
[36] J. R. Quinlan. Induction on decision trees. Machine Learning, 1:81{106, 1986.[37] A. L. Samuel. Some studies in machine learning using the game of checkers. IBM Journal of Research andDevelopment, 3(3):211{229, 1959. Reprinted in CT, pp. 71{105.[38] A. L. Samuel. Some studies in machine learning using the game of checkers{ii recent progress. IBM Journal ofResearch and Development, 11(6):601{617, 1967.[39] T. Scherzer, L. Scherzer, and D. Tjaden. Learning in Bebe. In T. A. Marsland and J. Schae�er, editors,Computer, Chess and Cognition, chapter 12, pages 197{216. Springer-Verlag, 1990.[40] C. E. Shannon. Programming a computer for playing chess. Philosophical Magazine, 41(7):256{275, 1950.[41] H. A. Simon and K. Gilmartin. A simulation of memory for chess positions. Cognitive Psychology, 5(1):29{46,1973.[42] S. Skiena. An overview of machine learning in computer chess. Intern. Computer Chess Assoc. Journal, 9(3):20{28, 1986.[43] D. J. Slate. A chess program that uses its transposition table to learn from experience. Intern. Computer ChessAssoc. Journal, 10(2):59{71, 1987.[44] George Steiner. Fields of force; Fischer and Spassky at Reykjavik. Viking Press, New York, 1974.[45] Richard Sutton, editor. 1991.[46] Richard S. Sutton. Learning to predict by the methods of temporal di�erences. Machine Learning, 3(1):9{44,August 1988.[47] P. Tadepalli. Lazy explanation-based learning: A solution to the intractable theory problem. In Proceedings ofthe Eleventh International Joint Conference on Arti�cial Intelligence, Detroit, MI, 1989. Morgan Kaufmann.[48] G. Tesauro and T. J. Sejnowski. A parallel network that learns to play backgammon. Arti�cial Intelligence,39:357{390, 1989.[49] Gerald Tesauro. Practical issues in temporal di�erence learning. Machine Learning, 1991.[50] K. Thompson and A. J. Roycroft. A prophesy ful�lled. EndGame, 5(74):217{220, 1983.[51] C. S. Wilcox and R. A. Levinson. A self-organized knowledge base for recall, design, and discovery in organicchemistry. Arti�cial Intelligence Applications in Chemistry, (306), 1986.[52] D. Wilkins. Using patterns and plans in chess. Arti�cial Intelligence, 14(2):165{203, 1980.[53] R. C. Yee, Sharad Saxena, Paul E. Utgo�, and Andrew G. Barto. Explaining temporal di�erences to createuseful concepts for evaluating states. In Proceedings of the Eighth National Conference on AI, Menlo Park, 1990.American Association for Arti�cial Intelligence, AAAI Press/The MIT Press.[54] A. L. Zobrist and D. R. Carlson. An advice-taking chess computer. Scienti�c American, 228:92{105, June 1973.
36



[11] J. Gould and R. Levinson. Method integration for experience-based learning. Technical report, University ofCalifornia, Baskin Center, Santa Cruz, 1991. To appear.[12] E. Hearst. Man and machine. In P. W. Frey, editor, Chess Skill in Man and Machine. Springer-Verlag, 1977.[13] J. H. Holland. Adaptation in Natural and Arti�cial Systems. The University of Michigan Press, Ann Arbor,1975.[14] W. James. The Principles of Psychology, volume 2. Henry Holt and Co., New York, 1890. Republished byDover Publications, 1950.[15] H. Kaindl. Towards a theory of knowledge. In D. Beal, editor, Advances in Computer Chess 5, pages 159{185.Pergammon, 1989.[16] G. Kasparov. Test of Time. Pergamon, Oxford, 1986.[17] G. Kasparov. Child of Change. Hutchinson, 1987.[18] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, 220:671{680,1983.[19] K. F. Lee and S. Mahajan. A pattern classi�cation approach to evaluation function learning. Arti�cial Intelli-gence, 36:1{25, 1988.[20] R. Levinson. A self-organizing retrieval system for graphs. In AAAI-84, 1984.[21] R. Levinson. A pattern-weight formulation of search knowledge. Technical Report UCSC-CRL-89-05, Universityof California at Santa Cruz, 1989. Submitted to Computational Intelligence.[22] R. Levinson. Pattern associativity and the retrieval of semantic networks. Computers and Mathematics withApplications, 1991. To appear in Special Issue on Semantic Networks in Arti�cial Intelligence, Fritz Lehmann,editor.[23] R. Levinson. A self-organizing pattern retrieval system and its applications. Internation Journal of IntelligentSystems, 1991. To appear.[24] R. Levinson and G Ellis. Multilevel hierarchical retrieval. Knowledge-Based Systems, 1991. To appear.[25] R. Levinson and R. Snyder. Adaptive pattern oriented chess. In Proceedings of AAAI-91, pages 601{605.Morgan-Kaufman, 1991.[26] R. Levinson, R. Snyder, B. Beach, T. Dayan, and K. Sohn. Adaptive-predictive game-playing programs. Tech-nical Report UCSC-CRL-90-12, University of California at Santa Cruz, 1990. Submitted to Journal of Experi-mental and Theoretical AI.[27] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equations of state calculations by fastcomputing machines. Journal of Chemical Physics, 21:1087{1091, 1953.[28] R. S. Michalski. A theory and methodology of inductive learning. In R. S. Michalski, J. G. Carbonell, and T. M.Mitchell, editors, Machine learning: An Arti�cial Intelligence Approach. Tioga Press, 1983.[29] D. Michie and I. Bratko. Ideas on knowledge synthesis stemming from the KBBKN endgame. Intern. ComputerChess Assoc. Journal, 10(1):3{13, 1987.[30] S. Minton. Constraint based generalization- learning game playing plans from single examples. In Proceedingsof AAAI-84, pages 251{254. AAAI, 1984.[31] T. M. Mitchell, J. G. Carbonell, and R. S. Michalski, editors. Machine Learning: A Guide to Current Research.Kluwer Academic Publishers, 1986.[32] S. H. Muggleton. Inductive acquisition of chess strategies. In D. Michie J. E. Hayes and J. Richards, editors,Machine Intelligence 11, pages 375{389. Oxford University Press, Oxford, 1988.[33] T Niblett and A. Shapiro. Automatic induction of classi�cation rules for chess endgames. Technical ReportMIP-R-129, Machine Intelligence Research Unit, University of Edinburgh, 1981.[34] H. Peger and G. Treppner. Chess: The Mechanics of the Mind. The Crowood Press, North Pomfret, VT, 1987.[35] J. Pitrat. A program for learning to play chess. In Pattern Recognition and Arti�cial Intelligence. AcademicPress, 1976. 35



{ What happens when Morph is trained on these games? What if the games are presentedin reverse order? Can we also explain Bobby Seltzer's development in terms of learnedpatterns? Can his \creative" moves be explained in terms of past experiences?{ We have a similar dataset of Bobby Fischer's games? Which Bobby does Morph learnbest from: Fischer or Seltzer? A very long term goal is to get Morph to be strong enoughto emulate a match between these two (or Fischer and the current World Champion).� Of critical importance is the determination of more compelling domains beyond chess towhich these methods can be applied. One such domain would seem to be organic synthesis[23,51]: through experience a system could learn which types of molecules are more easily orcheaply made and guide synthesis pathways in this direction. Similar ideas may also applyto automatic theorem proving.� Finally, we believe that the \psychology of Morph" is another direction that is worth pursuing.For example, we have witnessed signs of depression at times: many patterns are evaluatednegatively, or Morph is afraid to try new things or to try things that failed early in itstraining. Likewise, from time to time Morph plays extremely aggressively and sometimesrecklessly. Where does this tendency come from? Perhaps, it is through understandingthe mathematical principles behind the e�ect of experience on decision-making and futureexperience that better therapies can be developed. Can Morph's creativity be \encouraged?".7 AcknowledgementsWe are indebted to those researchers whose methods have been adapted for Morph, Morph'sprogrammers, the encouragement of friends and family, NSF grant IRI-8921291 and to expe-rience itself.References[1] A. Avni. Creative Chess. Pergamon, Oxford, 1991.[2] L.B. Booker, D.E. Goldberg, and J.H. Holland. Classi�er systems and genetic algorithms. Arti�cial Intelligence,40:235{282, 1989.[3] M. Botvinnik. Computers in Chess. Springer-Verlag, 1984.[4] J. Christensen and R. Korf. A uni�ed theory of heuristic evaluation. In AAAI-86, 1986.[5] Lawrence Davis and Martha Steenstrup. Genetic Algorithms and Simulated Annealing, chapter Chapter 1,Genetic Algorithms and Simulated Annealing: An Overview. Research Notes in Arti�cial Intelligence. MorganKaufmann Publishers, 1987.[6] A. D. de Groot. Thought and Choice in Chess. The Hague, 1965.[7] S. L. Epstein. Learning plans for competitive domains. In Proceedings of the Seventh International Conferenceon Machine Learning, June 1990.[8] N. S. Flann and T. G. Dietterich. A study of explanation-based methods for inductive learning. MachineLearning, 4:187{226, 1989.[9] M. Fox and R. James. The Complete Chess Addict. Faber and Faber, London, 1987.[10] David E. Glover. Genetic Algorithms and Simulated Annealing, chapter Chapter 1, Solving a Complex KeyboaardCon�guation Problem Through Generalized Adaptive Search. Research Notes in Arti�cial Intelligence. MorganKaufmann Publishers, 1987. 34



guide search in tactical situations. Paradise was able to �nd combinations as deep as 19-ply. Itmade liberal use of planning knowledge in the form of a rich set of primitives for reasoning andthus can be characterized as a \semantic approach." This di�erence plus the use of search to checkplans and the restriction to tactical positions distinguish it from Morph. Also, Paradise is not alearning program: patterns and planning knowledge are supplied by the programmer. Epstein'sHoyle system [7] also applies a semantic approach but to multiple simultaneous game domains.6 Conclusions and Directions� As we �nish preparing this document, Morph continues to improve. We believe that thereare some changes that can make learning signi�cantly faster. The idea is to not allow Morphto use a pattern in an evaluation until it has been updated a certain number (e.g. 25) times.In this, way, Morph's play and evaluation will not be severely hampered by unripe patterns.With this risk out of the way, Morph can be given many more patterns per game than itcurrently receives and, hence, the learning curve should be steeper. Each pattern continuesto live a life of its own, but must reach a certain maturity before inuencing learning anddecision-making.� Now that Morph has reached a level in which it is easily trainable, speci�c training issues canbe explored:{ For instance, is it more useful for the system to train against GnuChess Level II or to�rst train against GnuChess Level I before moving on to level II? Intuition might suggestthat the latter strategy is more e�cient, especially given the faster response time of levelI, but this needs to be validated empirically.{ Our research group has obtained the games of (now 16-year old) chessmaster BobbySeltzer described here by his father:I have a unique set of chess games that might be of value to research inarti�cial intelligence or to developers of chess-playing software. I have beensaving my son Bobby's games as word processing �les since the very �rst ratedgame he played in Oct. 1984. (I only missed two early scholastic ones, whereneither player recorded the moves.) There are now 680 rated games on �le, inaddition to miscellaneous simul and postal games { a continuous record from9-year-old raw beginner to 14-year-old master. I believe that analysis of thesegames could provide valuable information about how one can learn and improverapidly at chess. [...] In the best of all possible worlds, I could foresee a valuablecollaboration. Analysis of Bobby's games, both past and future, could provideinsight that helps in the further development of chess-playing software and ar-ti�cial intelligence in general. [...] And even games played between Bobby andan experimental chess program (perhaps over the Internet) could prove valuablefor both.All too often, arti�cial intelligence/chess research is presented to the publicas a battle of man vs. machine. I think collaboration is a much more usefulmodel. 33
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Figure 6: Cumulative Average of two versions of Morph.Version (a) adds the split evaluation function on top of reverse node ordering Morph. Version (b) adds annealing ontop of Version (a).favorable or unfavorable patterns. Also similar is the use of \utility" by Morph's deletion routineto determine if it is worthwhile to continue to store a pattern. The decision is based on accuracyand signi�cance of the pattern versus matching or retrieval costs. A major di�erence between thetwo approaches is the simplicity and uniformity of Morph's control structure: no \meta-level con-trol" rules are constructed or used nor are goals or subgoals explicitly reasoned about. Anotherdi�erence is that actions are never explicitly mentioned in the system. Yee et al.[53] have com-bined explanation-based learning and TD learning in a manner similar to Morph. They apply thetechnique to Tic-Tac-Toe.It is also interesting to compare Morph to other adaptive-game playing systems. Most othersystems are given a set of features and asked to determine the weights that go with them. Theseweights are usually learned through some form of TD learning [48]. Morph extends the TD ap-proaches by exploring and selecting from a very large set of possible features in a manner similar togenetic algorithms. It is also possible to improve on these approaches by using Bayesian learningto determine inter-feature correlation [19].A small number of AI and machine learning techniques in addition to heuristic search have beenapplied directly to chess, and then, usually to a small sub-domain.The inductive-learning endgamesystems [29,32] have relied on pre-classi�ed sets of examples or examples that could be classi�edby a complete game-tree search from the given position [50]. The symbolic learning work by Flann[8] has occurred on only a very small sub-domain of chess. The concepts capable of being learnedby this system are graphs of two or three nodes in Morph. Such concepts are learned naturally byMorph's generalization mechanism.Tadepalli's work [47] on hierarchical goal structures for chess is promising. We suspect thatsuch high-level strategic understanding may be necessary in the long run to bring Morph beyondan intermediate level (the goal of the current project) to an expert or master level. Minton [30],building on Pitrat's work [35], applied constraint-based generalization to learning forced matingplans. This method can be viewed as a special case of our pattern creation system. Perhaps themost successful application of AI to chess was Wilkin's Paradise (PAttern Recognition Applied toDIrecting Search) system [52], which, also building on Pitrat's work, used pattern knowledge to32
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Figure 5: Cumulative Average of two versions of Morph.Version (a) is the basic Morph in existence three months ago. Version (b) adds the reverse node ordering patternaddition scheme to Version (a).only one such comparison is su�cient because the same version of Morph usually reaches the sameaverage.The \meaning" of the hidden units to which weights are associated in neural nets is usually notclear, whereas in Morph it is speci�c structures that are given weights. The resulting transparencyof Morph's knowledge has allowed us to �ne tune ts learning mechanisms - with various systemutilities it is possible to ascertain exactly why Morph is selecting one move over another.4.2 Improvement through Adding New Learning MethodsAdding learning strategies is a gradual process. Each method must be added one at a time to see ifit increases performance. If it does than it is kept. Since Morph's initial implementation signi�cantperformance increases have occurred due to such additions. The following two graphs show Morph'scumulative average over time. These graphs compare the performance of four versions of the system.Each version is an extension of the previous one. Figure 5a shows a basic Morph, Figure 5b showsthe result of adding reverse node ordering, Figure 6a shows the result of splitting the evaluationfunction, and Figure 6b shows the result of adding annealing.5 Relationship to Other ApproachesAbove, we have described how the chess system combines threads of a variety of machine-learningtechniques that have been successful in other settings. To produce this combination, design con-straints usually associated with these methods have been relaxed.We feel the integration of these diverse techniques [11] would not be possible without the uni-form, syntactic processing provided by the pattern-weight formulation of search knowledge. Toappreciate this, it is useful to understand the similarities and di�erences between Morph andother systems for learning control or problem-solving knowledge. For example, consider Minton'sexplanation-based Prodigy system [30]. The use of explanation-based learning is one similarity:Morph speci�cally creates patterns that are \responsible" (as preconditions) for achieving future31



are consistent and credible [25]. (see Table 1 for a database after 106 games). The weightscorrespond very well to the traditional values assigned to those patterns. These resultsrecon�rm other e�orts with TD learning [4] and perhaps go beyond by providing a �ner grainsize for material.Material Pattern Statistics Trad.Pawn Knight Bishop Rook Queen Weight Updates Variance Age Value0 0 0 0 0 0.455 2485 240.2 106 00 0 {1 0 0 0.094 556 7.53 86 {30 0 +1 0 0 0.912 653 11.19 88 +30 +1 0 0 0 0.910 679 23.59 101 +30 {1 0 0 0 0.102 588 17.96 101 {30 0 0 {1 0 0.078 667 3.56 103 {50 0 0 +1 0 0.916 754 5.74 103 +5+1 0 0 0 0 0.731 969 22.96 105 +1{1 0 0 0 0 0.259 861 13.84 105 {10 0 0 0 +1 0.903 743 5.68 105 +90 0 0 0 {1 0.085 642 3.12 105 {90 0 {1 +1 0 0.894 10 0.03 55 +20 0 {2 0 0 0.078 146 0.53 71 {6+1 0 {1 0 0 0.248 26 2.35 73 {20 +1 {1 0 0 0.417 81 4.48 82 0{1 0 {1 0 0 0.081 413 2.14 92 {40 {1 +1 0 0 0.478 84 5.72 82 0+1 0 +1 0 0 0.916 495 3.56 88 +40 0 +2 0 0 0.924 168 0.66 91 +6Table 1: A portion of an actual Morph material database after 106 games.The columns headed by pieces denote relative quantity. The weight column is the learned weight of the pattern in[0,1]. Updates is the number of times that this weight has been changed. Variance is the sum of the weight changes.Age is how many games this pattern has been in the database. Value is the traditional value assigned to this pattern.Note that a weight of 0.5 corresponds to a traditional value of 0. The entire database contained 575 patterns.� After 50 games of training, Morph begins to play reasonable sequences of opening moves andeven the beginnings of book variations. This is encouraging because no information aboutdevelopment, center control and king safety have been directly given the system and sinceneither Morph or GnuChess uses an opening book. It is not rare for Morph to reach themiddlegame or sometimes the endgame with equal chances before making a crucial mistakedue to lack of appropriate knowledge.� Morph's database contains many patterns that are recognizable by human players and hasgiven most of these reasonable values. The patterns include mating patterns, mates-in-one,castled king and related defenses and attacks on this position, pawn structures in the center,doubled rooks, developed knights, attacked and/or defended pieces and more.4.1 Performance EvaluationTo explore new additions to Morph, one implementation is compared with another by using theaverage number of traditional chess points per game as the metric. Each implementation is rununtil the metric is no longer increasing this. (Most Morphs stop learning at between 1500 and 2000games of play). The one with the higher rating is considered the better. We have concluded that30



weights gaining in extremeness the system is then motivated to move in this direction. But hereit is worth mentioning the advantage of pws over macros: while executing one macro, the systemhas the potential to switch into another more favorable macro rather than being committed to theformer.To construct such sequences of pws in the Morph system a form of EBG or goal regression is used.The idea is to take an extreme pattern in one position and back it up to get its preconditions in thepreceding position. If this new pattern is also most extreme the process can be continued etc. Welike to call this technique \reverse engineering" as the pw-sequence is discovered through retrogradeanalysis. The advantages of this technique are more than just learning \one more macro": each ofthe patterns can be used to improve the evaluation of many future positions and/or to start up themacro at any point in the sequence.Node ordered induced subgraphsA simple and rapid mechanism for getting useful patterns in Morph proceeds as follows: Take thegraph of a position, number the nodes in a connected fashion using a heuristic rule, choose a randomsize n, and return the induced subgraph formed by the �rst n nodes in the node ordering (and theedges between them). Morph uses two relatively game-independent node ordering rules: In forwardnode ordering, nodes are ordered by most recently moved piece while maintaining connectivity of thenodes. In reverse node ordering nodes are ordered by which piece is next to move while maintainingconnectivity of the nodes. In both schemes captured pieces and kings in check are placed high inthe list and ties (for squares and unmoved pieces, for instance) are broken randomly. The inclusionof random factors in the above scheme also fall well within the genetic algorithm viewpoint, sincethe system is then capable of generating and exploring a large set of possibilities.3.4.3 Pattern DeletionAlso, as in genetic algorithms there must be a mechanism for insigni�cant, incorrect or redundantpatterns to be deleted (forgotten) by the system. A pattern should contribute to making theevaluations of positions it is part of more accurate. The utility of a pattern can be measured as afunction of many factors including age, number of updates, uses, size, extremeness and variance.We are exploring a variety of utility functions [30]. Using the utility function, patterns below acertain level of utility can be deleted. Deletion is also necessary for e�ciency considerations: thelarger the database the slower the system learns.Of course, the novel aspects of the Morph system could not have been achieved without theunique combination of learning methods described here.4 Performance ResultsTo date Morph has only one victory against GnuChess, and has obtained over 20 draws via stale-mate, repetition of position and the 50-move rule. Despite the relative lack of success againstGnuChess there have been many encouraging signs in the nine months since Morph was fullyimplemented:� Even though no information about the relative values of the pieces (or that pieces are valuable)have been supplied to the system, after 30 or more games of training Morph's material patterns29



there are a �xed number of solutions at any one time (a generation). Members of each generationinter-breed to form the next generation. Each genetic algorithm has a �tness function that ratesthe quality of the solution in a particular generation. When it is time for a new generation tobe created from the current generation the solutions that are more �t are allowed to be the moreactive breeders. Breeding usually involves three processes: crossover, inversion, and mutation.The three methods work as follows. Crossover involves randomly selecting a point the samedistance along both parents and splitting the solutions in half. Then the tails of each parent areswapped producing two hybrid children. Inversion involves taking a single solution in the currentgeneration, selecting two points along the bit string and then inverting the bits between the twopoints. The resulting bit string is a solution in the new generation. Finally, mutation involvesipping a bit in a solution of the new generation. The new generation will be of the same size asthe old generation [5].Adapting genetic algorithms for MorphMorph uses patterns to reason about positions that it encounters. These patterns have countlessvariations; far too many to be stored in a computer. Thus, it is necessary to pick the best set ofpatterns to generate the most accurate evaluations of positions. Likewise, it is desirable to weedout those patterns that lead to erroneous evaluations or are too speci�c to be used often. Thus,Morph's search takes place in the space of possible pattern sets.In Morph:� Patterns are the basic elements of a given population. These patterns do not representsolutions but instead represent important elements of positions to be looked for.� The initial population is created via a method called seeding where we introduce all two nodegraph patterns (such as white bishop attacks black queen) into the database.� The �tness function that Morph uses favors those patterns that are found in positions often,have low variance and have extreme values.� Parameters exist for keeping the number of patterns below a �xed number. This numberbalances the desire to have many patterns with the desire to play and learn quickly. Thus,although we are currently measuring Morph's performance over a number of games, it isprobably more appropriate to measure it in terms of computing time - in which the size ofthe database becomes an important factor.� Morph has operators that are analogous to those used in genetic algorithms but di�er in someimportant respects because graphs are not bitstrings. In particular, they are not ordered nordo they have a �xed length. Morph's generalization and specialization operators (see above)are similar to crossover and mutation, respectively. While we currently do not have aninversion operator in Morph, one could imagine the utility of swapping white and black colordesignations in all or part of a graph pattern.Explanation Based Generalization (EBG)In order for Morph to compete using 1-ply of search, a means must exist by which combinational(or macro) knowledge is given to the system. Macros can be represented as pws by constructinga sequence of them such that each pattern is a precondition of the following one. With successive28
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Updating at Poll 2 -- move toward .425s = 0, t = 1, giving P = .35Updating at Poll 1 -- move toward .35s = 0, t = 1, giving P = .4Since Morph must make a sequence of predictions (board evaluations) but only receives feedbackfor the last one (0 { lose, 1 { win, .5 draw) TD learning is appropriate. This has been true forother adaptive game playing systems in which the credit assignment task is di�cult and critical[37,26,48,49]. In Morph, TD learning is implemented close to the standard way. It deviates in oneimportant point though: while most systems use a �xed set of features determined before learningbegins, Morph's feature set changes over time. As we wish to keep Morph's human suppliedknowledge to a minimum, it is left on its own to determine the proper feature set. Morph'smaterial patterns greatly enhance the rate of TD learning since they provide useful subgoals thatmay occur anywhere in a game. This is especially so since Morph tends to learn these values earlyon in training.Simulated AnnealingSimulated annealing is a learning procedure that has been derived from a practice in statisticalmechanics [5]. Statistical mechanics attempts to describe the properties of complex systems. Itis often desirable to take systems of molecules and reduce them to the lowest possible energyby lowering the temperature of the system. Through experience it has been found that if thetemperature is reduced too quickly the system will have a small probability of being at an optimallylow temperature. Metropolis et al [27] developed a technique for lowering the temperature graduallyto produce (on the average) very low energy systems at the lowest temperature: Cool the systemat a particular temperature, let the system reach equilibrium, then adjust the temperature to anearby (usually lower) value. Continue until the �nal temperature is reached.Kirkpatrick et al [18] adapted annealing to computer science, by �nding information analogiesfor their physical counterparts [5]:� The energy of the system became an objective function that describes how good of a statethe system is currently in.� Moving a physical system to its lowest energy state is then analogous to �nding the state thatoptimizes the objective function.� The state of the system is then the di�erent informational parameters that the system canhave.� The temperature is a mechanism for changing the parameters.Our situation is similar to that of the statistical physicist. Morph is a complex system of manyparticles (patterns). The goal is to reach an optimal con�guration, i.e. one in which each weighthas its proper value. The average error (i.e. the di�erence of Morph's prediction of a position'svalue and that of temporal-di�erence) serves as the objective evaluation function. Intuitively, theaverage error is an acceptable performance evaluation metric if one accepts the empirical andanalytic arguments that TD learning is a convergent process [46]: since TD learning will produceevaluations close to the true ones the error will be high or low depending on Morph's degree ofaccuracy. 25



3.4.1 Positional Credit Assignment and Weight-UpdatingEach game provides feedback to the system about the accuracy of its evaluations. The �rst step isto use the outcome of the game to improve the evaluations assigned to positions during the game.This is done using temporal-di�erence (TD) learning [37,38,46]. Once new positions have beengiven evaluations, the weights of patterns that were used to evaluate the positions are moved inthe direction of the desired or \target" evaluation. Using a temperature as in simulated annealingallows each pattern to move at its own rate, based on the number of updates. TD learning andsimulated annealing and their use in Morph are described in the following two subsections.Temporal-Di�erence LearningTD learning was designed for situations where the learner does not get immediate feedback forhis predictions; instead, the learner makes a sequence of predictions and then is given the truevalue of the last prediction only. The learner is usually trying to predict the value of a particularphenomenon given a set of input values. In most TD systems a subset of the input is used. Still, insome simple domains the entire state can be used as input to a evaluation function, e.g. the markovmodel learning [46]. Associated with each input feature is a real valued weight, it is precisely thisweight that gets updated and is used to make the next evaluation.After the learning system makes a sequence of predictions and receives feedback for the �nalprediction, TD learning proceeds to modify the weights of the input features on each state workingback from the �nal state in the sequence to the �rst state. The weights of the features associatedwith the �nal state are updated in the direction of the true value supplied by the environment.For each of the other states, weights are updated in the direction of the new evaluation for thesucceeding state.An Example of TD LearningAssume that there is an election and a TD system is trying to predict the percentage of the votesto be received by candidate A. Suppose, there exist two newspapers that publish polls, S and T ,on the percentage of votes each candidate will receive. The TD system will use S and T to predictA's percentage as follows: P = (sS + tT )=(s + t). s and t are real-valued weights denoting thecredibility of each poll. Lets say that the newspapers come out with three polls before the election.The system will make three predictions before the election and then will update the credibilityweights s and t, according to the results of the election.Initially s = 1, t = 1Poll 1: S = .5, T = .4; P = .45Poll 2: S = .2, T = .35; P = .275Poll 3: S = .3, T = .5; P = .4Election Result = .45Updating at Poll 3 -- move s, and t so that P tends (say half way)towards .45s = 1.08, t = 1.8, giving P = .425; 24



f(x; y) = 8>>><>>>: �:5(2� 2x)(2� 2y) + 1 if x � 12 and y � 12x�:5+y�:5(2x�1)(2y�1)((2x�1)2�(2y�1)2)(2x�1)2(2y�1)2 if x � 12 and y < 12f(y; x) if x < 12 and y � 122xy otherwiseFigure 2: Move selection evaluation function.then be considered better than either of them alone. .5 is the weight that is assigned to a patternthat does not have any positive or negative connotation. Patterns with weight 0 suggest stronglythat the current board is a losing position and patterns with weight 1 suggest that the currentboard is a winning position.The second function is a weighted average:Eval = Pni=1 wi � (jwi � :5j�)Pni=1 jwi � :5j�Where fwig, 1 � i � n, are the weights of the patterns matching the current board and � is acon�gurable power, usually between 1 and 5.The reason this function is useful for updating is that, being an average, it causes weights tomove minimally to include the new data point; thus the system state remains relatively stable.Performance ExampleThe following example demonstrates the necessity for using the �rst evaluation during play. Lets saythat Morph is in a game where he is losing and he knows it. This would mean that all evaluationsfor the next possible move are below .5. From experience we have found that this is usually causedby one extremely bad pattern. For instance it could be a material pattern that says Morph is downa queen with weight .2. Further lets say that there are only two possible alternatives for Morph:Position A with just the .2 pattern and Position B with the .2 pattern and a .3 pattern (such aspawn attacking Morph's rook). Obviously, position A should be considered better since it onlyhas one unfavorable pattern. Unfortunately, function 2 will choose position B since it returns aweighted average of .22. Further trouble with using function 2 for move selection can be seen byconsidering a new position C with a .2 and a .4 pattern. Because of the use of extremeness, function2 will give position C an evaluation of .21 and incorrectly prefer B. Note that function 1 evaluatesA, B, and C as .20, .12, and .16, respectively and thus maintains the proper order.3.4 Learning SystemThe learning system has three parts de�ned in the following three subsections. For each mainlearning method used we will emphasize the main concept and structure behind the method and howthey have been adapted for utilization in Morph.23



whether it should be retained other statistics about patterns are maintained.3.2 Associative Pattern DatabaseThe pattern database expedites associative retrieval by storing the patterns in a partially-orderedhierarchy based on the relation \subpattern-of" (\more-general-than"). Thus, at one end of thehierarchy are simple and general patterns such as \white bishop can take black pawn" and at theother end are complex and speci�c patterns such as those associated with full positions.Empirically, it has been shown that on typical databases using a simple associative retrievalalgorithm [20,22] only a small fraction of the patterns in the database need be considered to evaluatea position. An even more powerful retrieval algorithm is being developed [24].3.3 Evaluation FunctionThe evaluation function takes a position and returns a value in [0,1] that represents an estimateof the expected outcome of the game from that position (0=loss, .5=draw, 1.0=win). Althoughheuristic evaluation is not directly a learning technique it it is accessed by virtually every learningstrategy in the system; thus having an integral role in the learning process.Morph uses two di�erent evaluation functions. One is used for evaluating boards during play(for move selection), and the other one is used for evaluating boards during updating (as a basisfor learning). Both evaluation mechanisms apply the following procedures:1. Take a position as input.2. Determine all of the most speci�c patterns that match the position.3. Apply a speci�c function to all the patterns.4. Return the result of step three.Thus, the two evaluation functions di�er only in the third step, the function applied to the setof matched patterns.The evaluation function that evaluates boards during play uses a function for step three thathas the following properties, where w1 and w2 are weights of patterns:1. if w1 > :5 and w2 > :5 then f(w1; w2) > max(w1; w2) unless either w1 or w2 is 1 then f = 1.2. if w1 = :5 then f(w1; w2) = w23. if w1 = � and w2 = 1� � then f = :54. if w1 < :5 and w2 < :5 then f < min(w1; w2) unless either w1 or w2 is 0 then f = 0.5. if w1 > :5 and w2 < :5 then w2 < f < w1. f is more towards the most extreme weight.The entire function is displayed in Figure 2. This binary function is applied iteratively to allmatching patterns.These mathematical constraints to the evaluation function have a strong intuitive backing. Forinstance, rule 1 states that if two patterns suggest that a position is good (> :5) the board should22



In Morph, positions are represented as unique directed graphs in which both nodes and edgesare labelled [23]. Nodes are created for all pieces that occur in a position and for all squares that areimmediately adjacent to the kings. The nodes are labelled with the type and color of the piece (orsquare) they represent. For kings and pawns (and also pieces that would otherwise be disconnectedfrom the graph) the exact rank and �le on the board in which they occur is also stored. The exactsquares of kings and pawns allows the system to generate speci�c endgame patterns and patternsrelated to pawn structure. Edges represent attack and defend relationships between pieces andpawns: Direct attack, indirect attack, or discovered attack (a defense is simply an attack on one'sown piece). At most one directed edge is assigned from one node to another and the graph isoriented with black to move. Patterns come from subgraphs of position graphs (see Figure 3.1)and hence are represented the same way except that they may label any node with an exact orpartial square designation. The representation has recently been extended to include other squaresas nodes besides those adjacent to kings.A similar representation scheme has successfully been used to represent chess generalizations[54] and to produce a similarity metric for chess positions[23,3].0Z0Z0Z0Z rlbZ0ZkZZ0o0Z0ok Z0Z0apo00Z0Z0ono 0Z0o0m0oZ0Z0Z0Z0 ZpZ0Z0Z00ZQZpOqZ pZ0oPZ0AZPZrZ0Z0 Z0Z0M0ZPPZ0Z0ZPO PO0Z0OPZZ0A0ZRJ0 ZBZQS0J0(c)n n(b) PRBQQB RP(a) QB RP nFigure 1: A generalization derived from two di�erent chess positions. (a) is the subgraph derivedfrom the board on the left and (b) is the subgraph from the board on the right. The solid edgescorrespond to direct edges between pieces and the dashed edges correspond to indirect edges. Graph(c) is the generalized graph derived from (a) and (b) in which the dotted edges have been generalizedto generic \attacks."There are actually two types of patterns stored in the Morph system. In addition to the abovementioned graph patterns , Morph stores \material" patterns: vectors that give the relative materialdi�erence between the players, e.g. \up 2 pawns and down 1 rook," \even material," etc.Much of the following discussion will refer to graph patterns alone. But it should be understoodthat material patterns and graph patterns are processed identically by the system.Along with each pattern is stored a weight in [0,1] as an estimate of the expected true minimaxevaluation of states that satisfy the pattern. In order to determine the utility of a pattern and21



In this section the chess system design is described in detail. The model has four basic parts,which are described in the following subsections.3.1 Patterns and their RepresentationTo fully exploit previous experience, the method chosen to represent each experience is critical.An ideal representation is one that uses features that are general enough to occur across manyexperiences (positions, for chess), but are such that their signi�cance is invariant across theseexperiences. How to construct such a representation for chess is not obvious. The straightforwardapproach of using a standard chess board representation is not powerful enough since there are over1040 possible chess positions [40]. In fact, after just three moves for each player, there are over 9million possible positions [9].Further, a pattern such that \white bishop can capture black rook"has nearly the same signi�cance regardless of where on the board the white bishop and black rookare located, and one would like to choose a representation that exploits this information.In designing a representation for encoding chess experience, inspiration can be gained from thewritings of top chess players who seem to view a chessboard in a manner far di�erent from mostpeople!...It can happen that the pieces as though receive an invisible impulse from the players,come alive, and begin to live their own lives. And when the energy invested by bothsides reaches a critical point, the game begins to develop according to laws unknown toanyone, and it is no longer possible to control its course. The ood of concentrated chessthought washes away the usual conttours of the board, and after twisting the pieces intoviolent pandemonium, it crashes down into the depths of chess art. And however thegame concludes, chess never loses out! It is not easy to understand all the intricaciesof such a game even in subsequent analysis and it is di�cult to talk about it withoutdisrupting the picture of a grandiose encounter. World Champion Garry Kasparov [16]What is it that a master 'sees' when he looks at the board that is so di�erent from whatother players see? An old French master said: 'I see the chessboard as one sees thestreet on which one walks without paying much attention to it; when one opens one'swardrobe one knows where all the things are in spite of the fact that one does not seethem. The same applies to the moves one makes on the chessboard. Garry Kasparov[17]The great chess player does not see squares and pieces as discrete units, or even asabstract counters. He internalizes a very special sense of \�elds of force," regions char-acterized, di�erentiated by the fact that certain events can or cannot take place in them.What matters, thus, is not the particular square, or even piece, but a cluster of potentialactions, a space of and for evolving events...Like the conductor who keeps in orderedmental grasp the enormous array of notes and tempo markings set out vertically andhorizontally on the page of aWagner or a Mahler score, the chess master experiences andretains relations of motion, \magnetic �elds" of conjunction or constraint that whollytranscend the single unit. In memorizing the positions of thirty-two pieces...the chessmind does not photograph rows of single counters. It somehow encodes essential group-ings of meaningful force (as we do in scanning a spoken or written text) and commitsto memory the articulate sinews beneath the skin. George Steiner [44]20



rZbl0Z0sopokZ0Lp0Z0ZpZpZZ0Zpm0Z00Z0Z0Z0ZA0O0O0Z0PZPZ0OPOS0Z0J0ZRMorph follows through - attacking king, rook and unprotected knight simultaneously.rZbl0Z0sopo0Z0Lp0ZkZpZpZZ0Zpm0Z00Z0Z0Z0ZA0O0O0Z0PZPZ0OPOS0Z0J0ZRGnuChess must move the king to here (or interpose the knight) or else the rook(and more) islost. rZbl0Z0sopo0Z0Zp0ZkZpZpZZ0ZpL0Z00Z0Z0Z0ZA0O0O0Z0PZPZ0OPOS0Z0J0ZRMorph regains the sacri�ced piece and continues, with the black king exposed.3 System DesignHere we give a description of the Morph playing and learning system. In particular we will empha-size how diverse learning methods are being applied for experience-based learning.Morph makes a move by generating all legal successors of the current position, evaluating eachposition using the current pattern database and choosing the most favorable position. After eachgame patterns are created, deleted and generalized and weights are changed to make evaluationsmore accurate (in the system's view) based on the outcome of the game. Patterns are deletedperiodically if they are not considered useful. 19



rZblkZ0sopo0Z0Zp0Z0ZpZpLZ0Zpm0Z00Z0Z0Z0ZZ0O0O0Z0PZPZ0OPOS0A0J0ZRGnuChess captures the king pawn and appears to prepare a nice reply to Q-N7.rZblkZ0sopo0Z0Zp0Z0ZpZpLZ0Zpm0Z00Z0Z0Z0ZA0O0O0Z0PZPZ0OPOS0Z0J0ZRBy playing this move that attacks two squares around the black king, Morph threatens to winthe white rook with Q-N7. rZbl0Z0sopokZ0Zp0Z0ZpZpLZ0Zpm0Z00Z0Z0Z0ZA0O0O0Z0PZPZ0OPOS0Z0J0ZRGnuChess's king, feeling the heat, moves. Probably much better was N-B7 attacking the queenand simultaneously protecting knight and rook. Now Q-N7 wins at least the knight.
18



rZblkZ0soponZpZp0Z0ZpZBZZ0ZpO0ZQ0Z0Z0Z0ZZ0O0O0Z0PZPZ0OPOS0A0J0ZRA surprising and risky maneuver by Morph that is probably not necessary for what follows.This move uncovered a subtle bug in the system design: Morph may have played it since the rookpawn is pinned and since it only uses \most-speci�c patterns" in evaluations the other \pawn cantake bishop" edge was ignored. rZblkZ0soponZ0Zp0Z0ZpZpZZ0ZpO0ZQ0Z0Z0Z0ZZ0O0O0Z0PZPZ0OPOS0A0J0ZRGnuChess captures the bishop and again attacks the queen.rZblkZ0soponZ0Zp0Z0ZpZpLZ0ZpO0Z00Z0Z0Z0ZZ0O0O0Z0PZPZ0OPOS0A0J0ZRMorph moves the queen up. This may have been in preference to Q-KB3 since the move playedalso attacks two pawns. Now GnuChess can not castle, and Morph threatens Q-N7 winning a pawnand continuing the attack. 17



rZblkZ0soponZpop0Z0ZpZ0ZZ0ZpO0Z00Z0Z0Z0ZZ0OBO0Z0PZPZ0OPOS0AQJ0ZRGnuChess retreats the knight. rZblkZ0soponZpop0Z0ZpZ0ZZ0ZpO0ZQ0Z0Z0Z0ZZ0OBO0Z0PZPZ0OPOS0A0J0ZRWith the knight no longer protecting this square, the queen is in a number of favorable patternson king rook 5. rZblkZ0soponZpZp0Z0ZpZpZZ0ZpO0ZQ0Z0Z0Z0ZZ0OBO0Z0PZPZ0OPOS0A0J0ZRGnuChess forces the queen to move so that he can win the king pawn with his knight. But thispawn move, weakens the kingside...
16



rZblkZ0sopo0Zpop0ZnZpm0ZZ0ZpZ0Z00Z0O0Z0ZZ0OBONZ0PZPZ0OPOS0AQJ0ZRAfter 6 moves, Morph has an even game. Now he gets aggressive.rZblkZ0sopo0Zpop0ZnZpm0ZZ0ZpM0Z00Z0O0Z0ZZ0OBO0Z0PZPZ0OPOS0AQJ0ZRMorph likes this place for the knight - it attacks two squares around the opposing king.rZblkZ0sopo0Zpop0Z0Zpm0ZZ0Zpm0Z00Z0O0Z0ZZ0OBO0Z0PZPZ0OPOS0AQJ0ZRGnuChess captures the knight. rZblkZ0sopo0Zpop0Z0Zpm0ZZ0ZpO0Z00Z0Z0Z0ZZ0OBO0Z0PZPZ0OPOS0AQJ0ZRMorph recaptures. 15



rZblkansopo0Zpop0ZnZpZ0ZZ0ZpO0Z00Z0O0Z0ZZ0M0Z0Z0POPZ0OPOS0AQJBMRMorph develops his knight toward the center - a pattern that it �nds favorable.rZblkZnsopo0Zpop0ZnZpZ0ZZ0ZpO0Z00a0O0Z0ZZ0M0Z0Z0POPZ0OPOS0AQJBMRWith this, GnuChess initiates the French Defense Winawer Variation.rZblkZnsopo0Zpop0ZnZpZ0ZZ0ZpO0Z00a0O0ZQZZ0M0Z0Z0POPZ0OPOS0A0JBMRMorph's wild queen sortie puts us in one of the most hotly debated variations in recent masterplay. Evidently, the opportunity to attack two black pawns (one unprotected) simultaneously lookstoo good to resist...2.4 Morph plays a sacri�cial attack.
14



rZblkansopopopop0ZnZ0Z0ZZ0Z0Z0Z00Z0OPZ0ZZ0Z0Z0Z0POPZ0OPOSNAQJBMRMorph builds the classic pawn center.rZblkansopo0opop0ZnZ0Z0ZZ0ZpZ0Z00Z0OPZ0ZZ0Z0Z0Z0POPZ0OPOSNAQJBMRThe game is now a Nimzowitsch Defence.rZblkansopo0opop0ZnZ0Z0ZZ0ZpO0Z00Z0O0Z0ZZ0Z0Z0Z0POPZ0OPOSNAQJBMRMorph plays the standard move here.rZblkansopo0Zpop0ZnZpZ0ZZ0ZpO0Z00Z0O0Z0ZZ0Z0Z0Z0POPZ0OPOSNAQJBMRGnuChess now transposes into the French Defense.13



rZ0Zka0so0ZQZpop0ZPopZ0ZZ0Z0Z0Z00Z0OnZ0ZZPZ0Z0Z0qZ0Z0O0Om0Z0ZBJRMorph �nishes the job and wins its �rst game ever against its trainer (after 3000 games oftraining). He places extremely high value on having an unattacked, protected queen adjacent tothe opponent's king.2.3 Morph plays a book variationNeither Morph or GnuChess is allowed to use an opening book. Still, Morph sometimes �nds hisway into a book variation. Surprisingly, the following example occurred after just 27 games oftraining: rmblkansopopopop0Z0Z0Z0ZZ0Z0Z0Z00Z0O0Z0ZZ0Z0Z0Z0POPZPOPOSNAQJBMRMorph (white) opens with his queen-pawn.rZblkansopopopop0ZnZ0Z0ZZ0Z0Z0Z00Z0O0Z0ZZ0Z0Z0Z0POPZPOPOSNAQJBMRThis unusual move is regularly employed by GnuChess.12



rZ0Zka0so0Z0Zpop0ZPopZ0ZL0Z0Z0Z00Z0OnZ0ZZPZ0Z0Z0PZ0Z0O0OmqZ0ZBJRPerhaps feeling overcon�dent, GnuChess grabs one more pawn.rZ0Zka0so0L0Zpop0ZPopZ0ZZ0Z0Z0Z00Z0OnZ0ZZPZ0Z0Z0PZ0Z0O0OmqZ0ZBJRMorph improves the position of his queen and threatens mate. He selected this move because ofpatterns that encourage attacking squares around the opposing king. From here the queen attacksfour such squares. Note that it correctly considers this move to be more valuable then protectingthe queen rook pawn. rZ0Zka0so0L0Zpop0ZPopZ0ZZ0Z0Z0Z00Z0OnZ0ZZPZ0Z0Z0qZ0Z0O0Om0Z0ZBJRIn an unusually poor move for a computer, GnuChess fails to prevent the mate, but insteadthreatens mate of its own. (Although, by preventing mate with B-K2,N-KB3 or R-Q1 GnuChesscan go on to win, it is worth noting that each of these moves probably loses material to Q-N7,followed by P-QB7 for white) 11



rZblkZ0sopopZpo00Z0ZpZ0ZZnZ0Z0o0PZ0ZnZ0ZZ0ZPZ0Z0PLPZ0OPOS0A0JBZRGnuChess realizing now that it must lose a piece, takes the king pawn to salvage something.rZblkZ0sopopZpo00Z0ZpZ0ZZnZ0Z0o0PZ0ZPZ0ZZ0Z0Z0Z0PLPZ0OPOS0A0JBZRMorph recaptures the knight and continues the attack...2.2 Morph snatches victory from certain defeatrZ0Zka0so0Z0Zpop0ZPopm0ZL0Z0Z0Z00Z0OPZ0ZZPZ0Z0Z0PZ0Z0O0OmqZ0ZBJRIn this position, GnuChess (black) to move, has an overwhelming material advantage.
10



rZblkZ0sopopZpo00Z0ZpZ0ZZ0Z0Z0o00Z0mPZ0ZO0mPZ0Z0PLPZ0OPOS0A0JBZRMorph capitalizes. He moves his queen out of the attack and creates a pattern in which heis attacking one knight directly and the other one through \discovery" as well as preventing thepotential fork on his King-Bishop-2.rZblkZ0sopopZpo00Z0ZpZ0ZZnZ0Z0o00Z0ZPZ0ZO0mPZ0Z0PLPZ0OPOS0A0JBZRPerhaps GnuChess thinks he is \out of the water". Now both knights protect each other.(Better, perhaps, was Q-KB3 since QxN loses to N-KB6ch, but then B-Q2 apparently leads to thesame result). rZblkZ0sopopZpo00Z0ZpZ0ZZnZ0Z0o0PZ0ZPZ0ZZ0mPZ0Z0PLPZ0OPOS0A0JBZRBut Morph has learned to attack defenders! The queen simultaneously attacks both knights,and the pawn adds its own attack. 9



rZblkZ0sopopZpo00Z0ZpZ0ZZ0ZnZ0o00Z0m0Z0ZO0ZPZ0Z0PZPZPOPOSQA0JBZRGnuChess moves in the other knight.rZblkZ0sopopZpo00Z0ZpZ0ZZ0ZnZ0o00Z0mPZ0ZO0ZPZ0Z0PZPZ0OPOSQA0JBZRMorph moves his king pawn to attack the knight on queen 5. Note that he could instead haveattacked the knight on queen 4 with this pawn, but favors this move because he has learned thatit is desirable to have a pawn on king 4.rZblkZ0sopopZpo00Z0ZpZ0ZZ0Z0Z0o00Z0mPZ0ZO0mPZ0Z0PZPZ0OPOSQA0JBZRThe crucial mistake. GnuChess again brings this knight in to attack the queen. Unfortunately,against optimal play one of the knights will be lost.
8



rZblkZ0sopopZpo00ZnZpZ0ZZ0Z0Z0o00Z0Z0Z0ZOQmPZ0Z0PZPZPOPOS0A0JBZRMorph moves his queen and simultaneously attacks the undefended knight as well as directlyand indirectly attacking two more black pawns than before.rZblkZ0sopopZpo00ZnZpZ0ZZ0ZnZ0o00Z0Z0Z0ZOQZPZ0Z0PZPZPOPOS0A0JBZRThe knight retreats to its only safe square.rZblkZ0sopopZpo00ZnZpZ0ZZ0ZnZ0o00Z0Z0Z0ZO0ZPZ0Z0PZPZPOPOSQA0JBZRMorph's queen returns to its original square. This is probably a weak move. Its one redeemingfeature is that it invites black to repeat the position and perhaps draw the game (if any positionrepeats three times with the same player to move). However, Morph is unfamiliar with this rule.
7



1.5 Outline of paperIn Section 2 speci�c examples of creativity displayed by Morph are given. Section 3 describes thedesign of the Morph system. In particular, the focus of Section 3 is on the variety of learningmethods that are being used in Morph. To adapt these methods for Morph some design constraintsusually associated with them have been relaxed while retaining the essential conceptual frameworkof each method. It is the learning components and their integration [11] that allow the systemto compile its experience into a form that can be used to produce good chess moves withoutsearch. In essence, Morph takes advantage of the many games (searches) that have been playedpreviously. achieved. Section 4 describes the relationship of Morph to other research in machinelearning, chess, and adaptive game-playing systems. Section 5 gives general performance resultswith Morph. Finally, Section 6 makes some concluding remarks and gives future directions.2 Creative Moves Made by MorphIn this section several examples of creative play by the Morph chess system are described. Allmoves were made against GnuChess, a traditional chess program that is better than at least 60percent of tournament players. On most moves GnuChess searches 4 or 5 ply deep. We classifythe following moves by Morph as creative because they seem to reveal a deeper insight into thedynamics of the position than can normally be found in 1-ply of search. We acknowledge that muchdeeper instances of creativity than these are possible in chess [1] and hope to see Morph's movesin the coming years grow in that direction.2.1 Morph wins a piece rZblkZ0sopopZpo00ZnZpZ0ZZ0Z0Z0o00Z0Z0Z0ZO0mPZ0Z0PZPZPOPOSQA0JBZRMorph (white), to move, �nds himself down a minor piece with his queen attacked. What hisqueen is doing on that unusual square, is perhaps, already an indication that Morph does not viewthe game as most of us do!
6



Or from G.Steiner:...The tournament player will draw on an ever growing ever more analytically detailedbody of annotated precedent. He must have in orderly mental reach an inventory ofprevious end games in which analogous positions, analogous combinations of pieces haveturned up. Under time pressure, he cannot hope to �nd optimal strategies across theboard but must rely for his tactical choices on a recognition of previously explored linesand con�gurations. From the middle game onward, the expert player is projecting,by inner vision, the terminal situations he must aim for or avoid. He knows, withouteven thinking, that bishops of opposite colors lead to a draw, that the side whose king�rst reaches the central squares has a large advantage, that split pawns are a naggingweakness, that a posture on the enemy's seventh rank is often paralyzing, that majorpieces ought normally to be behind advancing pawns. He knows in what position alone king can force a draw against king and pawn. But, above all, he remembers thedenouements of previous master encounters. [44]Finally, from A.D. de Groot [6]:Incorporating experience into the program, in one degree or another [...] is the verycore of the simulation problem.1.4 Is Morph creative?In what sense, can a move generated by the pattern-oriented method be considered creative? Firstof all note that the description of the move itself can not be considered creative since the legalmoves in chess positions can be generated by a straightforward algorithm. A move can only beconsidered creative if it is not only good, but shows in some sense imagination and originality. Nowsince Morph does not perform game-tree search the reason for its moves can not be written as aconcrete variation or subtree, but are based on the creation of a pattern or set of patterns thatare considered favorable. It is the di�erence of these patterns from those that would normally berecognized in the position that can give the move its creative character. The imaginative act is therecognition of this pattern in the future position and the right assessment of its signi�cance. Sucha move, if actually good, would be considered by humans to show great insight. The graph-basedrepresentation scheme used by Morph coupled with its associative recall mechanism may allow itto bring to bear past experience in a way that is missed by humans. Further, since little knowledgeof the game and semantics of the graphs has been given the system it is not far-fetched to say thatthe machine is playing intuitively - for it seems to know without reasoning or having been explicitlytaught.It is useful to consider the history and inuence of a pattern in the Morph system. A pattern isused whenever it is a \most-speci�c" pattern in a move considered by Morph. A pattern is updatedwhenever it is in a position moved to by Morph. Each pattern then is a unique store of knowledgespeci�c to those positions it is used in. Any given new position, then, is evaluated based on a setof patterns that themselves may not be unique, but their combination for the given position andthe move suggested very well may be. In Morph, each pattern lives a life of its own - with its ownlearning rate. This is accomplished through simulated annealing (see Section 3.) and allows Morphto adapt �rst to frequently occurring situations before pursuing �ner details.5



these previous experiences that have contributed to the patterns and weights that are being usedto evaluate P.Once a chess graph is constructed from a game board, the semantics of the nodes and edgesin the graphs are unknown to the system. The only information a pattern contains as far as thesystem is concerned is the signi�cance (weight) that has been attached to the pattern , in no placeafter pattern creation do we special case pieces or edges. Such a syntactic approach to the learningof search knowledge is substantially di�erent from many of the traditional symbolic AI approachesto chess and to the learning of control knowledge.To determine its next move, Morph performs only one ply of search: From the current positionit generates all legal successors, evaluates these positions using its pattern database and moves tothe position that is considered most favorable.1.3 Morph and cognitive modelsThe system, being pattern-oriented , adaptive and not relying heavily on search is more consistentwith psychological models of human chess performance than existing chess systems. We quotedirectly from S. Skiena [42]:The �rst psychological study of chess and perception dates back to Binet in 1894, butthe major work in the �eld is Thought and Choice in Chess by Adrian de Groot(1965),who analyzed the thought processes for chess players of various levels of ability ondi�cult positions.The experiments surprisingly show that grandmasters do not search the game treedeeper than less talented players, but invariably select only good moves for furtherstudy. This is evidenced by performance on blitz games, where the player does nothave time to explore the tree to any depth. Play is still at a very high level, suggestingthat, in human chess, pattern recognition plays a more important role than search.[These experiments have since been repeated by de Groot and veri�ed by others aswell, [12,34]] Masters explicitly search a tree of about 50 nodes before selecting a move,using perceptual mechanisms to prune the tree to eliminate the need to consider otherpossibilities. Even with search, the evaluation of leaf nodes is performed as a perceptualprocess, with players rating them subjectively rather than explicitly assigning a score.Instead of some form of chess aptitude, 1, what distinguishes a player as a masteris the accumulation of problem-speci�c knowledge. At least �ve years of intense chessstudy is needed to become a grandmaster, and even the cases of child prodigies show theperiods of total dedication necessary to achieving excellence. This suggests that learningplays an important role in chess play, and that attempts to codify this knowledge intoa few expert-system rules are probably doomed to failure.Clearly, chess masters perform on the level they do because of an internal library ofpatterns which they apply to suggest promising moves. Simon and Gilmartin [41] esti-mated the number of patterns for a grandmaster at about 50000. When then comparedto the astronomical number of possible board positions or nodes in the complete gametree this is a tractable number, and thus suggests an avenue through which computerscan improve their play.1This clause seems false at the high echelon of play where exceptional creativity is clearly evident.4



Given this hypothesis of the power and generality of the experience-based problem-solvingmechanism, how do we go about implementing or simulating it on a computer? First there mustbe a means of encoding experience. For this we choose \pattern-weight pairs" (\pw"s) [21] wherepatterns are boolean features that can occur in one or more states (experiences) and weights reectthe desirableness of that pattern. The system will then be designed so that given a set of options(future states) it will choose that state with the most favorable patterns. Now note that the twocrucial processes: a. learning weights (importance) of patterns and b. choosing favorable statescan be done independently of the speci�c content of the patterns. All that matters is whether eachpattern matches and its weight. of It is this domain-independent syntactic process that we believeis an integral component of creativity. For this process to succeed in any domain it must be coupledwith a very powerful pattern representation language that represents only the relevant factors in agiven problem or else the system will su�er from the combinatorial explosion that arises if too manypotential patterns (features) need be considered. For now, we will place the burden of constructingthis representation on humans (and allow it to be domain-speci�c), though in principle we believethat computers should be able to do this as well.1.2 The Morph Adaptive Pattern-Oriented Chess SystemTo study computational intuition or creativity we have built \Morph" { an adaptive, pattern-oriented chess program. In contrast to traditional chess programs, Morph's moves are not basedon search of the game tree, but rather on patterns that have been developed and learned fromexperience(using a combination of machine learning methods including genetic algorithms, weight-updating, simulated annealing, temporal-di�erence learning and explanation-based structure learn-ing). Little e�ort has been applied to incorporating experience into a chess program:Although it is apparently e�ective to discover tactical issues by searches, isn't itdull to \forget" them immediately after use instead of \learning" something for a laterre-use? There is no serious attempt known to make a chess program really learn fromits experience for future games itself. Moreover, the rediscovery of the \same" motifover and over again in many subtrees is obviously the most e�ective means. H. Kaindl[15]Thus, excluding random factors from the system (or human intervention), one can expect a chesssystem to play exactly the same way against the same series of moves, whether it has won or lost,and take the same amount of time to do so! There do now exist some systems that recall positionsthat they found promising, but from which they later lost material [39,43]. This is certainly a stepin the right direction, but much more important than dealing with exact replication of positions isto handle situations that are analogous, but not identical, to previous situations.Morph's patterns come in two varieties: graph patterns represent attacks and defends relation-ships between pieces and squares on the chessboard and material patterns are vectors that givethe relative material di�erence between the two players (\up a pawn", \even material",\down abishop, up a knight", etc. With each pattern is attached a weight or signi�cance - a number in [0,1]that is an estimate of the expected true minmax evaluation of positions that contain the patternas a subpattern. Morph uses a uniform combining rule to combine the signi�cances of the mostspeci�c applicable patterns for a given position P to reach an heuristic evaluation of P. Thus theevaluation of any given position P is indirectly built out of experiences in similar positions, for it is3



new combinations of concepts: symmetry, parsimony, complementarity, etc. It is our thesis thatthe creative act can be implemented and viewed as a syntactic, rather than a semantic processand, furthermore, from the syntactic point of view creativity can be seen as a largely domain-independent process. As a domain independent process some of the \magic" returns, creativity notbeing a function of knowledge but a method of combining experience that is universal.What is it that remains constant in our day-to-day moment-to-moment lives? Is it not ex-perience in one form or another! Do not many of our decisions and actions arise from our pastexperiences in similar situations to the ones we currently �nd ourselves in? Isn't it odd then thatuntil recently (say the last �ve years) experience has been largely ignored in Arti�cial Intelligenceresearch? Most AI work has been on building static knowledge bases or domain theories from whichinferences could be drawn and queries answered. In most heuristic search systems the system ex-plores a state space on its own using a �xed heuristic, but little of this experience is compiledfor later use. In machine learning systems, most e�ort has been on \supervised learning" whereexamples have been pre-classi�ed by an expert or an oracle is available for such information. Inother cases, the domain pursued has been so small that experience could be stored directly as fullor partial state descriptions without facing memory limitations. Only recently has \reinforcementlearning" [45,2,11] been pursued seriously. In this learning paradigm, little feedback is provided tothe system except for occasional reward or punishment from the environment.There seems to be one question in our lives that no one can answer for us: \am I happy?" Inthis area of inner subjective experience we are responsible for our own feedback and then, perhaps,consciously or unconsciously attempt to mold circumstances , attitudes and interpretations to re-create a feeling of happiness that we have experienced in the past. Perhaps, our past experiencesare encoded with our relative experience of happiness at that time (say in the range [0,1] - thoughno doubt such a scale should be multi-dimensional) and the idea is to create experiences that aremost similar to happy experiences in the past? We suggest that this same inner process by whichhumans attempt to achieve happiness may be used in other problem-solving tasks as well. In thiscase experiences are not encoded with respect to happiness but with respect to some domain-speci�cgoal (such as reaching one's destination safely when driving a car) and patterns and associations(such as a red stop light, or snow on the pavement) are built up around this goal. Then, maybe,it should be no wonder that various emotional states such as tension and breakthrough are tiedup with creative processes? Possibly, each pattern brings with it its own nuance of emotion andthe painter is really mixing these nuances within and that what appears on the canvas is merelya manifestation of this inner process? Maybe, there is little di�erence between the scientist, thesculptor or the chessmaster, each manipulating their individual pattern-emotion associations, butperhaps with the same inner process:[An expert] instinctively knows that in a novel case, this and not that will be thepromising course of action. The well-known story of the old judge advising the newone never to give reasons for his decisions, \the decisions will probably be right, thereasons will surely be wrong" illustrates this. The doctor will feel that the patient isdoomed, the dentist will have a premonition that the tooth will break, though neithercan articulate a reason for his foreboding. The reason lies embedded, but not yet laidbare, in all the countless previous cases dimly suggested by the actual one, all callingup the same conclusion, which the adept thus �nds himself swept on to, he knows nothow or why. William James [14]. 2



Experience-Based CreativityRobert LevinsonDepartment of Computer and Information SciencesUniversity of California Santa CruzSanta Cruz, CA 95064 U.S.A.(408)459-2087ARPANET:levinson@cis.ucsc.eduAbstractThis paper argues for a computational model of creativity as the unique and favorablecombining of past experiences. It is hypothesized that the inner process that combines theexperiences is universal and largely syntactic, i.e. it is only the emotional associations thatare attached to encoded experience and not the semantic content of experience that is used bythe inner creative process. A chess system, \Morph", has been developed that can be viewedas exploring this model. Morph is limited to 1-ply of search, little domain knowledge and nosupervised training. It is only through playing another program, and encoding its experience(as \pattern-weight" pairs) that it can improve. Morph's learning system is a combinationof machine learning methods that have been successful in other settings - and is covered indepth. Part of Morph's strength comes from a powerful representation for chess patterns thatallows generalizations across positions (experiences). Performance results, including displays ofcreativity by Morph, are also presented.1 IntroductionCalculation is only one side of it. In chess no less important is intuition, inspiration,or, if you prefer, mood. I for example cannot always explain why in one position thismove is good, and in another bad. In my games I have sometimes found a combinationintuitively simply feeling that it must be there. Yet I was not able to translate mythought processes into normal human language. Former World Champion Mikhal Tal.1.1 Creativity and Experience (some speculation)Creativity is the discovery or structuring of information into a new form that is very useful andthat was not at all obvious before. We shall not deal with that form of creativity that may beregarded as magic(i.e. the discovery of a new form from virtually nothing) but shall study thatcreativity that results from a unique structuring of experience.How can creativity (a new expression) arise from experience (the old)? It seems that there mustbe a medium by which experiences can be combined to create the new form. But the combinationrule should be based on simple principles - else the result has been inuenced too much by thesystem builder - contradicting the term \creative". Humans also use simple principles in creating1


