. net name dest. obj time start

force (f) net name value time to start

set clock period (sp) time to set new period

start clock (sc+) time to start

stop clock (sc-) time to stop

watch (w) net name time to start time to end

// (/*)(#) Comment - ignore current line

Each command must be on a new line, and each argument must be separated by either a space, tab, or

one of the following characters: , ; : ()

The test script must contain two carriage returns (or two blank lines) at the end of the �le. Commands are

not case-sensitive.

2.7 The .xsinit Initialization File

If the �le .xsinit is present in the working directory, the simulator will read this �le and set various global

parameters. Commands in this �le consist of a variable name and a new value to assign that variable. These

variables are (with their default values):

output stream stdout

rnl stream graph.rnl

error stream stderr

history stream /dev/null

silent mode 1

The stream output stream is used for printing out general information by the simulator, such as the current

simulation time. rnl stream is the stream which outputs a �le compatible with sigview that contains the

simulation data for all of the nets tagged by the WATCH command in test.script. It should be given a

�lename which ends in .rnl so that sigview will know which �le format it uses. history stream outputs

a list of the number of events which occurred at each simulation cycle. The history stream will produce a

sigview-compatible SPICE �le, so if it is to be directed to a �le, one should use a .spice extension.

2.8 Foreign Devices (.eqn Files)

A Foreign Device is a boolean equation (.eqn) �le. Each line in the �le is converted into a function tree which

is considered to be one macro-gate object. This tree is given a unit-delay evaluation time, since it has been

experimentally determined that each line in an .eqn �le roughly corresponds to a CLB. The function tree

supports AND, OR, XOR, XNOR, INV, and BUF functions. Evaluation is done recursively. At any given

level, the parent �rst evaluates all of its children and then does its own function evaluation, returning the

result. Since many potential evaluations are done all at once, avoiding queueing overhead, this signi�cantly

increases the performance of the simulator.

11

== run driver.cc �� A minimal driver... This does nothing...

== *Always* must use the procedure name: void run()

void run() f

== Declare your variables here

int notdone=1;

== Simulate, 1 simulation cycle at a time!

while (notdone) f

== Now let the simulator run for a simulation cycle

notdone=Cycle(1);

g

g

Figure 7: An Example of a Driver Procedure

int Cycle(int i) { Perform i simulation steps, update the simulation time, execute items in the command

queue, and return a 1 if the simulation is not done, and a 0 if the simulation is done.

int Compute Next Time() { Compute the next time that a simulation event should occur and return

that time. If nothing is on the event and command queues, return a -1. Use only with Simulate Step().

void end globals() { Signal the end of a simulation, by ushing the output streams and deallocating all

simulation data structures.

void Read Commands() { Read all commands from �le "test.script" and enqueue them onto the com-

mand queue. Use only with Simulate Step().

void Simulate Step() { Perform one simulation step time advancement. Dequeue all events to be run at

the current time and update the net values. Then Enq Sinks() of all nets which changed to generate

the next round of events. *Not* recommended for general use. Use Cycle() instead.

*output st { A stream used for general output.

*error st { A stream used for error and warning output.

Currently, the bus manipulation routines are limited to 32-bit buses.

2.6 Controlling the simulation with test.script

There is a special �le named test.script, which is used to control the simulator. This batch �le is a sequence

of commands which tells the simulator what to do. This �le is read in before the start of simulation, and

all of the commands are placed on a command queue. Each command is executed by the simulator at the

speci�ed time. The following is a list of all of the currently supported commands:

10

<FOREIGN>

select

(int dsize, int ssize)

driver

data

ports = cons_al(1,2,"data",data,"select",select);

gen_driver_obj(new Driver(ports));

ACCESS([1:ssize],select)

Title:

Project:

Drawn by:

Drawing file: Date:

Page: of

University of California, Santa Cruz Santa Cruz, California

ACCESS([1:dsize],data)

#include "run_driver.h"

Figure 6: An Example of a Driver Object

9

== Filename: my ccode proc.cc

#de�ne UNITDELAY 1

#include <stdio.h>

== cc obj help.h �� This contains useful interface routines for

== handling net value accesses.

#include "cc_obj_help.h"

== These input parameters are standardized!!!

int my ccode procedure name(assoc list *outs, assoc list *ins,

assoc list *constants)

f

== Declare variables here, use static if they are to be persistent

int constantvalue, input1value, input2value;

int output1value;

== Your C++ Code goes here...

== MUST be reentrant code!!!

== Accessing a constant

constantvalue = Access Constant("const2");

== Accessing a bus net

input1value = Access Bus Value("input1");

== Accessing a simple net

input2value = Access Value("input2");

output1value = (input1value > input2value)

== Changing an output net

Change Output("output1",output1value,UNITDELAY)

g

Figure 5: An Example of a C code Procedure

8

gen_cc_object(my_ccode_procedure_name,al_out,al_in,al_const);

<FOREIGN>

my_ccode_obj

(int const1, int const2)

input1

input2 output1

ACCESS([1:const1], input1)

ACCESS(SIMPLE, input2, output1)

al_in = cons_al(1,2,"input1",input1,"input2",input2);

al_out = cons_al(1,1,"output1",output1);

al_const = cons_al(0,2,"const1",const1,"const2",const2;

Santa Cruz, CaliforniaUniversity of California, Santa Cruz

ofPage:

Date:Drawing file:

Drawn by:

Project:

Title:

#include "my_ccode_proc.cc"

Figure 4: An Example of a C code Object

7

(Assoc List *) cons al(int isanet, int numberofassociations, . . .)

creates the speci�ed association list. The �rst parameter, isanet, is needed to distinguish between in-

put/output nets and constant values. This allows the simulator to add the nets to the netlist. Nets may be

either SIMPLE or BUSes. The second parameter, numberofassociations, is the number of signal name/signal

pointer pairs that are speci�ed. There are NO RESTRICTIONS on the number of inputs/outputs/constants

allowed. After the association lists are constructed, gen cc object()must be called to instantiate the C code

object. Note that there are no constraints on the names of the C++ procedure name (except that the C++

procedure name must match the �rst parameter in the call to gen cc object()) , the input/output/constant

names, or the object block name.

The C code procedure �le must contain the include �le declaration #include ``cc obj help.cc'' in order

to gain access to the netlist interface commands.

In Section 3.2, an example C code object is implemented.

2.5 Driver Objects

A Driver object is a mechanism for allowing some piece of C++ code to take over the control of the simula-

tion engine. This is useful in representing some external object which communicates with the circuit being

simulated. Since the Driver takes over control of the simulator, it may even provide its own output display

mechanism. The procedure for creating a Driver object is very similar to that of a C code object. Figure 6

shows a generic Driver object, and Figure 7 shows a generic Driver procedure.

In order to make a driver object, one must copy the �le run driver.h into the current directory. This pro-

vides the interface routines between the simulator and the C++ driver code. Then, a �le named run driver.cc

must be created, containing the controlling procedure named void run(). This procedure functions as the

main() procedure. The following are the interface routines which may be used by the driver:

int Access Value(name) { Get the value of a given simple net.

int Access Bus Value(busname) { Convert an input bus value into an integer and return that integer.

int Access Sub Bus Value(name,i) { Get the value of a given bus sub-element

void Bus2Value(busname,value) { Set the speci�ed bus to a certain single value (ie all elements of the

bus are assigned 'value', which must be one of: 0, 1, XXXXXXX, ZZZZZZZ). Using Relative time.

XXXXXXX (unknown value) and ZZZZZZZ (high impedance) are prede�ned constants.

void Bus2Value Abs(busname,value) { Set the speci�ed bus to a certain single value (ie all elements

of the bus are assigned 'value', which must be one of: 0, 1, XXXXXXX, ZZZZZZZ). Using Absolute

time.

void Change Output(name,value,delay) { Post the event signaling that a SIMPLE output net has

changed.

void Change Sub Bus Output(name,value,delay) { Post the event signaling that a BUS sub-net out-

put has changed.

void Change Bus Output Abs(bits, num, busname,etime) { Convert an int to a bus value and post

the change to the simulator. 'bits' speci�es the number of valid lower bits of the integer. Using Absolute

time.

6

DFF

DFF

DFFRDDFFC

CE

DFF
RD

DFF

NDFF

CE

RD

PDFF

CE

RD

// NOTE: LOC is optional

// LOC = "AA", "BA", ...

// G = "A*B+D ..."

// F = "A+B*~C ..."

// CE = "EC"

// RES = "RD"
// CLK = "K" OR "K:NOT"

// DY = "DI", "F", "G", OR "M"

// DX = "DI", "F", "G", OR "M"

// Y = "F", "G", "QY" OR "M"

// X = "F", "QX", OR "M"

// BS = "F", "FG" OR "FGM"

// CLB tag setting

CLB HELP

(IN,OUT,TRI,LOC)

IOBT

O

IK

OK

I

Q

OFF

ACLK GCLK
OFZ

(P)(P)(P)(P)OIOZIBOB

OUTFFZ OSCOUTFF

UPADOPADIPADOINVOBUFZIBUFOBUF BPAD

I

Q

T

O

IK

OK

IOBMAP

(LOC)

PULLUP Flag-S

S C

Flag-C

X

Flag-X

N

Flag-L

L

GND VCC

+5

Flag-N

A

Y

X

RD

K

EC

DI

E

D

C

B CLBMAP

(MAP,LOC)

(BS,X,Y,DX,DY,CLK,RES,CE,F,G,LOC)

Y

X

CLB
A

RD

K

EC

DI

E

D

C

B

LCADEV

INFFQ

INFFQ

INLATQ

L

INLTQ

INFFQI INLATQI

INFFQI

L

INLTQI

EQN

(char* fname, int runmake=TRUE)

// NOTE: LOC is optional

// CLBMAP tag setting

// MAP = "PLC" or "PUC"

// LOC = "AA", "AB", ...

CLBMAP HELP
// LOC = "2", "20", ..

// TRI = "T" OR "T:NOT"

// OUT = "O", "OQ", "O:NOT", ...

// IN = ’I’, ’IQ’, "IKNOT", "FF", "PULLUP", ...

// IOB tag setting

IOB HELP

// NOTE: LOC is optional

Santa Cruz, CaliforniaUniversity of California, Santa Cruz

Xilinx’s FPGA 3000 Family Primitive Title:

Xdp/XNF InterfaceProject:

LCADEV Date:Drawing file:
ofPage: 1 1Jackson KongDrawn by:

APR 22, 1991

Figure 3: Primitive XNF Devices

5

LCAGATE

Xilinx’s FPGA 3000 Family Primitive

July 30, 1990Date:Drawing file:

Santa Cruz, CaliforniaUniversity of California, Santa Cruz

Title:

Drawn by: Jackson Kong 11Page: of

Project: Xdp/XNF Interface

INV TBUFBUF

XOR2 XNOR5XNOR4XNOR3XNOR2XOR5XOR4XOR3

NOR4B2 NOR5BNOR5B4NOR5B3NOR5B2NOR5B1NOR5NOR4BNOR4B3

NOR2 NOR2B1 NOR3 NOR3B1 NOR4B1NOR3BNOR3B2 NOR4NOR2B

NAND4B2 NAND4B3 NAND4B NAND5 NAND5B3 NAND5BNAND5B4NAND5B1 NAND5B2

NAND2 NAND2B1 NAND2B NAND3 NAND3B1 NAND3B2 NAND3B NAND4 NAND4B1

OR4B1 OR4B2 OR4B3 OR4B OR5B1 OR5B2 OR5B3 OR5B4 OR5B

OR3B2 OR3BOR3B1OR2BOR2B1OR5OR4OR3OR2

LCAGATE

AND4B1 AND4B2 AND4B AND5B1 AND5B2 AND5B3 AND5B4 AND5BAND4B3

AND2 AND3 AND4 AND5 AND2B1 AND3BAND3B2AND3B1AND2B

Figure 2: Primitive XNF Gates

4

� ACLK, GCLK are turned into bu�ers

In addition to the basic library of objects, the simulator also supports C code objects and a Driver object.

These will be discussed in Sections 2.4 and 2.5.

All of the gates, bu�ers, ip-ops, latches, and CLBs incur a unit propagation delay. C code objects also

have a unit delay, however, Driver objects may post events at any delay interval. Each line of a Foreign

\.eqn" �le is compiled into a function tree. The evaluation of an entire tree is given a unit delay. CLBMAPs

and IOBMAPs maintain their gate-level descriptions for simulation purposes, and are not transformed into

CLBs or IOBs by XS.

2.4 C code Objects

XS has a provision for allowing a piece of C++ source code to function as a simulation object. This code

must be reentrant (always starts execution at the top of the code) and may access connected wires through a

special set of commands. If the code needs persistent data, then those data items must be declared static.

C code objects are useful in situations where one wishes to test a design which has not been fully imple-

mented at the gate level. The C code is used to mimic the desired object's function. Another use for C code

objects is to emulate some external device, for example, a memory chip.

The C code interface procedures are:

int Access Value(name) { Get the value of a given simple net.

int Access Bus Value(busname) { Convert an input bus value into an integer and return that integer.

int Access Sub Bus Value(name,i) { Get the value of a given bus sub-element.

int Access Constant(name) { Get the value of a given constant

void Change Output(name,value,delay) { Post the event signaling that a SIMPLE output net has

changed.

void Change Sub Bus Output(name,value,delay) { Post the event signaling that a BUS sub-net out-

put has changed.

void Change Bus Output(bits, num, busname) { Convert an integer to a bus value and post the

change to the simulator. 'bits' speci�es the number of valid lower bits of the integer.

void Bus2Value(busname,value) { Set the speci�ed bus to a certain single value (i.e. all elements of the

bus are assigned 'value', which must be one of: 0, 1, XXXXXXX, ZZZZZZZ). XXXXXXX (unknown

value) and ZZZZZZZ (high impedance) are prede�ned constants.

Currently, the bus manipulation routines are limited to 32-bit buses.

A C code object must be drawn in XDP in a very speci�c manner in order to provide XS with all of

the necessary information for simulation. Figure 4 is an example of a generic C code object with two inputs,

one output, and two constants. The associated C++ code is shown in Figure 5. There are several things to

note. First, note that the object is declared as <FOREIGN>. Also, it is necessary to have the #include

``my ccode proc.cc'' line ABOVE the object block.

There are three prede�ned association lists (al in, al out, al tri) which are used to group together a sig-

nal name with its signal pointer. The prede�ned procedure

3

.dp

.dp

ld (linker)

OR

g++

.cc

wc2ccdp2wc

.wc

.wc

dp2wc wc2cc

.cc

g++

lcalib.a

XNF

Library

.out

(Simulator)

libxs.a

Simulator

Library

Figure 1: wirec Translation Process

2.2 Setup

It is assumed that the user is familiar with XDP, and the translation program xnfwirec. In order to run

the simulator, it is necessary to set the environment variables WCINCLUDE and WCLIB to point to the

directories containing the XS include and library �les. Then, to run the simulator on an XDP �le, an alias

should be set up to call wirec with the libxs library:

alias xs ``wirec -S -L libxs''.

The simulator may then be invoked by the command

xs mycircuitname

After the simulator has been executed, the command:

sigview graph.rnl.

may be used to view the results of the simulation.

2.3 Primitives

Figure 2 and Figure 3 are the libraries which contain all XILINX XNF primitives supported by xnfwirec. XS

supports all of those primitives except the following:

� IOB

� OSC

� tags (Flag-S, Flag-C, Flag-X, Flag-N, Flag-L)

� Pads (IPAD, OPAD, BPAD are ignored)

2

XS - XILINX 2000/3000 FPGA Simulator

Jason Zien, Jackson Kong, Pak K. Chan, Martine Schlag

October 17, 1991

1 Introduction

With the growing complexity of �eld programmable gate arrays (FPGA), there is the growing need for so-

phisticated design tools to provide higher level abstractions for managing large designs. However, it is not

enough to be able to create large designs. It is also necessary to test and debug them. Debugging FPGA,

designs on the circuit board is an awkward task, since the designer can only access the input/output pins of

the chip. XS (pronounced as \excess") provides the designer with the ability to simulate and debug circuit

designs quickly, and with access to all internal nets. XS is a unit-delay, event-driven simulator written in

gnu g++ v.1.39. It was designed with an object-oriented methodology, and should be easily adaptable and

extensible to any discrete-time simulations.

XS works in conjunction with several other programs to provide an environment for developing FPGA cir-

cuits. XDP is an interactive schematic capture program created by Carl Ebeling which supports hierarchical

objects, and recursive and repetitive object de�nitions. xnfwirec is a dependency-checking program which

compiles an XDP .dp drawing �le into a XILINX Netlist File (XNF). xnfwirec �rst converts the drawing into

a wirec .wc �le with the program dp2wc. Next, the conversion program wc2cc converts the .wc �le into a

C++ .cc �le. Finally, this �le is linked with a library that will allow the resulting compiled C++ program to

output the .xnf �le. The exact same process is used for generating a simulation output �le graph.rnl, except

that a di�erent library is used in the �nal linking step. The output of the simulator, graph.rnl, is a complete

simulation run which can be viewed with the program sigview.

Section 2 describes all of the available commands and features of the simulator. Section 3 is series of

examples demonstrating the use of the simulator. Some runtime performance �gures are given in Section 4.

The speci�c implementation details of the simulator are described in Section 5.

2 Reference

2.1 Overview

Figure 1 shows the process in which a schematic is converted into an executable simulation. The entire

process is encapsulated by a dependency-checking program named wirec

1

. By linking with the XS simulation

library libxs instead of the XNF (Xilinx Netlist File Format) library lcalib, simulation code is produced. The

simulator reads command input from a �le named test.script, which controls the execution of the simulation.

An optional �le, .xsinit, can change various default simulation parameters (such as the �le to direct output

to). When a simulation is run, the results are placed in a �le named graph.rnl. The program sigview may

be used to view the results of the simulation.

1

Refer to the Xnf-Wirec Tutorial for more information

1

