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Abstract

We describe a practical iterative approximation algorithm that can be used for homotopic

positioning of Steiner points and vias for minimization of a wiring cost in rubber-band sketches.

The algorithm is based on modeling the interconnect as a physical system and iterativly finding

it minimum energy state.  This method has a wide range of applications including finding

Steiner trees, optimization of nets with given topologies, and optimization of constrained nets.

It supports multi-layer sketches with obstacles, and can be adapted to various optimization

goals by changing the force function. The algorithm can be used to improved the topology or to

improve the wiring for a given topology. By controlling, the force functions of the physical

system,  various aspect of the interconnect such as average or maximal wire length can be

improved.

                           
* This work was supported in part by the National Science Foundation under the Grant MIP-9058100, and in part by IBM

Corporation.
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1. The Basic Case - Single Steiner Point

This problem, defined by Weber, illustrates our approach on a relatively simple case. Let
Pi=(xi,yi), i=1..n, n>0 be a set of non movable points on the plane. The goal is to find the position

of a point S=(x,y) such that the sum of the Euclidean distances from S to Pi is minimized. Figure

2a shows a problem instance with n=3, and with a non optimal solution S.

Let Li(x,y) be the distance from Pi to the moveable point S=(x,y) and let L(x,y) be the sum of

Li(x,y).  L(x,y) and Li(x,y) form surfaces over the plane where Z(x,y) is the wiring length when

the movable point is at (x,y). Figure 1a shows a Li surface and a L surface (with two points, n=2).

The optimal solutions to the problem are exactly all the global minimums of L.

(a)                                                  (b)

Figure 1 - The surfaces of  a single (left) and a
pair (right) of non movable points.  For a single
point, the surface is a cone. For multiple points,
the surface is  sum of cones.

The solution to this problem can be approximated to any required accuracy using numeric

analysis techniques.   An initial point is selected and then it is improved iteratively by seeking a

global minimum. We have shown that for those surfaces,  every local minimum is also a global

minimum, and for every two local (and global) minimum points, there is a path between them

which includes only local minimum points (the proof appears latter in this paper).  These

properties support a greedy approach which at every step, tries to improve the most.  Since the

surface does not have local minimum which are not global minimum, the greedy approach can

not be trapped in a local minimum.

We model the problem as a physical system of fixed force springs. The n wire segments which

connect the movable point S to the non-movable points Pi, apply equal forces on S, each in its

own direction.  The combined force V of the n forces (Figure 2b) has a direction and magnitude,

and represent the combined force applied on S.  We have shown (the proof appears latter in this

paper) that the direction of this force is the direction where the slope of the surface  is the

highest so maximum improvement is achieved by a small movement of S in that direction. In

addition, the magnitude of the combined  force is proportional to the improvement achieved by

moving S in this direction.
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(a)                                                  (b)

Fig 2 - An improvement step. The tree on the
left side has three fixed points P1, P2, P3, and
one moving point S.  The vectors on the right
are the forces operating on point S.  The
combined force V defines a movement vector
which relocates S to S*.

We have implemented such a greedy algorithm which at every iteration relocates S in the

direction of combined force, and in a distance  proportional to the magnitude of the combined

force. The distance of the movement of S is the magnitude of the combined force multiplied by a

constant C. To get closer and closer approximation of the optimal solution, we decrease C

gradually so the steps are finer and finer. We have tested the algorithm with a wide range of

examples and in all cases the algorithm converged to an optimal solution.

2. Steiner Tree of Fixed Topology

The same iterative method can be extended to solve continuos, Euclidian, Steiner tree problems

for a given topology.  This is the case when the wiring is done according to predefined

topologies and wiring rules. At every iteration, the new location of all the Steiner points are

calculated, and then, they are moved to those locations.  Another possible approach is at every

step, to move only the point that has the highest force and thus, highest improvement is

expected.

Preliminary experiments have shown that the this greedy algorithm converges quickly and

consistently to the optimal solution.
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Fig 3 - Three states (left to right) in the iterative
improvement of a Steiner tree. The solution
(right) is the optimal for the given topology.

3. Improving the Topology

In some situations, when the initial topological is suboptimal, two or more Steiner points tend to

hit one each other as illustrated in Fig-4 (center). In this case, we apply an swapping algorithm

that tries to reorder the four wires connected to the two Steiner points. In many cases, this

heuristics improved the topology.

(a) (b) (c)

(d) (e) (f)

Fig 4 - Fixing the topology. The initial topology
(a) is suboptimal, and the two Steiner points at
the (b) hit one each other. After rearrangement
of e four connection of the two movable points
(c),  a better topology and tree are achieved (d).
By repeating this step, the final Steiner tree (f) is
acheved.
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4. Finding the topology

When a Steiner tree of a given set of points is required, the topology can be determined

heuristically, and then the iterative algorithm is applied to find the optimal solution for that

topology.  We have experimented with the heuristic of finding the MST and then converting it to

a Steiner tree by adding m-1 Steiner points near every point of degree m>1 (Figure 6), and have

got promising results.  Another possible approach, which is applicable for small trees (a

common case in practical VLSI and MCM problems) is to enumerate the possible topologies and

to choose the one that gives the best solution.

(a) (b)

Figure 5 - Converting an MST (a) into a full
Steiner tree (b) by adding Steiner points in the
neighborhood of points with degree greater
than 1.  In the full tree, the non movable points
are of degree 1 and the movable are of degree 3.

5. Obstacles

Introduction of obstacles on the plane has a twofold effect on the problem: the position of the

Steiner points is constrain to be outside the obstacles area, and the wire bending over the

obstacles change the value of the surface function (Figure 6).   The iterative algorithm can be

extended to support obstacles as well by using homotopic transformation such that the topology

is preserved and points can not be moved through obstacles area.  The wires may bend around

the obstacles as in a rubber-band sketch and the force applied by a wire on a point is in the

direction of the first bent of the wire.
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Fig 6 - The surface for a single non-moveable
point (dark dot) near an obstacle (lower flat
area). The length of the wire is calculated
considering the bending around the obstacle.

6. Forest of Steiner Trees (Multiple Nets)

The iterative algorithm can be extended to simultaneously improve multiple nets (a Steiner

forest). This is a common problem in VLSI and MCM interconnect. At each iteration, the new

locations of the movable points are calculated in the same way as in the basic (Weber problem)

case.  For each net, the other nets are treated as obstacles. The forces on every moveable points

include the forces of the incident as well as the attached (bent) wires.

7. Multi-Layer

The iterative algorithm supports multi-layer sketches and can consider the interaction between

the layers. For example, a via between layer A and layer C can have attached nets on layers A,

B, and C.  The algorithm can consider the force applied on the via by the incident and attached

nets on the three layers .

8. Constrains

Until now, we have discused a constant wire force function, which causes minimization of the

total wiring length. Use of other force functions results in optimization of various properties of

the interconnect, and can capture the notion of constrains imposed on the wiring. For example,

use of a force function of the form a F=KX, where X is the length of the wire, will result in

reduction of the length of the longest wire. By using different force functions for different nets,

one can capture the criticality of certain nets.  Use of a force function which is not monotonic or

linear can represent upper and lower bounds on wire segment length.  Figure 7 shows an

example of two different results achieved using two different force functions.
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(a) (b) (c)

Figure  7  - The effect of the force function on
the final tree.  When the initial tree (a) is
improved using fixed forces, the total wire
length is minimized (b).  When a force function

proportional to the l3 (where l is the length of
the wire segment) is used, the result (c) has
longer total wiring but  the longest segment is
shorter.

9. Analysis of the Basic Case (Weber Problem)

9.1. Definitions

Let {Pi=(xi, yi) | i=1..n } be the set of fixed points. Let S=(x,y) be the movable (Steiner) point. Let

Vi, i=1..n be the directed segments from point S to points Pi. The length of Vi is Li=|Vi| and its

direction is angle  αι .  The total length of the segments is

(0.1) L = ∑
ι

Li

Let ε > 0  be an infinitesimally small, positive number such that ε<<Vi.  Let Vm be a movement

vector of magnitude |Vm|=ε and a direction α (Figure 8) such that the location of the point S

after the movement by vector Vm is

(0.2) S* = S + Vm

Let Vi
* be the (new) segments from S* to the fixed points Pi,  Li* be their lengths, and L* the new

total length:

(0.3) L* = ∑
i

Li*

The increase in the length of an individual segment by a movement in direction α is

(0.4) ∆i(α)=Li*-Li

And the increase in the total length is
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(0.5) ∆(α)  =  L*-L = ∑
i

∆ι(α)

Figure 8 - A movable point S is moved in

direction α to point S*. Li and Li* are the lengths

of the wire segment that connects S to the fixed
point Pi before and after the movement

respectively. The analysis in this paper is done

for movements of small distance ε=|S−S*| such

that  0<ε<<1.

9.2. Movement Analysis

The increase in the length of a single segment (Figure 8) by a small movement in direction α and

magnitude ε is

(0.6) ∆i(α)=ε•cos(α−(α i-π)).

Which is also

(0.7) ∆i(α)=ε•{−cos(αi)•cos(α) − sin(αi)•sin(α)}

By (0.3) and (0.7) the increase in the total length is

(0.8) ∆(α)=ε•{−A•sin(α) −B•cos(α)}

Where

(0.9) A = ∑
ι

sin(αi) ,     B = ∑
ι

cos(αi)

Formula (0.8) can also be written as

(0.10) ∆(α)=ε•{−K•cos(α−C)}

Where
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(0.8) C = atan(
A
B)

and

(0.9) K = 
B

cos(C) =  
A

sin(C)

By (0.10) the minimum of ∆(α)  is when α=C and its value at this point is ε•K.

Conclusion:  The maximal reduction in the total length by a movement of distance ε is when the

movement is in direction α=C and the reduction is ε•K.

9.3. Modeling as Forces

Let {Fi|i=1..n} be a set of force of magnitude 1 and of direction αi
1that are applied by the 'rubber

band' wire segments on the moveable point S (figure 2).  Let F be the sum of the force vectors

(1.1) F = ∑
i

Fi

The X and Y components of Fi are cos(αi) and sin(αi) respectively, and by (0.9), B and A are

exactly the  X and Y components of the combined vector F. By (0.8) and (0.9) C is the direction,

and K is the magnitude of F.

We have shown that the maximum improvement is when the (infinitesimally small) movement

is in direction C ,which is also the direction of F, and the improvement in this direction is

proportional to K, which is the magnitude of F.

Conclusion: for infinitely small movements, the maximal improvement is when the moveable

point is moved in the direction of the combined force of the forces applied on it.  The

improvement is proportional to the magnitude of this force.

9.4. Multiple steps are required

The optimal solution is not necessarily in the direction of the combined force F. If the

movements are done in the direction of the highest local improvement, multiple steps may be

require (Figure 9).

                           
1 The direction of the force is the same direction as the vector from the moveable to the fixed point.
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Figure 9 - An example where the equivalent
force is not in the direction of the optimal
solution. The distance between P1 and S is
infinitsimally small, still the direction of the
equivalent force is not infinitesimally close to

270o (south) where the optimal solution is but it
is  more to the right (south east).

9.5. Analysis of the Surface's Minimum Points

Solving the Weber problem is equivalent to finding a minimum point of the surface L.  This

surface has properties that enable the use of iterative greedy improvement to find its minimum.

Lemma :  For every instance of Weber problem, the total length function L(x,y) satisfies:

1. L has a global minimum.

2. Every local minimum of L is also a global minimum.

3. Between two local minimums, there is a path that includes only  local minimum points.

Property 1 is true because L(x,y) is continuous and has upper and lower bounds on every (finite)

closed domain. When |x|+|y| goes to infinity, L(x,y) goes to plus infinity, and must have a

minimum  (i.e. the minimum is not on the infinite boundary of the plane).

The proof of 2 and 3 is based on a reduction to a one dimensional problem. It is sufficient to

show that properties 2, 3 are true for L over every cut of the plan by a straight line.

Definition:  A bimonomoton function is a  function Y=f(x), that is

1. Continuous.

2. Piecewise derivable, with finite number of pieces.

3. The derived function Y' is non decreasing such that x1>x2 ⇒  Y'(x1) ≥ Y'(x2).

4. There are two numbers x1≤x2, such that Y(x) is constant in [x1,x2], and Y'(x) is negative

for x<x1 and is positive for x>x2.  The range [x1,x2] is called the center of Y.
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Fig 10 - Bimonotone functions. The upper one is
the sum of the other three. In one of the
functions, x1<x2 while in the other three, x1=x2.

On a bimonotone function, every local minimum is also a global minimum - That's clear since

the function is continuous and the piecewise derived function is non decreasing.

On a bimonotone function a point between two minimum point is also a minimum point  -

That's clear since the function is continuos and the piecewise derived function is non decreasing.

Sum of a finite number of bimonotone functions is also a bimonotone function - Let fa, fb be

two bimonoton functions with centers [x1a,x2a] , [x1b,x2b].  Let  f=fa+fb be the sum function.

Since fa, fb are bimonotone, they are continuos, piecewise drivable, and have derivative

functions which are non decreasing, and that hold for f as well.  The center of f is the range

which f' is positive above it and negative below it.  Since f' is non decreasing, negative below the

union of the two centers, and positive above it, such a range exist (and there is exactly one).

Li over a cut is bimonomoton - Let H be a line on the plane, and let Pi=(x,y) be a non movable

point. We can assume without loss of generality that the cut is the line y=0, and that Pi is on the

line x=0 (otherwise a rotation and translation can be used).  Li(x) over the cut H is

(2.1) Li(x) = 
2

y2 + x2

Where y is the y value of point Pi.  By this,  function Li is bimonotone for every value of y.

L over a cut is bimonotone - We have shown that Li is bimonotone over every cut and that sum

of bimonotoe functions also bimonotone. Since L is the sum of Li, L is also bimonotone.

Conclusion - L is bimonotone on every cut and as such, every local minimum is also a global

minimum and the points between two minimum points are also minimum points. This is

sufficient that the same is true for L over the entire plane.
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10. Future Work

Further research on the behavior of a multiple nets, multi layer system with obstacles is

required.  Such a research can suggests better improvement methods that will converge faster,

and ways to bound the extra cost of the approximation compared to the optimal solution. In

addition, the effect of various force function needed to be studied.  Non fix force functions can

be used to optimization of various properties of the interconnect such as bounded wire length,

but some cost functions are inappropriate and do not guaranty convergence.

11. Conclusion

By modeling the rubber band sketch as a physical system of springs and using a simple  iterative

improvement algorithm, the wiring cost can be improved. This technique is applicable for multi-

layer, multi-nets, rubber-band sketches with obstacles.  Variations on the force function can be

used to direct the algorithm to a more desirable solution according constrains imposed on the

wiring.
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