/% Simulate_Step() —— Perform one simulation step time advancement.
Dequeue all events to be run at the current time and update the
net values. Then Eng_Sinks() of all nets which changed to generate
the next round of evenis. */

/* ___

void Simulator::Simulate_Step() {

// make these static so they don’t get re—allocated every calll;
static Event_Class *e;

static Net_Class *net;

static Basis *tempobj;

static Queue Changed_Nets;

int e_count=0; // number of evenls thal were executed at this lime siep

/¥ dequeue events, updale nel values, and enqueue changed nets */

while (EventQ.Not_Empty() && (EventQ.Get_Next_Key() <= Get_Sim_Time())) {
e = (Event_Class *) EventQ.Deq();
net = (Net_Class *) e—>Get_Net();
net—>Set_Pending_Event(net—>Get_Pending_Event()—1);
net—>Set_Value(e—>Get_New_Value());
Changed_Nets.Enq_Head((Any_Type) net);

delete e; /* free up memory space */
e_count ++;

1

// inc. the total overall evenl count
event_count += e_count;

fprintf(history_st,"%d %d\n",Get_Sim_Time(),e_count);

// For all nets which have changed value, put their sinks onto;

// the Post@Q for consideration for generating new events. Objects
// are only added to the Post@Q IF they are not already there, thus
// eliminaling unnecessary evenl generalion.

while (Changed_Nets.Not_Empty()) {
net = (Net_Class *) Changed_Nets.Deq_Tail();

/¥ enqueue all objects connected to the changed wire */
net—>Enq_Sinks();

1

/] All objecls on the PosltQ) can now process their inpuls and enqueue
// mnew evenls onto the evenl queue.

while (PostQ.Not_Empty()) {
tempobj = (Basis *) PostQ.Deq_Head();
tempobj—>Process_Input();

}} 39

/% set_value_help() —— Set the value of a net. This routine is tri—state
smart. It relies on the bit encoding of the net values, and also
assumes that all objects connected have a Get_Outvalue() function by
doing a wired—and function. */
/* __
static Any_Type set_value_help(Any_Type d) {
Basis *obj;
obj = (Basis *) d;
int val;

val = obj—>Get_Outvalue(local_ID);
if ((val==XXXXXXX) || (retval==XXXXXXX)) retval = XXXXXXX;

// Relies on the fact that z=3, ©=2, so 26z = z, 261=1, 260=0

else retval = retval & val;
}
X
/* Set_Value() —— Set the value of a net, and rise/fall times.

This is tri—state aware. If the net is tristate, ot will look at all
the sources and do a wired—and funcltion on them. */

/* __

void Net_Class::Set_Value(int val) {

if (type==SIMPLE_NET) {
if ((un.simple.value.Get_Value() == 0) && (val==1))
rise_time = Get_Sim_Time();
if ((un.simple.value.Get_Value() == 1) && (val==0))
fall_time = Get_Sim_Time()

bl

if (Get_Tristate()) {
/¥ examine all the sources and set value to wired—and */
retval = ZZ7Z7777,;
local_ID = (int) Get_ID_Addr();

Sources.Tterate(set_value_help);

un.simple.value.Set_Value(retval);

1

else un.simple.value.Set_Value(val);

1

else fprintf(error_st,"Net %s was not SIMPLE. Couldn’t set value\n",
Get_Name());

Figure 30: Assigning Tri-state Values to Nets

38

5.4 Tri-state Net Updating

Tri-state nets are more complex to update than normal nets. When there i1s a change on a tri-state net, it
1s necessary to examine the outputs of all source objects connected to that net, and, by clever selection of
the value representation of ZZZZ777 and XXXXXXX, performing a wired-AND operation on those sources.
Figure 30 is the source code for updating the value of a net.

5.5 Simulation Loop

The main event-processing simulation loop is implemented in Simulate Step() (see Figure 5.5). There are
three separate phases in one simulation step. First, all events at the current simulation time are dequeued
and the nets associated with those events are put on a queue of changed nets. The new values of the nets
are also set in this loop. In the second phase, the sink objects of all of the changed nets are enqueued onto
a Post_Queue. The reason for putting items onto this queue is so that only unique net changes will be
enqueued. Finally, in the last phase, all of the items on the Post_Queue perform a Process_Input(), which
will place the next group of events onto the EventQ.

5.6 Comments

Simulation time is very fast for designs with .eqn objects, but gate-level objects need to be faster. This is a
by-product of the large overhead induced by managing the event queue.

The current user interface to the simulator is a non-interactive command script. It would be nice if an
interactive X-windows interface could be built around the simulator.

The simulator only supports unit-delay simulations, however, in the future, variable-delay simulations might

be supported. This would, however, cause the simulator to grow slower, unless improved event-processing
algorithms and profiling are used.

37

/* Constructor */

INV:INV(char *n, Net_Class *out, Net_Class *il):Basis(_INV,1,n) {
inputl = il;
output = out;

b

/* Process_Input() —— update internal value */
void INV::Process_Input() {
value = !(inputl—>Get_Value());
EventQ.Post_Event(output, value, Get_Delay());
5
/* Print_Info() —— Output information about the inverter */
void INV::Print_Info(FILE *out) {

fprintf(out,"INV: %s in: %d out: %d\n",Get_Name(),inputl—>Get_Value(),
output—>Get_Value());
5

Figure 28: Code Implementing INV Class

class Driver : public Simulator {
private:
assoc_list *driver_ports;

public:
Driver(assoc_list *p) : Simulator() { driver_ports = p; }

#include "run_driver.cc"

};

Figure 29: Code Implementing Driver Class

36

class Net_Class: public Basis {

private:

int pending_event=0; /¥ is an event scheduled to run? */
int Tristate=0; /* is the net connected to a thuf? */
int rise_time= —1; /¥ last time the net changed to high */
int fall_time= —1; /¥ last time the net changed to low */

int type= SIMPLE_NET; /* SIMPLE _NET or BUS_NET */
union {
struct { /* SIMPLE_NET */
Sig_Class value;
}simple;
struct { /* BUS_NET */
Net_Class **net_array;
int size, offset;
}bus;

Jun;

public:
Queue Sources, Sinks; /* queues of objects that drive or receive data */

/¥ constructors */

Net_Class(char *n, int id);

Net_Class(char *n, int id, int size_in, int offset_in);

/¥ destructor— deallocates all sinks, sources, and the nel_class ilself */

"Net_Class();

void Add_Source(Basis *obj);
void Add_Sink(Basis *obj);

/¥ Get/Set private variables, procedures excluded here for brevity */

Basis * Get_Sink(Basis *obj);

Basis * Get_Source(Basis *obj);

void Post_Bus_Value(int bits, int num);

void Post_Bus_Uniform_Value(int num);

void Post_Uncond_Bus_Value(int bits, int num, int etime);
void Post_Uncond_Bus_Uniform_Value(int num, int etime);
void Eng_Sinks();

void Print_Info(FILE *out);

void Print_Rnl(FILE *out);

void Print_Sources();

void Print_Sinks();

void Process_Input();

Basis * Remove_Source(Basis *src);
Basis * Remove_Sink(Basis *sink);

*

Figure 27: Definition of Net_Class

35

The ID number of the object should be unique. A global procedure named Generate_ID() returns a unique,
monotonically increasing integer for that purpose.

5.3 Derived Objects

Figure 26 and Figure 27 show how objects are derived from the Basis class. Figure 28 shows the source code
that implements an inverter. Each simulation object has its own internal input/output/tri-state pointers
to Net_Classes, and 1ts own private internal value. The Process_Input() procedure performs the object
function and enqueues a new event if necessary.

The Net_Class uses a union to store either simple (one-bit) nets or buses (arbitrary size). A bus is
represented as an array of pointers to simple nets. The Net_Class structure contains queues of source ob-
jects and sink objects. In the simulator, when an object is declared, it must connect itself to input nets (the
object is acting as a sink), or connect itself to output nets (source object). This information is then used
by the simulator to determine successive propagations of signal changes. It is necessary to store a net’s last
rise time and fall time so that clocked objects can detect rising or falling edges. The other private variables
of the class should be self-explanatory.

class INV : public Basis {
private:
Net_Class *inputl, *output;
int value=0;

public:
/* Constructor */
INV(char *n, Net_Class *out, Net_Class *il);

void Process_Input(); /* update internal value */
void Print_Info(ostream *out);

Figure 26: Definition of INV Class

Almost all simulation objects are defined similarly. In the case of gate definitions, instead of specifying
a different simulation object for every kind of gate, two general-purpose gates, GATE2 (2-input gate) and
GATES(5-input gate) were defined. These objects were initialized with the appropriate function pointer. 3-
and 4-input gates were then implemented as 5-input gates with the extra inputs assigned (HIGH or LOW)
in a manner that would leave the behavior of the gate unaffected.

Driver objects were defined differently. Since the driver object must have control of the simulation, it is
derived from the Simulator class, as shown in Figure 29. It was necessary to #include the main void run()
procedure, which is defined in the file run_driver.cc so that znfwirec would compile it at the appropriate
time. There is an association list named driver_ports containing net name/net pointer pairs. There is no
distinction made between inputs and outputs, so it is up to the programmer to use the nets in the appropriate
manner.

34

5.2 CLASS Basis

It was necessary to establish a common class for all objects in the simulator so that objects may be handled
in a uniform manner. All objects and nets in XS are derived from the Basis class. This class, shown in
Figure 25, contains information that is inherited by all simulation objects and nets. In the Basis class, there

class Basis {

private:

char * name; /* String Identifier */

int type; /¥ Object type */

int 1D; /¥ Unique identification number */

int delay; /¥ Signal propogation delay through this object */

public:

/* Constructors */

Basis();

Basis(int t, int d, char *n);

/¥ Destructor */
virtual "Basis();

int Get_Delay();

int Get_ID();

int * Get_ID_Addr();

char * Get_Name();

virtual int Get_Outvalue(int dummy);
int Get_Type();

virtual void Print_Info(ostream *out);

/* Process_Input() —— Update internal data based on new input */
virtual void Process_Input();

/* Reset(} —— response to a reset signal */
virtual void Reset();

void Set_Delay(int del);

void Set_ID(int id);

void Set_Name(char *s);

void Set_Type(int t);

void Set_Params(char *n, int t, int d);

Figure 25: Definition of class Basis

are several virtual functions Print_Info(), Print_Rnl(), Process_-Input(), Reset(), Get_Outvalue(). These
functions allow each derived object to take its own specific action when the function is called. Print_Info()
sends object information to an output stream. Print_Rnl() sends RNL-compatible data to the RNL file,
which contains the simulation trace. Process_Input() performs allows the object or net to respond to a
change in the inputs. Finally, Gei_Outvalue() is used to resolve the proper value of tri-state nets.

33

// Pseudocode showing event generation and processing.

// in simulator.cc, Simulator::Run()

e

while (Simulation_Not_Done) {

/] in simulator.cc, Simulator::Cycle()

[

while (Current_Cycle_Not_Done) {

// in simulator.cc, Simulator::Simulate_Step()
e
while (EventQ.Not_Empty && (EventQ.Next_Time() <= Get_Sim_Time())) {
ev = EventQ.Deq();
ev—>Get_Net()—>Set_Value(ev—>Get_Value()); // update net value
Changed_Nets.Enq_Head(ev);

1

while (Changed_Nets.Not_Empty()) {
net = Changed_Nets.Deq_Tail();

// in net_list.cc, Net_Class::Enq_Sinks()
J]

for (obj=net—>Get_First_Sink(); obj=net—>Get_Next_Sink();
objl=net—>Get_Last_Sink()) {

if (obj—>Get_Type()==_NET) EventQ.Post_Event(net,value,delay);
else {
// in anfobjects.cc, Basis::Process_Input()

]

// —— funclion performed depends on the current object type
value = object_function();
EventQ.Post_Event(net,value,delay);

Figure 24: Event Generation and Processing

32

class Event_Class {

private:

Net_Class *net; /* a net which will be changed */

int time; /¥ time at which the nel will change value */
int new_value; /% value the net will change to */

public:

/* Constructor */
Event_Class(Net_Class *n, int nv, int t);

Net_Class *Get_Net();
int Get_New_Value();
int Get_Time();

void Set_Net(Net_Class *n);
void Set_New_Value(int i);
void Set_Time(int t);

/* ___

/¥ Enqueue all evenls that will happen when nel changes. These events
will be all wires that are connected to the 7Sinks” of the current

net. This procedure call indirectly calls Process_Inputs, which will
perform the actual event posting via Post_FEvent(). */

/* ___

void Eng_Sinks(Net_Class *net);

Figure 23: Event_Class Definition

31

4 Performance

The performance of XS varies greatly depending on the primitives which are used. By far the most effi-
ciently processed objects are FOREIGN .eqn devices. This is because each line in an .eqn file is processed
as a whole, rather than as separate gates. This way, there is a substantial decrease in event-related runtime
overhead. Gates are the next most efficient objects. Finally, CLBs are the least-efficiently processed, due to
their complexity. It is expected that very few designs will use CLBs directly, and that FOREIGN .eqn files
will be most common.

The table below shows the performance of the simulator on various benchmarks. It is worthwhile to note
that the “eps” (events per second) rating is not a very accurate performance metric. This is because .eqn
files generate less events, yet run significantly faster. In addition, XS does extensive filtering of unnecessary
events, and so the eps rating may not be analogous to that of other simulators.

Benchmark | Comments # of Nets | # of Objects | # of Events | EPS | RunTime(s)
eqnfa half gate half .eqn | 160 102 147490 2344 | 62.9

eqnfa .eqn version 137 64 45563 3616 | 12.6

tetris gate version 822 834 116364 689 168.8

tetris .eqn version 717 653 93988 3494 | 26.9

traffic .eqn version 28 19 5394 1860 | 2.9

treecomp .eqn version 145 109 212485 4691 | 45.3

A number of things were done to enhance the speed of XS. First, it was found that file I/O was a ma-
jor bottleneck. The C++ streams were replaced with the more efficient standard input/output C routines.
Next, the watch commands were streamlined so that net information was only printed upon a change in the
net, rather than at every simulation cycle. These changes roughly tripled the simulation speed. Another
improvement was inlining various queueing functions. The final improvement was considering each line of an
.eqn file as one large object. This resulted in another factor of four speed improvement (but only for designs
which used .eqn files).

5 Design Details

This section of the paper reveals some of the algorithms and data structures used in the simulator. It is
intended to give the reader some insight into how the simulator works, and should allow the reader to un-
derstand and modify the source code more readily.

5.1 Events

An event is considered to be a change in a net value at a given time. When such a change occurs, the event
is placed onto an event queue. This queue is a time-ordered doubly linked list. Events may be generated
by a FORCE command in test.script, by an object responding to an input change, or by a Driver. The
data structure for the event class i1s given in Figure 23. The Enq_Sinks() procedure is the key procedure
used by the event-processing loop. It causes all of the sink objects of the given net to Process_Inputs(),
which in turn will post new events for the next simulation timestep. The main simulation loop, described
in Section /refsimulator controls the event processing procedure, however, many of the details are hidden
within procedure calls. Figure 24 shows the finer details of how events are generated and processed.

30

out
select<2>
select<1>
i F
inputs<4> &
=
ot
.2
ks
E
inputs<3> 0
@ .o
o b
=
=
z.
inputs<2> N
)
=
e s e &b
...................... ﬁ'—(
inputs<1>
1.00e-09 0.00 | | | 32500 | | .+ 65000 | | . 97500 | | + 1300.00
— 185.71
di= 928.57 1114.29

Runs: graph.rnl

void run() {
int notdone=1, data, select, time=0;
fprintf(output_st,"RUNNING DRIVER!!!!\n");

// Pul the evenls on the evenl queue.
for (data=0; data<16; data++) {

Change_Bus_Output_Abs(4,data,"data" time);
for (select=0; select<4; select++) {
Change_Bus_Output_Abs(2,select,"select" time);
time+=20;

}
}

/] Simulate, 20 cycles al a time!
while (notdone) {

// Now let the simulator run for a while & setile
notdone=Cycle(20);

Figure 21: N_.MUX: Driver Implementation

28

%1 UC| NQ6 , LAUT QLI ABL" |,

OLIAGL
26| 6Cf

Q9r g

(1uf g21s6' 1U[2215s6)
<ECHEI G>

v CCE22([T:ga1s€] '08rs)
v CCE22([T:22156] ‘25 6c1)

boLfe = coue 9| (7'S'.Q9ly,' QU9 ,26]6Cf, 26| 6C[)'

deu gL1 AeL opl (uem DLI A6L(boLf2))!

1ere:
pLol 6Cf:

DLIMJ pA: bode: o
DLgm ud (1] 6: Dere:

MUIAGL2I[A O C9|1LOLUIY 29UfY QOLMNS 29UfY ONS' CY1LOLUI Y

Figure 20: N_MUX: Driver Definition

27

wbnge U~ wnx

(wru) 2e|scCt
ong

vCCE22([T:(T<<w)]’ wbnge)
VCCE22(RINbIE' o)
vCCE22([T:1]' 26l6CH)

It (U==T) {pwee wnx} s|26 {Lecniee Wnx}

{pgeewnx}

wbnge[7]

2elecyT]

wbne[s]

{Lecriee wnx}
IUf K=U-T'
I0E ponug = (T<<K):
s nbbel= (T<<w)!

ubng 2[T: ponuq]

bz -
b wnx re| sce[T:(0-1)1
(wew) (k) 26l6Cf
ong

I! ubng e[(ponug+T) : nbbel]

ee|eci[T1:(U-7)]

wbniz uTwnx
(wrw) (K) 26|6C(
ony

26| 6Ccr[U ong
26| ecf[1] ; }
e
pLol 6Cf:
DLIMJ pA: bode: o
DM ud LI]6: DST 6"
MUIA6L2I [A OF CY|ILOLUIY 29Ufg QNS 29Uf9 ONs’ CY|1LoLul Y

Figure 19: N.-MUX: Bottom Level

26

[62[U unx

<1 1>

luf g=¢' e=s!

roovr([1:9]* 1ubnie)
roovr([1:2]" 26| 6cyt)
rocvr(al Wre' onr)

wbngz uTwnx
wrwy (2) 26l6Ct
ony

Dl

guAel
26| 6Cf
QQLSLHEELE
(a'e)
(1uf ga2rse' 1uf 221s6)
<ECHEI G/

1ere:
pLol 6Cf:

DLIMJ pA:
Diom ud (1] e:

bode: o

DST 6°

MUIAGL2I[A O C9|1LOLUIY 29UfY QOLMNS

Figure 18: N_-MUX: Top Level

25

290fS O.Ns' C9l1LoLul S

3.3 nmux: A Driver Example

The final example demonstrates the use of a Driver. Here, the Driver is used to generate a complete set
of test vectors for a four to one multiplexor. Figure 18 shows the top level of the design. A Driver object
should be at the top level of the design. The design of the mux is shown in Figure 19. It has been recursively
defined so that any n-to-1 mux (where n is a power of 2) may be created. Figure 21 is the C++ code for
the Driver. It first places all of the necessary testing events onto the event queue, and then it runs the
simulation until there are no events left. One VERY IMPORTANT thing to know 1s that the only way to
place multiple events associated with the same net onto the event queue is to use the CHANGE _xxxx_ABS()
commands. These commands put a command on the queue at the given time (relative to time zero, rather
than relative to the current time) whether or not an event for the net already exists. The CHANGE _xxxx()
commands will not enqueue multiple events on the queue, in order to improve the event-processing efficiency
of the simulator.

24

addr<1>

addr<2>

addr<3>

addr<4>

addr<5>

addr<6>

addr<7>

addr<8>

data<1> R

data<2> e T e

data<4> S I

deta<ts % =
data<6> H

data<7>

data<8> |

e

rd_wr

Op L T
1.00e-09 000 . . .+ 5500 . . . 11000 . 16500 . . . 220.00
dt= 157.14 31143 s

Runs: graph.rnl

Figure 17: Memory: Simulation Results

def_bus 3 cerwen ce rd_wr oe_L

def_bus 8 din din<1> din<2> din<3> din<4> din<5> din<6> din<7> din<8>

def_bus 8 data data<l> data<2> data<3> data<4> data data<6> data<7> data<8>
def_bus 8 addr addr<1> addr<2> addr<3> addr<4> addr<5> addr<6> addr<7> addr<8>

watch cerwen 0 220
watch data 0 220
watch addr 0 220

// Write mem[0]=0
force din 0 1
force addr 0 1
force ce 0 1
force rd_wr 0 1
force oe_ L 1 1

// Write mem[1]=2
force din 2 20
force addr 1 20

// Write mem[2]=4
force din 4 40
force addr 2 40

// Write mem[3]=7
force din 7 60
force addr 3 60

// Write mem[4]=10
force din 10 80
force addr 4 80

// Turn off chip enable, Will NOT write 7 into addr[4]
force din 7 100

force ce 1 100

force rd_wr 0 100

// Read back what’s in mem[4] (should be 10)
force ce 0 120

force rd_wr 1 120

force oe_L 0 120

// Read back mem[1] (should be 1)
force addr 1 140

// Read back mem[2] (should be 2)
force addr 2 160

// Read back mem[3] (should be 4)
force addr 3 180

// Turn off output enable, to get ZZZZZZZ 99
force oe_L 1 200

Figure 16: Memory: test.script

// mem_proc.cc —— a c—procedure which pretends to be a memory chip
#include <stdio.h>

/] cc_obj_help.h —— This contains useful intlerface routines for
// handling net value accesses.
#include "cc_obj_help.h"

/] These input paramelers are standardized!!!
int mem_proc(assoc_list *outs, assoc_list *ins, assoc_list *constants)
{

char *name;

int dinval, doutval, ain, i;

static int initmem=0, words=0, bits=0, *memory;

// inilialize the memory — Pul i into memory/i];
if (linitmem) {
initmem=1;
words = (1<<(Access_Constant("a_bits")));
bits = Access_Constant("d_bits");

if (bits>32) {
fprintf(output_st,"ERROR: Unable to make memory with words>32 bits!\n");
exit(—1);

/] we have 1<<’a_bits—1" words of memory
memory = (int *) malloc(words*sizeof(int));

for (i=0; i<words; i+4) { memory[i] = i; }
Bus2Value("data_out",Z2277777);
}

// IF chip is active (ce_L==0) then, we can continue;
if (Access_Value("ce_L")==0) {

dinval = Access_Bus_Value("data_in");
ain = Access_Bus_Value("addr");

if (Access_Value("readnotwr")==0) {
/] F*¥* WRITE mode, D=inpul ***;
memory[ain] = dinval;
Bus2Value("data_out",Z2277777);

}

else {
/] **¥* READ mode, oulpul=ZZZZZ77 ***;
doutval = memory[ain];
Change_Bus_Output(bits,doutval,"data_out");

}
}
}

Figure 15: Memory: mem_proc.cc — C_code Implementation

21

%l Uc| nge , uBW bLoc' cc,

— el
oLy 1 u

fofe]N

69qUOL M. _
ce T gqery ong
<tOHEI />

LU g pige’ 10 gprge

vCCES([T: g prie]’ ¢ L) " _
VCCE22(1 T: g pi 2] qsr el U __%919 ony)
TSR o Nl E L 69quUOL M. r

9] 71U = coue 9 (7'« ,99qL, ' 9qQL’ . L 69QUOL M., ' L EIQUOL M.
.C6 [,'C6 ',Q9f9 U, qufg 1u)!

gy onf = cou 9 (7' 7 .99 onf, ' qury ong):
g cower = cow2 9 (0'S .Y pIie, g piie ., gpife, qpie):

deu cc opl ecf(uswbLoc' gy onf' g 1U 9l couar):

1ere:
pLol 6Cf:

DLIMJ pA: bode: o
DLgm ud (1]6: Dere:

MUIAGL2I[A O C9|1LOLUIY 29UfY QOLNS 29ULY ONS' CY1LOoLUl Y

Figure 14: Memory: Device Lower Level

20

UBUDL A
06 [
q9or 9l
69quUOL W
gqqt
c6 I
(1luf_sqqLpiga’ 1 qIrg piig)

VCCE22(2l WblrE' €6 ' 06 ' L6e9quofm)
vcce22([T7: gqqr pire] ' gqql)
vCCE22([T: qor 9 pr 2] ' qory)

roovr([T:qere prfe] ' qorg 1’ qoury ong)
rocvr(2l WbrE' Uorf L 69q)

_ e
N9rs 1 u
Slo[e[¥
69qUOI M.

quf 9 ong

1.69quo ce T
o6t porLesg <EOHEl A

(sqar_pri2' qore pife)
luf g pife' 1ur gpife

Lol (1wr 1=T 1<=qor9 pira: 1++) {rpneea}
{rpnye}

o[L69q
grgfi grg ong[i]

1ere:
pLol 6Cf:

DLIMJ pA:
Diom ud (1] e:

bode: o

DST 6°

MUIAGL2I[A O C9|1LOLUIY 29UfY QOLMNS

Figure 13: Memory: Device Top Level

19

290fS O.Ns' C9l1LoLul S

[62f UBUDL A

<l >

lur prie = g

roovr(2l Werg' L m ce’
rocvr([1:pree]’ gqqr’

06 T)
qere’ qru)

UBUDL A
06

__. 69qUOI ML

ce I

(p
(1lur_9qqL p

1fe’ pig
ifre' 1uf

O~

99 pi[q)

q9r 9

gqqk

tou (rur 1=T 1<=ptfe:

I++) {1pnpea}

I pni e}
q m

qlrLuj |1 gL 9] 1

e

UL

pLol 6Cf:

DLIMJ pA:

oL

bode: o

Diom ud (1] e:

DST 6°

MUIAGL2I[A O C9|1LOLUIY 29UfY QOLNS

Figure 12: Memory: Top Testing Level

18

290fS O.Ns’ C9l1LoLul S

3.2 A C_code Example: RAM Chip

The next example uses a C_code object to implement a random access memory chip (Figure 12, Figure 13,
and Figure 14). C_code objects cannot use tri-state nets, however, that limitation is easily avoided by cre-
ating an extra level in the hierarchy where tri-state buffers are used at the input/output interface of the
C_code object (see Figure 13). When it is necessary to FORCE the value of a tri-state net, it is important
to make sure that the net being FORCEd is on the input of a TBUF. In Figure 12, if one were to try to
FORCE datali], the simulation would be incorrect. This is because when a tri-state net value is updated, it
checks all of the object sources to the net to see what each source is generating. A dangling wire or a source
without a valid value would cause incorrect values to appear.

Figure 15 1s the complete description of the behavior of the memory chip. Figure 16 is the simulation

control script. Note that once a value is FORCEd, it remains at that value unless another FORCE com-
mand overrides it. FORCE should only be used on input nets.

17

CLOCK_NET

reset

out<4>

out<3>

out<2>

out<1>

/counter_Q/carry<1>

/counter_O/carry<2>

/counter_O/carry<3>

/counter_O/carry<4>

clk

T

1.00e-09
di= 785.71
Runs: graph.rnl

Figure 11: Counter: Simulation Results

start_clock O
stop_clock 1100
connect_net CLOCK_NET, clk, 10;

1reset is active high
force reset 0 20

def_bus 4 out out<4> out<3> out<2> out<i>

watch ¢lk,0,1100

note that separators need not be whitespaces...
MUST use the hierarchical net name!

watch /counter_0/carry<4> 0 1100

watch /counter_0/carry<3>,0,1100

watch /counter_0/carry<2>; 0; 1100

watch /counter_0/carry<i> 0 1100;

watch out 0 1100

w reset 0 1100
w CLOCK_NET 0 1100

Figure 10: test.script File for Counter

15

conug 6L
c| ocK
conug

Le26[
(1ug pree)

rocovr([T:pree]’ couuh)

VOCE22(2l WblE' €| OCK' L 626f)
vCccE22([T: p1£2]’ conur)

tor(1wp 1=St1<=prel++) {boesfou}

Le2el

}, it conur [7] [\ CILLA[T]
clock | [/’

{boz2i1 1 ou}
1626l
COLLAL(1-T)]
Le26(coLtA[(1-7)]
clock Nopee

1ere:
pLol 6Cf:

DLIMJ pA: bode: o
Digm ud (1] 6: DSr 6:

MUIAGL2I[A O C9|1LOLUIY 29UfY QOLMNS 29UfY ONS' CY1LOLUI Y

Figure 9: Counter: Lower Level

14

[ez2fconur el

<ugl U>

| Uf u=g!
rocvr([T: 1] onf' conug)
rocvr(2l Wrg’ ¢l k' Leaef)

conufg ek

C
Sy oo o | SN
U
D 1) SR R

(1ur pree)

tot (1w 1=T! 1<=u! 1++) {ongbruz}

{onf b1 vz}

conut[!]ont[!]

1ere:
pLol 6Cf:

DLIMJ pA: bode: o
DLgm ud (1] 6: Dere:

MUIAGL2I[A O C9|1LOLUIY 29UfY QOLMNS 29UfY ONS' CY1LOLUI Y

Figure 8: Counter: Top Level

13

2.9 Miscellaneous

There are several pre-defined objects and nets which the simulator uses internally. The user should avoid
defining any objects or nets of the same name in their schematics. These include: CLOCK_OBJ (a clock),
CLOCK.NET (the net containing the clock output signal), HIGH_.NET (a net that always has a high logic
value), and LOW_NET (a net that always has a low logic value). These objects are for internal use only,
and should never be used by the user, except for CLOCK_NET, which should only be used in test.script to
connect the clock signal to the user’s circuit.

The FORCE command in {est.script should only be used on nets which have no source objects, or which are
connected to input pin sources. On nets which have source objects, after the FORCE has taken place, the
net value might be changed by the source object. A FORCE command should never be used on a dangling
tri-state net. Instead, one should FORCE the value of a normal net which is the input to a TBUF (tri-state
buffer).

One additional file which the simulator produces is netnames.tzt. This file contains a list of all of the
nets used in the system. One should consult this file to determine the exact hierarchical name of any nets

that are to be WATCHed.

3 Examples

This section contains several examples showing how the simulator is used. All of the XDP files and simulation
files are included here.

3.1 A Clocked Example: Counter

The first example is a simple binary counter. The counter drawing is shown in Figure 8§ and Figure 9. Notice
that the lower level counter definition is a not dependent on any XILIN X-specific parts, or tied to any external
devices (such as input/output buffers, IOBs). This allows the lower level counter to be imported as a generic
part in many designs, without need for editing the description. Figure 10 shows the simulation control file.
For clocked designs, it is necessary to specify the clock starting and ending times, and also to specify the net
to connect the clock to. This is shown in the first three lines of fest.script. Then various nets are watched
and forced. Every script command is read in and placed in a command queue before simulation begins, so it
is not important what order the commands occur in the script. However, for WATCH commands, it is nice
to group buses together or in sequential order so that they appear together.

12

COMMAND (synonym) Argument 0 Argument 1 Argument 2

connect_net (cn) src. net name dest. net time to start
connect_obj (co) src. net name dest. obj time to start
def_bus (db) bus size bus name arg?...argn: net name
disconnect_net (dn) src. net name dest. net time start
disconnect_obj (do) src. net name dest. obj time start
force (f) net name value time to start
set_clock_period (sp) time to set new period

start_clock (sc+) time to start

stop_clock (sc-) time to stop

watch (w) net name time to start time to end
/] (/¥)(#) Comment - ignore current line

Each command must be on a new line, and each argument must be separated by either a space, tab, or
one of the following characters: , ; : ()

The test script must contain two carriage returns (or two blank lines) at the end of the file. Commands are
not case-sensitive.

2.7 The .zsinit Initialization File

If the file .zsinet is present in the working directory, the simulator will read this file and set various global
parameters. Commands in this file consist of a variable name and a new value to assign that variable. These
variables are (with their default values):

output_stream stdout
rnl_stream graph.rnl
error_stream stderr
history_stream /dev/null

silent_ mode 1

The stream output_stream is used for printing out general information by the simulator, such as the current
simulation time. rnl_stream is the stream which outputs a file compatible with sigview that contains the
simulation data for all of the nets tagged by the WATCH command in fest.script. It should be given a
filename which ends in .rnl so that sigview will know which file format 1t uses. history_stream outputs
a list of the number of events which occurred at each simulation cycle. The history stream will produce a
sigvieuw~compatible SPICFE file, so if it is to be directed to a file, one should use a .spice extension.

2.8 Foreign Devices (.eqn Files)

A Foreign Device is a boolean equation (.eqn) file. Each line in the file is converted into a function tree which
is considered to be one macro-gate object. This tree is given a unit-delay evaluation time, since it has been
experimentally determined that each line in an .eqn file roughly corresponds to a CLB. The function tree
supports AND, OR, XOR, XNOR, INV, and BUF functions. Evaluation is done recursively. At any given
level, the parent first evaluates all of its children and then does its own function evaluation, returning the
result. Since many potential evaluations are done all at once, avoiding queueing overhead, this significantly
increases the performance of the simulator.

11

// run_driver.cc —— A minimal driver... This does nothing...

/] FAlways* must use the procedure name: void run()

void run() {

// Declare your variables here
int notdone=1;

/] Simulate, 1 simulation cycle at a time!
while (notdone) {

// Now lel the simulator run for a simulation cycle
notdone=Cycle(1);

Figure 7: An Example of a Driver Procedure

int Cycle(int i) — Perform i simulation steps, update the simulation time, execute items in the command
queue, and return a 1 if the simulation is not done, and a 0 if the simulation i1s done.

int Compute_Next_Time() — Compute the next time that a simulation event should occur and return
that time. If nothing is on the event and command queues, return a-1. Use only with Simulate_Step().

void end_globals() — Signal the end of a simulation, by flushing the output streams and deallocating all
simulation data structures.

void Read_Commands() — Read all commands from file "test.script” and enqueue them onto the com-
mand queue. Use only with Simulate_Step().

void Simulate_Step() — Perform one simulation step time advancement. Dequeue all events to be run at
the current time and update the net values. Then Enq-Sinks() of all nets which changed to generate
the next round of events. *Not* recommended for general use. Use Cycle() instead.

*output_st — A stream used for general output.

*error_st — A stream used for error and warning output.

Currently, the bus manipulation routines are limited to 32-bit buses.

2.6 Controlling the simulation with test.script

There 1s a special file named test.seript, which is used to control the simulator. This batch file is a sequence
of commands which tells the simulator what to do. This file is read in before the start of simulation, and
all of the commands are placed on a command queue. Each command is executed by the simulator at the
specified time. The following is a list of all of the currently supported commands:

10

%1 UC| NQ6 , LAUT QLI ABL" |,

OLIAGL
26| 6Cf

Q9r g

(1uf g21s6' 1U[2215s6)
<ECHEI G>

v CCE22([T:ga1s€] '08rs)
v CCE22([T:22156] ‘25 6c1)

boLfe = coue 9| (7'S'.Q9ly,' QU9 ,26]6Cf, 26| 6C[)'

deu gL1 AeL opl (uem DLI A6L(boLf2))!

1ere:
pLol 6Cf:

DLIMJ pA: bode: o
DLgm ud (1] 6: Dere:

MUIAGL2I[A O C9|1LOLUIY 29UfY QOLMNS 29UfY ONS' CY1LOLUI Y

Figure 6: An Example of a Driver Object

// Filename: my_ccode_proc.cc
F#define UNITDELAY 1
#include <stdio.h>

/] cc_obj_help.h —— This contains useful intlerface routines for
// handling net value accesses.

#include "cc_obj_help.h"

/] These input paramelers are standardized!!!

int my_ccode_procedure_name(assoc_list *outs, assoc_list *ins,
assoc_list *constants)

{

// Declare variables here, use stalic if they are to be persistent

int constantvalue, inputlvalue, input2value;
int outputlvalue;

/] Your C++ Code goes here...
// MUST be reentrant code!!!

/] Accessing a constant
constantvalue = Access_Constant("const2");

/] Accessing a bus nel
inputlvalue = Access_Bus_Value("inputi");

/] Accessing a simple net
input2value = Access_Value("input2");

outputlvalue = (inputlvalue > input2value)

// Changing an oulpul nel
Change_Output("output1",outputlvalue, UNITDELAY)

Figure 5: An Example of a C_code Procedure

%l uc| nge , WA\ ccoge bLoc' cc,

WA ccoge opl

ubng T
ubnr s onfbng T
<EOHEl >

I Uf coufT' I1Uf couels

vCCcE22([T: couzr 7] 1ubniT)
VCCE22(2l WorE' 1 ubnps' ongbng T)

gl 1u = cou 9 (T'S' .lubnrg, rubng T rubnes,tubnes):
gl onf = cowe 9| (7'T .ontbnry, ontbnry):

g “couzel = couwz2 9 (0'S'.coUR[T, coU2[T',COUR[S, ' couals:

deu cc opl ecf (UN ccoqe bLoceqnie ugus' 9] onf' gl 1U'g couer)!

1ere:
pLol 6Cf:

DLIMJ pA: byde: o
DLgm ud (1]6: Dere:

MUIAGL2I[A O C9|1LOLUIY 29UfY QOLMS 29UfY ONS' CY1LOoLUl Y

Figure 4: An Example of a C_code Object

(AssocList *) cons_al(int isanet, int numberofassociations, ...)

creates the specified association list. The first parameter, ¢sanet, is needed to distinguish between in-
put/output nets and constant values. This allows the simulator to add the nets to the netlist. Nets may be
either SIMPLE or BUSes. The second parameter, numberofassociations, is the number of signal name/signal
pointer pairs that are specified. There are NO RESTRICTIONS on the number of inputs/outputs/constants
allowed. After the association lists are constructed, gen_cc_object () must be called to instantiate the C_code
object. Note that there are no constraints on the names of the C++ procedure name (except that the C++
procedure name must match the first parameter in the call to gen_cc_object()), the input/output/constant
names, or the object block name.

4

The C_code procedure file must contain the include file declaration #include °‘cc_obj_help.cc’’ in order

to gain access to the netlist interface commands.

In Section 3.2, an example C_code object is implemented.

2.5 Driver Objects

A Driver object is a mechanism for allowing some piece of C++ code to take over the control of the simula-
tion engine. This is useful in representing some external object which communicates with the circuit being
simulated. Since the Driver takes over control of the simulator, it may even provide its own output display
mechanism. The procedure for creating a Driver object is very similar to that of a C_code object. Figure 6
shows a generic Driver object, and Figure 7 shows a generic Driver procedure.

In order to make a driver object, one must copy the file run_driver.h into the current directory. This pro-
vides the interface routines between the simulator and the C++4 driver code. Then, a file named run_driver.ce
must be created, containing the controlling procedure named void run(). This procedure functions as the
main() procedure. The following are the interface routines which may be used by the driver:

int Access_Value(name) — Get the value of a given simple net.
int Access_Bus_Value(busname) — Convert an input bus value into an integer and return that integer.
int Access_Sub_Bus_Value(name,i) — Get the value of a given bus sub-element

void Bus2Value(busname,value) — Set the specified bus to a certain single value (ie all elements of the
bus are assigned ’value’, which must be one of: 0, 1, XXXXXXX, ZZZ7Z7Z77). Using Relative time.
XXXXXXX (unknown value) and ZZZZZZ7 (high impedance) are predefined constants.

void Bus2Value_Abs(busname,value) — Set the specified bus to a certain single value (ie all elements
of the bus are assigned ’value’, which must be one of: 0, 1, XXXXXXX, ZZ7Z7777). Using Absolute
time.

void Change_Output(name,value,delay) — Post the event signaling that a SIMPLE output net has
changed.

void Change_Sub_Bus_Output(name,value,delay) — Post the event signaling that a BUS sub-net out-
put has changed.

void Change_Bus_Output_Abs(bits, num, busname,etime) — Convert an int to a bus value and post
the change to the simulator. ’bits’ specifies the number of valid lower bits of the integer. Using Absolute
time.

rCVDEA

CE CE CE
DEE DEE MLEG mrLé
BD 3 BD bEE BD r
bDEE VDEE DEE DEEC DEEED INEEG mrvié
DL_T/H:I:OI Dr{?;lr10| OkE OES >. %_
r | VCIK > | CCIrK >
INEEOI Mrv.Lol ONlek ONLEES oe2C
O
O
OBNE IBNE OBNEX OINA Ib¥D ObVvD NbvD BbvD
]
b Nb bls@-2 Els8-Cc E198-X SELRY] Esa-r ACC
CIrB HErb
\\ CrB 9@ 2epq1ud
v \B2=.k.' WEC. OB .ECI.,
B CI'B WX = b’ wOX.' OB LA,
C WA=k WG’ wOA. OB L.
b X WDX =Dl wk' wCu' OB W
WDA =.Dl' uku' uCu' OB Wl
E W\ CMK = .K. OB .K:MOL.
DI A \ BE2 = .BD.
EC \ CE = .EC.
K (B2'X'A'DX'DA'CIK'BE2'CE'E'G'TOC) WE=.V+Bx-C ™
WG =.V+B+D
BD . .
\FOC =.VV.' .BY.
\\ VIOLE: FOC 12 obrious]
v L 10BWYb
g CrBNVb N o
c 10B | I
IK
D X
E IK [¢) OK (roc)
DI A OK (n'onL'iBiIroc)
EC
K (Wvb'Toc) I0B HETb
KD \\ IOB f¢0 26ud EGU
WM =16, WIKMOL, wEE. WbNFTNb.' ™

CrBAVb HETb
\\ CrBNVb e 261ud

\AVb =.blC. OL..bNC.

\rOC =.VV..' .VB.
\ VIOLE: rOC 12 obrious]

woni
\\ 1Bl =.1. OB .L'NOL.
\roc =.5.".s0."

W\ MOLE: FOC 12 obgious|

0.'.00." . O:MoL.," ™

(CH9L LUTWE" 1L LNUWSKE=1BNE)

U [: e XIIIUX,2 EBGY 3000 EIWIA bUWIIAG
prolsce: XGD\XUE 1uf6LisCe
S[: D SMJ pA: q9cKa0u Koud bs@eT g 7
Dism U3 {1160 [TCYDEA DSI6. bk S5 1997
MUIAGLEI TN Of CI|1LOLUIS 29Uf9 QNS 290[9 O.NS' C9|1Ltolul g

Figure 3: Primitive XNF Devices

D

VYUDS

D D

VWND3

FCVCV.L1E

D

D O O D

VMDY viiDe VUDSBT V/DSB VMD3BT VVD3BS VD3R
VUDYBT VUDYBS YWD<B3 VYVDYB YDRBT YDeBS YWDRB3 YDeB+ YDeB
oKs oK3 oKy o2 OBSBT OBSB OB3BT OH3BS OH3B
OEYBT OBYBS OBEYB3 OBYB OBeBT OBRBS OoBeB3 OoBeBY OoBR2B
WWMDS WVWUDSBT WVWMDSB WVMD3 UYMD3BT WVMD3BS WVMD3B WVYMDY WUVMDYBT
VVVDYBS UVVDYB3 UVVDYB NVVDR VVVIDRBT UVIDRBS NVVID2B3 UVVIDRBY VVVDRB
Noss NOKBSBT NOKSB NoK3 MOK3BT VOKB3BS NOK3B MoKt NOKYBT
NOKYBS VIOK$B3 NOKYB o MOB2BT MOB2BS 1OB2B3 MOB2BY 1oK2B
XOBS XOH3 XOBt Xoue XNOBS XNOK3 XNOBY Xuos2
IMA BNE 1BNE
lrpe:
XIIUX,2 EbCY 3000 ESWIA bLWIIAG
bLolect: XGD\XME [Lf6LLSCE
DL SMU pA: q9cKa0u Koud bsder 1o 7
E ;[: DSWUd {1160 [CVYGVLE DYEE 1A 30' TBB0
MUIAGLEI A Of C9]1LOLUIS 290fg O.Ns 290[9 OLNs' C9]1tolul g

Figure 2: Primitive XNF Gates

e ACLK, GCLK are turned into buffers

In addition to the basic library of objects, the simulator also supports C_code objects and a Driver object.
These will be discussed in Sections 2.4 and 2.5.

All of the gates, buffers, flip-flops, latches, and CLBs incur a unit propagation delay. C_code objects also
have a unit delay, however, Driver objects may post events at any delay interval. Each line of a Foreign
“.eqn” file is compiled into a function tree. The evaluation of an entire tree is given a unit delay. CLBMAPs
and IOBMAPs maintain their gate-level descriptions for simulation purposes, and are not transformed into

CLBs or IOBs by XS.

2.4 C_code Objects

XS has a provision for allowing a piece of C++ source code to function as a simulation object. This code
must be reentrant (always starts execution at the top of the code) and may access connected wires through a
special set of commands. If the code needs persistent data, then those data items must be declared static.
C_code objects are useful in situations where one wishes to test a design which has not been fully imple-
mented at the gate level. The C_code is used to mimic the desired object’s function. Another use for C_code
objects 1s to emulate some external device, for example, a memory chip.

The C_code interface procedures are:

int Access_Value(name) — Get the value of a given simple net.

int Access_Bus_Value(busname) — Convert an input bus value into an integer and return that integer.
int Access_Sub_Bus_Value(name,i) — Get the value of a given bus sub-element.

int Access_Constant(name) — Get the value of a given constant

void Change_Output(name,value,delay) — Post the event signaling that a SIMPLE output net has
changed.

void Change_Sub_Bus_Output(name,value,delay) — Post the event signaling that a BUS sub-net out-
put has changed.

void Change_Bus_Output(bits, num, busname) — Convert an integer to a bus value and post the
change to the simulator. ’bits’ specifies the number of valid lower bits of the integer.

void Bus2Value(busname,value) — Set the specified bus to a certain single value (i.e. all elements of the
bus are assigned ’value’, which must be one of: 0, 1, XXXXXXX, ZZZZ7Z77). XXXXXXX (unknown
value) and ZZZZZ7Z7 (high impedance) are predefined constants.

Currently, the bus manipulation routines are limited to 32-bit buses.

A C_code object must be drawn in XDP in a very specific manner in order to provide XS with all of
the necessary information for simulation. Figure 4 is an example of a generic C_code object with two inputs,
one output, and two constants. The associated C++ code is shown in Figure 5. There are several things to
note. First, note that the object is declared as <FOREIGN>. Also, it is necessary to have the #include
“‘my_ccodeproc.cc’’ line ABOVE the object block.

There are three predefined association lists (alin, al_out, al_tri) which are used to group together a sig-
nal name with its signal pointer. The predefined procedure

dp2we we2ee g++

dp2wce we2cee

Figure 1: wirec Translation Process

2.2 Setup

It is assumed that the user is familiar with XDP, and the translation program znfwirec. In order to run
the simulator, it is necessary to set the environment variables WCINCLUDE and WCLIB to point to the
directories containing the XS include and library files. Then, to run the simulator on an XDP file, an alias
should be set up to call wirec with the 1ibxs library:

alias xs ‘‘wirec -S -L libxs’’.

The simulator may then be invoked by the command

xs mycircuitname

After the simulator has been executed, the command:

sigview graph.rnl.

may be used to view the results of the simulation.

2.3 Primitives

Figure 2 and Figure 3 are the libraries which contain all XILINX XNF primitives supported by znfwirec. XS
supports all of those primitives except the following:

e IOB

e OSC

o tags (Flag-S, Flag-C, Flag-X, Flag-N, Flag-L)
e Pads (IPAD, OPAD, BPAD are ignored)

XS - XILINX 2000/3000 FPGA Simulator

Jason Zien, Jackson Kong, Pak K. Chan, Martine Schlag
October 17, 1991

1 Introduction

With the growing complexity of field programmable gate arrays (FPGA), there is the growing need for so-
phisticated design tools to provide higher level abstractions for managing large designs. However, it is not
enough to be able to create large designs. It is also necessary to test and debug them. Debugging FPGA,
designs on the circuit board is an awkward task, since the designer can only access the input/output pins of
the chip. XS (pronounced as “excess”) provides the designer with the ability to simulate and debug circuit
designs quickly, and with access to all internal nets. XS is a unit-delay, event-driven simulator written in
gnu g++ v.1.39. It was designed with an object-oriented methodology, and should be easily adaptable and
extensible to any discrete-time simulations.

XS works in conjunction with several other programs to provide an environment for developing FPGA cir-
cuits. XDP is an interactive schematic capture program created by Carl Ebeling which supports hierarchical
objects, and recursive and repetitive object definitions. znfwirec is a dependency-checking program which
compiles an XDP .dp drawing file into a XILINX Netlist File (XNF). znfwirec first converts the drawing into
a wirec .wc file with the program dp2wec. Next, the conversion program wcZ2cc converts the .we file into a
C++ .ccfile. Finally, this file is linked with a library that will allow the resulting compiled C++ program to
output the .xnf file. The exact same process is used for generating a simulation output file graph.rnl, except
that a different library is used in the final linking step. The output of the simulator, graph.rnl; is a complete
simulation run which can be viewed with the program sigview.

Section 2 describes all of the available commands and features of the simulator. Section 3 is series of
examples demonstrating the use of the simulator. Some runtime performance figures are given in Section 4.
The specific implementation details of the simulator are described in Section 5.

2 Reference

2.1 Overview

Figure 1 shows the process in which a schematic 1s converted into an executable simulation. The entire
process is encapsulated by a dependency-checking program named wirec '. By linking with the XS simulation
library libzs instead of the XNF (Xilinx Netlist File Format) library lealib, simulation code is produced. The
simulator reads command input from a file named test.script, which controls the execution of the simulation.
An optional file, .zsinit, can change various default simulation parameters (such as the file to direct output
to). When a simulation is run, the results are placed in a file named graph.rnl. The program sigview may
be used to view the results of the simulation.

1Refer to the Xnf- Wiree Tutorial for more information

