Test Pattern Generation for
Realistic Bridge Faults in CMOS
ICs

F. Joel Ferguson and Tracy Larrabee

UCSC-CRL-91-30
August 23, 1991

Baskin Center for
Computer Engineering & Information Sciences
University of California, Santa Cruz

Santa Cruz, CA 95064 USA

ABSTRACT

Two approaches have been used to balance the cost of generating effective tests
for ICs and the need to increase the ICs’ quality level. The first approach favors using
high-level fault models to reduce test generation costs at the expense of test quality,
and the second approach favors the use of low-level, technology-specific fault models
to increase defect coverage but lead to unacceptably high test generation costs. In
this report we (1) present the results of simulations of complete single stuck-at
test sets against a low-level model of bridge defects showing that an unacceptably
high percentage of such defects are not detected by the complete stuck-at test sets;
(2) show how low-level bridge fault models can be incorporated into high-level test
generation; and (3) describe our system for generating effective tests for bridge faults
and report on its performance.

0 1. Motivation

1. Motivation

The goal of a production testing system is to cost effectively minimize the number of bad
parts that pass the tests. The number of bad parts that pass the tests are measured in de-
fective parts per million, or DPM. McCluskey and Buelow have shown a simple relationship
between the defect coverage of a test set, the yield of the manufacturing process, and the
quality level of the circuits that passed the test set assuming that defects are independently
distributed on the chip [MB88]. Table 3 from McCluskey and Buelow’s paper shows that to
obtain the relatively modest quality level of 200 DPM in a circuit with a 90% yield requires
that the test set detect 99.8% of the manufacturing defects. If the yield is 75%, the test set
must detect 99.93% of the defects.

Recent evidence shows that many defects are not detected by test sets that detect all
single stuck-at faults (hereafter called complete SSF test sets) in some circuits [F'S88, SM90,
PRM90]. The studies reported by Ferguson and Shen, and Storey and Maly consisted of
defect simulations to determine which circuit-level defects were probable, followed by a fault
simulation to find the defect coverage [F'S88, SM90]. The study by Pancholy, et al., involved
fabricating easily diagnosable integrated circuits, testing them with a diagnostic test set,
and applying a complete SSF test set to the faulty ICs. The complete SSF test set detected
only 98.74% of the faulty blocks on the ICs fabricated by Pancholy, et al.

Our approach for increasing the quality (decreasing the defect level) of shipped ICs is
to determine which faults are likely to occur, then find which of these are not detected by
the SSF test set, and generate tests that detect the undetected faults. Likely faults are
determined by simulating the results of known defect mechanisms, such as dust and other
contaminants in the fabrication process, to the physical layout of the circuit. This is done
as an automated defect simulation on the circuit layout. We refer to the faults that result in
the defect simulation as realistic faults since they can be realized by known defect causing
mechanisms.

The output of earlier defect simulators were unsuitable for automatic test pattern
generation (ATPG), and the time for fault simulation was too great for the simulator to
be combined with a production ATPG system. We avoid these disadvantages by first
identifying realistic faults, which are generally presented as a change in the netlist of the
circuit, and then translating these into changes in the logical function of the circuit. This
allows fault simulation and test generation for the circuit with a much better performance
than if fault simulation and ATPG were done at the switch or transistor level.

2. The Scope of this Report

The discussion in this report is restricted to the domain of fault modeling and ATPG
for circuits designed using standard cells. The approach presented here can be extended
to apply to gate arrays and other ASIC technologies, but is more easily implemented for
standard cell designs. We partition the realistic faults into three categories, and the tests are
generated for each fault based on which category it is in. The three categories are bridges
and breaks within the cell, bridges in the interconnect, and breaks in the interconnect.
In future work we will consider less common faults, such as, bridges between cells and
interconnect, and bridges between adjacent cells.

The behavior of a cell with a bridge or break fault can be determined using a circuit-level
simulator such as Spice. The computation costs of circuit-level simulation can be amortized
over the life of the standard cell library in the same way that the costs of characterizing
the library are amortized. Also the relatively small size of most cells makes circuit-level
simulation feasible. The faults in a large cell can be characterized by partitioning the cell
into smaller cells and characterizing them independently.

The result of the circuit simulation for a cell would be a list of input vectors for each
cell that sensitize the cell’s inputs and the resulting faulty behavior. The input cubes
for sensitizing the cell and the location of the error could be used by a logic level ATPG
system. For simple cells such as AND-OR-INV complex gates, it may be that SSF test sets
are sufficient for detecting the realistic faults in the cell. We are currently characterizing
the standard cells in the National Security Agency’s CMOSn library. This will be reported
on in the near future.

Breaks in signal lines cause the inputs to some of the receiving cells to be disconnected
from the outputs of the driving cells, so that logic value of the driving cell’s output does not
affect the logic value at the receiving cells” inputs. For the sake of simplicity will assume
in this paper that there is a single source for each signal. This means that there are no
busses or signal lines with multiple tri-stateable drivers are considered. Signal line breaks
may exhibit non-logical behavior but for most cases we can probably assume that the line
“floats high” or “floats low”. That is it behaves as a Stuck-at 0/1.

We can see from Figure /refline-break that a single defect can break a line that fans out
to four gates so that it partitions the gates connected to that node in seven ways/footnotelf

A C

Figure 2.1: Potential Breaks in Circuit with Fan-out of Four.

a1

T2

T,

n

Y2

Ym

2 2. The Scope of this Report

A
° Cell A
O
1
72 8 Bridge-Cell
O
E— Zn+m
B
° Cell B
O

Figure 2.2: Modeling of Interconnect Bridge Faults.

breaks were allowed to occur in the area of the node that splits into parts, there are partitions
of the circuit into three pieces.. Assuming that a nodes not connected to the output behave
as stuck at 0 or 1, there are 14 single and multiple stuck-at faults that can be caused by a
single break causing defect. There are 10 potential single line stuck-at faults for this node.
If the topology of the circuit were different, for instance if gates A and D were swapped, the
potential multiple-line stuck-at faults (MSFs) would change. A defect analysis tool such as
VLASIC, FXT or Carafe can determine which multiple stuck-at faults may be caused by a
single defect. This allows us to know which multiple stuck-at faults are likely in the circuit.
This is much fewer than the set of all possible MSFs and may be feasible for ATPG.

Bridges and breaks in the standard cells and breaks in the interconnect were discussed in
the previous paragraphs to show the general approach that we advocate for testing ASICs
using standard cells, and to give an indication of how these realistic faults may be handled
in the framework we are presenting. The remainder of this report is concerned with
the detection of bridge faults between signal lines connecting the standard cells
only.

Bridges in the interconnect layers are much more common than breaks in the intercon-
nect layers for many fabrication processes [MTCC87]. As we see in the next section, the
behavior of bridges cannot be modeled as a simple wired-or or wired-and. More generally
a bridge between the outputs of two cells can be modeled as replacing the two cells with
a single bridge-cell implementing the logic function of the bridged node as in Figure 2.2.
In the next section we see that for some inputs to the bridge-cell there may be inputs for
which the output logic value cannot be determined with certainty.

3. A System for Detecting Realistic Bridge Faults

We have divided the problem of generating test patterns for realistic bridge faults
between signal lines into three parts:
1. Determine the realistic bridge faults. The program that performs this task is Carafe.

2. Find the change in local logical behavior for each fault. The program that performs
this task is Bridger.

3. Generate tests detecting each change in local logical behavior. The program that
performs this task is Nemesis.
The interfaces between these programs are shown in Figure 3.1.

3.1 Carafe

A version of Carafe (Circuit and ReAlistic Fault Extractor) is used to find the probable
bridge faults between signal lines in the circuit [Jee90]. Carafe determines which bridge
faults are possible by simulating the results of spot defects on the physical layout of the
circuit. Defects are modeled as changes in the electrical behavior of small spots on the
physical layers of the IC. Possible electrical changes for the top metal layer would be the
presence of extra metal where there should be no metal, and the absence of metal where
there should be metal. If the former happens and the spot of metal “touches” the conducting
material of two circuit nodes, a bridge would occur between the nodes. Similarly a spot of
missing metal could cause a break in a node. Such a defect in the physical layer could be
caused by a particle of dust on the metal mask or in the photoresist used to shape the metal
layer. For a more complete description of the determination of realistic faults see [FFS88].

Carafe finds which bridges are possible by considering the range of probable spot defect
sizes for each layer being considered and finding all nodes that are within that distance or
closer to each other in that layer. These bridges are caused by defects that cause additional
conducting material falling between these conductors. It also finds all nodes that can be
bridged due to pinholes in the oxide layers. These nodes are on different layers such as
between metal 1 and metal 2 and they must overlap with only a layer of oxide between
them. Carafe takes as input the physical layout of the circuit to determine whether a
bridge is likely and to determine how likely the bridge is.

Layout Circuit Description
_—

Carafe Nemesis [Test
—_—

Defects] Faults Patterns

Fault Types

Fault Formulas

Cell Descriptions

Bridger

Transconductance
Figure 3.1: The Carafe-Nemesis Realistic Fault ATPG System

4 3. A System for Detecting Realistic Bridge Faults

Test structures can be used to estimate the defect density of many types of spot defects
on the IC [MTCC87]. Carafe uses this knowledge to estimate the probability that if a
bridge fault occurs, how likely it is. Ome of Carafe’s inputs is a file that describes the
defect density and the distribution of defect sizes for each layer. Carafe determines the
probability of each realistic bridge fault for each size defect. By weighing the results of the
probability distribution function of defect sizes and summing them, Carafe determines the
relative number of times each bridge fault should occur.

Normally Carafe flattens the layout to the transistor-level and describes the faults at
the circuit-node level. A second version of Carafe was written that presents the circuit
and faults at the logic-gate level for this research. This version of Carafe requires that the
physical layout of the circuit be presented hierarchically with the two levels of hierarchy
being the cells and the interconnect between the cells. In addition to providing the weighted
fault list, this version of Carafe provides a gate level netlist for Nemesis and a list of fault
types to Bridger. To evaluate Carafe’s performance we ran it on the ISCAS-85 benchmark
circuits collected by Brglez and Fujiwara [BF85]. The standard-cell layouts we used for the
circuits were provided by MCNC. This version of Carafe’s performance at extracting the
realistic bridging faults of the MCNC cells on a Sparcstation 14 is shown in Table 3.1.

| Circuit | €432 | €499 | €880 | C1355 | C1908 | C2670 | C3540 | C5315 | C6288 | C7552 |

faults | 1546 | 2747 | 3227 4356 4669 | 13589 | 16316 | 40143 | 21475 | 53439
seconds 105 | 24.7 | 334 50.1 63.2 | 404.5 | 621.1 3326 921 5687

Table 3.1: Bridge fault extraction statistics for ISCAS-85 circuits using Carafe

3.2 Bridger

An example of how a simple wired—or or wired—and model does not accurately model a
CMOS bridge is shown in Figure 3.2. The logic function caused by the bridge faults was
obtained using a Spice simulation. The figure shows that two PMOS transistors in parallel
are stronger than the NMOS transistors in series for NAND gates in the CMOS3 standard
cell library [Hei88], but a single PMOS transistor is not. Note that the transistor strength
model used in the COSMOS fault simulator cannot model this fault correctly by assigning
any combination of strengths to the eight transistors.

Bridger uses the resistive model for conducting transistors that was suggested by Acken
[Ack88] and later by Storey[SM90]. In experiments comparing the results of Spice simula-
tions and Bridger, we found that if Bridger predicted the voltage at the bridged signals to be
less than 2.0 Volts, Spice always predicted less than the logic threshold, and if Bridger pre-
dicted greater than 3.0 Volts, Spice predicted greater than the logic threshold. If Bridger’s
prediction was between 2.0 and 3.0 Volts, Spice would sometimes predict a different logical
value than Bridger. We use voltage thresholds such that a logic 0 is anything between 0.0
and 2.0 Volts and a logic 1 is anything between 3.0 and 5.0 Volts: any more relaxed thresh-
olds may lead to incorrect logic values.

For comparison with the strict threshold values detailed above, consider relaxed thresh-
olds where voltages in the range 0.0 to 2.5 Volts is a logic 0 and voltages in the range
2.5 to 5.0 Volts is a logic 1. Some faults that are detectable with the relaxed threshold

3.3. Nemesis 5

A —d

Truth Table entries for E # F

ABCD EF Wired-And Wired-Or Spice

A 0111 10 0 1 0

1011 10 0 0
0011 10 0 1 1
1101 01 0 1 0
¢ - F 1110 01 0 1 0
1100 01 0 1 1
p—

Figure 3.2: Logic Function of Bridge Fault in CMOS3 NANDs using Spice.

are undetectable with the restricted thresholds. Table 3.2 shows the different numbers and
percentages of an artificially constructed fault set (where each wire was bridged to the five
wires directly following in the wirelist) that are detected by our complete SSF test set.
The second and third rows of the table show the number of bridge faults detected by the
complete SSF test using the different thresholds, and the last two lines show the percentage
of detectable, non-feedback bridge faults (total bridge faults minus faults pruned due to
feedback and faults declared untestable given the fault table for the given threshold) that
are detected by the complete SSF test set.

| Circuit | C499 | €880 | C1355 [C1908 | €2670 | C3540 | C5315 | C6288 | C7552 |

strict 902 | 1811 980 3846 5153 7464 | 10597 | 11846 | 15534
relaxed 902 | 1857 1537 4150 5517 7784 | 11102 | 11846 | 17078

% strict 99.9 | 98.6 66.8 96.3 95.9 98.2 98.2 100 96.0
% relaxed | 99.9 | 99.6 99.9 99.7 98.0 99.5 99.3 100 99.2

Table 3.2: Randomly selected bridge faults covered by complete single stuck-at
test set with strict and relaxed logic thresholds

3.3 Nemesis

Nemesis was originally an ATPG system for single stuck-at faults [Lar89]. It has been
modified to take as input the AND-OR-INVERT cells in the MCNC standard cell library
and to generate tests for the faults identified by Carafe and characterized by Bridger.

6 3. A System for Detecting Realistic Bridge Faults

Nemesis generates a test pattern for a given fault in two steps: First, it constructs a
formula representing all possible tests for the fault. Second, it applies a Boolean satisfiability
algorithm to find a solution to the resulting formula. Any solution for the formula is a test
that detects the fault [Lar92]. In order to generate tests for bridge faults, three routines were
added to Nemesis and three routines were modified in Nemesis. The additional routines
check for feedback when two wires are bridged, parse the list of fault types and faulted
behaviors generated by Bridger, and parse the list of probable bridge faults generated by
Carafe. The wirelist parser was modified to read wirelists generated by Carafe, and the
simulator and formula extractor were modified so that they could simulate and extract
formulas for bridge faults according to the constraints set by Bridger.

To evaluate Nemesis’s generation of test patterns for bridge faults we have compared it
with Nemesis’s performance when generating test patterns for single stuck-at faults for the
MCNC generated circuits. Table 3.3 shows the performance of the single stuck-at Nemesis
standard-cell system. All times are taken with the program running on a Sparcstation 1.
For comparison with the following tables, the results in Table 3.3 do not include global
implications (learning). The “Untestable” row shows the number of SSF's that were proven
untestable by Nemeis, the “Aborted” row shows those faults that no test pattern was
generated for and were not proven untestable, and the “Seconds” row shows Nemesis’s

ATPG time.

| Circuit [€432] 499 | €880 | C1355 | C1908 | €2670 | €3540 | C5315 | €6288 | C7552 |

SSA Faults | 826 [974 [1308 | 2430 [1746 | 3176 | 4522 | 7022 | 11500 | 8506
Untestable 9] 8 0 8 9 8] 119 59 55 57
Aborted 7] o 0 0 0 14 0 2 0 60

| Patterns | 53 [54| 66| 87| 109 120 163 147[39| 209 |

| Seconds | 21.0[59| 231] 366 37.2] 2573 [125.9] 1094 [263.8 | 466.0 |

Table 3.3: Nemesis test pattern generation single stuck-at statistics

Table 3.4 shows how extracted faults were pruned from the fault list before being sent
to the ATPG part of the system. The row labeled “Total Faults” is the total number
of faults generated by Carafe. Many gates, when bridged together, produce a voltage in
the range that is not clearly a logic 0 or logic 1, 2.0 to 3.0 Volts, for all possible inputs
except the inputs that produce a logic 1 on both gates or a logic 0 on both gates. An
example of this would be a bridge fault between two inverters if the inverters’ PMOS and
NMOS transistors have equal strength. The row labeled “Removed — Untestable” shows
the number of faults that are determined untestable by Bridger. These were discarded from
the fault list before ATPG. The row labeled “Removed — Feedback” shows the number of
bridges that introduced feedback to the system. These were removed from the fault list in
this version of the system because such faults may introduce state to the circuit and are
more difficult to test.

Table 3.5 shows the performance of the ATPG part of the system. The first row shows
the number of bridging faults that are considered. The second line is the number of realistic
bridge faults that were detected by the complete SSF test set presented earlier. The third
line shows the number of realistic bridge faults that our Nemesis-based ATPG system
detects. The last three lines give the number of bridge faults that are proven untestable,

3.3. Nemesis 7

\ Circuit | C432 | €499 | €880 | C1355 | C1908 | C2670 | C3540 |

Total Faults 1546 | 2747 | 3227 4356 4669 | 13,589 | 16,316
Removed — Untestable 727 | 1672 | 2106 1745 2094 9116 6295
Removed — Feedback 616 479 322 1154 953 915 2466
Sent to ATPG 203 596 799 1457 1622 3558 7555

Table 3.4: Pre-ATPG fault statistics

the number of faults that were aborted by the ATPG program, the number of tests that
detect all bridging faults, and the time in seconds to completely process each circuit.

| Circuit | €432 [€499 | €880 | C1355 | C1908 | 2670 | C3540 |

Faults 203 596 799 1457 1622 3558 7555
SSA covered 141 550 703 1025 1238 2291 6566
Covered 164 562 733 1058 1334 2474 6749
Untestable 38 34 65 238 286 1013 779
Aborted 1 0 1 161 2 71 27
Patterns 64 59 102 86 167 238 326

| time (secs) | 54.9 | 35.6 | 70.5 [7500.8 | 286.9 | 2420.8 | 3101.0

Table 3.5: Nemesis test pattern generation bridge-fault statistics

The three largest circuits are not included in Tables 3.4 and 3.3 because the formulas
to be satisfied for these circuits with bridge faults are too large for our workstations. Two
things can be observed from Tables 3.3 through 3.5. The first is that this system detects
many of the realistic bridging faults that are not detected by the SSA generated tests. The
additional computation effort results in a considerable increase in realistic fault coverage.
One also notices that the ATPG times for the bridging faults is much greater than one
would expect. Why this is is not yet understood.

8 4. Conclusions and Future Work

4. Conclusions and Future Work

We have presented an approach that allows one to make use of technology- and layout-
specific realistic faults, which more accurately model faulty circuits generated from standard
cell libraries, without sacrificing the advantages of fault simulation and ATPG at the logic-
gate level. This is done by partitioning the set of faults into three main categories, intra-cell
faults, bridges in the interconnect, and breaks in the interconnect, and applying the most
appropriate fault modeling and test pattern generation techniques for each category.

Existing software have been modified to find the realistic bridge faults between inter-
connects, determine the resulting change in logical behavior caused by the bridge, and fault
simulate and generate tests for them at the gate level. The exercise of integrating this soft-
ware to generate tests for realistic faults at the logic gate level shows that it can be done,
and pinpoints and helps quantify the problems with this approach. The biggest problem
that has appeared is the number of faults. There are two to six times more bridge faults in
the interconnect than there are single stuck-at faults. ATPG time increased by factors of
two to twenty. Some of the slowdown is attributable to increased faults, but much is due to
Nemesis’s difficulty with the more complicated formulas. We are investigating modifications
to Nemesis to make it more suited to dealing with formulas from large cells. The number
of bridge faults we generate tests for can be reduced by considering only the most likely
bridge faults. Carafe can provide this information.

A side-product of integrating the software is the verification that many detectable
bridge faults are not detected by complete SSA test sets. For the MCNC standard-cell
implementations, the percentage detected by complete SSA test sets ranges from 87% to
98%. We have also quantified some of the costs (for this initialimplementation) of increasing
the quality level by generating tests for the bridge faults that are not detected by the single
stuck-at tests.

This research has exposed several areas for future research. The first is detecting the
large number of untestable bridge faults. Most of these faults are untestable because the
resulting output voltages from Bridger do not meet the logic thresholds to clearly be a logic
0 or 1. That is, the resistive model of the transistors predict an output voltage always
being between 2 and 3 Volts when the bridged nodes are being driven to different logic
values. Possible solutions are to employ IDDQ testing [Ack83], apply more accurate circuit
simulation of faults, detect the bridge as a delay fault, or redesign the cells so that a
discrepancy is guaranteed for at least one input combination for each cell. In Table 4.1 we
show the results of our system generating IDDQ test patterns for same set of bridging faults
that produced the results in Table 3.5. Test pattern generation time and the number of
untestable faults is much less using IDDQ testing but this has to be traded off with the fact
that the application of test vectors for IDDQ testing is slower than for logic level testing
[Cra87].

We also plan on integrating the testing for breaks on the interconnection lines, and the
testing for defects within the cells to Carafe and Nemesis. This would integrate all bridge
faults and break faults into our testing framework except bridges between cells and bridges
between a cell and adjacent signal lines.

\ Circuit | C432 | €499 | €880 | C1355 | €1908 | C2670 | 3540 | C5315 | C6288 | C7552 |

Total Faults | 1546 | 2747 | 3227 4356 4669 | 13589 | 16315 | 40143 | 21475 | 53439
Untestable 3 0 0 3 5 24 21 26 7 47
Aborted 0 0 0 0 1 2 0 0 0 4
Covered | 1543 | 2747 | 3227 4353 4663 | 13563 | 16295 | 40117 | 21468 | 53388
Patterns 17 20 17 18 25 17 29 23 29 30

| Time (secs) [1.1] 22| 16] 45] 387[358[143] 23.0] 129] 115.0

Table 4.1: Test pattern generation IDDQ statistics (standard cell)

Acknowledgements

The authors thank Alvin Jee, Heather Trumbower, Rich McGowen, and David Stae-
pelare for their work on our implementations. We also thank Dr. Krzysztof Kozminski
and MCNC for providing us with standard-cell layouts of the ISCAS benchmark circuits,
the Semiconductor Research Corporation for supporting this research under Contract 90-
DJ-141, and The National Science Foundation for supporting this work under grants MIP-
8907380 and MIP-9011254.

10 References

References

[Ack83] J.M. Acken. Testing for bridging faults (shorts) in CMOS circuits. Proceedings
of Design Automation Conference, pages 7T17-718, 1983.

[Ack88] John M. Acken. Deriving Accurate Fault Models. PhD thesis, Stanford University,
Department of Electrical Engineering, September 1988.

[BF85] F. Brglez and H. Fujiwara. A neutral netlist of 10 combinational benchmark
circuits and a target translatorin fortran. In Proceedings of the IEEE International
Symposium on Clircuits and Systems, 1985.

[Cra87] C. Crapuchettes. Testing CMOS idd on large devices. In Proceedings of Inter-
national Test Conference, pages 310-315. IEEE, 1987.

[F'S88] F. Joel Ferguson and John P. Shen. A CMOS fault extractor for inductive
fault analysis. IEEE Transactions on Computer-Aided Design, 7(11):1181-1194,
November 1988.

[Heil8] Dennis V. Heinbuch. CMOS3 Cell Library. Addison-Wesley Publishing Company,
1988.

[Jee90] Alvin Jee. Carafe: An inductive fault analysis tool for CMOS VLSI circuits.
Technical Report UCSC-CRL-91-24, University of California at Santa Cruz,
Computer Engineering Department, February 1990.

[Lar89] Tracy Larrabee. Efficient generation of test patterns using Boolean Difference.
In Proceedings of International Test Conference, pages 795-801. IEEE, 1989.

[Lar92] Tracy Larrabee. Test pattern generation using boolean satisfiability. IEFFFE
Transactions on Computer-Aided Design, January 1992.

[MBS&8] E.J. McCluskey and F. Buelow. IC quality and test transparancy. In Proceedings
of International Test Conference, pages 295-301. IEEE, 1988.

[MTCC87] W. Maly, M.E. Thomas, J.D. Chinn, and D.M. Campbell. Double-bridge test
structure for the evaluation of type, size and density of spot defects. Techni-
cal Report CMUCAD-87-2, Carnegie Mellon University, SRC-CMU Center for
Computer-Aided Design, Dept. of ECE, February 1987.

[PRM90] Ashish Pancholy, Janusz Rajski, and Larry McNaughton. Empirical failure
analysis and validation of fault models in CMOS VLSI. In Proceedings of
International Test Conference, pages 938-947. IEEE, 1990.

[SM90] Thomas Storey and Wojciech Maly. CMOS bridging fault detection. In Proceed-

ings of International Test Conference, pages 842-851. IEEE, 1990.

