28 References

Orderings from Hrp

%

/
Q/ S
M@ (-

\
(&

Three variations of orderings from H

(€)
Figure A.1: Possible orderings for Lemma 2. Variable v is read in block
B(s,s”) and written in blocks B(r,r’") and B(q,q’). Variable v is assumed to

have different values at s in H and Hp. The orderings shown are only a
subset - both H and Hy are totally ordered.

References

[IBMSS]
[LMCS8T]

[Mat88]

[MCS8S]

[McD89]

[NMS9]

[NM90]

[NM91]
[Tay84]

[Wan90]

27

Parallel FORTRAN language and library reference. IBM, 1988.

T. J. LeBlanc and J. M. Mellor-Crummey. Debugging parallel programs
with instant replay. IEEE Trans. on Computers, C-36(4):471-482, April
1987.

F. Mattern. Virtual time and global states of distributed systems. In
M. Cosnard, editor, Proceedings of Parallel and Distributed Algorithms,
1988.

B. P. Miller and J-D. Choi. Breakpoints and halting in distributed
systems. In Proc. Int. Conf. on Distributed Computing Systems, June
1988.

C. E. McDowell. A practical algorithm for static analysis of parallel
programs. Journal of Parallel and Distributed Computing, June 1989.

R. Netzer and B. P. Miller. Detecting data races in parallel program
executions. Technical Report 894, University of Wisconsin-Madison,

November 1989.

R. H. B. Netzer and B. P. Miller. On the complexity of event ordering
for shared-memory parallel program executions. In Proc. International
Conf. on Parallel Processing, volume 11, pages 93-97, 1990.

R. H. B. Netzer and B. P. Miller. Improving the accuracy of data race
detection. SIGPLAN Notices (Proc. PPOPP), 26(7):133-144, 1991.

R. N. Taylor. Debugging real-time software in a host-target environment.

Technical report, U.C. Irvine Tech. Rep. 212, 1984.

J-7. Wang. Debugging parallel programs by trace analysis. Technical
report, Masters Thesis UCSC-CRL-90-11, 1990.

26 References

(at this point in]:]) However, if r is a blocked wait event in]:], then it would also
be unable to appear in H. Therefore ¢ must represent a branch where the executions
producing Hy and H go different directions, and the branch condition in ¢ is evaluated
to different values by the executions corresponding to Hy and H. Since H and H are
identical up to and including ¢, they will evaluate the branch condition to the same
value. Now we have an expression (the branch condition represented by ¢) which is
evaluated to different values in Hy and H. Lemmas 2 and 3 show that there is an
appropriate race in Pr, completing the proof of the theorem. []

References

[AP8T] T. R. Allen and D. A. Padua. Debugging fortran on a shared memory
machine. In Proc. International Conf. on Parallel Processing, pages 721—

727, 1987.
[CKS90] D. Callahan, K. Kennedy, and J. Subhlok. Analysis of event synchro-

nization in a parallel programming tool. In Proceedings of Second ACM
SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming (PPOPP), SIGPLAN Notices, pages 21-30, March 1990.

[DS90] A. Dinning and E. Schonberg. An empirical comparison of monitoring
algorithms for access anomaly detection. In Proceedings of Second ACM
SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming (PPOPP), 1990.

[EGP89] P. A. Emrath, S. Ghosh, and D. A. Padua. Event synchronization anal-
ysis for debugging parallel programs. In Supercomputing ‘89, November
1989. Reno, NV.

[EP8S] P. A. Emrath and D. A. Padua. Automatic detection of nondeterminacy
in parallel programs. In Proc. Workshop on Parallel and Distributed
Debugging, pages 89-99, May 1988.

[Fid88] C. J. Fidge. Partial orders for parallel debugging. In Proc. Workshop on
Parallel and Distributed Debugging, pages 183-194, May 1988.

[HMW90a] D. P. Helmbold, C. E. McDowell, and J. Z. Wang. Analyzing traces
with anonymous synchronization. In Proc. International Conference on
Parallel Processing, August 1990.

[HMW90b] D. P. Helmbold, C. E. McDowell, and J. Z. Wang. Detecting data races
by analyzing sequential traces. Technical report, U. of Calif. Santa Cruz,

UCSC-CRL-90-57, 1990.
[HMW90c] D. P. Helmbold, C. E. McDowell, and J-Z. Wang. Traceviewer: A

graphical browser for trace analysis. Technical report, U. of Calif. Santa

Cruz, UCSC-CRL-90-59, 1990.
[HMW91] D. P. Helmbold, C. E. McDowell, and J. Z. Wang. Detecting data races

from sequential traces. In Proc. of Hawait International Conference on
System Sciences, pages 408—417, 1991.

A. Appendix 25

Proof: By induction on the number of synchronization events preceding s in H.

For the base case, s is the first synchronization event (a “task start” event) in H
so each variable has its initial value at s in H. If some variable v does not have its
initial value at s in Hr then some assignment to v was made in Hp prior to s. Let
B(r,7') be the block in Hy containing this write to v. We now see that r — s —
in Hy and s — 1’ in H (whether or not 1’ appears in H), so since v is read in B(s, s')
there is a race in Pr (Definition 6).

For the inductive step we assume that, for all blocks B(8, §') where § — s in H, if
the value of any variable read in B(3,3') at § in H is different from its value at § in
Hp, then there is a data race in Pr. We now show that the same holds for the block
B(s, s').

Let v be any variable read in B(s, s’) whose value at s in H differs from its value
at s in Hy. Consider the latest write to v occurring before s in H, and let B(r, /)
be the block containing this latest write. Clearly, r — s" in H. We can assume that
r— 1" — s — s in H since if s — ' in H we immediately get that B(s,s’) and
B(r,r') comprise a race. For the same reason, we can assume that r — ' — s — '
in HT.

In order for v to have a different value at s in Hr, either the expression assigned
to v in the block B(r,r’) is evaluated to a different value in Hr, or there is some other
write to v (not in B(r,r’)) occurring between r and s in Hp. In the first case we can
apply Lemma 2 and the inductive hypothesis to show that there is a relevant race in
M. The second case is slightly more complicated.

Let B(q, ¢') be the block containing this other write to v. Because of the location
of the accesses to v, we have that r — ¢’ and ¢ — s — s’ in Hp (see the top of
Figure A.1). Now consider where B(q, ¢’) appears in H. If s — ¢’ in H'° then blocks
B(q,¢') and B(s,s') form a race in Pr (Figure A.1 variation A). If ¢ — ' in H then,
since r — ¢’ in Hr, blocks B(q, ¢') and B(r,r’) are a race (Figure A.1 variation B).

This leaves us with the possibility that v’ — ¢ — ¢’ — sin H (Figure A.1 variation
C). However, block B(g, ¢’) can not contain a write to v since block B(r,r’) contained
the last write to v in H. The resulting contradiction shows that this final case is
impossible. []

We are now ready to prove Theorem 1. Let e < f with respect to Pr and H be a
global trace of an execution of P where f — e. Because e < f with respect to Pr and
f — ein H, every global history of Pr differs from H at some point. Given a global
history H’ of an execution of Pr we can count the number of events before the first
difference between H' and H. Let H be any global history for Pr with a maximal
number of events before its first difference with H. Let event r performed by task ¢
in H be the first event where H differs which]:], and ¢ be the previous event in H
performed by task ¢.

By the maximality of [:], r is never performed at this point in an execution of Py.
Either some other event 7 # r follows ¢ in task ¢ of Pr or r is a blocked Wait event

10Tf H represents a deadlocked execution, then ¢’ may not be present in H. However, we can still
say s — ¢’ and deduce the presence of the race.

24 A. Appendix

Another assumption made in the appendix is that a “task start” and a “task ter-
mination” synchronization event appears for every task (even those that are “dead-
locked”) in the program. This ensures that every sequential block is bracketed by
two synchronization events.

Given a program P and a trace T of an execution of P, we define the inferred
program Pr as in the introduction and Hr to be a global history corresponding to T'
(Note that Hr to both a trace of P and a trace of Pr). We wish to show that if there
are no races in Pr, then e < f with respect to Pr implies e < f with respect to P.
Recall that a race in P (or Pr) is a pair of conflicting blocks, B(e, €¢’) and B(f, f'),
such that there exists two global traces of P (resp. Pr) where f—e’ in the history
corresponding to one trace and e— f’ in the history corresponding to the other.

We now restate the theorem to be proven.

Theorem 4: If event e < f in Pr, then for each global history of P where f—e
there is a data race, B(g,¢') and B(h,h'), in Pr such that either g—f or h—f in
that global history of P.

The proof is rather complex, and has been broken down into several steps. Recall
that the program’s input (including the results of clock calls and random number
generators) has been fixed.

Lemma 2: Let H be the global history corresponding to a trace of an execution of
program Pr and s be a synchronization event in H. If an expression in block B(s,s')
has a different value in H and Hr, then there is a variable v read in B(s,s") such
that:

1. the value of v at s in H is different from the value of v at s in Hy, or

2. in Hrp there is a write to v by some other task between s and the expression’s
evaluation, or

3. in H there is a write to v by some other task between s and the expression’s
evaluation.

Proof: If the task starts executing the statements in B(s,s’) in the same state
(with respect to those variables read in the block), and no outside task changes the
relevant shared memory, then all expressions in the block will be evaluated to the
same result. []

The latter two cases of Lemma 2 immediately imply that there is a race in Pr
between block B(s,s’) and the block containing the write to v by the other task.
Showing that the first case also implies that Pr has a race requires the following
lemma.

Lemma 3: Let H be a global history corresponding to an execution of Pr and s a
synchronization event in H. If some variable v read in B(s,s') has a value at s in H
that is different from its value at s in Hp, then there is a race in Pr. In addition,
this race includes either B(s,s') or a block B(r,r") where r — s in H.

A. Appendix 23

This paper contains a series of polynomial time algorithms for extracting useful
information from sequential traces with anonymous synchronization. The first algo-
rithm, used to compute the initial vector timestamps, is due to Fidge and Mattern
[Fid88,Mat88]. The other algorithms systematically manipulate these vectors of time-
stamps in order to discover pairs of events that must be ordered in every execution
which is consistent with the trace.

Some parallel programming environments view a parallel execution as a linear
sequence of events. We feel that this is misleading — an execution is more properly
viewed as a partial ordering on the events. Fidge and Mattern have pioneered the use
of time vectors to represent these partial orders. We have extended this approach by
using time vectors to analyze sets of executions rather than just capturing a single
execution.

A working trace analyzer has been implemented, and some experiments have been
performed. The current implementation analyzes traces generated by IBM Parallel
Fortran and includes a graphical trace browser. The trace analyzer reports various
data race conditions in parallel programs by finding unordered/concurrent events and
variable access conflicts.

Acknowledgements

This work was supported by IBM under agreement SI. 88096.

A Appendix

In this section we will need to examine the executions of programs in great detail.
Therefore, all global traces and histories will include not only the synchronization
events performed, but also events representing global memory accesses and evaluation
of conditionals. These detailed global traces are not intended to be recorded, but
rather are used conceptually to help prove Theorem 1. At this level of detail, the
synchronization operations bounding sequential blocks will generally be separated by
(global) memory access and expression evaluation events.

Throughout the appendix we assume that global histories correctly reflect the
data dependences of the execution? Except in extreme cases (such as the replication
of shared variables), executions will have corresponding global histories which reflect
their data dependences. These global histories may be difficult to obtain from a trace,
and thus we use their existence for proof, rather than algorithmic, purposes.

“For example, if the value of variable x read in B(r, ') is the value that was written to x in block
B(w,w') then r—w’ in the global history. Notice that the resolution of the history need not be
enough to precisely reflect (or determine) the order of the variable acceses. We require only that
the history be consistent with the actual data dependence. In this example the history would be
inconsistent if it indicated that w’—r.

22 7. Summary

been on identifying the feasible data races in a set of apparent data races. We, on
the other hand, are trying to increase the number of feasible data races detected by
our algorithms. The approaches appear to be complimentary.

Dinning and Schonberg [DS90] present a method of detecting access anomalies in
parallel programs “on-the-fly”. They use a mechanism, similar to time vectors, to
identify concurrent operations in a program execution. Some compaction methods
are used to reduce the storage needed for reader and writer sets. If a variable is
involved in multiple data races, then some of those races may not be reported.
However, at least one of the data races involving the variable will be reported by
their algorithm. They need explicit coordination between tasks in order to construct
the partial order execution graph (POEG). The POEG represents the order relations
between operations for just one of many possible executions given the same input.

We believe that it is more helpful to analyze sets of executions rather than just
one specific execution based on some trace information. We feel that, in terms
of detecting data races by trace analysis, it is critical to distinguish the ordered
events from the unordered, potentially concurrent, events. In this paper we presented
a collection of algorithms that extend previous work in computing partial orders.
The algorithms presented compute a partial order containing only must occur type
orderings from a linearly ordered trace containing anonymous synchronization. The
algorithms presented in this paper make few assumptions about specific trace features
and can be adjusted to work with traces generated by many parallel systems.

7 Summary

Debugging parallel programs is more difficult than debugging sequential programs.
One of the fundamental problems encountered when debugging parallel programs is
detecting unintended non-determinacy in parallel programs. Tools which automati-
cally detect non-determinacy can be used to debug timing and synchronization errors
when the program is expected to be determinate. The tools we are developing help
one find the data races which can lead to non-determinacy. This paper presents a
method for detecting data races, which is based on analyzing a program trace from
an execution of a parallel program.

When debugging parallel programs, it is critical to find the order and concurrency
relationships among operations in the program. One of the most difficult tasks in trace
analysis is determining the timing relationships between the events performed by the
parallel program. Although several parallel systems include facilities for creating a
trace of the significant events, the sequential nature of the trace makes it difficult
to determine which events could have happened in either order or in parallel. The
problem is made even more difficult in the anonymous synchronization model, where
there is no clear correspondence between the blocking and enabling events in the trace.
The problem of calculating all safe order relations has been shown to be co-NP-hard

by Netzer and Miller [NM90].

6. Related Work 21

e display all information known about the event from the trace,

highlight all events that must happen before the selected event,

highlight all events that must happen after the selected event,

highlight all events that may happen concurrently the selected event, and

display the program source with the line generating the event highlighted.

6 Related Work

Recently, much research has been directed towards determining the partial or-
dering of events in parallel and distributed systems. Previous models have assumed
point-to-point communication which makes it very easy to determine which events
were caused by which other events (e.g. “message received by B from A” is clearly
caused by “message sent by A to B”). Unfortunately the synchronization models
supported by several parallel programming languages allow for anonymous commu-
nication, where the partner is unknown. Examples of anonymous communication
include locks, semaphores, and monitors.

Emrath, Ghosh, and Padua [EGP89] present a method for detecting non-determinacy
in parallel programs that utilize fork/join and event style synchronization instructions
with the Post, Wait, and Clear primitives. They construct a Task Graph from the
given synchronization instructions and the sequential components of the program
that is intended to show the guaranteed orderings between events. For each Wait
event node, all Post nodes that might have triggered that Wait are identified. An
arc is then added from the closest common ancestor of these Post events to the Wait
event node. An early version of our Algorithm 3 (without the shadowed events) was
motivated by their algorithm. Although their algorithm is simply stated, it may be
computationally complex. Rather than repeatedly computing the common ancestor
information, we use time vectors to calculate the guaranteed execution order.

Netzer and Miller [NM89,NM91] present a formal model of a parallel program
execution. Their model includes fork/join parallelism and synchronization using
semaphores. They distinguish between an actual data race, which is a data race
exhibited by the particular program execution generating the trace, a feasible data
race, which is a data race that could have been exhibited due to timing variations
and an apparent data race, one that appeared to have occurred or be possible. Their
approach and ours differ in the amount of trust placed in the trace. They rely on
the trace for their ordering information. For example, when two tasks try to enter
critical regions protected by a binary semaphore, their algorithm will say that the
critical regions are ordered. Under their definitions there is neither an actual nor
feasible data race even if two tasks write to a shared variable in the critical regions.
We view the ordering relationships in the trace with suspicion, and wish to generate
race reports in this situation®. In their more recent work [NM91] their emphasis has

8If the critical regions contain non-commutative operations, then the race to enter the regions
can affect the remainder of the execution [Wan90].

20 5. A Prototype for IBM Parallel Fortran

manipulation of critical data areas. A parallel event is a programming construct
permitting explicitly created tasks to synchronize their execution through intertask
signaling (as outlined in the previous section).

The IBM Parallel FORTRAN Trace Facility can automatically record important
events during the execution of a parallel program, providing useful information about
the execution. The Trace Facility produces a series of time-stamped trace records
during execution of a parallel program. At least one trace record is generated for
each of the following operations:

Start and end of program execution,

e Origination and termination of tasks,

o Assignment and completion of task work,

o Waiting for tasks to complete work,

e Start and end of parallel loop and parallel case execution, and

e Use of parallel locks and parallel events.

In addition to the time stamp, each trace record identifies the kind of action,
the program unit and task performing the action, the virtual FORTRAN processor
used, and the actual CPU on which the program unit was executing. Additional
information specific to the kind of action may also be recorded.

To build an event history from an IBM trace we need to determine the enabling-
blocking pairings for all synchronization events.

1. For the dispatching and scheduling (enabling) events, the corresponding task
begin is the blocking event.

2. For the IBM-event construct, Posts enable the Waits in the same cycle, and
Waits enable the Posts in the next cycle. Thus Posts and Waits are both
blocking and enabling.

3. For task completion (enabling) events, the corresponding event waiting for the
task completion is the blocking event.

Modified versions of the algorithms described in the previous section have been
implemented in a trace analyzer, and several traces have been analyzed. The trace
analyzer can construct the event history and calculate the time vector values for all
events in the trace. The final time vectors represent a safe partial order over the
events. By comparing the time vectors, the tool distinguishes between the ordered
and unordered event pairs. Combining this with variable reference information from
START [McD89], the trace analyzer reports those data races which can happen in
any execution of the inferred program. The trace analyzer is implemented mainly in
C++, and part of the code is implemented in C.

A graphical tool [HMW90c], built on top of the X Window System, has also been
implemented to assist programmers in comprehending the trace information recorded
during program execution and generated using the above algorithms. The tool allows
the user to browse the safe partial order computed and display the detected races.
Using a pointing device the user may request that various information related to a
selected node be displayed. The following information requests are included:

5. A Prototype for IBM Parallel Fortran 19

Task A Task B Task C

OO

Figure 3.6: Undetected Critical Region

short summary of the IBM-event mechanism and the intuition for the new algorithms

follows.

IBM-event based synchronization operates in a cycle with two phases®. During

the first phase (Post Request Processing), Post operations are enabled and Wait
operations are blocked. During the second phase (Wait Request Processing), the
opposite holds, Wait operations are enabled and Post operations are blocked. This
cycle can repeat indefinitely. The number of Posts or Waits necessary to switch from
one phase to the next is determined when the IBM-event is initialized.

In the semaphore model we used the fact that if £ Waits were known to always
precede a particular Wait operation, then that Wait must be preceded by £+ 1 Posts.
This led to Algorithm 3 which takes the kth min of the relevant unblocking events
instead of just the min. A similar idea has been applied to the IBM-events. In this
case we compute the (lower) cycle bound” which is a lower bound on the earliest cycle
in which the event could occur. As new safe arcs are added to an event history, the
cycle bounds may increase allowing still more safe arcs to be added.

5 A Prototype for IBM Parallel Fortran

In IBM Parallel FORTRAN, a task can be explicitly created, assigned work,
and waited for until the work assigned to it has been completed. A task can also
be implicitly created by parallel loops and parallel cases. Tasks can be executed
concurrently. A parallel lock can be used to prevent interference between tasks during

5This is a simplified description, a complete description can be found in [IBM88] or [HMW90b)].

TA cycle includes the Post/Wait operations from the first Post in a Post Request Processing
phase to the last Wait operation in the following Wat Request Processing phase.

18 4. Generalizing the Semaphore Model

As an example, consider the trace shown in Figure 3.4 (the same events are
shown Figure 3.5). Let A;, B;, Cy be the i j'" and k'* events in tasks A, B and C
respectively. The two unordered Wait events By and (; cannot happen concurrently
because there is only one Signal (A;) available for one of them to proceed in every
execution of the inferred program. They form two critical regions. In the executions
where B; occurred before (', ('; becomes the second Wait on the semaphore. Using
Algorithm 3, we get time vectors as shown in Figure 3.5(a) where the event pairs
{(B1,C4), (B1,C3), (B1,C5), (B2,C1), (B2,C3), (B,C3)} appear ordered. Similarly, in
the executions where (7 occurred before By, event pairs {(B1,C1), (Bs,C1), (Bs,Ch),
(B1,C3), (B2,C3), (Bs,Cs)} are ordered as shown in Figure 3.5(b). At this point,
we can conclude that the intersection of these two sets contains event pairs that are
not concurrent in any executions, whenever By happened before (; or C; before Bj.
Therefore, {(B1,C1), (B1,C3), (B2,C3), (Bs,C1)} are unordered sequential event pairs

in the critical region, and can be moved from Conc to Seq.

Task A Task B Task C Task A Task B Task C
100 100 112 101
22 02

32 03

Figure 3.5: Detect Critical Regions

Note that Algorithm 4 does not always succeed as three tasks can conspire to create
a critical region that is not detected. For example, consider the inferred program
fragment in Figure 3.6. If exactly one signal on semaphore 1 is available (and no
signal on semaphore 2) then the three elided regions are mutually exclusive. However,
Algorithm 4 only detects the critical regions starting with a Wait on semaphore 1.

4 Generalizing the Semaphore Model

The previous section described algorithms for systematically determining order
relationships between events in a counting semaphore model. We have also applied
a similar approach to the event-based synchronization mechanism provided by IBM
Parallel FORTRAN [IBM88]. The more general nature of the IBM-event mechanism
required modifications to the algorithms, especially the Algorithms 3 and 4. The de-
tails of the algorithms needed to handle the IBM events can be found in [HMW90b]. A

3. Analyzing Traces with Anonymous Synchronization 17

Algorithm 4: Initially let Conc = {{e, ¢’} : 7(e) || 7(¢’)} and Seq = 0.
Repeat the following procedure until no more changes are possible.

Pick any two unordered Wait events e and e’ for semaphore S where (e, ¢’) € Conc.
Let Glet(e,e’) be the set of Wait events® for semaphore S which precede either
event e or € (based on current time vectors 7).

Let Release(e,e’) = {e” : €’ is a Signal event using S and €” precedes e or
e’} U{e” : ¢” is a Signal event using S and does not follow either e or €’ and €” is
not shadowed with respect to either e or ¢’ }.

Let s =| Release(e, €') | and w =| Get(e,€') |.

o lf s—w>2=e| ¢, ie,if there are enough Signals for both Waits to
precede, then the two Waits can happen concurrently.

o lfs—w=1= (e ¢),ie.,thereisonly one Signal for a Wait to precede,
then we can conclude that they cannot happen concurrently. The starting
points of critical regions have been found. The following procedure is used
to determine the unordered sequential event pairs in the critical region.

1. First, assume that event e happened before ¢’. Thus w+1 Wait events
on S happened before ¢/. Use Algorithm 3 with £ = w + 1 to calculate
a new time vector for event ¢’. Continue with Algorithm 3 (with the
modification that whenever the time vector for €’ is calculated, event
e is counted when determining k) to obtain a set of temporary time
vectors.

Let Seq, be the set of event pairs which are in Conc but are ordered
by the temporary time vectors. After obtaining Seq,, the original time
vectors are restored. We can not yet move these events from Conc
to Seq since they may be concurrent in executions where ¢’ happens
before e.

2. Now assume that event ¢’ happened before e. Thus e is the w + 2nd
Wait for S. As before, starting from the original time vectors, we run
a modified Algorithm 3 (with the adjustment when the time vector for
e is calculated). Let Seq, be the set of event pairs which are in Conc
and are ordered by the resulting time vectors. Again, the original time
vectors are restored after determining Seqs.

3. The intersection of Seq; and Seq, gives the unordered event pairs in
the critical regions. We therefore set Seq = Seq U (Seq; N Seq,) and
Conc = Conc — (Seq; N Seqs).

e s — w < (means neither Wait event can precede. In this case, the inferred
program has a potential deadlock.

End Algorithm 4.

A Wait on a semaphore can be thought of as “Getting” a shared resource. A Signal can
likewise be thought of as a “Release” of a shared resource.

16 3. Analyzing Traces with Anonymous Synchronization

so, the algorithm then finds those unordered sequential event pairs within the critical

regions by considering the effect of different execution orders of the two Wait events.

The algorithm calculates two sets. The set Conc contains the potentially concur-
rent event pairs, while the set Seq contains known unordered sequential event pairs.
The event pairs in neither Conc nor Seq are ordered. Initially, every unrelated pair
of events are considered potential concurrent. As critical regions are detected, the

algorithm moves the appropriate unordered sequential event pairs from Conc to Seq.

3. Analyzing Traces with Anonymous Synchronization 15

3.4 Adjusting the Time Vectors to Determine
Concurrency

The previous algorithms compute time vectors representing a safe history. Given
any two events e and €', if 7(e) < 7(e’) or 7(¢') < 7(e) then the two events are ordered.
Otherwise, we say that ¢ and ¢’ are unordered in the history. The unordered events
need not necessarily be concurrent events. They may be free to occur in either order,
but constrained to occur sequentially. In this case, we call them unordered sequential
events. For example, if the program has a properly implemented lock around a critical
region, then different executions may have tasks entering the critical region in different
orders. In no execution, however, do two tasks concurrently enter the critical region.

In some cases it is reasonable, and even desirable, to have unordered sequential
races. Consider a program consisting of n tasks each taking various amounts of time
to compute a subresult. The program’s output is the sum of the n subresults. It is
reasonable to include a block of code like:

Wait (mutex);
total := total + mysubresult;
Signal (mutex) ;

at the end of each task. There are races between each of these blocks since they
all write to the shared variable total. However, all of the operations on total are
commutative and associative, so total receives the same final value regardless of the
order in which these blocks are executed.

Although the general detection of commutative and associative operations on
shared data is beyond the scope of this paper, we do provide a way to help distinguish
the blocks that are concurrent in some execution of the inferred program from those
that are sequentially unordered. Information on whether or not unordered blocks can
be concurrent may also be useful to a programmer trying to understand the program’s
behavior.

Unfortunately, the concurrent relation cannot be determined immediately from
the time vectors. It is neccessary that 7(e) || 7(¢') for e and €’ to be concurrent,
but this is not sufficient. As an example, in Figure 3.4, if e = the first Wait in B
and ¢ = the first Wait in C, then even though 7(e) || 7(¢’), the two Wait events
cannot occur at the same time in any execution. Determining whether or not two
unordered events can happen concurrently in some execution of the inferred program
is an NP-complete problem. Therefore we must settle for an approximate solution.

We now present an algorithm which detects many critical regions and determines
the associated pairs of unordered sequential events®. The algorithm first determines
if a pair of Wait events on the same semaphore starts a pair of critical regions. If

>The algorithm may not, however, detect all of the unordered sequential event pairs. This is
partly due to the difficulty in detecting all of the safe orderings, and partly due to the many unusual
ways that locks can be implemented.

14 3. Analyzing Traces with Anonymous Synchronization

[NM90]. We have presented a series of polynomial time algorithms that find many of
the orderings that occur in all executions of an inferred program. Here we bound the
execution times of these algorithms. Throughout this section we use m for the total
number of events, and n for the number of tasks, in the inferred program. Note that
the sum of the components of any time vector is bounded by m and the total of the
components of all time vectors is bounded by m?.

Assertion 1: The time required by the initialization algorithm (Algorithm 1) is
O(nm).

First we topologically sort the events, so that each unblocking Signal has been
assigned a time vector before we consider the corresponding Wait. This takes time
O(m) since each event has outdegree at most two (the next event in the task and the
corresponding Wait). By keeping an array containing the last time vector assigned for
each task and a back pointer to the unblocking Signal events, the relevant previous
time vectors can be located in constant time. Order n steps suffice to compute the
component-wise maximum. Therefore, the running time of Algorithm 1 is O(nm).

Assertion 2: The time required by the rewinding algorithm (Algorithm 2) is O(nm?).

Since each iteration of Algorithm 2 decreases at least one component of a time
vector, there can be at most m? iterations through the m events in the trace. By
keeping the component-wise min of the time vectors of the Signal events on each
semaphore, each event can be processed in O(n) time (including the possible update
to the component-wise min after processing Signal events). Therefore, the running
time of Algorithm 2 is O(nm?).

Assertion 3: The time required by the expanding algorithm (Algorithm 3) is O(nm*).

As above, there are at most m? iterations. The time for processing Signal events
is dominated by the cost of processing Wait events. Finding the set R(e) for Wait
events is made easier by storing a pointer to the shadowing Wait event (if any) with
each Signal event. Now the set R(e), as well as the value k, can be found with a single
pass through the trace, taking O(n) time per event for time vector comparisons. The
k + 1st component-wise minimum can be calculated in O(nm) time using a bucket
sort on each component. Therefore, the overall time required by Algorithm 3 is in
O(nm?*).

In the above analysis of Algorithms 2 and 3, we used a very pessimistic m? bound
on the number of iterations required. This is based on the assumption that, for each
iteration: only one timestamp is changed, only one component of the timestamp is
modified, and the value of the modified component only changes by one. We expect
most iterations will modify many of the timestamps by various amounts, particularly
when the events are examined in topological order. Thus these algorithms will usually
require only O(m) iterations, saving a factor of m over the pessimistic bounds stated
above.

3. Analyzing Traces with Anonymous Synchronization 13

Algorithm 3: FExpand:
Initially 7(e) = 7'(e) for all events e in the inferred program.
Repeat the following procedure until no more changes are possible.

for each event e in the trace
if e is a Wait event on semaphore S,
let W (S) be the set of Wait events on semaphore S
let & be the number of Wait events e,, € W(S) where
T(ew) < 7(€);
let R(e) = {é:¢éis a Signal event on S, 7(e) £ 7(é),
and ¢é is not shadowed with respect to e};
let v, = ming(7(é) : é € R(e));
set 7(e) = max(7(e?), 7% (e), vs);
else
set 7(e) = max(7(e?), 7#(e));
end if;

end for;

Figure 3.4: Expanding the Safe Order Relation

Figure 3.4 shows the new 7 time vectors generated when Algorithm 3 is executed
starting with Figure 3.1.

Theorem 3: Algorithm 3 generates only safe order relations with respect to the
inferred program Pr, i.e., for any two distinct events e and ¢’ € H:

Te) < 7(e) = e <p, ¢

3.3 Running Time Analysis

Given an inferred program, Pr, containing two distinguished events, e¢ and ¢’ the
problem of determining whether or not e <p,. € has been shown to be intractable

12 3. Analyzing Traces with Anonymous Synchronization

the same semaphore S performed by task T;, with 7(e) || 7(es). Let H(e,es) be
the subsequence of events performed by T; containing those events e; where both
7(e;) < 7(es) and 7(e;) || 7(e). If any suffix of H(e,es) contains more Wait events
on S than Signal events on S, then the Signal event es is shadowed with respect to e.

Definition 12: Let H'(e,e;) be the shortest suffiv of H(e,es) which contains more
Wait events than Signal events on S, and let e, be the first event of H'(e,es). We
say e, is shadowed by event e, with respect to c.

Lemma 1: Given a Wait event e,, and a Signal event e; on the same semaphore S,
if €5 is shadowed by some event ¢ with respect to e, then:

o cvent e is a Wait event on semaphore S,

o lhe subsequence of events performed between e and ey (by the same task) contains
as many Stgnal events as Wait events on semaphore S,

o the event ¢, which shadows e, with respect to e, is unique — whenever e, is
shadowed with respect to some event ¢, ey is shadowed by e. We say e is
the shadowing Wait event corresponding to e, and

o the correspondence between shadowed Signal and shadowing Wait is one to one,
so no event other than ¢, is shadowed by ¢.

Task A Task B Task C
100 110 101
200 120 102
300

Figure 3.3: Shadowed Signal Event

In the example shown in Figure 3.3, the Signal event in C is shadowed by the
Wait in C with respect to the two Wait events performed by task B.

Algorithm 3 is based on the following observation. If e is a Wait event on
semaphore S and k other Wait events on S must happen before e, then at least
k 4+ 1 non-shadowed Signal events happen before e in every execution of the inferred
program.

3. Analyzing Traces with Anonymous Synchronization 11

Suppose e is a Wait event for some semaphore S, and there are k£ other Wait events
for S which precede e in every execution of the inferred program. In this case, at least
k + 1 Signal events on S are needed in order to unblock e and its predecessors. We
will exploit this fact to enrich the safe event history. As an extreme example, consider
the causal trace where task A executes three Signals and task B executes three Waits
on the same semaphore, with the obvious Signal-Wait pairings. Figure 3.2(a) shows
the result of rewinding. It appears that the only inter-task arcs in the safe history
are from the first Signal in task A to the Waits in task B. However, the second Signal
in A must happen before the second Wait in B, and the third Signal must happen
before the third Wait, as shown in Figure 3.2(b).

Task A Task B Task A Task B

(a) (b)

Figure 3.2: Safe Ordering (all Signals and Waits are on the same semaphore)

Additional safe ordering arcs can be found based on another observation. In the
example shown in Figure 3.3, the Signal event in C is preceded by a Wait event in
the same task. From the indicated time vectors (computed using Algorithm 2), we
know that there is a Wait event (the first Wait in B) preceding the second Wait in B.
Therefore, at least two Signal events must precede the second Wait in B. The Signal
in C could be one of them, but if this is the case, then at least three Signal events
are needed to allow the second Wait in B to precede. In any execution of the inferred
program, the second Wait in B must happen after at least two Signal events other
than the Signal in C. Similarly, the first Wait in B must be preceded by at least one
Signal event, not counting the signal in C.

In general, if some Wait event e is known to follow a set of k£ other Wait events
on the same semaphore, then &+ 1 Signals on that semaphore are needed to unblock
e and its predecessors. If some Signal used to meet this demand is itselt preceded
by another Wait on the semaphore which is not in the set, then this additional Wait
increases the number of Signals needed to unblock e and its predecessors to k& + 2.
Therefore the unblocking done and additional blocking created by including the Signal
cancel. When this happens we say that the Signal is shadowed.

Definition 11: Let 7 be an assignment of time vectors to events representing a safe
event history. Let e be a Wait event on semaphore S and e; be a signal event on

10 3. Analyzing Traces with Anonymous Synchronization

Observe that the only difference between Algorithm 2 and Algorithm 1 occurs
when e 1s a Wait event. Here v, is the minimum of a set of time vectors which
includes the time vector used for vs in Algorithm 1. Therefore the components of
time vectors can only decrease as Algorithm 2 executes.

Task A Task B Task C
100 110 101
G0)y
200 120 102
W) 6 6
300 130 103
() 6
400
)

Figure 3.1: Rewinding the Time Vectors

After rewinding, we have a partial order that represents a safe history (with respect
to the inferred program). If event e; has an earlier time vector than e, then e; happens
before e in every execution of the inferred program.

Theorem 2: Algorithm 2 generates a safe event history with respect to the inferred
program Pr, i.e., for any two events ey, ey in the trace:

m'(e1) < 7'(e3) = €1 <p, €.

Although the 7/ timestamps represent a safe event history, they may be too
conservative. As an example, the 7/ time vectors in Figure 3.1 represent a history
where the three Wait events in task A are unrelated to all of the events in tasks B and
C. However, it is obvious that in any execution of the corresponding inferred program
the Wy in task A must follow the two S; events in tasks B and C, and the second
W in task A has to wait until all of the events in B and C have occurred. Our next
algorithm increases the time vectors while maintaining a safe event history.

3.2 Expanding the Safe Order Relation

The result of the rewind step is a set of time vectors representing a safe event
history. As noted above, it may be an overly conservative safe order relation where
some of the safe ordering arcs have been lost during the rewinding procedure. We now
describe an algorithm which enriches the partial order while maintaining its safety.
The partial order resulting from this process is represented by the time vectors 7(e).
Initially, 7(e) = 7'(e).

3. Analyzing Traces with Anonymous Synchronization 9

3.1 Rewinding the Time Vectors

The 7 time vectors resulting from the initialization process represent an unsafe
history. It is unsafe because the causal trace associates a particular unblocking Signal
event with each Wait event. The algorithm in this section rewinds the time vectors to
account for the fact that some executions of the inferred program might use different
signal events on the appropriate semaphore to unblock a given Wait. The result of
rewinding is a new event history which (usually) does not correspond to a causal trace
of any execution of the inferred program, but rather represents orderings which occur
in all causal traces of the inferred program, regardless of what execution generated
them.

This new history is represented by a new set of time vectors assigned to the
events, which we denote by 7/. At the start of Algorithm 2, the 7'(e) time vectors
are initialized to the 7(e) time vectors computed by Algorithm 1. We now give the
intuition behind the rewinding algorithm.

Suppose e is a Wait event, and e; and ey are the only two Signal events which
could have unblocked e. In this case, we only know that either e; or e; must have
happened before e. A global trace for executions of the inferred program might list
the three events (with the other events elided) in any of the orders:

B o N N o DY
B o B N & Y
ey €1y €20 L €C0 L or
B P R LT R ET

However, we can conclude that those events that precede both e; and ey in every
execution of M must also occur before e. Formally if e, <3; ¢; and e, <p; €2 then
€q <y €. The rewind algorithm repeatedly uses this fact to obtain a safe event
history.

Algorithm 2: (Rewind)

Initially, for all events e in the trace, 7'(e) = 7(e).

Repeat the following procedure until no further changes are possible.

for each event e in the trace

if e is a Wait event on semaphore S,
let ef ...e; be all the Signal events on S;
set v, = min(7'(e]), ..., 7'(e}));

else
set v, = 0, the all zero vector;

end if;

set 7/(e) = max(7'(e?), 7% (e), vs);

end for;

8 3. Analyzing Traces with Anonymous Synchronization

Task A Task B Task C Task A Task B Task C
100
Sl “~~_§_._~ Sl 101
102
_ - Sl Sl

Figure 2.1: Initializing the Time Vectors: (a) depicts a causal trace. The
dotted edges show the Signal-Wait pairings. (b) shows the partial order and
time stamps resulting from Algorithm 1.

3 Analyzing Traces with Anonymous Synchronization

Our analysis method consists of three algorithms. Algorithm 1 initializes a time
vector 7(e) for each event e. The rewinding algorithm (Algorithm 2) reduces the 7(e)
time vectors, creating another time vector, 7/(¢), for each event e. The effect of this
rewinding algorithm is to remove edges from the represented partial order so that it is
safe with respect to the inferred program. Unfortunately, the rewinding produces an
overly conservative safe order relation. The third algorithm (Algorithm 3) increases
the time vectors to restore some of the removed edges while maintaining a safe partial
ordering.

The initialization process creates the history corresponding to the given causal
trace. Unfortunately, this partial order is (in general) an unsafe order relation. The
correspondence between Signals and Waits in the causal trace need not hold for other
executions of the inferred program. The following is an obvious property of the time
vectors generated by Algorithm 1.

Property 1: The maximum value of any time vector component is the number of
events performed by the task associated with that component.

2. Description of the Model 7

The following functions on sets of time vectors will be very useful when describing
our algorithms.

Definition 8: For any m time vectors 7y,...,7,, of Z"
e ming(71,...,7m), k > 0 is the vector of Z™ whose ith component is the k'
smallest element in the collection [i], mat], ..., T[],
® Max(T,...,Tm) is the vector in Z™ whose ith component is max(7i[i], ..., Tm[t]).
Conventionally, we define ming(7y,...,7,) to be 0, the all-zero vector.

As an example, mins([1, 2], [1, 3], [2,4],[2, 5], [3, 2]) is [2, 3]. We often call ming(7y,...,7m)
the k" component-wise minimum of 7, ..., 7,,, and Max(r,...,7,) the component-
wise mazimum of 7,..., T.

Definition 9: Given an event ¢ performed by task T; in a causal trace, let 7%(e)
be the time vector containing the local event count for e (one more than the number
of events previously performed by T; in the trace) in the 1th component and zeros
elsewhere.

Definition 10: Given an event e performed by task T; in a causal trace, let e denote
the previous event performed by T; in that trace if such an event exists.

The following algorithm (derived from [Mat88,Fid88]) computes time vectors for
the history corresponding to a causal trace. This algorithm is also comprises the first
phase of our analysis, converting the causal trace into a time vector representation of
the corresponding event history.

Algorithm 1: Given a causal trace, each event e is assigned a time vector, 7(e),
as follows®:

for each event e in the trace
if e is a Wait event on semaphore S,
let €’ be Signal event unblocking e;
set v, = 7(€');

else
set v, = 0, the all zero vector;
end if;
set 7(e) = max(7(e?), 7#(e), v);
end for;

“Note that e must have already received its time vector, and if e is a Wait event then
the unblocking signal event needs to have been assigned a time vector. Because any history
corresponding to a trace is acyclic, there is always at least one event which can be assigned a
time vector.

After completing Algorithm 1, 7(e) < 7(¢’) iff e—e’ in the history corresponding
to the trace. Figure 2.1b shows the result of applying Algorithm 1 to the causal trace
in Figure 2.1a.

6 2. Description of the Model

Theorem 1: If event g < h in Pr, then for each execution of P where h—g there is
a data race, B(e,e') and B(f, f'), in Pr such that either e—h or f—h in the execution
of P.

An implication of the theorem is that if our algorithms report that there are no
races in Pr then there are no races in P. The Appendix contains a proof of Theorem 1.

2.1 Virtual Time

Since a linearly ordered representation of time is not always adequate for reasoning
about parallel programs, we use time vectors to represent a partial order on the events.
In our trace analysis, each event is assigned a vector of timestamps. The ordered event
pairs and unordered event pairs can be easily distinguished by comparing these time
vectors.

The time vectors we compute in this paper are an extension of the time vectors
of Fidge [Fid88] and Mattern [Mat88]. The easiest way to describe their system is
in the context of message passing. There, each task T; keeps its own count, C;[¢], of
the number of events it has performed. In addition, T; keeps a count C;[j] on the
number of events known to have been performed by each other task 7. These other
counts are generally underestimates, and are updated only when T; synchronizes in
some way with another task. Each time a message send event is performed by T},
C;[7] is incremented and the event is timestamped with the vector C;. This vector
value (; is also piggybacked onto the message. When T; performs a receive event, it
will obtaining a message with some timestamp C’. Task T} sets, for each j, C;[j] to
the maximum of C;[j] and C’[j]. It then increments C;[¢] and timestamps the receive
event with the new value of C;.

When time vectors are assigned to events in this way, they represent a partial
ordering of the events. An event ¢ with timestamp 7 precedes another event ¢’ with
timestamp 7’ in the partial order if and only if every component of 7 is less than
or equal to the corresponding component of 7/. Events ¢ and ¢’ are unrelated in
the partial order when both some component of 7 is greater than the corresponding
component of 7/, and some (other) component of 7/ is greater than the corresponding
component in 7.

Our algorithms use these vector valued timestamps to represent event histories.
The event histories are modified by updating the vector timestamps associated with
events rather than explicitly adding (or deleting) arcs in the partial order.

Definition 7: For any two time vectors 7,79 in 2"
1. 7 <1y <= Vi(n[t] < 2t])
2 m<n<<=mnnadn #n
3.1 || 2= (r < 72) and =(12 < 7).

We say time vector 71 is earlier than time vector 74 (or 72 is later than 7)) when
1 < 72. We say 7 and 72 are unordered when 7y || 72.

2. Description of the Model 5

Definition 3: Given a program P and two events, ¢ and €', occurring in some
execution of P, if e happens before €' in every execution of P in which both events
occur then we wrile e <p €.

When the program P is obvious from the context we will use < instead of <p.

Definition 4: Given program P and event history H, if e—pe' implies ¢ < ¢’ then
H is a safe partial order.

The concept of safe histories is important, as these are the only orderings between
events that a programmer can rely on (i.e. hold for every execution of the inferred
program).

Definition 5: If e and €' are two consecutive synchronization events performed by
the same task in an event history, then B(e,€') is the sequence of statements executed

by the task between e and €'. We call B(e,€') a (sequential) block.

For data race detection, the only important characteristics of a block are the
shared variables read and written by statements in the block. The list of variables
read and written in a block can be recorded in the trace. Alternatively, the program
itself can be analyzed to determine which variables can be accessed between pairs
of synchronization statements. For the purposes of this paper, we assume that the
read /write lists for blocks are available and concentrate on the ordering relationships
between the blocks.

We say two blocks conflict if some shared variable is written in one of the blocks
and either read or written in the other block.

Definition 6: A race in P is a pair of conflicting blocks, B(e,e’) and B(f, f'), such
that there exists a global trace of P where f—é' in the corresponding history and a
(not necessarily different) global trace of P where e— f" in the corresponding history.

This definition may be too general when shared variables are updated in certain
ways while protected by lock-like structures. We deal with this issue in Section 3.4.

The algorithms in the remainder of this paper compute a safe partial order for a
program inferred* by a local trace T'. We use this safe partial order to report potential
race conditions in the original program P.

In the inferred program Pr, each task executes sequentially the corresponding
synchronization events from the local trace. Between synchronization events each
task in Pr reads and writes the same variables that were read and written by P
during the execution that created the local trace.

An important result is given by the following theorem. It says that if event ¢
always happens before event h in Pr, but ¢ does not always happen before h in P,
then there is a race in P that happens before h.

*The inferred program is never actually computed. It is used to describe the limitations of the
algorithm.

4 2. Description of the Model

When H is clearly indicated by the surrounding context we will often drop the
subscript and write e—¢’ instead of e—pge'.

For any trace there is always a corresponding event history that is the transitive
closure of the order in which events appear in the trace. If this history is a local
history then the trace is a local trace, with a separate log for each task. Likewise
if this history is a global history then the trace is a global trace, and tracing may
be a significant bottleneck. Conceivably, the trace could represent each event in its
own file without timestamps or any other ordering information. In this case the
corresponding history would contain no arcs. It is important to note that traces are
an abstraction of the execution which produced them so that all event orderings need
not be explicitly represented. Thus different executions can generate the same trace
and, since the tracing mechanism could be nondeterministic, identical executions of
the program might generate different traces.

We do, however, make two assumptions on traces and their corresponding histo-
ries. We assume that histories corresponding to traces are acyclic. Secondly, if there
is a causal relationship between e and e’ in the execution (for example, e represents
the sending of some message and ¢’ represents that message’s reception) then no pos-
sible trace of that execution has a corresponding history where ¢’ precedes ¢, contrary
to the causal relationship.

Any trace analysis methodology is useful only if their is some minimum amount
of information in the trace. In particular, our algorithms perform best when given a
causal trace.

Definition 2: A causal trace is a trace that indicates, for each blocking event (e.g.
semaphore Wait) the particular enabling event (e.g. semaphore Signal) that caused
the event to become unblocked.

Every global trace can be interpreted as a causal trace but a causal trace need not
be global. In particular a causal trace can be produced from strictly local information.
In our semaphore model, this requires only that a log, indicating the order in which
tasks successfully execute the Signals and Waits, be kept for each semaphore. This
kind of information is commonly required in trace-and-replay systems such as Instant
Replay [LMC87].

The history corresponding to a causal trace contains arcs from each enabling event
to the blocking event it unblocks in addition to the arcs from each event to the next
event performed by the same task.

There is a similarity between a causal trace and the notion of explicit synchro-
nization introduced in the previous section. However, these two concepts have a
subtle, but very important, difference. When the explicit synchronization is part
of the events, the executions of the inferred program are constrained. The causal
trace is used only for initialization, and does not restrict the set of executions that
are considered. Thus our algorithms will report races that can occur with different
Signal-Wait pairings. Although our algorithms can be run on local traces, the addi-
tional information provided by a causal trace allows a more accurate initialization,
and hence more accurate results.

2. Description of the Model 3

events contain anonymous synchronization (e.g. semaphores, locks, and signals). In
this case, determining if two events occur in the same order in every execution is
much more difficult?.

The next section contains definitions and descriptions of our basic model involving
counting semaphores. Our algorithms for this basic model are described and analyzed
in Section 3. We have implemented a version of our algorithms for the Post/Wait
style synchronization used in IBM’s Parallel Fortran. Our implementation and the
necessary modifications to our algorithms are described in Sections 4 and 5. In
Section 6 we survey some related work. Finally, Section 7 contains conclusions and a
brief summary of our results.

2 Description of the Model

In our basic model, programs synchronize using counting semaphores (initialized
to zero). Two operations, P and V, are defined for each semaphore. In this paper,
we use the more mnemonic Wait and Signal to represent the P and V operations
respectively. Therefore, each synchronization event is a tuple containing: the opera-
tion completed (Wait or Signal), the affected semaphore, and the id of the task that
performed the operation.

Many other kinds of synchronization operations can be simulated with counting
semaphores. Consider, for example, the event “init task t” which creates a new task ¢
and the event “await task 7 which blocks the running task until task ¢ has terminated.
Given a trace containing these events, we can easily create a trace with equivalent
synchronization properties that contains only semaphore events.

We distinguish between event traces, which are the information recorded during
an execution of a program, and event histories, which are partial orders as defined
below. An event history might correspond directly to a trace, or it could contain
either more or less information than is directly accessible from a trace.

Definition 1: An event history is an irreflexive partial order representing (some of)
the order relations between events that occurred during some execution of a program.
We use “e—pge'” to indicate that e precedes €' in history H.

If a partial order contains only arcs from each event to the next event performed by
the same task then we call it a local history.

If a partial order is actually a total order then we call it a global history®

?The difference between explicit and anonymous synchronization is somewhat in the eye of the
beholder. Ada-like rendezvous becomes anonymous when the events “task ¢ calls ¢/” and “task ¢
accepts some task” are used. Furthermore, semaphores can be made explicit by using the event
“task t obtains the semaphore released by t'.”

3We assume that the granularity of events recorded in traces of a program P is such that each
execution of P can be represented by one or more total orderings of the events performed during the
execution. This representation is often misleading in that events that were executed concurrently
are portrayed as occurring in a particular order.

2 1. Introduction

as many potential races as possible from a single trace. In particular the algorithms
described in this paper will generate an ordering relation among program events that
can be used to identify all races occurring in a potentially large set of related execu-
tions. Furthermore, if our algorithms report that there are no data races, then there
will be no data races in any execution given the same input as that used to generate
the trace.

We view the execution of a program as a collection of abstract events with various
ordering properties. Although what comprises an event depends on the programming
language, application, and desired level of detail, each event is a piece of program
activity executed by a single task. Furthermore, each task executes events one at a
time, with no overlap. We make the assumption that each synchronization statement
executed by a task is represented by one (or more) events.

Many parallel systems (e.g. [IBM88]) provide facilities for recording important
events during the execution of parallel programs. By limiting the debugger’s activ-
ity, the probe effect should be reduced. The recorded information can be analyzed
following the program’s execution.

The following kind of query is helptul in the debugging process and critical for
trace-based race detection.

Given a program P running on a particular input and two program events,
e1 and eg, 1s it true that in every execution which includes both ¢; and
€2, €1 always occurs before e57

Unfortunately this question involves termination issues and thus is too hard to solve
in polynomial time. We therefore compute a conservative approximate response. Our
algorithms may respond No to the above query when in fact the correct response is
Yes (resulting in possibly spurious race reports). However, if our algorithms respond
Yes then either Yes is the correct response or else a race reporting tool based upon
our algorithms will report a data race that occurs before either e; or e,. This last
condition can result in unreported data races but only when other races are reported
and the reported races hide the unreported races ([AP87]). Theorem 1 assures us
that if our algorithm reports that there are no races then there will be no races when
the program is executed with the same input.

To accurately describe what it means when our algorithms respond Yes to the
above query, it is helpful to consider the inferred program program Pr derived from
a program P and a trace T' of P. Pr is the same as P except that all conditional
branches are replaced with unconditional branches resolved in the same direction as
they were in the execution of P that generated T'. Our algorithms compute a strictly
conservative response to the query for this derived program. That is, for Pr, our
algorithm may respond No incorrectly but will never falsely respond Yes. To always
answer correctly, even for programs such as Pr is NP-Hard.

If the events explicitly identify the participating tasks (for example task ¢ ren-
dezvous with ', or task ¢ forks into tasks #1,%2, and t3) then there are relatively few
ways of executing programs without conditional branches (such as Pr) and it is easy
to determine those pairs of events that must occur in a particular order. The dif-
ficulties in answering the above query for programs such as Pr arise only when the

1. Introduction 1

1 Introduction

Writing and debugging a parallel program is, in general, more difficult than
writing and debugging a sequential program. A major reason for this difficulty is
the need for explicit synchronization between the tasks in a parallel program. A
program with errors in synchronization will often be non-determinate, i.e., generate
different results even when started with exactly the same inputs. In a parallel
program, nondeterminism often introduces unexpected program behavior, making
the debugging process extremely difficult.

Unwanted non-determinate behavior of parallel programs often starts with a data
race. One of the fundamental problems encountered when debugging a parallel
program is locating the data races in the program. A data race exists between two
statements!, S1 and 52, if

1. the statements access the same memory location,
2. at least one of the accesses is a write, and

3. there exists an execution of the program where S1 happens before 52 and
another execution, with the same input, where S2 happens before S1.

Notice that this definition includes both accesses that may occur “at the same time”
and accesses that must occur serially but can occur in either order (such as accesses
protected by a lock).

The current methods for determining potential races in parallel programs can
be roughly divided into three groups: compile time analysis [Tay84,McD89,CKS90],
run time (on-the-fly) analysis [DS90] and post-mortem trace based analysis [EP8S,
MC88,EGP89,NM89,HMW90a,HMWOI1]. No single approach has yet proven to be
unquestionably superior. A brief sample of some advantages and disadvantes include
the following. Compile time analysis has the advantage of being independent of
the input data. Run time analysis has the advantage of not requiring the storage
of massive amounts of trace data, because the information about the execution is
processed and then discarded. Trace based analysis may be potentially less intrusive
than run time analysis and can be used to detect races in alternative executions.
Both compile time analysis and trace based analysis generally try to answer questions
that are NP-complete. Therefore approximation methods are necessary for practical
tools. The on-the-fly techniques are generally limited to reporting races that actually
occurred in the execution being analyzed. They can never guarantee the absence of
races in the program.

We have chosen to work on a trace based approach. For the type of programs we
are interested in analyzing (programs containing semaphore style synchronization),
the known compile time techniques can fail due to their time and space complexity.
Because run time analysis only reports races that occurred in a single execution, alter-
native approaches must be investigated. We are primarily concerned with detecting

IFor the purposes of this definition we assume that loops are unrolled and subroutines copied so
that each statement is executed at most once during an execution of the program.

Determining Possible Event
Orders by Analyzing
Sequential Traces

D. P. Helmbold, C. E. McDowell, J-Z. Wang

91-36
September 25, 1991

Board of Studies in Computer and Information Sciences
University of California at Santa Cruz
Santa Cruz, CA 95064

ABSTRACT

One of the fundamental problems encountered when debugging a parallel pro-
gram is determining the possible orders in which events could have occurred. Various
problems, such as data races and intermittent deadlock, arise when there is insuffi-
cient synchronization between the tasks in a parallel program. A sequential trace of
an execution can be misleading, as it implies additional event orderings, distorting
the concurrent nature of the computation. This paper describes algorithms which
generate those event orderings which can be relied on by the programmer from the
trace of an execution.

By its very nature, the information in an execution trace pertains only to that
execution of the program, and may not generalize to other executions. We tackle
this difficulty in a systematic way: defining an “inferred program” based on the
trace and original program, analyze this inferred program, and prove a relationship
between the inferred program and the original.

The results of our algorithms can be used by other automated tools such as a
data race detector or constraint checker. The basic algorithms described here have
been implemented in a working trace analyzer for IBM Parallel Fortran. The trace
analyzer graphically presents the discovered event orderings and reports various
potential data races in the subject program.

Keywords: data race, time vector, program trace, parallel programming, debug-
ging, distributed systems

