
28 References

(B)Three variations of orderings from H

Orderings from HT
r'r ss'

qq'
q'qs's

rr'
q'qr'r ss'(A) s's q'qr'r

(C)Figure A.1: Possible orderings for Lemma 2. Variable v is read in blockB(s,s') and written in blocks B(r,r') and B(q,q'). Variable v is assumed tohave di�erent values at s in H and HT . The orderings shown are only asubset - both H and HT are totally ordered.

References 27[IBM88] Parallel FORTRAN language and library reference. IBM, 1988.[LMC87] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging parallel programswith instant replay. IEEE Trans. on Computers, C-36(4):471{482, April1987.[Mat88] F. Mattern. Virtual time and global states of distributed systems. InM. Cosnard, editor, Proceedings of Parallel and Distributed Algorithms,1988.[MC88] B. P. Miller and J-D. Choi. Breakpoints and halting in distributedsystems. In Proc. Int. Conf. on Distributed Computing Systems, June1988.[McD89] C. E. McDowell. A practical algorithm for static analysis of parallelprograms. Journal of Parallel and Distributed Computing, June 1989.[NM89] R. Netzer and B. P. Miller. Detecting data races in parallel programexecutions. Technical Report 894, University of Wisconsin-Madison,November 1989.[NM90] R. H. B. Netzer and B. P. Miller. On the complexity of event orderingfor shared-memory parallel program executions. In Proc. InternationalConf. on Parallel Processing, volume II, pages 93{97, 1990.[NM91] R. H. B. Netzer and B. P. Miller. Improving the accuracy of data racedetection. SIGPLAN Notices (Proc. PPOPP), 26(7):133{144, 1991.[Tay84] R. N. Taylor. Debugging real-time software in a host-target environment.Technical report, U.C. Irvine Tech. Rep. 212, 1984.[Wan90] J-Z. Wang. Debugging parallel programs by trace analysis. Technicalreport, Masters Thesis UCSC-CRL-90-11, 1990.

26 References(at this point in Ĥ). However, if r is a blocked wait event in Ĥ , then it would alsobe unable to appear in H. Therefore q must represent a branch where the executionsproducingHT andH go di�erent directions, and the branch condition in q is evaluatedto di�erent values by the executions corresponding to HT and H. Since H and Ĥ areidentical up to and including q, they will evaluate the branch condition to the samevalue. Now we have an expression (the branch condition represented by q) which isevaluated to di�erent values in HT and Ĥ. Lemmas 2 and 3 show that there is anappropriate race in PT , completing the proof of the theorem.References[AP87] T. R. Allen and D. A. Padua. Debugging fortran on a shared memorymachine. In Proc. International Conf. on Parallel Processing, pages 721{727, 1987.[CKS90] D. Callahan, K. Kennedy, and J. Subhlok. Analysis of event synchro-nization in a parallel programming tool. In Proceedings of Second ACMSIGPLAN Symposium on Principles and Practice of Parallel Program-ming (PPOPP), SIGPLAN Notices, pages 21{30, March 1990.[DS90] A. Dinning and E. Schonberg. An empirical comparison of monitoringalgorithms for access anomaly detection. In Proceedings of Second ACMSIGPLAN Symposium on Principles and Practice of Parallel Program-ming (PPOPP), 1990.[EGP89] P. A. Emrath, S. Ghosh, and D. A. Padua. Event synchronization anal-ysis for debugging parallel programs. In Supercomputing '89, November1989. Reno, NV.[EP88] P. A. Emrath and D. A. Padua. Automatic detection of nondeterminacyin parallel programs. In Proc. Workshop on Parallel and DistributedDebugging, pages 89{99, May 1988.[Fid88] C. J. Fidge. Partial orders for parallel debugging. In Proc. Workshop onParallel and Distributed Debugging, pages 183{194, May 1988.[HMW90a] D. P. Helmbold, C. E. McDowell, and J. Z. Wang. Analyzing traceswith anonymous synchronization. In Proc. International Conference onParallel Processing, August 1990.[HMW90b] D. P. Helmbold, C. E. McDowell, and J. Z. Wang. Detecting data racesby analyzing sequential traces. Technical report, U. of Calif. Santa Cruz,UCSC-CRL-90-57, 1990.[HMW90c] D. P. Helmbold, C. E. McDowell, and J-Z. Wang. Traceviewer: Agraphical browser for trace analysis. Technical report, U. of Calif. SantaCruz, UCSC-CRL-90-59, 1990.[HMW91] D. P. Helmbold, C. E. McDowell, and J. Z. Wang. Detecting data racesfrom sequential traces. In Proc. of Hawaii International Conference onSystem Sciences, pages 408{417, 1991.

A. Appendix 25Proof: By induction on the number of synchronization events preceding s in H.For the base case, s is the �rst synchronization event (a \task start" event) in Hso each variable has its initial value at s in H. If some variable v does not have itsinitial value at s in HT then some assignment to v was made in HT prior to s. LetB(r; r0) be the block in HT containing this write to v. We now see that r ! s ! s0in HT and s! r0 in H (whether or not r0 appears in H), so since v is read in B(s; s0)there is a race in PT (De�nition 6).For the inductive step we assume that, for all blocks B(ŝ; ŝ0) where ŝ! s in H, ifthe value of any variable read in B(ŝ; ŝ0) at ŝ in H is di�erent from its value at ŝ inHT , then there is a data race in PT . We now show that the same holds for the blockB(s; s0).Let v be any variable read in B(s; s0) whose value at s in H di�ers from its valueat s in HT . Consider the latest write to v occurring before s in H, and let B(r; r0)be the block containing this latest write. Clearly, r ! s0 in H. We can assume thatr ! r0 ! s ! s0 in H since if s ! r0 in H we immediately get that B(s; s0) andB(r; r0) comprise a race. For the same reason, we can assume that r ! r0 ! s! s0in HT .In order for v to have a di�erent value at s in HT , either the expression assignedto v in the block B(r; r0) is evaluated to a di�erent value in HT , or there is some otherwrite to v (not in B(r; r0)) occurring between r and s in HT . In the �rst case we canapply Lemma 2 and the inductive hypothesis to show that there is a relevant race inM . The second case is slightly more complicated.Let B(q; q0) be the block containing this other write to v. Because of the locationof the accesses to v, we have that r ! q0 and q ! s ! s0 in HT (see the top ofFigure A.1). Now consider where B(q; q0) appears in H. If s! q0 in H10 then blocksB(q; q0) and B(s; s0) form a race in PT (Figure A.1 variation A). If q! r0 in H then,since r! q0 in HT , blocks B(q; q0) and B(r; r0) are a race (Figure A.1 variation B).This leaves us with the possibility that r0 ! q! q0 ! s inH (Figure A.1 variationC). However, block B(q; q0) can not contain a write to v since block B(r; r0) containedthe last write to v in H. The resulting contradiction shows that this �nal case isimpossible.We are now ready to prove Theorem 1. Let e � f with respect to PT and H be aglobal trace of an execution of P where f ! e. Because e � f with respect to PT andf ! e in H, every global history of PT di�ers from H at some point. Given a globalhistory H 0 of an execution of PT we can count the number of events before the �rstdi�erence between H 0 and H. Let Ĥ be any global history for PT with a maximalnumber of events before its �rst di�erence with H. Let event r performed by task tin H be the �rst event where H di�ers which Ĥ , and q be the previous event in Hperformed by task t.By the maximality of Ĥ, r is never performed at this point in an execution of PT .Either some other event r̂ 6= r follows q in task t of PT or r is a blocked Wait event10If H represents a deadlocked execution, then q0 may not be present in H. However, we can stillsay s! q0 and deduce the presence of the race.

24 A. AppendixAnother assumption made in the appendix is that a \task start" and a \task ter-mination" synchronization event appears for every task (even those that are \dead-locked") in the program. This ensures that every sequential block is bracketed bytwo synchronization events.Given a program P and a trace T of an execution of P , we de�ne the inferredprogram PT as in the introduction and HT to be a global history corresponding to T(Note that HT to both a trace of P and a trace of PT). We wish to show that if thereare no races in PT , then e � f with respect to PT implies e � f with respect to P .Recall that a race in P (or PT) is a pair of conicting blocks, B(e; e0) and B(f; f 0),such that there exists two global traces of P (resp. PT) where f!e0 in the historycorresponding to one trace and e!f 0 in the history corresponding to the other.We now restate the theorem to be proven.Theorem 4: If event e � f in PT , then for each global history of P where f!ethere is a data race, B(g; g0) and B(h; h0), in PT such that either g!f or h!f inthat global history of P .The proof is rather complex, and has been broken down into several steps. Recallthat the program's input (including the results of clock calls and random numbergenerators) has been �xed.Lemma 2: Let H be the global history corresponding to a trace of an execution ofprogram PT and s be a synchronization event in H. If an expression in block B(s; s0)has a di�erent value in H and HT , then there is a variable v read in B(s; s0) suchthat:1. the value of v at s in H is di�erent from the value of v at s in HT , or2. in HT there is a write to v by some other task between s and the expression'sevaluation, or3. in H there is a write to v by some other task between s and the expression'sevaluation.Proof: If the task starts executing the statements in B(s; s0) in the same state(with respect to those variables read in the block), and no outside task changes therelevant shared memory, then all expressions in the block will be evaluated to thesame result.The latter two cases of Lemma 2 immediately imply that there is a race in PTbetween block B(s; s0) and the block containing the write to v by the other task.Showing that the �rst case also implies that PT has a race requires the followinglemma.Lemma 3: Let H be a global history corresponding to an execution of PT and s asynchronization event in H. If some variable v read in B(s; s0) has a value at s in Hthat is di�erent from its value at s in HT , then there is a race in PT . In addition,this race includes either B(s; s0) or a block B(r; r0) where r! s in H.

A. Appendix 23This paper contains a series of polynomial time algorithms for extracting usefulinformation from sequential traces with anonymous synchronization. The �rst algo-rithm, used to compute the initial vector timestamps, is due to Fidge and Mattern[Fid88,Mat88]. The other algorithms systematically manipulate these vectors of time-stamps in order to discover pairs of events that must be ordered in every executionwhich is consistent with the trace.Some parallel programming environments view a parallel execution as a linearsequence of events. We feel that this is misleading { an execution is more properlyviewed as a partial ordering on the events. Fidge and Mattern have pioneered the useof time vectors to represent these partial orders. We have extended this approach byusing time vectors to analyze sets of executions rather than just capturing a singleexecution.A working trace analyzer has been implemented, and some experiments have beenperformed. The current implementation analyzes traces generated by IBM ParallelFortran and includes a graphical trace browser. The trace analyzer reports variousdata race conditions in parallel programs by �nding unordered/concurrent events andvariable access conicts.AcknowledgementsThis work was supported by IBM under agreement SL 88096.A AppendixIn this section we will need to examine the executions of programs in great detail.Therefore, all global traces and histories will include not only the synchronizationevents performed, but also events representing global memory accesses and evaluationof conditionals. These detailed global traces are not intended to be recorded, butrather are used conceptually to help prove Theorem 1. At this level of detail, thesynchronization operations bounding sequential blocks will generally be separated by(global) memory access and expression evaluation events.Throughout the appendix we assume that global histories correctly reect thedata dependences of the execution9 Except in extreme cases (such as the replicationof shared variables), executions will have corresponding global histories which reecttheir data dependences. These global histories may be di�cult to obtain from a trace,and thus we use their existence for proof, rather than algorithmic, purposes.9For example, if the value of variable x read in B(r; r0) is the value that was written to x in blockB(w;w0) then r!w0 in the global history. Notice that the resolution of the history need not beenough to precisely reect (or determine) the order of the variable acceses. We require only thatthe history be consistent with the actual data dependence. In this example the history would beinconsistent if it indicated that w0!r.

22 7. Summarybeen on identifying the feasible data races in a set of apparent data races. We, onthe other hand, are trying to increase the number of feasible data races detected byour algorithms. The approaches appear to be complimentary.Dinning and Schonberg [DS90] present a method of detecting access anomalies inparallel programs \on-the-y". They use a mechanism, similar to time vectors, toidentify concurrent operations in a program execution. Some compaction methodsare used to reduce the storage needed for reader and writer sets. If a variable isinvolved in multiple data races, then some of those races may not be reported.However, at least one of the data races involving the variable will be reported bytheir algorithm. They need explicit coordination between tasks in order to constructthe partial order execution graph (POEG). The POEG represents the order relationsbetween operations for just one of many possible executions given the same input.We believe that it is more helpful to analyze sets of executions rather than justone speci�c execution based on some trace information. We feel that, in termsof detecting data races by trace analysis, it is critical to distinguish the orderedevents from the unordered, potentially concurrent, events. In this paper we presenteda collection of algorithms that extend previous work in computing partial orders.The algorithms presented compute a partial order containing only must occur typeorderings from a linearly ordered trace containing anonymous synchronization. Thealgorithms presented in this paper make few assumptions about speci�c trace featuresand can be adjusted to work with traces generated by many parallel systems.7 SummaryDebugging parallel programs is more di�cult than debugging sequential programs.One of the fundamental problems encountered when debugging parallel programs isdetecting unintended non-determinacy in parallel programs. Tools which automati-cally detect non-determinacy can be used to debug timing and synchronization errorswhen the program is expected to be determinate. The tools we are developing helpone �nd the data races which can lead to non-determinacy. This paper presents amethod for detecting data races, which is based on analyzing a program trace froman execution of a parallel program.When debugging parallel programs, it is critical to �nd the order and concurrencyrelationships among operations in the program. One of the most di�cult tasks in traceanalysis is determining the timing relationships between the events performed by theparallel program. Although several parallel systems include facilities for creating atrace of the signi�cant events, the sequential nature of the trace makes it di�cultto determine which events could have happened in either order or in parallel. Theproblem is made even more di�cult in the anonymous synchronization model, wherethere is no clear correspondence between the blocking and enabling events in the trace.The problem of calculating all safe order relations has been shown to be co-NP-hardby Netzer and Miller [NM90].

6. Related Work 21� display all information known about the event from the trace,� highlight all events that must happen before the selected event,� highlight all events that must happen after the selected event,� highlight all events that may happen concurrently the selected event, and� display the program source with the line generating the event highlighted.6 Related WorkRecently, much research has been directed towards determining the partial or-dering of events in parallel and distributed systems. Previous models have assumedpoint-to-point communication which makes it very easy to determine which eventswere caused by which other events (e.g. \message received by B from A" is clearlycaused by \message sent by A to B"). Unfortunately the synchronization modelssupported by several parallel programming languages allow for anonymous commu-nication, where the partner is unknown. Examples of anonymous communicationinclude locks, semaphores, and monitors.Emrath, Ghosh, and Padua [EGP89] present a method for detecting non-determinacyin parallel programs that utilize fork/join and event style synchronization instructionswith the Post, Wait, and Clear primitives. They construct a Task Graph from thegiven synchronization instructions and the sequential components of the programthat is intended to show the guaranteed orderings between events. For each Waitevent node, all Post nodes that might have triggered that Wait are identi�ed. Anarc is then added from the closest common ancestor of these Post events to the Waitevent node. An early version of our Algorithm 3 (without the shadowed events) wasmotivated by their algorithm. Although their algorithm is simply stated, it may becomputationally complex. Rather than repeatedly computing the common ancestorinformation, we use time vectors to calculate the guaranteed execution order.Netzer and Miller [NM89,NM91] present a formal model of a parallel programexecution. Their model includes fork/join parallelism and synchronization usingsemaphores. They distinguish between an actual data race, which is a data raceexhibited by the particular program execution generating the trace, a feasible datarace, which is a data race that could have been exhibited due to timing variationsand an apparent data race, one that appeared to have occurred or be possible. Theirapproach and ours di�er in the amount of trust placed in the trace. They rely onthe trace for their ordering information. For example, when two tasks try to entercritical regions protected by a binary semaphore, their algorithm will say that thecritical regions are ordered. Under their de�nitions there is neither an actual norfeasible data race even if two tasks write to a shared variable in the critical regions.We view the ordering relationships in the trace with suspicion, and wish to generaterace reports in this situation8. In their more recent work [NM91] their emphasis has8If the critical regions contain non-commutative operations, then the race to enter the regionscan a�ect the remainder of the execution [Wan90].

20 5. A Prototype for IBM Parallel Fortranmanipulation of critical data areas. A parallel event is a programming constructpermitting explicitly created tasks to synchronize their execution through intertasksignaling (as outlined in the previous section).The IBM Parallel FORTRAN Trace Facility can automatically record importantevents during the execution of a parallel program, providing useful information aboutthe execution. The Trace Facility produces a series of time-stamped trace recordsduring execution of a parallel program. At least one trace record is generated foreach of the following operations:� Start and end of program execution,� Origination and termination of tasks,� Assignment and completion of task work,� Waiting for tasks to complete work,� Start and end of parallel loop and parallel case execution, and� Use of parallel locks and parallel events.In addition to the time stamp, each trace record identi�es the kind of action,the program unit and task performing the action, the virtual FORTRAN processorused, and the actual CPU on which the program unit was executing. Additionalinformation speci�c to the kind of action may also be recorded.To build an event history from an IBM trace we need to determine the enabling-blocking pairings for all synchronization events.1. For the dispatching and scheduling (enabling) events, the corresponding taskbegin is the blocking event.2. For the IBM-event construct, Posts enable the Waits in the same cycle, andWaits enable the Posts in the next cycle. Thus Posts and Waits are bothblocking and enabling.3. For task completion (enabling) events, the corresponding event waiting for thetask completion is the blocking event.Modi�ed versions of the algorithms described in the previous section have beenimplemented in a trace analyzer, and several traces have been analyzed. The traceanalyzer can construct the event history and calculate the time vector values for allevents in the trace. The �nal time vectors represent a safe partial order over theevents. By comparing the time vectors, the tool distinguishes between the orderedand unordered event pairs. Combining this with variable reference information fromSTART [McD89], the trace analyzer reports those data races which can happen inany execution of the inferred program. The trace analyzer is implemented mainly inC++, and part of the code is implemented in C.A graphical tool [HMW90c], built on top of the X Window System, has also beenimplemented to assist programmers in comprehending the trace information recordedduring program execution and generated using the above algorithms. The tool allowsthe user to browse the safe partial order computed and display the detected races.Using a pointing device the user may request that various information related to aselected node be displayed. The following information requests are included:

5. A Prototype for IBM Parallel Fortran 19Task CTask BTask A W2 W1W1 S1 S2S2...Figure 3.6: Undetected Critical Regionshort summary of the IBM-event mechanism and the intuition for the new algorithmsfollows.IBM-event based synchronization operates in a cycle with two phases6. Duringthe �rst phase (Post Request Processing), Post operations are enabled and Waitoperations are blocked. During the second phase (Wait Request Processing), theopposite holds, Wait operations are enabled and Post operations are blocked. Thiscycle can repeat inde�nitely. The number of Posts or Waits necessary to switch fromone phase to the next is determined when the IBM-event is initialized.In the semaphore model we used the fact that if k Waits were known to alwaysprecede a particular Wait operation, then that Wait must be preceded by k+1 Posts.This led to Algorithm 3 which takes the kth min of the relevant unblocking eventsinstead of just the min. A similar idea has been applied to the IBM-events. In thiscase we compute the (lower) cycle bound7 which is a lower bound on the earliest cyclein which the event could occur. As new safe arcs are added to an event history, thecycle bounds may increase allowing still more safe arcs to be added.5 A Prototype for IBM Parallel FortranIn IBM Parallel FORTRAN, a task can be explicitly created, assigned work,and waited for until the work assigned to it has been completed. A task can alsobe implicitly created by parallel loops and parallel cases. Tasks can be executedconcurrently. A parallel lock can be used to prevent interference between tasks during6This is a simpli�ed description, a complete description can be found in [IBM88] or [HMW90b].7A cycle includes the Post/Wait operations from the �rst Post in a Post Request Processingphase to the last Wait operation in the following Wat Request Processing phase.

18 4. Generalizing the Semaphore ModelAs an example, consider the trace shown in Figure 3.4 (the same events areshown Figure 3.5). Let Ai; Bj ; Ck be the ith, jth and kth events in tasks A, B and Crespectively. The two unordered Wait events B1 and C1 cannot happen concurrentlybecause there is only one Signal (A1) available for one of them to proceed in everyexecution of the inferred program. They form two critical regions. In the executionswhere B1 occurred before C1, C1 becomes the second Wait on the semaphore. UsingAlgorithm 3, we get time vectors as shown in Figure 3.5(a) where the event pairsf(B1,C1), (B1,C2), (B1,C3), (B2,C1), (B2,C2), (B2,C3)g appear ordered. Similarly, inthe executions where C1 occurred before B1, event pairs f(B1,C1), (B2,C1), (B3,C1),(B1,C2), (B2,C2), (B3,C2)g are ordered as shown in Figure 3.5(b). At this point,we can conclude that the intersection of these two sets contains event pairs that arenot concurrent in any executions, whenever B1 happened before C1 or C1 before B1.Therefore, f(B1,C1), (B1,C2), (B2,C2), (B2,C1)g are unordered sequential event pairsin the critical region, and can be moved from Conc to Seq.123122121W1S1S2S2W1S1W1W2W2Task AS1 Task B Task C100200 110120130333433 102101W1S1 103S2S2W1S1W1W2W2Task AS1 Task B Task C100200333433 112122132Figure 3.5: Detect Critical RegionsNote that Algorithm 4 does not always succeed as three tasks can conspire to createa critical region that is not detected. For example, consider the inferred programfragment in Figure 3.6. If exactly one signal on semaphore 1 is available (and nosignal on semaphore 2) then the three elided regions are mutually exclusive. However,Algorithm 4 only detects the critical regions starting with a Wait on semaphore 1.4 Generalizing the Semaphore ModelThe previous section described algorithms for systematically determining orderrelationships between events in a counting semaphore model. We have also applieda similar approach to the event-based synchronization mechanism provided by IBMParallel FORTRAN [IBM88]. The more general nature of the IBM-event mechanismrequired modi�cations to the algorithms, especially the Algorithms 3 and 4. The de-tails of the algorithms needed to handle the IBM events can be found in [HMW90b]. A

3. Analyzing Traces with Anonymous Synchronization 17Algorithm 4: Initially let Conc = ffe; e0g : �̂ (e) k �̂ (e0)g and Seq = ;.Repeat the following procedure until no more changes are possible.Pick any two unorderedWait events e and e0 for semaphore S where (e; e0) 2 Conc.Let Get(e; e0) be the set of Wait eventsa for semaphore S which precede eitherevent e or e0 (based on current time vectors �̂).Let Release(e; e0) = fe00 : e00 is a Signal event using S and e00 precedes e ore0g [fe00 : e00 is a Signal event using S and does not follow either e or e0 and e00 isnot shadowed with respect to either e or e0 g.Let s =j Release(e; e0) j and w =j Get(e; e0) j.� If s � w � 2 =) e k e0, i.e., if there are enough Signals for both Waits toprecede, then the two Waits can happen concurrently.� If s�w = 1 =) :(e k e0), i.e., there is only one Signal for a Wait to precede,then we can conclude that they cannot happen concurrently. The startingpoints of critical regions have been found. The following procedure is usedto determine the unordered sequential event pairs in the critical region.1. First, assume that event e happened before e0. Thus w+1 Wait eventson S happened before e0. Use Algorithm 3 with k = w+1 to calculatea new time vector for event e0. Continue with Algorithm 3 (with themodi�cation that whenever the time vector for e0 is calculated, evente is counted when determining k) to obtain a set of temporary timevectors.Let Seq1 be the set of event pairs which are in Conc but are orderedby the temporary time vectors. After obtaining Seq1, the original timevectors are restored. We can not yet move these events from Concto Seq since they may be concurrent in executions where e0 happensbefore e.2. Now assume that event e0 happened before e. Thus e is the w + 2ndWait for S. As before, starting from the original time vectors, we runa modi�ed Algorithm 3 (with the adjustment when the time vector fore is calculated). Let Seq2 be the set of event pairs which are in Concand are ordered by the resulting time vectors. Again, the original timevectors are restored after determining Seq2.3. The intersection of Seq1 and Seq2 gives the unordered event pairs inthe critical regions. We therefore set Seq = Seq [(Seq1 \ Seq2) andConc = Conc � (Seq1 \ Seq2).� s� w � 0 means neither Wait event can precede. In this case, the inferredprogram has a potential deadlock.End Algorithm 4.aA Wait on a semaphore can be thought of as \Getting" a shared resource. A Signal canlikewise be thought of as a \Release" of a shared resource.

16 3. Analyzing Traces with Anonymous Synchronizationso, the algorithm then �nds those unordered sequential event pairs within the criticalregions by considering the e�ect of di�erent execution orders of the two Wait events.

The algorithm calculates two sets. The set Conc contains the potentially concur-rent event pairs, while the set Seq contains known unordered sequential event pairs.The event pairs in neither Conc nor Seq are ordered. Initially, every unrelated pairof events are considered potential concurrent. As critical regions are detected, thealgorithm moves the appropriate unordered sequential event pairs from Conc to Seq.

3. Analyzing Traces with Anonymous Synchronization 153.4 Adjusting the Time Vectors to DetermineConcurrencyThe previous algorithms compute time vectors representing a safe history. Givenany two events e and e0, if �̂ (e) < �̂ (e0) or �̂ (e0) < �̂ (e) then the two events are ordered.Otherwise, we say that e and e0 are unordered in the history. The unordered eventsneed not necessarily be concurrent events. They may be free to occur in either order,but constrained to occur sequentially. In this case, we call them unordered sequentialevents. For example, if the program has a properly implemented lock around a criticalregion, then di�erent executions may have tasks entering the critical region in di�erentorders. In no execution, however, do two tasks concurrently enter the critical region.In some cases it is reasonable, and even desirable, to have unordered sequentialraces. Consider a program consisting of n tasks each taking various amounts of timeto compute a subresult. The program's output is the sum of the n subresults. It isreasonable to include a block of code like:Wait(mutex);total := total + mysubresult;Signal(mutex);at the end of each task. There are races between each of these blocks since theyall write to the shared variable total. However, all of the operations on total arecommutative and associative, so total receives the same �nal value regardless of theorder in which these blocks are executed.Although the general detection of commutative and associative operations onshared data is beyond the scope of this paper, we do provide a way to help distinguishthe blocks that are concurrent in some execution of the inferred program from thosethat are sequentially unordered. Information on whether or not unordered blocks canbe concurrent may also be useful to a programmer trying to understand the program'sbehavior.Unfortunately, the concurrent relation cannot be determined immediately fromthe time vectors. It is neccessary that �̂(e) k �̂ (e0) for e and e0 to be concurrent,but this is not su�cient. As an example, in Figure 3.4, if e = the �rst Wait in Band e0 = the �rst Wait in C, then even though �̂(e) k �̂ (e0), the two Wait eventscannot occur at the same time in any execution. Determining whether or not twounordered events can happen concurrently in some execution of the inferred programis an NP-complete problem. Therefore we must settle for an approximate solution.We now present an algorithm which detects many critical regions and determinesthe associated pairs of unordered sequential events5. The algorithm �rst determinesif a pair of Wait events on the same semaphore starts a pair of critical regions. If5The algorithm may not, however, detect all of the unordered sequential event pairs. This ispartly due to the di�culty in detecting all of the safe orderings, and partly due to the many unusualways that locks can be implemented.

14 3. Analyzing Traces with Anonymous Synchronization[NM90]. We have presented a series of polynomial time algorithms that �nd many ofthe orderings that occur in all executions of an inferred program. Here we bound theexecution times of these algorithms. Throughout this section we use m for the totalnumber of events, and n for the number of tasks, in the inferred program. Note thatthe sum of the components of any time vector is bounded by m and the total of thecomponents of all time vectors is bounded by m2.Assertion 1: The time required by the initialization algorithm (Algorithm 1) isO(nm).First we topologically sort the events, so that each unblocking Signal has beenassigned a time vector before we consider the corresponding Wait. This takes timeO(m) since each event has outdegree at most two (the next event in the task and thecorresponding Wait). By keeping an array containing the last time vector assigned foreach task and a back pointer to the unblocking Signal events, the relevant previoustime vectors can be located in constant time. Order n steps su�ce to compute thecomponent-wise maximum. Therefore, the running time of Algorithm 1 is O(nm).Assertion 2: The time required by the rewinding algorithm (Algorithm 2) is O(nm3).Since each iteration of Algorithm 2 decreases at least one component of a timevector, there can be at most m2 iterations through the m events in the trace. Bykeeping the component-wise min of the time vectors of the Signal events on eachsemaphore, each event can be processed in O(n) time (including the possible updateto the component-wise min after processing Signal events). Therefore, the runningtime of Algorithm 2 is O(nm3).Assertion 3: The time required by the expanding algorithm (Algorithm 3) is O(nm4).As above, there are at most m2 iterations. The time for processing Signal eventsis dominated by the cost of processing Wait events. Finding the set R(e) for Waitevents is made easier by storing a pointer to the shadowing Wait event (if any) witheach Signal event. Now the set R(e), as well as the value k, can be found with a singlepass through the trace, taking O(n) time per event for time vector comparisons. Thek + 1st component-wise minimum can be calculated in O(nm) time using a bucketsort on each component. Therefore, the overall time required by Algorithm 3 is inO(nm4).In the above analysis of Algorithms 2 and 3, we used a very pessimisticm2 boundon the number of iterations required. This is based on the assumption that, for eachiteration: only one timestamp is changed, only one component of the timestamp ismodi�ed, and the value of the modi�ed component only changes by one. We expectmost iterations will modify many of the timestamps by various amounts, particularlywhen the events are examined in topological order. Thus these algorithms will usuallyrequire only O(m) iterations, saving a factor of m over the pessimistic bounds statedabove.

3. Analyzing Traces with Anonymous Synchronization 13Algorithm 3: Expand:Initially �̂ (e) = � 0(e) for all events e in the inferred program.Repeat the following procedure until no more changes are possible.for each event e in the traceif e is a Wait event on semaphore S,let W (S) be the set of Wait events on semaphore S;let k be the number of Wait events ew 2 W (S) where�̂ (ew) < �̂ (e);let R(e) = fê : ê is a Signal event on S, �̂(e) 6� �̂ (ê),and ê is not shadowed with respect to eg;let vs = mink(�̂ (ê) : ê 2 R(e));set �̂(e) = max(�̂ (ep); �#(e); vs);else set �̂(e) = max(�̂ (ep); �#(e));end if;end for;
433333 130120110200100 Task CTask BS1Task AW2W2W1 S1W1S2 S2 103S1W1101102

Figure 3.4: Expanding the Safe Order RelationFigure 3.4 shows the new �̂ time vectors generated when Algorithm 3 is executedstarting with Figure 3.1.Theorem 3: Algorithm 3 generates only safe order relations with respect to theinferred program PT , i.e., for any two distinct events e and e0 2 H:�̂ (e) < �̂(e0)) e �PT e03.3 Running Time AnalysisGiven an inferred program, PT , containing two distinguished events, e and e0, theproblem of determining whether or not e �PT e0 has been shown to be intractable

12 3. Analyzing Traces with Anonymous Synchronizationthe same semaphore S performed by task Tj, with �̂ (e) k �̂ (es). Let H(e; es) bethe subsequence of events performed by Tj containing those events ej where both�̂ (ej) < �̂ (es) and �̂ (ej) k �̂ (e). If any su�x of H(e; es) contains more Wait eventson S than Signal events on S, then the Signal event es is shadowed with respect to e.De�nition 12: Let H 0(e; es) be the shortest su�x of H(e; es) which contains moreWait events than Signal events on S, and let ew be the �rst event of H 0(e; es). Wesay es is shadowed by event ew with respect to e.Lemma 1: Given a Wait event ew and a Signal event es on the same semaphore S,if es is shadowed by some event e with respect to ew then:� event e is a Wait event on semaphore S,� the subsequence of events performed between e and es (by the same task) containsas many Signal events as Wait events on semaphore S,� the event e, which shadows es with respect to ew, is unique { whenever es isshadowed with respect to some event e0, es is shadowed by e. We say e isthe shadowing Wait event corresponding to es, and� the correspondence between shadowed Signal and shadowing Wait is one to one,so no event other than es is shadowed by e. S1W1S1S1 120110300200100 Task CTask BS1Task A W1 W1101102Figure 3.3: Shadowed Signal EventIn the example shown in Figure 3.3, the Signal event in C is shadowed by theWait in C with respect to the two Wait events performed by task B.Algorithm 3 is based on the following observation. If e is a Wait event onsemaphore S and k other Wait events on S must happen before e, then at leastk + 1 non-shadowed Signal events happen before e in every execution of the inferredprogram.

3. Analyzing Traces with Anonymous Synchronization 11Suppose e is a Wait event for some semaphore S, and there are k other Wait eventsfor S which precede e in every execution of the inferred program. In this case, at leastk + 1 Signal events on S are needed in order to unblock e and its predecessors. Wewill exploit this fact to enrich the safe event history. As an extreme example, considerthe causal trace where task A executes three Signals and task B executes three Waitson the same semaphore, with the obvious Signal-Wait pairings. Figure 3.2(a) showsthe result of rewinding. It appears that the only inter-task arcs in the safe historyare from the �rst Signal in task A to the Waits in task B. However, the second Signalin A must happen before the second Wait in B, and the third Signal must happenbefore the third Wait, as shown in Figure 3.2(b).
(b)(a) WWW

Task A Task BSSS SSS Task BTask A WWWFigure 3.2: Safe Ordering (all Signals and Waits are on the same semaphore)Additional safe ordering arcs can be found based on another observation. In theexample shown in Figure 3.3, the Signal event in C is preceded by a Wait event inthe same task. From the indicated time vectors (computed using Algorithm 2), weknow that there is a Wait event (the �rst Wait in B) preceding the second Wait in B.Therefore, at least two Signal events must precede the second Wait in B. The Signalin C could be one of them, but if this is the case, then at least three Signal eventsare needed to allow the second Wait in B to precede. In any execution of the inferredprogram, the second Wait in B must happen after at least two Signal events otherthan the Signal in C. Similarly, the �rst Wait in B must be preceded by at least oneSignal event, not counting the signal in C.In general, if some Wait event e is known to follow a set of k other Wait eventson the same semaphore, then k+1 Signals on that semaphore are needed to unblocke and its predecessors. If some Signal used to meet this demand is itself precededby another Wait on the semaphore which is not in the set, then this additional Waitincreases the number of Signals needed to unblock e and its predecessors to k + 2.Therefore the unblocking done and additional blocking created by including the Signalcancel. When this happens we say that the Signal is shadowed.De�nition 11: Let �̂ be an assignment of time vectors to events representing a safeevent history. Let e be a Wait event on semaphore S and es be a signal event on

10 3. Analyzing Traces with Anonymous SynchronizationObserve that the only di�erence between Algorithm 2 and Algorithm 1 occurswhen e is a Wait event. Here vs is the minimum of a set of time vectors whichincludes the time vector used for vs in Algorithm 1. Therefore the components oftime vectors can only decrease as Algorithm 2 executes.130120110400300200100 Task CTask BS1Task AW2W2W1 S1W1S2 S2 103S1W1101102
Figure 3.1: Rewinding the Time VectorsAfter rewinding, we have a partial order that represents a safe history (with respectto the inferred program). If event ei has an earlier time vector than e, then ei happensbefore e in every execution of the inferred program.Theorem 2: Algorithm 2 generates a safe event history with respect to the inferredprogram PT , i.e., for any two events e1; e2 in the trace:� 0(e1) < � 0(e2)) e1 �PT e2:Although the � 0 timestamps represent a safe event history, they may be tooconservative. As an example, the � 0 time vectors in Figure 3.1 represent a historywhere the three Wait events in task A are unrelated to all of the events in tasks B andC. However, it is obvious that in any execution of the corresponding inferred programthe W1 in task A must follow the two S1 events in tasks B and C, and the secondW2 in task A has to wait until all of the events in B and C have occurred. Our nextalgorithm increases the time vectors while maintaining a safe event history.3.2 Expanding the Safe Order RelationThe result of the rewind step is a set of time vectors representing a safe eventhistory. As noted above, it may be an overly conservative safe order relation wheresome of the safe ordering arcs have been lost during the rewinding procedure. We nowdescribe an algorithm which enriches the partial order while maintaining its safety.The partial order resulting from this process is represented by the time vectors �̂ (e).Initially, �̂(e) = � 0(e).

3. Analyzing Traces with Anonymous Synchronization 93.1 Rewinding the Time VectorsThe � time vectors resulting from the initialization process represent an unsafehistory. It is unsafe because the causal trace associates a particular unblocking Signalevent with each Wait event. The algorithm in this section rewinds the time vectors toaccount for the fact that some executions of the inferred program might use di�erentsignal events on the appropriate semaphore to unblock a given Wait. The result ofrewinding is a new event history which (usually) does not correspond to a causal traceof any execution of the inferred program, but rather represents orderings which occurin all causal traces of the inferred program, regardless of what execution generatedthem.This new history is represented by a new set of time vectors assigned to theevents, which we denote by � 0. At the start of Algorithm 2, the � 0(e) time vectorsare initialized to the � (e) time vectors computed by Algorithm 1. We now give theintuition behind the rewinding algorithm.Suppose e is a Wait event, and e1 and e2 are the only two Signal events whichcould have unblocked e. In this case, we only know that either e1 or e2 must havehappened before e. A global trace for executions of the inferred program might listthe three events (with the other events elided) in any of the orders:: : : ; e1; : : : ; e; : : : ; e2; : : :;: : : ; e2; : : : ; e; : : : ; e1; : : :;: : : ; e1; : : : ; e2; : : : ; e; : : :; or: : : ; e2; : : : ; e1; : : : ; e; : : :.However, we can conclude that those events that precede both e1 and e2 in everyexecution of M must also occur before e. Formally if ea �M e1 and ea �M e2 thenea �M e. The rewind algorithm repeatedly uses this fact to obtain a safe eventhistory.Algorithm 2: (Rewind)Initially, for all events e in the trace, � 0(e) = � (e).Repeat the following procedure until no further changes are possible.for each event e in the traceif e is a Wait event on semaphore S,let es1 : : : esk be all the Signal events on S;set vs = min(� 0(es1); : : : ; � 0(esk));else set vs = �0, the all zero vector;end if;set � 0(e) = max(� 0(ep); �#(e); vs);end for;

8 3. Analyzing Traces with Anonymous Synchronization

(b)(a)

Task CTask BS1Task A
W2 S2W1S1 W1S1 S1W1S1W1S2W2W2W1

Task AS1 Task B Task C100
232333433 132122112 101102

S2W2W1 103S2Figure 2.1: Initializing the Time Vectors: (a) depicts a causal trace. Thedotted edges show the Signal-Wait pairings. (b) shows the partial order andtime stamps resulting from Algorithm 1.3 Analyzing Traces with Anonymous SynchronizationOur analysis method consists of three algorithms. Algorithm 1 initializes a timevector � (e) for each event e. The rewinding algorithm (Algorithm 2) reduces the � (e)time vectors, creating another time vector, � 0(e), for each event e. The e�ect of thisrewinding algorithm is to remove edges from the represented partial order so that it issafe with respect to the inferred program. Unfortunately, the rewinding produces anoverly conservative safe order relation. The third algorithm (Algorithm 3) increasesthe time vectors to restore some of the removed edges while maintaining a safe partialordering.The initialization process creates the history corresponding to the given causaltrace. Unfortunately, this partial order is (in general) an unsafe order relation. Thecorrespondence between Signals and Waits in the causal trace need not hold for otherexecutions of the inferred program. The following is an obvious property of the timevectors generated by Algorithm 1.Property 1: The maximum value of any time vector component is the number ofevents performed by the task associated with that component.

2. Description of the Model 7The following functions on sets of time vectors will be very useful when describingour algorithms.De�nition 8: For any m time vectors �1; : : : ; �m of Zn� mink(�1; : : : ; �m); k > 0 is the vector of Zn whose ith component is the kthsmallest element in the collection �1[i]; �2[i]; : : : ; �m[i],� max(�1; : : : ; �m) is the vector in Zn whose ith component is max(�1[i]; : : : ; �m[i]).Conventionally, we de�ne min0(�1; : : : ; �m) to be �0, the all-zero vector.As an example, min3([1; 2]; [1; 3]; [2; 4]; [2; 5]; [3; 2]) is [2; 3]. We often call mink(�1; : : : ; �m)the kth component-wise minimum of �1; : : : ; �m, and max(�1; : : : ; �m) the component-wise maximum of �1; : : : ; �m.De�nition 9: Given an event e performed by task Ti in a causal trace, let �#(e)be the time vector containing the local event count for e (one more than the numberof events previously performed by Ti in the trace) in the ith component and zeroselsewhere.De�nition 10: Given an event e performed by task Ti in a causal trace, let ep denotethe previous event performed by Ti in that trace if such an event exists.The following algorithm (derived from [Mat88,Fid88]) computes time vectors forthe history corresponding to a causal trace. This algorithm is also comprises the �rstphase of our analysis, converting the causal trace into a time vector representation ofthe corresponding event history.Algorithm 1: Given a causal trace, each event e is assigned a time vector, � (e),as followsa:for each event e in the traceif e is a Wait event on semaphore S,let e0 be Signal event unblocking e;set vs = � (e0);else set vs = �0, the all zero vector;end if;set � (e) = max(� (ep); �#(e); vs);end for;aNote that ep must have already received its time vector, and if e is a Wait event thenthe unblocking signal event needs to have been assigned a time vector. Because any historycorresponding to a trace is acyclic, there is always at least one event which can be assigned atime vector.After completing Algorithm 1, � (e) < � (e0) i� e!e0 in the history correspondingto the trace. Figure 2.1b shows the result of applying Algorithm 1 to the causal tracein Figure 2.1a.

6 2. Description of the ModelTheorem 1: If event g � h in PT , then for each execution of P where h!g there isa data race, B(e; e0) and B(f; f 0), in PT such that either e!h or f!h in the executionof P .An implication of the theorem is that if our algorithms report that there are noraces in PT then there are no races in P . The Appendix contains a proof of Theorem 1.2.1 Virtual TimeSince a linearly ordered representation of time is not always adequate for reasoningabout parallel programs, we use time vectors to represent a partial order on the events.In our trace analysis, each event is assigned a vector of timestamps. The ordered eventpairs and unordered event pairs can be easily distinguished by comparing these timevectors.The time vectors we compute in this paper are an extension of the time vectorsof Fidge [Fid88] and Mattern [Mat88]. The easiest way to describe their system isin the context of message passing. There, each task Ti keeps its own count, Ci[i], ofthe number of events it has performed. In addition, Ti keeps a count Ci[j] on thenumber of events known to have been performed by each other task Tj. These othercounts are generally underestimates, and are updated only when Ti synchronizes insome way with another task. Each time a message send event is performed by Ti,Ci[i] is incremented and the event is timestamped with the vector Ci. This vectorvalue Ci is also piggybacked onto the message. When Ti performs a receive event, itwill obtaining a message with some timestamp C 0. Task Ti sets, for each j, Ci[j] tothe maximum of Ci[j] and C 0[j]. It then increments Ci[i] and timestamps the receiveevent with the new value of Ci.When time vectors are assigned to events in this way, they represent a partialordering of the events. An event e with timestamp � precedes another event e0 withtimestamp � 0 in the partial order if and only if every component of � is less thanor equal to the corresponding component of � 0. Events e and e0 are unrelated inthe partial order when both some component of � is greater than the correspondingcomponent of � 0, and some (other) component of � 0 is greater than the correspondingcomponent in � .Our algorithms use these vector valued timestamps to represent event histories.The event histories are modi�ed by updating the vector timestamps associated withevents rather than explicitly adding (or deleting) arcs in the partial order.De�nition 7: For any two time vectors �1; �2 in Zn1. �1 � �2 () 8i(�1[i] � �2[i])2. �1 < �2 () �1 � �2 and �1 6= �23. �1 k �2 () :(�1 < �2) and :(�2 < �1).We say time vector �1 is earlier than time vector �2 (or �2 is later than �1) when�1 < �2. We say �1 and �2 are unordered when �1 k �2.

2. Description of the Model 5De�nition 3: Given a program P and two events, e and e0, occurring in someexecution of P , if e happens before e0 in every execution of P in which both eventsoccur then we write e �P e0.When the program P is obvious from the context we will use � instead of �P .De�nition 4: Given program P and event history H, if e!He0 implies e � e0 thenH is a safe partial order.The concept of safe histories is important, as these are the only orderings betweenevents that a programmer can rely on (i.e. hold for every execution of the inferredprogram).De�nition 5: If e and e0 are two consecutive synchronization events performed bythe same task in an event history, then B(e; e0) is the sequence of statements executedby the task between e and e0. We call B(e; e0) a (sequential) block.For data race detection, the only important characteristics of a block are theshared variables read and written by statements in the block. The list of variablesread and written in a block can be recorded in the trace. Alternatively, the programitself can be analyzed to determine which variables can be accessed between pairsof synchronization statements. For the purposes of this paper, we assume that theread/write lists for blocks are available and concentrate on the ordering relationshipsbetween the blocks.We say two blocks conict if some shared variable is written in one of the blocksand either read or written in the other block.De�nition 6: A race in P is a pair of conicting blocks, B(e; e0) and B(f; f 0), suchthat there exists a global trace of P where f!e0 in the corresponding history and a(not necessarily di�erent) global trace of P where e!f 0 in the corresponding history.This de�nition may be too general when shared variables are updated in certainways while protected by lock-like structures. We deal with this issue in Section 3.4.The algorithms in the remainder of this paper compute a safe partial order for aprogram inferred4 by a local trace T . We use this safe partial order to report potentialrace conditions in the original program P .In the inferred program PT , each task executes sequentially the correspondingsynchronization events from the local trace. Between synchronization events eachtask in PT reads and writes the same variables that were read and written by Pduring the execution that created the local trace.An important result is given by the following theorem. It says that if event galways happens before event h in PT , but g does not always happen before h in P ,then there is a race in PT that happens before h.4The inferred program is never actually computed. It is used to describe the limitations of thealgorithm.

4 2. Description of the ModelWhen H is clearly indicated by the surrounding context we will often drop thesubscript and write e!e0 instead of e!He0.For any trace there is always a corresponding event history that is the transitiveclosure of the order in which events appear in the trace. If this history is a localhistory then the trace is a local trace, with a separate log for each task. Likewiseif this history is a global history then the trace is a global trace, and tracing maybe a signi�cant bottleneck. Conceivably, the trace could represent each event in itsown �le without timestamps or any other ordering information. In this case thecorresponding history would contain no arcs. It is important to note that traces arean abstraction of the execution which produced them so that all event orderings neednot be explicitly represented. Thus di�erent executions can generate the same traceand, since the tracing mechanism could be nondeterministic, identical executions ofthe program might generate di�erent traces.We do, however, make two assumptions on traces and their corresponding histo-ries. We assume that histories corresponding to traces are acyclic. Secondly, if thereis a causal relationship between e and e0 in the execution (for example, e representsthe sending of some message and e0 represents that message's reception) then no pos-sible trace of that execution has a corresponding history where e0 precedes e, contraryto the causal relationship.Any trace analysis methodology is useful only if their is some minimum amountof information in the trace. In particular, our algorithms perform best when given acausal trace.De�nition 2: A causal trace is a trace that indicates, for each blocking event (e.g.semaphore Wait) the particular enabling event (e.g. semaphore Signal) that causedthe event to become unblocked.Every global trace can be interpreted as a causal trace but a causal trace need notbe global. In particular a causal trace can be produced from strictly local information.In our semaphore model, this requires only that a log, indicating the order in whichtasks successfully execute the Signals and Waits, be kept for each semaphore. Thiskind of information is commonly required in trace-and-replay systems such as InstantReplay [LMC87].The history corresponding to a causal trace contains arcs from each enabling eventto the blocking event it unblocks in addition to the arcs from each event to the nextevent performed by the same task.There is a similarity between a causal trace and the notion of explicit synchro-nization introduced in the previous section. However, these two concepts have asubtle, but very important, di�erence. When the explicit synchronization is partof the events, the executions of the inferred program are constrained. The causaltrace is used only for initialization, and does not restrict the set of executions thatare considered. Thus our algorithms will report races that can occur with di�erentSignal-Wait pairings. Although our algorithms can be run on local traces, the addi-tional information provided by a causal trace allows a more accurate initialization,and hence more accurate results.

2. Description of the Model 3events contain anonymous synchronization (e.g. semaphores, locks, and signals). Inthis case, determining if two events occur in the same order in every execution ismuch more di�cult2.The next section contains de�nitions and descriptions of our basic model involvingcounting semaphores. Our algorithms for this basic model are described and analyzedin Section 3. We have implemented a version of our algorithms for the Post/Waitstyle synchronization used in IBM's Parallel Fortran. Our implementation and thenecessary modi�cations to our algorithms are described in Sections 4 and 5. InSection 6 we survey some related work. Finally, Section 7 contains conclusions and abrief summary of our results.2 Description of the ModelIn our basic model, programs synchronize using counting semaphores (initializedto zero). Two operations, P and V, are de�ned for each semaphore. In this paper,we use the more mnemonic Wait and Signal to represent the P and V operationsrespectively. Therefore, each synchronization event is a tuple containing: the opera-tion completed (Wait or Signal), the a�ected semaphore, and the id of the task thatperformed the operation.Many other kinds of synchronization operations can be simulated with countingsemaphores. Consider, for example, the event \init task t" which creates a new task tand the event \await task t" which blocks the running task until task t has terminated.Given a trace containing these events, we can easily create a trace with equivalentsynchronization properties that contains only semaphore events.We distinguish between event traces, which are the information recorded duringan execution of a program, and event histories, which are partial orders as de�nedbelow. An event history might correspond directly to a trace, or it could containeither more or less information than is directly accessible from a trace.De�nition 1: An event history is an irreexive partial order representing (some of)the order relations between events that occurred during some execution of a program.We use \e!He0" to indicate that e precedes e0 in history H.If a partial order contains only arcs from each event to the next event performed bythe same task then we call it a local history.If a partial order is actually a total order then we call it a global history32The di�erence between explicit and anonymous synchronization is somewhat in the eye of thebeholder. Ada-like rendezvous becomes anonymous when the events \task t calls t0" and \task t0accepts some task" are used. Furthermore, semaphores can be made explicit by using the event\task t obtains the semaphore released by t0."3We assume that the granularity of events recorded in traces of a program P is such that eachexecution of P can be represented by one or more total orderings of the events performed during theexecution. This representation is often misleading in that events that were executed concurrentlyare portrayed as occurring in a particular order.

2 1. Introductionas many potential races as possible from a single trace. In particular the algorithmsdescribed in this paper will generate an ordering relation among program events thatcan be used to identify all races occurring in a potentially large set of related execu-tions. Furthermore, if our algorithms report that there are no data races, then therewill be no data races in any execution given the same input as that used to generatethe trace.We view the execution of a program as a collection of abstract events with variousordering properties. Although what comprises an event depends on the programminglanguage, application, and desired level of detail, each event is a piece of programactivity executed by a single task. Furthermore, each task executes events one at atime, with no overlap. We make the assumption that each synchronization statementexecuted by a task is represented by one (or more) events.Many parallel systems (e.g. [IBM88]) provide facilities for recording importantevents during the execution of parallel programs. By limiting the debugger's activ-ity, the probe e�ect should be reduced. The recorded information can be analyzedfollowing the program's execution.The following kind of query is helpful in the debugging process and critical fortrace-based race detection.Given a program P running on a particular input and two program events,e1 and e2, is it true that in every execution which includes both e1 ande2, e1 always occurs before e2?Unfortunately this question involves termination issues and thus is too hard to solvein polynomial time. We therefore compute a conservative approximate response. Ouralgorithms may respond No to the above query when in fact the correct response isYes (resulting in possibly spurious race reports). However, if our algorithms respondYes then either Yes is the correct response or else a race reporting tool based uponour algorithms will report a data race that occurs before either e1 or e2. This lastcondition can result in unreported data races but only when other races are reportedand the reported races hide the unreported races ([AP87]). Theorem 1 assures usthat if our algorithm reports that there are no races then there will be no races whenthe program is executed with the same input.To accurately describe what it means when our algorithms respond Yes to theabove query, it is helpful to consider the inferred program program PT derived froma program P and a trace T of P . PT is the same as P except that all conditionalbranches are replaced with unconditional branches resolved in the same direction asthey were in the execution of P that generated T . Our algorithms compute a strictlyconservative response to the query for this derived program. That is, for PT , ouralgorithm may respond No incorrectly but will never falsely respond Yes. To alwaysanswer correctly, even for programs such as PT is NP-Hard.If the events explicitly identify the participating tasks (for example task t ren-dezvous with t0, or task t forks into tasks t1; t2, and t3) then there are relatively fewways of executing programs without conditional branches (such as PT) and it is easyto determine those pairs of events that must occur in a particular order. The dif-�culties in answering the above query for programs such as PT arise only when the

1. Introduction 11 IntroductionWriting and debugging a parallel program is, in general, more di�cult thanwriting and debugging a sequential program. A major reason for this di�culty isthe need for explicit synchronization between the tasks in a parallel program. Aprogram with errors in synchronization will often be non-determinate, i.e., generatedi�erent results even when started with exactly the same inputs. In a parallelprogram, nondeterminism often introduces unexpected program behavior, makingthe debugging process extremely di�cult.Unwanted non-determinate behavior of parallel programs often starts with a datarace. One of the fundamental problems encountered when debugging a parallelprogram is locating the data races in the program. A data race exists between twostatements1, S1 and S2, if1. the statements access the same memory location,2. at least one of the accesses is a write, and3. there exists an execution of the program where S1 happens before S2 andanother execution, with the same input, where S2 happens before S1.Notice that this de�nition includes both accesses that may occur \at the same time"and accesses that must occur serially but can occur in either order (such as accessesprotected by a lock).The current methods for determining potential races in parallel programs canbe roughly divided into three groups: compile time analysis [Tay84,McD89,CKS90],run time (on-the-y) analysis [DS90] and post-mortem trace based analysis [EP88,MC88,EGP89,NM89,HMW90a,HMW91]. No single approach has yet proven to beunquestionably superior. A brief sample of some advantages and disadvantes includethe following. Compile time analysis has the advantage of being independent ofthe input data. Run time analysis has the advantage of not requiring the storageof massive amounts of trace data, because the information about the execution isprocessed and then discarded. Trace based analysis may be potentially less intrusivethan run time analysis and can be used to detect races in alternative executions.Both compile time analysis and trace based analysis generally try to answer questionsthat are NP-complete. Therefore approximation methods are necessary for practicaltools. The on-the-y techniques are generally limited to reporting races that actuallyoccurred in the execution being analyzed. They can never guarantee the absence ofraces in the program.We have chosen to work on a trace based approach. For the type of programs weare interested in analyzing (programs containing semaphore style synchronization),the known compile time techniques can fail due to their time and space complexity.Because run time analysis only reports races that occurred in a single execution, alter-native approaches must be investigated. We are primarily concerned with detecting1For the purposes of this de�nition we assume that loops are unrolled and subroutines copied sothat each statement is executed at most once during an execution of the program.

Determining Possible EventOrders by AnalyzingSequential TracesD. P. Helmbold, C. E. McDowell, J-Z. Wang91-36September 25, 1991Board of Studies in Computer and Information SciencesUniversity of California at Santa CruzSanta Cruz, CA 95064abstractOne of the fundamental problems encountered when debugging a parallel pro-gram is determining the possible orders in which events could have occurred. Variousproblems, such as data races and intermittent deadlock, arise when there is insu�-cient synchronization between the tasks in a parallel program. A sequential trace ofan execution can be misleading, as it implies additional event orderings, distortingthe concurrent nature of the computation. This paper describes algorithms whichgenerate those event orderings which can be relied on by the programmer from thetrace of an execution.By its very nature, the information in an execution trace pertains only to thatexecution of the program, and may not generalize to other executions. We tacklethis di�culty in a systematic way: de�ning an \inferred program" based on thetrace and original program, analyze this inferred program, and prove a relationshipbetween the inferred program and the original.The results of our algorithms can be used by other automated tools such as adata race detector or constraint checker. The basic algorithms described here havebeen implemented in a working trace analyzer for IBM Parallel Fortran. The traceanalyzer graphically presents the discovered event orderings and reports variouspotential data races in the subject program.Keywords: data race, time vector, program trace, parallel programming, debug-ging, distributed systems

