
Test Pattern Generation forRealistic Bridge Faults in CMOSICsF. Joel Ferguson and Tracy LarrabeeUCSC-CRL-91-30August 23, 1991Baskin Center forComputer Engineering & Information SciencesUniversity of California, Santa CruzSanta Cruz, CA 95064 USAabstractTwo approaches have been used to balance the cost of generating e�ective testsfor ICs and the need to increase the ICs' quality level. The �rst approach favors usinghigh-level fault models to reduce test generation costs at the expense of test quality,and the second approach favors the use of low-level, technology-speci�c fault modelsto increase defect coverage but lead to unacceptably high test generation costs. Inthis report we (1) present the results of simulations of complete single stuck-attest sets against a low-level model of bridge defects showing that an unacceptablyhigh percentage of such defects are not detected by the complete stuck-at test sets;(2) show how low-level bridge fault models can be incorporated into high-level testgeneration; and (3) describe our system for generating e�ective tests for bridge faultsand report on its performance.



0 1. Motivation1. MotivationThe goal of a production testing system is to cost e�ectively minimize the number of badparts that pass the tests. The number of bad parts that pass the tests are measured in de-fective parts per million, or DPM. McCluskey and Buelow have shown a simple relationshipbetween the defect coverage of a test set, the yield of the manufacturing process, and thequality level of the circuits that passed the test set assuming that defects are independentlydistributed on the chip [MB88]. Table 3 from McCluskey and Buelow's paper shows that toobtain the relatively modest quality level of 200 DPM in a circuit with a 90% yield requiresthat the test set detect 99.8% of the manufacturing defects. If the yield is 75%, the test setmust detect 99.93% of the defects.Recent evidence shows that many defects are not detected by test sets that detect allsingle stuck-at faults (hereafter called complete SSF test sets) in some circuits [FS88, SM90,PRM90]. The studies reported by Ferguson and Shen, and Storey and Maly consisted ofdefect simulations to determine which circuit-level defects were probable, followed by a faultsimulation to �nd the defect coverage [FS88, SM90]. The study by Pancholy, et al., involvedfabricating easily diagnosable integrated circuits, testing them with a diagnostic test set,and applying a complete SSF test set to the faulty ICs. The complete SSF test set detectedonly 98.74% of the faulty blocks on the ICs fabricated by Pancholy, et al.Our approach for increasing the quality (decreasing the defect level) of shipped ICs isto determine which faults are likely to occur, then �nd which of these are not detected bythe SSF test set, and generate tests that detect the undetected faults. Likely faults aredetermined by simulating the results of known defect mechanisms, such as dust and othercontaminants in the fabrication process, to the physical layout of the circuit. This is doneas an automated defect simulation on the circuit layout. We refer to the faults that result inthe defect simulation as realistic faults since they can be realized by known defect causingmechanisms.The output of earlier defect simulators were unsuitable for automatic test patterngeneration (ATPG), and the time for fault simulation was too great for the simulator tobe combined with a production ATPG system. We avoid these disadvantages by �rstidentifying realistic faults, which are generally presented as a change in the netlist of thecircuit, and then translating these into changes in the logical function of the circuit. Thisallows fault simulation and test generation for the circuit with a much better performancethan if fault simulation and ATPG were done at the switch or transistor level.



12. The Scope of this ReportThe discussion in this report is restricted to the domain of fault modeling and ATPGfor circuits designed using standard cells. The approach presented here can be extendedto apply to gate arrays and other ASIC technologies, but is more easily implemented forstandard cell designs. We partition the realistic faults into three categories, and the tests aregenerated for each fault based on which category it is in. The three categories are bridgesand breaks within the cell, bridges in the interconnect, and breaks in the interconnect.In future work we will consider less common faults, such as, bridges between cells andinterconnect, and bridges between adjacent cells.The behavior of a cell with a bridge or break fault can be determined using a circuit-levelsimulator such as Spice. The computation costs of circuit-level simulation can be amortizedover the life of the standard cell library in the same way that the costs of characterizingthe library are amortized. Also the relatively small size of most cells makes circuit-levelsimulation feasible. The faults in a large cell can be characterized by partitioning the cellinto smaller cells and characterizing them independently.The result of the circuit simulation for a cell would be a list of input vectors for eachcell that sensitize the cell's inputs and the resulting faulty behavior. The input cubesfor sensitizing the cell and the location of the error could be used by a logic level ATPGsystem. For simple cells such as AND-OR-INV complex gates, it may be that SSF test setsare su�cient for detecting the realistic faults in the cell. We are currently characterizingthe standard cells in the National Security Agency's CMOSn library. This will be reportedon in the near future.Breaks in signal lines cause the inputs to some of the receiving cells to be disconnectedfrom the outputs of the driving cells, so that logic value of the driving cell's output does nota�ect the logic value at the receiving cells' inputs. For the sake of simplicity will assumein this paper that there is a single source for each signal. This means that there are nobusses or signal lines with multiple tri-stateable drivers are considered. Signal line breaksmay exhibit non-logical behavior but for most cases we can probably assume that the line\oats high" or \oats low". That is it behaves as a Stuck-at 0/1.We can see from Figure /refline-break that a single defect can break a line that fans outto four gates so that it partitions the gates connected to that node in seven ways/footnoteIfDCBAFigure 2.1: Potential Breaks in Circuit with Fan-out of Four.



2 2. The Scope of this Report
BAymy2y1

x1x2xn Cell ACell B z1z2zn+m ABBridge-CellFigure 2.2: Modeling of Interconnect Bridge Faults.breaks were allowed to occur in the area of the node that splits into parts, there are partitionsof the circuit into three pieces.. Assuming that a nodes not connected to the output behaveas stuck at 0 or 1, there are 14 single and multiple stuck-at faults that can be caused by asingle break causing defect. There are 10 potential single line stuck-at faults for this node.If the topology of the circuit were di�erent, for instance if gates A and D were swapped, thepotential multiple-line stuck-at faults (MSFs) would change. A defect analysis tool such asVLASIC, FXT or Carafe can determine which multiple stuck-at faults may be caused by asingle defect. This allows us to know which multiple stuck-at faults are likely in the circuit.This is much fewer than the set of all possible MSFs and may be feasible for ATPG.Bridges and breaks in the standard cells and breaks in the interconnect were discussed inthe previous paragraphs to show the general approach that we advocate for testing ASICsusing standard cells, and to give an indication of how these realistic faults may be handledin the framework we are presenting. The remainder of this report is concerned withthe detection of bridge faults between signal lines connecting the standard cellsonly.Bridges in the interconnect layers are much more common than breaks in the intercon-nect layers for many fabrication processes [MTCC87]. As we see in the next section, thebehavior of bridges cannot be modeled as a simple wired-or or wired-and. More generallya bridge between the outputs of two cells can be modeled as replacing the two cells witha single bridge-cell implementing the logic function of the bridged node as in Figure 2.2.In the next section we see that for some inputs to the bridge-cell there may be inputs forwhich the output logic value cannot be determined with certainty.



33. A System for Detecting Realistic Bridge FaultsWe have divided the problem of generating test patterns for realistic bridge faultsbetween signal lines into three parts:1. Determine the realistic bridge faults. The program that performs this task is Carafe.2. Find the change in local logical behavior for each fault. The program that performsthis task is Bridger.3. Generate tests detecting each change in local logical behavior. The program thatperforms this task is Nemesis.The interfaces between these programs are shown in Figure 3.1.3.1 CarafeA version of Carafe (Circuit and ReAlistic Fault Extractor) is used to �nd the probablebridge faults between signal lines in the circuit [Jee90]. Carafe determines which bridgefaults are possible by simulating the results of spot defects on the physical layout of thecircuit. Defects are modeled as changes in the electrical behavior of small spots on thephysical layers of the IC. Possible electrical changes for the top metal layer would be thepresence of extra metal where there should be no metal, and the absence of metal wherethere should be metal. If the former happens and the spot of metal \touches" the conductingmaterial of two circuit nodes, a bridge would occur between the nodes. Similarly a spot ofmissing metal could cause a break in a node. Such a defect in the physical layer could becaused by a particle of dust on the metal mask or in the photoresist used to shape the metallayer. For a more complete description of the determination of realistic faults see [FS88].Carafe �nds which bridges are possible by considering the range of probable spot defectsizes for each layer being considered and �nding all nodes that are within that distance orcloser to each other in that layer. These bridges are caused by defects that cause additionalconducting material falling between these conductors. It also �nds all nodes that can bebridged due to pinholes in the oxide layers. These nodes are on di�erent layers such asbetween metal 1 and metal 2 and they must overlap with only a layer of oxide betweenthem. Carafe takes as input the physical layout of the circuit to determine whether abridge is likely and to determine how likely the bridge is.
Bridger PatternsTest

TransconductanceCell Descriptions Fault FormulasFault TypesFaultsCircuit DescriptionDefectsLayout NemesisCarafe
Figure 3.1: The Carafe-Nemesis Realistic Fault ATPG System



4 3. A System for Detecting Realistic Bridge FaultsTest structures can be used to estimate the defect density of many types of spot defectson the IC [MTCC87]. Carafe uses this knowledge to estimate the probability that if abridge fault occurs, how likely it is. One of Carafe's inputs is a �le that describes thedefect density and the distribution of defect sizes for each layer. Carafe determines theprobability of each realistic bridge fault for each size defect. By weighing the results of theprobability distribution function of defect sizes and summing them, Carafe determines therelative number of times each bridge fault should occur.Normally Carafe attens the layout to the transistor-level and describes the faults atthe circuit-node level. A second version of Carafe was written that presents the circuitand faults at the logic-gate level for this research. This version of Carafe requires that thephysical layout of the circuit be presented hierarchically with the two levels of hierarchybeing the cells and the interconnect between the cells. In addition to providing the weightedfault list, this version of Carafe provides a gate level netlist for Nemesis and a list of faulttypes to Bridger. To evaluate Carafe's performance we ran it on the ISCAS-85 benchmarkcircuits collected by Brglez and Fujiwara [BF85]. The standard-cell layouts we used for thecircuits were provided by MCNC. This version of Carafe's performance at extracting therealistic bridging faults of the MCNC cells on a Sparcstation 1+ is shown in Table 3.1.Circuit C432 C499 C880 C1355 C1908 C2670 C3540 C5315 C6288 C7552faults 1546 2747 3227 4356 4669 13589 16316 40143 21475 53439seconds 10.5 24.7 33.4 50.1 63.2 404.5 621.1 3326 921 5687Table 3.1: Bridge fault extraction statistics for ISCAS-85 circuits using Carafe3.2 BridgerAn example of how a simple wired{or or wired{and model does not accurately model aCMOS bridge is shown in Figure 3.2. The logic function caused by the bridge faults wasobtained using a Spice simulation. The �gure shows that two PMOS transistors in parallelare stronger than the NMOS transistors in series for NAND gates in the CMOS3 standardcell library [Hei88], but a single PMOS transistor is not. Note that the transistor strengthmodel used in the COSMOS fault simulator cannot model this fault correctly by assigningany combination of strengths to the eight transistors.Bridger uses the resistive model for conducting transistors that was suggested by Acken[Ack88] and later by Storey[SM90]. In experiments comparing the results of Spice simula-tions and Bridger, we found that if Bridger predicted the voltage at the bridged signals to beless than 2.0 Volts, Spice always predicted less than the logic threshold, and if Bridger pre-dicted greater than 3.0 Volts, Spice predicted greater than the logic threshold. If Bridger'sprediction was between 2.0 and 3.0 Volts, Spice would sometimes predict a di�erent logicalvalue than Bridger. We use voltage thresholds such that a logic 0 is anything between 0.0and 2.0 Volts and a logic 1 is anything between 3.0 and 5.0 Volts: any more relaxed thresh-olds may lead to incorrect logic values.For comparison with the strict threshold values detailed above, consider relaxed thresh-olds where voltages in the range 0.0 to 2.5 Volts is a logic 0 and voltages in the range2.5 to 5.0 Volts is a logic 1. Some faults that are detectable with the relaxed threshold



3.3. Nemesis 5A BAC DC
E
F Truth Table entries for E 6= FABCD EF Wired-And Wired-Or Spice011110110011110111101100 101010010101 0 100000 11111 110000Figure 3.2: Logic Function of Bridge Fault in CMOS3 NANDs using Spice.are undetectable with the restricted thresholds. Table 3.2 shows the di�erent numbers andpercentages of an arti�cially constructed fault set (where each wire was bridged to the �vewires directly following in the wirelist) that are detected by our complete SSF test set.The second and third rows of the table show the number of bridge faults detected by thecomplete SSF test using the di�erent thresholds, and the last two lines show the percentageof detectable, non-feedback bridge faults (total bridge faults minus faults pruned due tofeedback and faults declared untestable given the fault table for the given threshold) thatare detected by the complete SSF test set.Circuit C499 C880 C1355 C1908 C2670 C3540 C5315 C6288 C7552strict 902 1811 980 3846 5153 7464 10597 11846 15534relaxed 902 1857 1537 4150 5517 7784 11102 11846 17078% strict 99.9 98.6 66.8 96.3 95.9 98.2 98.2 100 96.0% relaxed 99.9 99.6 99.9 99.7 98.0 99.5 99.3 100 99.2Table 3.2: Randomly selected bridge faults covered by complete single stuck-attest set with strict and relaxed logic thresholds3.3 NemesisNemesis was originally an ATPG system for single stuck-at faults [Lar89]. It has beenmodi�ed to take as input the AND-OR-INVERT cells in the MCNC standard cell libraryand to generate tests for the faults identi�ed by Carafe and characterized by Bridger.



6 3. A System for Detecting Realistic Bridge FaultsNemesis generates a test pattern for a given fault in two steps: First, it constructs aformula representing all possible tests for the fault. Second, it applies a Boolean satis�abilityalgorithm to �nd a solution to the resulting formula. Any solution for the formula is a testthat detects the fault [Lar92]. In order to generate tests for bridge faults, three routines wereadded to Nemesis and three routines were modi�ed in Nemesis. The additional routinescheck for feedback when two wires are bridged, parse the list of fault types and faultedbehaviors generated by Bridger, and parse the list of probable bridge faults generated byCarafe. The wirelist parser was modi�ed to read wirelists generated by Carafe, and thesimulator and formula extractor were modi�ed so that they could simulate and extractformulas for bridge faults according to the constraints set by Bridger.To evaluate Nemesis's generation of test patterns for bridge faults we have compared itwith Nemesis's performance when generating test patterns for single stuck-at faults for theMCNC generated circuits. Table 3.3 shows the performance of the single stuck-at Nemesisstandard-cell system. All times are taken with the program running on a Sparcstation 1.For comparison with the following tables, the results in Table 3.3 do not include globalimplications (learning). The \Untestable" row shows the number of SSFs that were provenuntestable by Nemeis, the \Aborted" row shows those faults that no test pattern wasgenerated for and were not proven untestable, and the \Seconds" row shows Nemesis'sATPG time.Circuit C432 499 C880 C1355 C1908 C2670 C3540 C5315 C6288 C7552SSA Faults 826 974 1308 2430 1746 3176 4522 7022 11500 8506Untestable 9 8 0 8 9 78 119 59 55 57Aborted 7 0 0 0 0 14 0 2 0 60Patterns 53 54 66 87 109 120 163 147 39 209Seconds 21.0 5.9 23.1 36.6 37.2 257.3 125.9 109.4 263.8 466.0Table 3.3: Nemesis test pattern generation single stuck-at statisticsTable 3.4 shows how extracted faults were pruned from the fault list before being sentto the ATPG part of the system. The row labeled \Total Faults" is the total numberof faults generated by Carafe. Many gates, when bridged together, produce a voltage inthe range that is not clearly a logic 0 or logic 1, 2.0 to 3.0 Volts, for all possible inputsexcept the inputs that produce a logic 1 on both gates or a logic 0 on both gates. Anexample of this would be a bridge fault between two inverters if the inverters' PMOS andNMOS transistors have equal strength. The row labeled \Removed { Untestable" showsthe number of faults that are determined untestable by Bridger. These were discarded fromthe fault list before ATPG. The row labeled \Removed { Feedback" shows the number ofbridges that introduced feedback to the system. These were removed from the fault list inthis version of the system because such faults may introduce state to the circuit and aremore di�cult to test.Table 3.5 shows the performance of the ATPG part of the system. The �rst row showsthe number of bridging faults that are considered. The second line is the number of realisticbridge faults that were detected by the complete SSF test set presented earlier. The thirdline shows the number of realistic bridge faults that our Nemesis-based ATPG systemdetects. The last three lines give the number of bridge faults that are proven untestable,



3.3. Nemesis 7Circuit C432 C499 C880 C1355 C1908 C2670 C3540Total Faults 1546 2747 3227 4356 4669 13,589 16,316Removed { Untestable 727 1672 2106 1745 2094 9116 6295Removed { Feedback 616 479 322 1154 953 915 2466Sent to ATPG 203 596 799 1457 1622 3558 7555Table 3.4: Pre-ATPG fault statisticsthe number of faults that were aborted by the ATPG program, the number of tests thatdetect all bridging faults, and the time in seconds to completely process each circuit.Circuit C432 C499 C880 C1355 C1908 C2670 C3540Faults 203 596 799 1457 1622 3558 7555SSA covered 141 550 703 1025 1238 2291 6566Covered 164 562 733 1058 1334 2474 6749Untestable 38 34 65 238 286 1013 779Aborted 1 0 1 161 2 71 27Patterns 64 59 102 86 167 238 326time (secs) 54.9 35.6 70.5 7500.8 286.9 2420.8 3101.0Table 3.5: Nemesis test pattern generation bridge-fault statisticsThe three largest circuits are not included in Tables 3.4 and 3.3 because the formulasto be satis�ed for these circuits with bridge faults are too large for our workstations. Twothings can be observed from Tables 3.3 through 3.5. The �rst is that this system detectsmany of the realistic bridging faults that are not detected by the SSA generated tests. Theadditional computation e�ort results in a considerable increase in realistic fault coverage.One also notices that the ATPG times for the bridging faults is much greater than onewould expect. Why this is is not yet understood.



8 4. Conclusions and Future Work4. Conclusions and Future WorkWe have presented an approach that allows one to make use of technology- and layout-speci�c realistic faults, which more accurately model faulty circuits generated from standardcell libraries, without sacri�cing the advantages of fault simulation and ATPG at the logic-gate level. This is done by partitioning the set of faults into three main categories, intra-cellfaults, bridges in the interconnect, and breaks in the interconnect, and applying the mostappropriate fault modeling and test pattern generation techniques for each category.Existing software have been modi�ed to �nd the realistic bridge faults between inter-connects, determine the resulting change in logical behavior caused by the bridge, and faultsimulate and generate tests for them at the gate level. The exercise of integrating this soft-ware to generate tests for realistic faults at the logic gate level shows that it can be done,and pinpoints and helps quantify the problems with this approach. The biggest problemthat has appeared is the number of faults. There are two to six times more bridge faults inthe interconnect than there are single stuck-at faults. ATPG time increased by factors oftwo to twenty. Some of the slowdown is attributable to increased faults, but much is due toNemesis's di�culty with the more complicated formulas. We are investigating modi�cationsto Nemesis to make it more suited to dealing with formulas from large cells. The numberof bridge faults we generate tests for can be reduced by considering only the most likelybridge faults. Carafe can provide this information.A side-product of integrating the software is the veri�cation that many detectablebridge faults are not detected by complete SSA test sets. For the MCNC standard-cellimplementations, the percentage detected by complete SSA test sets ranges from 87% to98%. We have also quanti�ed some of the costs (for this initial implementation) of increasingthe quality level by generating tests for the bridge faults that are not detected by the singlestuck-at tests.This research has exposed several areas for future research. The �rst is detecting thelarge number of untestable bridge faults. Most of these faults are untestable because theresulting output voltages from Bridger do not meet the logic thresholds to clearly be a logic0 or 1. That is, the resistive model of the transistors predict an output voltage alwaysbeing between 2 and 3 Volts when the bridged nodes are being driven to di�erent logicvalues. Possible solutions are to employ IDDQ testing [Ack83], apply more accurate circuitsimulation of faults, detect the bridge as a delay fault, or redesign the cells so that adiscrepancy is guaranteed for at least one input combination for each cell. In Table 4.1 weshow the results of our system generating IDDQ test patterns for same set of bridging faultsthat produced the results in Table 3.5. Test pattern generation time and the number ofuntestable faults is much less using IDDQ testing but this has to be traded o� with the factthat the application of test vectors for IDDQ testing is slower than for logic level testing[Cra87].We also plan on integrating the testing for breaks on the interconnection lines, and thetesting for defects within the cells to Carafe and Nemesis. This would integrate all bridgefaults and break faults into our testing framework except bridges between cells and bridgesbetween a cell and adjacent signal lines.



9Circuit C432 C499 C880 C1355 C1908 C2670 C3540 C5315 C6288 C7552Total Faults 1546 2747 3227 4356 4669 13589 16315 40143 21475 53439Untestable 3 0 0 3 5 24 21 26 7 47Aborted 0 0 0 0 1 2 0 0 0 4Covered 1543 2747 3227 4353 4663 13563 16295 40117 21468 53388Patterns 17 20 17 18 25 17 29 23 29 30Time (secs) 1.1 2.2 1.6 4.5 38.7 35.8 14.3 23.0 12.9 115.0Table 4.1: Test pattern generation IDDQ statistics (standard cell)AcknowledgementsThe authors thank Alvin Jee, Heather Trumbower, Rich McGowen, and David Stae-pelare for their work on our implementations. We also thank Dr. Krzysztof Kozminskiand MCNC for providing us with standard-cell layouts of the ISCAS benchmark circuits,the Semiconductor Research Corporation for supporting this research under Contract 90-DJ-141, and The National Science Foundation for supporting this work under grants MIP-8907380 and MIP-9011254.



10 ReferencesReferences[Ack83] J.M. Acken. Testing for bridging faults (shorts) in CMOS circuits. Proceedingsof Design Automation Conference, pages 717{718, 1983.[Ack88] JohnM.Acken. DerivingAccurateFaultModels. PhD thesis, StanfordUniversity,Department of Electrical Engineering, September 1988.[BF85] F. Brglez and H. Fujiwara. A neutral netlist of 10 combinational benchmarkcircuits anda target translator in fortran. InProceedings of the IEEEInternationalSymposium on Circuits and Systems, 1985.[Cra87] C. Crapuchettes. Testing CMOS idd on large devices. In Proceedings of Inter-national Test Conference, pages 310{315. IEEE, 1987.[FS88] F. Joel Ferguson and John P. Shen. A CMOS fault extractor for inductivefault analysis. IEEE Transactions on Computer-Aided Design, 7(11):1181{1194,November 1988.[Hei88] DennisV.Heinbuch. CMOS3Cell Library. Addison-WesleyPublishingCompany,1988.[Jee90] Alvin Jee. Carafe: An inductive fault analysis tool for CMOS VLSI circuits.Technical Report UCSC-CRL-91-24, University of California at Santa Cruz,Computer Engineering Department, February 1990.[Lar89] Tracy Larrabee. E�cient generation of test patterns using Boolean Di�erence.In Proceedings of International Test Conference, pages 795{801. IEEE, 1989.[Lar92] Tracy Larrabee. Test pattern generation using boolean satis�ability. IEEETransactions on Computer-Aided Design, January 1992.[MB88] E.J. McCluskey and F. Buelow. IC quality and test transparancy. In Proceedingsof International Test Conference, pages 295{301. IEEE, 1988.[MTCC87] W. Maly, M.E. Thomas, J.D. Chinn, and D.M. Campbell. Double-bridge teststructure for the evaluation of type, size and density of spot defects. Techni-cal Report CMUCAD-87-2, Carnegie Mellon University, SRC-CMU Center forComputer-Aided Design, Dept. of ECE, February 1987.[PRM90] Ashish Pancholy, Janusz Rajski, and Larry McNaughton. Empirical failureanalysis and validation of fault models in CMOS VLSI. In Proceedings ofInternational Test Conference, pages 938{947. IEEE, 1990.[SM90] Thomas Storey and Wojciech Maly. CMOS bridging fault detection. In Proceed-ings of International Test Conference, pages 842{851. IEEE, 1990.


