22
we have -
pr—k 5 2
> (- V2 < La(G,N/a?).
t=1 o
Hence,
o0 o0 _ k‘
Sadi+k)—p)* = o’} (N -
t=1 t=1 o

azL:l(g, N/a?).

IN

The theorem follows from the fact that S was chosen arbitrarily.

A.2 Proofof Lemma 5
Fix z,6 > 0. Define f:[0,1— 2] — R by

(z4+2z+8)(1—a+0)

Ha) = s = o)

)2

A. Some proofs

Note that it is sufficient to prove that f is convex over its domain, since the right hand side

of the claimed inequality is f(0) = f(1 — z).
Define g : [0,1 — z] — R by

Then

fl@) = g(@)+g((1-2)-2)
flle) = ¢g@)=g((1-2)—2)
ey = ¢"(@)+4"((1-2)—2).

Hence, the result follows from the convexity of g, which is easily verified. O

A.3 Proof of Lemma 6
Fix é > 0. Define f:[0,1] — R by

(26 4+ 1)z | (z+6)(1+96)

HE =0 st =2)
We have
, 2041 S((1+8)—2)\ (0((1+6)—2)(14+6)+(=+8)(1+6)6
Je) = 6(1—|—6)_<(2—|—6)(1—|—6))< §2(1 16 —)2)
2641 26 41
8(1+6) (z4+8)(1+6-2)
> 0.

Thus, f is monotonically increasing and is thus minimized when z = 0. The fact that

f(0) = 0 then completes the proof. O

A. Some proofs 21

[Hau88]

[TMSS]

[KLPVS7]

[Kul67]
[Lit88]
[Lit89)]

[LW89]

[Myc88]
[PRS5]
[PW9O]

[WH60]

D. Haussler. Learning conjunctive concepts in structural domains. Technical
report, UC Santa Cruz, 1988.

W.D. Joubert and T.A. Manteuffel. Iterative methods for nonsymmetric linear
systems. Proceedings of the Conference on Iterative Methods for Large Linear
Systems, pages 149-171, 1988.

M. Kearns, M. Li, L. Pitt, and L.G. Valiant. On the learnability of boolean
formulae. Proceedings of the 19th Annual Symposium on the Theory of Compu-
tation, pages 285295, 1987.

S. Kullback. A lower bound for discrimination in terms of variation. IFFFE
transactions on Information Theory, 13:126-127, 1967.

N. Littlestone. Learning quickly when irrelevant attributes abound: a new
linear-threshold algorithm. Machine Learning, 2:285-318, 1988.

N. Littlestone. Mistake Bounds and Logarithmic Linear-threshold Learning Al-
gorithms. PhD thesis, UC Santa Cruz, 1989.

N. Littlestone and M.K. Warmuth. The weighted majority algorithm. Proceed-
ings of the 30th Annual Symposium on the Foundations of Computer Science,
1989.

J. Mycielski. A learning algorithm for linear operators. Proceedings of the
American Mathematical Society, 103(2):547-550, 1988.

V. Pan and J. Reif. Efficient parallel solution of linear systems. Proceedings of
the 18th ACM Symposium on the Theory of Computation, 1985.

L. Pitt and M.K. Warmuth. Prediction preserving reducibility. Journal of
Computer and System Sciences, 41(3), 1990.

B. Widrow and M.E. Hoff. Adaptive switching circuits. 1960 IRI) WESCON
Conv. Record, pages 96-104, 1960.

A Some proofs

A.1 Proof of Theorem 9

Define B as follows. Given an instance z, B feeds ¢(z) to A, and if A predicts A, B

returns aA

Choose

+ k. Then, when B gets p as a reinforcement, it feeds (p — k)/a to A.
[€ F,and let S = ((24,pt))ieN be a sequence of example-reinforcement pairs.

Let (Ar);eN be the sequence of predictions made by A on {((¢(zy), (pr — k)/@))1en- Let

Then since

N = i(f(wt) - Pt)z-

t=1

S (A6 - Pt o s fE ki,

t=1 « t=1

20 7. Conclusion

7 Conclusion

Linear functions are widely used. We expect that our algorithm may become a standard
submodule for learning more complicated functions or for learning linear combinations of
previously learned functions.

The fact that our algorithm must know a bound on the sum of the absolute values of
coeflicients of the target function might make it appear somewhat unattractive to practi-
tioners. However, this problem may be circumvented using standard doubling tricks while
still retaining bounds within a constant factor of those of this paper. Nevertheless, to sim-
plify application of our techniques to real-world problems, it would be useful to have a
variant of our algorithm which avoided doubling techniques, and obtained similar bounds
without knowing anything about the hidden coeflicients.

We also are interested in improving our lower bounds. Is it possible that similar lower
bounds hold even when the algorithm has more information about the hidden coefficients,
or even about the upcoming sequence of examples?

We are also investigating the case in which the coefficient vector changes gradually over
time, corresponding to a case in which some linear combination of the economists is close
to the actual GNP for a certain period, and then in later periods other linear combinations
do well. The algorithm is to “track” the best linear combination with some additional cost
that grows as a function of how much the coeflicient vector changes over time. This would
generalize the methods of [LW89] with which one could track the best single economist.

In addition, we would like to find algorithms which are optimal with respect to other
natural loss functions, in particular, |A\; — py.

Finally, since our algorithms have a similar flavor to the linear threshold algorithms of
[Lit88] [LW89] [Lit89], one might ask whether a similar algorithm is optimal for learning
the class containing all linear functions composed with the standard sigmoid function
(1/(14€e77)). One can trivially obtain bounds from our results, but they are suboptimal.

8 Acknowledgments

We’d like to thank Naoki Abe, Nicolo Cesa-Bianchi, Yoav Freund, David Haussler,
David Helmbold, Victor Pan, Victor Pereyra, John Reif and Richard Snyder for valuable
conversations.

References

[BHLI91] A. Blum, L. Hellerstein, and N. Littlestone. Learning in the presence of finitely
many or infinitely many irrelevant attributes. The 1991 Workshop on Compu-
tational Learning Theory, 1991.

[CW91] N. Cesa-Bianchi and M.K. Warmuth. A comparison of on-line algorithms for
learning linear functions. Manuscript, 1991.

[DHT73] R.O. Duda and P.E. Hart. Pattern Recognition and Scene Analysis. John Wiley
and Sons, 1973.

[GL90] G.H. Golub and C.F. Van Loan. Matriz Computations. The Johns Hopkins
University Press, 1990.

6. Iterative solution of linear systems 19

Corollary 18: There is an algorithm that, given an n X n nonsingular matriz A with k
nonzero entries and an n X 1 column vector b produces a sequence of approzimations to the
solution T of AT = b, for which the following statements hold: If ||A710|| > 1, in time

(log n)kcond(A)?

€2

O(

)

it will produce an approximation T satisfying

& — A7),
7_,§€
[A=10]]

In time
n(log n)kcond(A)?

€2

O()

it will produce an approximation T satisfying

& — A1B||;
— <
[A=10][2

Proof: To prove the first statement, note that from the previous corollary, the algorithm

- —17)
will produce an & satisfying ||AZ — b||2 < % in time

O((log)k (M)i

€

For such an & we have

B ATl AT (A%~ D)l|2 || A — Bl
A=l A2 =bl[z [[A=18][y

-1 A__’
ATl AE =Bz

Rk
This gives the first result. The first result implies that we can produce an Z satisfying
W < ﬁ in time O(n(logn)k;ond(’él)2). For such an & we have
P — A7 A1Y
P ATy AT e
A=l |A=10], VR

This completes the proof.

Our analysis of the time required by our algorithm is presently somewhat crude, so
its performance in practice might far outstrip the best bounds we are presently able to
prove. Also, our algorithm for linear systems is a straightforward extension of our learning
algorithm. Perhaps more refined application of the ideas encompassed here might lead to
improved iterative algorithms for the solution of linear systems.

18 6. Iterative solution of linear systems

Corollary 16: Choose ¢ > 0. There is an algorithm which, given an m X n matriz A and
an m X 1 column vector b such that there exists ¥ with AZ = b such that ||Z||1 < ¢ and given
€ > 0, produces a vector ¥ such that

||AZ — E||2 <e¢

o (1o (£2)')

time, where k is the number of nonzero entries in A, and K = max{||4;||2: 1 < i< n}.

Proof: We have,

mn

(AJAK)(Z/c) = (b/AKc)
and ||Z/¢||y < 1. By the previous corollary, we can find # such that

€
4Ke

[(AJAK)E — (bJAK c)||; <

" klogn . Kc\?
O i) = Ol(kogn) (=)

time. The corollary follows from the fact that

—,

1(A(e?) = b)[]2 = Ke

(AJAK)T — (b/4Kc)||;. O

Finally, since we have bounds on the number of iterations required for the relative error
of the right hand sides to be no greater than e for each assumption of an upper bound on
||Z]]1, we don’t need to know any bound a priori. An algorithm can guess an upper bound
on ||Z]|1, and compute the corresponding bound on the number of iterations. If this number
of iterations has passed without success, it can double its guess and try again. After at
most log ||Z]|1 such stages, the algorithm will terminate. Since the time bound for the last
stage dominates the that for all the previous stages, the following corollary easily follows.

Corollary 17: There is an algorithm which, given an m X n matriz A and an mx 1 column
vector b such that there exists & with A¥ = b and given € > 0, produces a vector T such that

||AZ — E||2 <e¢

; ((Mogn) (||A||2||f||1)2)
; (k(logn) (||zi||2)2)

otherwise, where k is the number of nonzero entries in A.

mn

time if ||Z]|y > 1 and

Proof: Follows immediately from the above comment, together from the fact that ||A||; >
max{||4;||2: 1 <i<n}. O

The dependence of the time bound on || A||; and ||Z]| is not surprising, since an absolute
measure of error is used.

Finally, we can bound the rate of convergence to the solution in the case that A is a
nonsingular square matrix.

6. Iterative solution of linear systems 17

The theorem follows from the fact that [(Z]|Z;) < Inn and I(Z||Z;) > 0 for all ¢. O

The following sequence of corollaries bounds the rate of convergence of residuals to the
zero vector. The first corollary establishes the existence of an efficient algorithm which uses
the fact that A and b are of a special form. Algorithms for more general systems will be
obtained through transformations to this systems of this form.

Corollary 15: There is an algorithm which, given an m X n matriz A, an m X 1 column
vector b and € > 0 such that there exists ¥ with AZ = b and ||Z||1 < 1, and such that for
each 1,1 <1i < mn,||Aill2 < 1/2, produces a vector & such that

|[Az —E||2 <e¢
mn
klnn

€2

O(—35-)

time, where k is the number of nonzero entries in A.

Proof: First of all, we transform A by adding a column consisting entirely of zeros and
for each column in A, adding a column which is its negation. Clearly, if A’ is the result of
such a transformation, there exists @ with ||Z’||; = 1 and each #’ nonnegative such that
A'# = b. Also, it is easily seen how to transform an estimate &’ of & to an estimate & of #

such that A'¢' = AZ.

The algorithm is to generate ¥y, Zo, ... from A’ and b as described at the beginning of
this section, and after generating each ¥y, to test whether

|A'Z; — b]|s < €

and terminate when this is true. As discussed above, each iteration requires O(k) time,
since there are exactly twice as many nonzero elements in A’ as in A.

We claim that there are at most

2log(2n + 1)
2

iterations. Assume the contrary for contradiction. Then for each ¢ <

2log(2n+1)
— =

|A'Z, —b]|2 > €
which implies

p
STA'Z, — b]|3 > 2log(2n + 1)
=1

which is a contradiction. This completes the proof. O

In our next corollary, we establish the existence of an algorithm for each a priori
assumption of an upper bound on ||Z||;. Our algorithm works by transforming the instance
of a problem into an instance satisfying the requirements of the previous corollary, applying
the algorithm of the previous corollary, then transforming the solution received.

16

By applying Lemma 4, we obtain

6. Iterative solution of linear systems

;w(t+1),i = éwt,iﬁ
= (Zn: wt,i) iwt,zﬁ:t(Ai)
i=1 i=1
() S b o) 2 (B
N
- (S o)+ 3 (n-) g
- (B)G
This implies that
(1n§w(t+l),i) - (hlznzwt,z’) <In [% (% + ﬂt) + % (% - ﬂt) ||AZ, — E||2] :

Next, we have

since > x;A; = b. Hence (2| Z141)

5 (5+0)+

Setting E = ||AZ; — by||2, we get

= Zx wi(Ai)In By

" (A=) (b— ATy
= (hlﬁt)zﬂfi =

i= 16 = Adl2
= 0

— I(#||#;) is no more than

1

(7 -

3

)14z -Gl

1 1/1
| 2(41) 11 2(0) 1L 1l
1) - 1@l) < tog |5 (546) +5 (5-9) 2]
_ [1(+¢1—|—E) E(W—E_WJFE)E
s\Wixe " Vize) "2 \WivsE ViZE
1 f1- 1+ E
— log =~ [\/1—|—E\/1—E—|—\/1—Ex/1—|—E]
= 10g\/1—E2
1 N
< —gllaz - B

6. Iterative solution of linear systems 15

and u; : R® — R is defined by

TO-AZ) ip gz 2

u(§) = < |lb-AZ:[]» .
1 otherwise.
For each 7 and t, let
o Wy,
i = —=n -
‘ Z?:l wt,i
In the above, the columns Ai,..., A, of the matrix correspond to the components
Tt1,..., Tty of the instances of the learning algorithm, each Z; corresponds to a ¥, and

b corresponds to a response p;. Note that the base of the exponent is of a different form
than that of the learning algorithm. This is due to the fact that we cannot guarantee that
the exponent will be positive, and thus we use a different approximation for 5%. Optimizing
[for the resulting bounds yields the above choice.

Note that if |6 — AZ;||3 is precomputed and a list data structure is used for representing
each A;, ui(A;) can be computed in time proportional to the number of nonzero entries in
A;. Note further that if A is represented using an appropriate data structure,® AZ; can be
computed in time depending on the number of nonzero entries in A, so an entire iteration
can be computed in time depending on the number of nonzero entries in A.

Also, note that we obtain the same sequence of estimates if we normalize @ after each
trial, as was done in the learning algorithm.

First, we obtain bounds on the performance of our algorithm on a very restricted class
of linear systems. More general results will be obtained by transforming problems into this
restricted form.

The following theorem is the basis for our analysis of this algorithm.

Theorem 14: Let A be an mxn matriz and b be a mx 1 column vector such that there exists
£ e [0,1]" |71 = 1 with AZ = b. Suppose further that for each i,1 < i < n,||4;||2 < 1/2.
Then if Ty, %o, ... are defined as above,

STAT - BI3 < 2lnn.

t=1

Proof: First, note that due to the normalization of Z, we obtain the same sequence ¥y, 7o, ...
if we let

G-DO-A%) i oz, 2§
1 otherwise.

In this proof, we will assume that @y, s, ... are generated using this definition.

As in Theorem 8, we use [(Z||7;) as a measure of progress. For each ¢, let X = AT,
Thus X, is the vector of right hand sides obtained by “plugging in” our proposed solution
to the left hand sides of the input linear system.

Choose t. We have,

(&) Z41) — 1(Z)|Z)) = [(anw(tH)’i) — (anwm)] — (Z z;(In W(e1), — In wm)) .
=1 =1

=1

SHere we assume without loss of generality that A has no rows consisting entirely of zeroes and at most
one such column.

14 6. Iterative solution of linear systems

Proof: Choose n € N, M,e¢, N > 0. As before, the adversary strategy is broken into

two stages. In the first stage, the adversary maintains consistency with some element of

LINEAR(n, M, ¢), and in the second stage, the adversary greedily expends a “noise budget.”
For the first stage, which consists of » — 1 examples, the ¢th instance is given by

(t)_{ M ifi=t

) .
t 0 otherwise

and the tth response is always 0. Note that if for each ¢, v(!) € R™ is defined by

v(t) _)oe ifi=t
i 7] 0 otherwise

then for each ¢ < n — 1, v() is consistent with the first ¢ — 1 examples, and thus minimizes
the observed loss on these examples. Yet if A(*) is the prediction made using v(®)_ then for
each ¢, \() = ¢M, thus

n—1
A = pO)2 = (eM)(n - 1), (5:2)
t=1

Note that v(") is consistent with all the examples of the first stage.

The second stage is virtually identical to the second stage of Theorem 11, replacing
(1/2,...,1/2) with (0,...,0), and responding with whichever of —cM and ¢M is farthest
from the algorithm’s prediction. One can easily see that, as in Theorem 11, the algorithm
can be forced to have total loss of N in the second stage. Combining this with (5.2) yields
the desired result. O

This result suggests that our algorithm is to be preferred to linear least squares in
practice in situations where little is known about the generation of examples, in particular,
the generation of the noise.

6 Iterative solution of linear systems

In this section, we present an iterative algorithm for the approximate solution of systems
of linear equations which shares some characteristics with the learning algorithm treated in
the previous sections. All vectors of this section are assumed to be column vectors.

As in the learning case, we have a basic algorithm which solves special types of systems,
and we obtain a general algorithm by transforming instances into this special form. The
following is an algorithm which, given an m X n matrix A and a m X 1 vector b such that
the Ly norm of each of the columns of A and of b is less than 1/2, produces a sequence
¥1,%9,... of n X 1 column vectors.

Let Ay,..., A, be the columns of A. The algorithm computes a sequence Wy, s, ... of
elements of R™ as follows. Let w;; = 1 for all 7. For each ¢ and ¢, let

Ut A
Wi t41 = wt,zﬂt ()

- 1

1+ ||AZ; = bl|2 |\ ?
0y = —_— "
1 —||AZ; — b]]2

= exp(tanh_l(HAft - (_;||2))

where for each t € N,

5. Lower bounds 13

we have
S0 — gty = LA
t<m
Also,
(o) — i a0y = L
$0
S (o0 — - 502 = % _ N

Also, the loss on each trial ¢ of phase two is at least (ji - 7t — p(t))Q, thus the total loss of
stage two is at least V.

Combining this with (5.1) yields the desired result. O

Note that this argument proves a stronger result than that stated in the theorem, since all
of the instances of the sequence of examples, as well as the entropy of the hidden coefficient
vector and the amount of noise, may be given to the algorithm before the first prediction
is made and adversary can then choose the responses of each example so that the loss is
maximized.

Note also that in the case that k = 0, the adversary uses only functions with just one
nonzero coeflicient. This, combined with Theorem 8, implies that the inherent complexity
of the problem of learning functions which simply output a selected component is the same
(at least to within a constant factor) as that of learning the class of all functions computing
weighted averages, which is quite surprising. Classes of weighted-average functions whose
weights have high entropy (which requires many non-zero weights) are easier to learn. This
is in contrast to the case of learning boolean functions, such as boolean linear-threshold
functions, where in general (for classes closed under permutation of the attributes) learning
gets harder as the number of relevant variables increases [Lit88] [LW89] [Lit89] [BHL91].?
(Some of the upper bounds of [Lit89] depend on a product of two factors, one of which
shows the same decreasing dependence on entropy observed here; that decrease is typically
dwarfed by an increase in the other factor as the number of relevant variables increases.)

The following is a straightforward extension of the previous theorem. Its proof is
therefore omitted.

Corollary 12: We have
optwa(n, M,x,N) € Q(M?*(lnn—k)+ N)
optLiNgAR(, My e, N) € Q((eM)*Inn + N).
By a least squares algorithm, we mean any algorithm which hypothesizes a linear
function at each trial that minimizes the sum of the squared errors on previous examples.

Next, we show that a least squares algorithm can have total loss which depends linearly on
the number of variables n.

Theorem 13: For each n € N, M,ec, N > 0, there exists a least squares algorithm B and
a sequence S € SLINEAR(n, M, ¢, N') such that

Lp(8)> (eM)*(n—1)+ N.

®For certain especially simple classes mistake bounds can again drop as the number of relevant variables
becomes a significant fraction of all of the variables.

12 5. Lower bounds

Using similar techniques, we can easily prove similar theorems for classes formed by
linear combinations of functions taken from some fixed finite set, e.g. for bounded degree
polynomials. Furthermore, our algorithm can be trivially modified to yield an optimal (to
within a constant factor) loss bounded algorithm for the learning problem in which the
object hidden from the learner is an m X n matrix, the instances are [X m matrices, and
the responses are the [X n matrices obtained by multiplying the instances with the hidden
matrix, where the loss is the sum of the squares of the differences between the entries of the
predicted matrix and the true matrix. This can be accomplished by running several copies
of our algorithm in parallel, one for each pair formed by choosing a row from the instances
and a column from the hidden matrix.

5 Lower bounds

We begin by proving a lower bound on optwa(n, 1,4, N). Our more general lower
bounds can be derived from this initial result. For the proof, we will need the following
notation. For u,v € N,v < logu + 1, let bit(u,v) be the vth least significant bit of the
binary representation of u (e.g., bit(6,1) = 0, bit(6,2) = 1,bit(6,3) = 1).

Theorem 11: We have

(Inn — k) 1
optwa(n, 1,5, N)> i +N - 3
Proof: Consider an adversary which adaptively constructs a sequence of examples as
follows. Our adversary consists of two stages. In the first stage, the adversary maintains
consistency with some function in WA(n,1,k) C WA(n,1,x). In the second stage, the
adversary greedily uses up its “noise budget.”

Let | = |logn|,k = [k/(In2)]. The instances M), .., 7% of the first stage are
constructed as follows: xgt) = 1 if bit(i,t) = 1 and i < 2!, otherwise xgt) = 0. The
adversary responds with 1 if the algorithm’s prediction is no more than 1/2, otherwise the
adversary responds with 0. Thus the loss of the algorithm on each trial of stage one is at
least 1/4.

Define 7 as follows: if + < 2! and for each t <1 — k, bit(i,t) = p®, then let p; = 27%,
and otherwise, let y; = 0. Since the number of [bit vectors “satisfying” a (I — k)-bit mask
is 2%, [|fi]|1 = 1. Also, by construction, the linear function induced by i is consistent with
the examples of the first phase. Trivially, H(f) = kIn2 > k. Since the first phase consists
of [— k trials, the total loss of the first phase is at least

Hlnn/(n2)] — 5/ 2)]). (5.1)

In the second stage, which consists of [4N]| 4+ 1 trials, each instance is (1/2,1/2,...,1/2),
and for the first [4N | trials the adversary simply responds with whichever of 0 or 1 is further
from the algorithm’s prediction. On the last trial, if the algorithm’s prediction is no more

than 1/2, the adversary responds with 1/24(1/2)\/4N — [4N], otherwise he responds with
1/2 = (1/2)\/AN — [4N].

Let m =1— k4 [4N]| + 1 be the total number of trials of the adversary. Since the fact
that - (1/2,...,1/2) must equal 1/2 implies that for each ¢,/ — k <t < m,

(- &9 = p)? = 1/4,

4. Transformations and more general learning problems 11

and
optrINEAR(7, M, c, V)
to be

inf{sup{L4(9):5 € SLingar(n, M,c, N)} : A € A([0, M]",[—-cM,cM])}.

Next, we apply Theorem 9 to get loss bounds for more general linear functions.
Theorem 10:

optwa(n, M, k5, N) < M?optywa(n, 1,5, N/M?) € O(M*(Inn — &) + N)
optINEAR (7 M, ¢, N) < (2¢M)?optyga (20 + 1,1,0, N/(2¢M)?) € O((eM)*Inn + N)

Proof: We will prove only the second bound. The first can be proved analogously.

Choose n, M, ¢ appropriately. We present a 2¢M-reduction from LINEAR(n, M, c) to
WA(2n 4+ 1,1,0). The theorem then follows immediately from Theorem 9 and Theorem 8.

Define the instance transformation ¢ : [0, M]™ — [0, 1]*"T! by

(b(ﬁ)_(xl—l—M T+ M —21+ M -z, + M 1)
DT\ ToM T oM T oM YT oM 02

and define ¢ : LINEAR(n, M,c) — WA(2n + 1,1,0) as follows. If ¢ € LINEAR(n, M, ¢) is
defined by

T) = Z,uzwlv
=1
then let ¢(g) = f, where f is defined by

2n+1

= E v,
=1

where
Wil ifi<nand g; >0
) —piea/c if n<i<2nand p_, <0
T 1Lyl ifi=2n41
0 otherwise.

Note that for each ¢, v; is nonnegative, and that >~, ; = 1. Choose g € LINEAR(n, M, ¢),7 €
[0, M]". Let [be the coefficient vector of g, IT = {i : u; > 0} and I~ = {i : u; < 0}. We

have
Ug)(o(®) = (Z pli+ M)) ¥ (z W) %(1_%2%0
elt el— 7
- (2c1M Z_:’M) (Z =) (1 - Zm)
9@
T 92eM +1/2

Thus there is a 2¢M-reduction from LINEAR(n, M, c) to WA(2n + 1,1,0). The theorem
now follows immediately from Theorem 9. The first bound can be proved by giving an
M -reduction from WA(n, M,) to WA(n, 1, k) along the lines of the reduction given above.
The details are omitted. O

10 4. Transformations and more general learning problems

3.5 Noise tolerance

Note that the smallest we can make the constant on the “noise term” (at the expense
of the term depending on n and H(u)) by increasing 6 is 4. However, our analysis is
somewhat loose, which leaves open the possibility that our algorithm’s loss (or that of a
related algorithm) is bounded by k(Inn — H(u)) 4+ N(p) for some constant k.

4 Transformations and more general learning problems

In this section, we use transformations to obtain loss bounds for more general classes
of linear functions. These transformations generalize the prediction preserving reductions
that have been used in a similar manner in the learning of {0, 1}-valued functions [Hau88]
[Lit88] [KLPV&7] [PW90].

We will need the following definition. Let X and Y be sets, and let F and G be
families of real-valued functions defined on X and Y respectively. Let o > 0. We say
that F a-reduces to G if and only if there is a function ¢ : X — Y, called an instance
transformation, a function ¥ : F — G, called a target transformation, and k € R such that

forallz e X, fe F,
f(z) = ad(f)(¢(x)) + k.

We are now ready for the following theorem, which gives loss bounds for a class of
functions in terms of those for a class to which the function can be a-reduced.

Theorem 9: Let X and Y be sets, and let F and G be families of real-valued functions
defined on X and Y respectively. Let A be an algorithm for' Y. Choose ay N > 0. Then if
F a-reduces to G, there exists an algorithm B for X, such that

Lp(F,N)< a®Ls(G,N/a?).

Proof: In Appendix A.

For each n € N, M, k,¢ > 0 we will need the following definitions. Let WA(n, M, k) be
the set of f : [0, M]* — [0, M] such that there exists 7 € [0,1]™,||f]|1 = 1 whose entropy
is at least s such that f(Z) = [-Z for all Z. Let LINEAR(n, M,c) be the set of linear
functions defined on [0, M]™ such that the sum of the absolute values of their coefficients is
at most ¢. Since the entropy is only defined for non-negative coefficients summing to 1, we
omit the entropy parameter from LINEAR.

Let Swa(n, M, k, N) be the set of all finite sequences 5 = <(f(t), p(t))>15t5m of examples
in [0, M]™ x [0, M] such that there is some f € WA(n, M, k) such that

m

S (@D = p)? < N,

t=1

Define Spingar(n, M,c¢, N) as the analogous set of sequences of examples in [0, M]" X
[—cM,cM]. Let
OptWA(nv M, x, N)

be defined to be

inf{sup{L4(95):5 € Swa(n,M,x,N)}: A€ A([0,M]",[0,M])}

3. The basic learning algorithm 9

3.3 Choosing

How did we come up with our choice of g; = iiig %:2:1’2 for the algorithm As? Consider

the upper bound for A; given by the Inequality 3.2 for the case when p; = i - &y:

As < (14 (B = DN = pIn .

Our above choice for 3, is obtained by minimizing this upper bound for Ay, i.e. we maximize
our bounds on the decrease of I(ji||#;) caused by the update in trial ¢.

— —

However, there are better choices for 3; for the case when p;, = [- Z;. Assume
fact(Be, ze ;) = 3. Then from (3.1) we get

A=Y v, ") = pyIn Be.

=1

Py

Note that exp(Ay) =37, vmﬁft”‘_ , and therefore that

dexp(A . R o
=0 iff p, = V41 -7 and
0? exp(Ay) dexp(Ay)
——————= >0 when———~ =0 and > 0.
75 ° o, =

Thus exp(A¢), and therefore A, has exactly one minimum when g; € [0, 00]. Denote the
f; at the minimum as 3., Now if we updated with §;,,; and fed 2} to As after the
update was made, the algorithm would predict p;. Thus with the optimum choice for f3;
the algorithm is in some sense “corrective.”

Since we have determined the choice for 3; which gives the best bound when p, = i - &,
why not use it? First, we know no closed form for ;... We can use a number of
heuristics for approximating [., such as gradient descent, Newton’s method or binary
search. Another choice is to iterate the update of As a number of times with the same
instance ;.

However, even if the computational cost of approximating 3; ¢ is not a deterrent, there
is a second reason for not choosing a 3; that is too close to (.. This is illustrated
with the following example. Assume there is a long sequence of examples consistent with
i@ = (1/2,1/2) except that the first example ((1,0),1) is noisy. In this case, in order to be
consistent, we must hypothesize #; = (1,0), effectively choosing 31 = co. Now all future
updates cannot correct the second component of the weight vector of ¥, leading to an
unbounded loss on future examples consistent with (1/2,1/2).

5o in case of noise it is advantageous to choose 3; not too close to 3., and instead
make a less drastic update.

3.4 Tuning 6

If one has a prior idea of N (i) ahead of time, one can tune ¢ to optimize the first bound
of the preceding theorem. Nonetheless, lower bounds given later in the paper show that
tuning ¢ can only yield an improvement of a constant factor over the choice § = 1//2.

8 3. The basic learning algorithm

To get the remaining bounds we rewrite the second inequality

- (ﬁw - m)Q . (ﬁm - M) ((1 +26)|p; — ji - &

1426 1426 V26(1 4 6)

) > —Inn+ H(ji)

=1
and apply Lemma 3, obtaining

m

(1 +26)?

1 Lo -
e g e e D

t=1

The above immediately gives the first loss bound of the theorem:

1+26)*
Lay < (14 262(nn — HGiY) + 220y,
For the second bound, observe that when § = 1/1/2,
1+26)*
L posy2= L2 g
(14 26) 631 1 0)? < 5.83
This completes the proof. O
3.1 Choosing an initial weight vector
If we choose 7] to be something other than (1/n,...,1/n), reflecting some prior bias on

which weighted combination of the experts predicts well, then the bounds in the previous
theorem hold if we replace “Inn — H(@)” by “I(ji||#1)”. Thus, our algorithm can take
advantage of increasingly accurate prior beliefs. However, for fixed z,

max (||
S (fl|%1)

is minimized by choosing ¥, = (1/n,...,1/n). This partially confirms the intuition that
when one knows nothing about the experts, one should begin by simply taking the average
of their predictions.

3.2 Trading between fit and entropy

There is a curious trade off between N(fi) and H(f) in the upper bound

LAl/ﬂ(S) < 5.83(Inn 4 min(N () — H(p))).
i
For example, assume the algorithm receives a single example ((1,0,---,0),1). Since we

require that 7 € [0,1]" and ||f][x = 1, only iy = ((1,0,---,0),1) is consistent. The upper
bound for i = fi; is 5.83Inn, since N(jiy) = H (1) = 0. However for i = (1/n,1/n,---,1/n)
the bound is 5.83, which is still far away from the actual loss on the single example. However
notice that the minimum in the loss bound is not achieved at the consistent vector fi;.

3. The basic learning algorithm 7

Now, we wish to bound |In 3|. First, let us assume that A\; < p;. Let z = p; — A;. Then

A+ z+6)(1=A+0)

o= A oA 14y

Applying Lemmas 5 and 6, we get that

(264 1) (264 1)(pr— A
I s R T gy

By symmetry, when p; < Ay, if we let 2 = Ay — p;, we obtain

n l < (26 4+ 1)z B (26 + 1)(Ae — pr)
B~ s(1+6) §(1+6)
Hence
In 3] < (26 + 1)z _ (26 + 1)|pe — /\t|‘

6(1+96) o(1+96)
Plugging into (3.3) yields the desired result. O

We can apply the previous lemma to obtain the following loss bounds.

Theorem 8: Choose n,m € N. Let 5 = ((Z¢, pi))1<e<m be any sequence of m examples
for ([0,1]™,]0,1]). Then for each 6 > 0,

, 1+26)*

L4, < L4 2602 — () + -0 T20° yg

As < min ((+26)*(Inn — H(fi)) + (11672 (7)

where the minimum is over all @ € [0,1]" with ||ji||1 = 1 and for each such ji, N(ji) =
S (T By — po)?. In particular,

Ly, -(5)<5.83(Inn+ min(N(i7) — H(iZ))).

1/V2 i

Further, for any sequence S = ((Z¢, pi1))1<i<m S of m examples for ([0,1]",[0,1]) for which
there exists ji € [0,1]",||f]l1 = 1 such that for all t,1 <t < m, ji-Z; = pi, we have

(14 26)?

LA&(S) < 5

(nn — H(7)
Proof: Since I(fi]|?h) = Inn — H(ji) and and I(f]|vy41) > 0,
Y A= I(flloggr) = 1(Al|F1) > =Inn + H(jT).
t=1

Thus using the last bound on A; given in the previous lemma we get:

& 2 lpe — {1+ T||pr — Ad L
- (s = 2 > —1 H(i).

In the case when [-Z; = p;, then the above inequalities simplify and it is easy to get the
loss bound stated at the end of the lemma.

6 3. The basic learning algorithm

‘Tt,i‘l"s

where fact(By, xe4) € [B, ,14+(8i— 1)$t’i+5] (any value in this range may be chosen by an

1+28
implementor of the algorithm) and ; = (@ w). 4 Note that since wlti;—é €(0,1),

/\t-|—6) (1— o
Lemma 2 assures that the interval in which fact(ﬁti)wm) must lie has positive length.

As in [Lit89] in the case of linear threshold algorithms, we use the relative entropy
between the coefficient vector [of a target function and the coeflicient vector #; of the
algorithm’s hypothesis as a measure of progress. Our key lemma relates the change in this
measure of progress on a particular trial to the loss of the algorithm on that trial. Loosely
speaking, it says that the algorithm learns a lot when it makes large errors.

Lemma 7: Choose 6 > 0 and n,t € N. Choose i € [0,1]" such that ||fi|[y = 1. Let
((Z+, pt))1eN be a sequence of examples from [0,1]" x [0,1]. Let (¥;);cN be the sequence of
coefficient vectors hypothesized by As and </\t>teN be the sequence of As’s predictions. Let
Ay = I(fi]|Beg1) — I(f]|7;) and for z € R let 2" denote Z+255. Then

T
Ar < = I = NN L= Xy 4 P Ty

1+ 26
2 lpe — - @l pe — Al
< -2 _(p-A) .
e T FA G A A ey

Proof: From the definition of A; and fact(f¢, z¢;) and from Lemma 2 it follows that

Ay = Z 223 In

vt—l—lz
1
= 1n0(> v fact(B, @) n—— 1
n;vt fact(By, vy —I-Z,u nfact(ﬁt,acm) (3.1)
S thzl—l' ﬁt_lxtz Z:uzxtzlnﬁt
=1 =1
7746
= 1n(1+(ﬁt_1)/\;)_ﬁlnﬁt
= (14 (B D) — plIn e+ P Ty g (3.2)

1426

. . Tl . .
Since can be written as £t L we can rewrite the last expression as
i Ay 1—p3

pr—jl- &
—I((pi, 1= p)II(A 1= AD) + T%t In 34,

leading to the first inequality of the lemma.

Next, we upper bound the last expression by using Lemma 1 and replacing the second
term with its absolute value, obtaining:

lpe — i - &¢| |In By

< _ EEVAY:
A < Q(Pt /\t)‘|‘ 1+ 26

(3.3)

Note that if o(z) = (1 + e™)7' is the usual sigmoid function, as § goes to zero, B: approaches

exp(c™ (Ae) — a7 (pe))-

3. The basic learning algorithm 5

Lemma 1 ([Kul67]): For A, p € [0,1] I((p,1— p)||(A\, 1= X)) > 2(\ = p)2.

The following series of lemmas give approximations for quantities arising in our analysis.
The first three can be easily verified. The proofs of the last two are included in the appendix.

Lemma 2: For all > 0,2 € [0,1],
B <1+ (8- 1.
The inequality is an equality iff 1 =0 or 2z = 1.

Lemma 3: Forallz,y € R
1
re =) > L)

Lemma 4: For all 3 > 0,2 € [-1,1],

ﬂx§%<ﬁ+%)+%<ﬂ—%)x.

Lemma 5: For all z,6 and x such that 6 > 0,0 <2< 1 and 0 <z <1 -z,

(z+2z+8)(1—a+0) <1n(z+6)(1+6)
(z+8)(1l—a—2468) ~ §1l—2z+6)"

In

Proof: In Appendix A.

Lemma 6: For all 6 > 0, and z such that 0 < z <1,

(z+6)(1+9) < (26 + 1)z

S se=2) = s +o)

Proof: In Appendix A.

We use a “unit cost” model of computation, in which the usual arithmetic operations on
real numbers (addition, multiplication and exponentiation) take unit time. For simplicity,
we assume that there is no roundoff error.

3 The basic learning algorithm

The basic learning algorithm Ag is designed to perform well on the set of linear functions
defined on [0, 1]” whose coefficients are nonnegative and sum to 1. These functions can be
viewed as computing weighted averages. Intuitively, the larger é is the more robust the
algorithm is against noise, and, correspondingly, the more slowly the algorithm learns.

The Algorithm As may be stated formally as follows. We maintain a vector of normalized
weights which is updated at the end of each trial. For each ¢, let ¥ € [0,1]" be the
algorithm’s weights before trial . When given the instance @y = (241, ..., 2¢,) € [0,1]" at
trial ¢, the algorithm predicts with A\; = @, - Z;. Let p; € [0, 1] be the response at trial ¢.

We initialize the weight vector to #;; = 1/n for all i. At the end of each trial each
weight is multiplied by a factor that depends on é:

vy fact(B, x)
Vi1, = 7)
Yoy vefact(Be, xe)

4 2. Preliminaries

2 Preliminaries

Let R represent the real numbers and IN represent the positive integers. Let log represent
the base 2 logarithm, and let In represent the natural logarithm.
For ¥ = (21, ...,z,) € R",

1Zll = > el
=1
n
|Z]]2 = fo: T,
=1

For an m x n real matrix A and k € {1,2}, define
AZ
141l = sup { A7l 2 ¢ R}
121

Also, we will find it necessary to discuss sequences Iy, T3, ... of vectors. In such cases, we
will refer to the ith component of z; € R" as ;.

For a nonsingular square matrix A, let the condition number of A, denoted by cond(A),
be defined as || A]|2]]A7!||2. A matrix’s condition number measures how close to singular it
is, with a large condition number indicating a nearly singular matrix.

Suppose ji, ¥ € [0,1]" are such that ||{@]|1 = ||7]|1 = 1. We define the entropy of ji to be
oy —piIn gy, where 01n 0 is taken to be 0, and denote this quantity by H(f). The relative
entropy between ¥ and i, denoted by I(fi||¥), is given by

I i
I(@|5) = Y piln o
=1 ¢

For any two such i and @, it is well known that I(||7) > 0 and that I(f]|7) = 0 iff i = 7.

Let X be aset, Y C R. An ezample for (X,Y) is an element of X X Y. If (z,p) is an
example, we view p as the correct response to the instance z. If f is a function from X to
Y, we say that f is consistent with an example (z,y) if f(z) = y, and that f is consistent
with a sequence S of examples if it is consistent with each example of 5.

Fach prediction of an on-line learning algorithm (for (X,Y)) is determined by the
previous examples and the current instance. Associated with an on-line learning algorithm
A we define a mapping of the same name from (X XY)* x X to Y. Let A(X,Y) be the set
of such mappings corresponding to learning algorithms for (X,Y).

Fix X and Y and a learning algorithm A. For a finite sequence of examples S =
((z¢,pe))1<t<m let Ay be the prediction of A on the {¢th example,
ie. Ay = A(((21,p1)s oo (241, p—1))s ;). Then the quadradic loss is defined as follows:

m

La(8) = (M —po).
=1
The loss of A on a particular trial ¢ is (A; — p;)%. Finally, if F is a class of functions from X
to Y, let L4(F,N)be the supremum of L4(.5) over all finite sequences S = ((zy, p¢)}1<t<m
of examples such that there exists f € F with >}, (f(z¢) — pt)? < N. o
We will need the following three simple lemmas. The first is due to Kullback [Kul67].

1. Introduction 3

underestimated the GNP, and one who always gave an estimate slightly greater than the
correct GNP. Suppose further that the average of the estimates of the two wild economists
was always exactly correct, so that there was a weighting with zero total loss. It is easy
to see that in this example the loss of the above strategy is unbounded: the wild people’s
contribution will be steadily decreased and in the limit the prediction of the economist who
is always slightly off will dominate.

It turns out that the following intuition can be translated into an essentially optimal
learning algorithm. If the aggregate opinion was greater than the true GNP, then those
whose predictions were too small were “pulling” the aggregate in the right direction, and
the marginal effect of increasing their weights is to improve the aggregate prediction, even
if their predictions were very inaccurate. Thus one would want to increase the weights of
those whose predictions were too small, and decrease the weights of those whose predictions
were too large. Of course, these changes are reversed when the aggregate prediction is too
small.

Our algorithms use the above philosophy of updating the weights with the additional
crucial feature that the smaller the aggregate error, the “gentler” the updates. In particular,
if the aggregate prediction is correct, the weights are not changed.

As is done in [Lit89] for linear threshold functions, we use the relative entropy between
our weights and a target set of weights as a measure of progress. The relative entropy is
an information theoretic notion normally used to measure the distance between probability
distributions. (Though the formulas for relative entropy and entropy are both important in
our work, we do not know of a natural way of interpreting the weights used in our algorithm
and those of the hidden function as probabilities. They formally resemble probability
distributions in that they form vectors of non-negative numbers that sum to 1.)

A variant of our learning algorithm leads to an algorithm for iteratively producing
estimates ¥y, Tg, - - - of the solution of the linear system A% = b such that, if A=1 exists, the
estimates converge to A=1h. Even if A is square and singular or is even non-square, if the
system has a solution, then A%y, A%, ... converges to b.

The time per iteration is linear in the number of non-zero entries of A and thus our
algorithm is well suited for sparse matrices. Further, our algorithm converges for all
coefficient matrices. We know of no other algorithm which requires time linear in the
number of nonzero entries in A which converges for all matrices.

The best bounds we can prove on the number of iterations required by our algorithm
is significantly worse in some cases than the corresponding bounds for available iterative
methods. We can show that the number of iterations required for the relative error (in
the Ly norm) of the hypothesized solution to be smaller than a given € grows at most
polynomially with the number of variables, 1/¢, and the condition number [GL90] of the
coefficient matrix. The number of iterations for the best existing algorithms [GL90] [JM88]
[PR85] to converge is at most logarithmic in 1/€ and the condition number of the coefficient
matrix. It is possible that a better bound on the convergence rate of our algorithm can
be obtained with a tighter analysis. In any case, a potentially important contribution of
our paper is the introduction of nonstandard methods for iteratively solving sparse linear
systems.

2 1. Introduction

N is the total loss of the best fixed weight vector. It follows almost immediately from
Myecielski’s results that the Widrow-Hoff rule is within a constant of optimal for a closely
related problem, where, instead of assuming that the hidden weight vector p consists of
nonnegative components summing to one, we assume that it has Fuclidian length of at
most one, and instead of choosing instances ¥y, #s,... from [0, 1]", one assumes that the
Euclidian length of the instances is at most 1. A more detailed comparison of our algorithm
to the Widrow-Hoff rule including experimental comparisons is given in [CW91].

Our algorithms are motivated by the algorithms of [Lit88] [Lit89] for learning simple
boolean functions, such as clauses with a small number of literals. In that case the
predictions and responses are boolean. A mistake occurs when the prediction and response
disagree, and the loss is taken to be the total number of mistakes in all trials. Algorithms
are given in those papers for learning k-literal clauses whose worst case mistake bounds are
at most a constant factor from optimal. We generalize the techniques developed there to
the learning of linear functions defined on R™. Optimal algorithms for a simple continuous
case have already been given in [LW89]. In our notation, this is the case when exactly one
of the hidden p;’s is 1 and the rest are 0.2

As in [Lit88] [Lit89] [LW89] and the Widrow-Hoff rule [DH73], our algorithms maintain a
vector of n weights that is updated each trial after the response is received. Let @; represent
this weight vector before trial ¢. Our algorithms always predict with the current weight
vector: i.e., they predict Ay = ¥; - ©4. Note that in the noise-free case it is easy to always
find a coefficient vector v consistent with the previously observed examples, i.e., such that
for all j less than t, ¥- Z; = p;. However, consistency is neither necessary nor sufficient to
obtain the performance we describe. We can show that an algorithm that predicts using an
arbitrary consistent linear function can have loss of Q(n). Our algorithms do not necessarily
maintain consistency with previously observed examples. Instead, they are designed so that
they “learn a lot” from a large loss, so that the cumulative loss is only logarithmic in n
instead of linear.

To get some intuition about updates of the weights that might achieve the above, let us
go back to our initial example of predicting the GNP. An obvious strategy for the advisor
would be to predict with the average estimate of the economists. Suppose, however, the
advisor notices that some economists are better at predicting the GNP. A good method for
the advisor would be to initially weigh all opinions equally, and adjust the weight assigned
to each economist based on her performance.

When using a weighted average for prediction, a natural interpretation of the weights
is as the relative “credibilities” of the economists. Given this interpretation, a natural
reweighting strategy is to reduce the weights of each economist according to some monotone
function of how far off her estimate was (e.g., the Weighted Majority algorithm [LW89]),
and then normalize so that the weights sum to one. In the discrete case this approach can
lead to logarithmic total mistake bounds [Lit88] [Lit89] [LW89]. Furthermore, it was shown
in [LW89] that in the continuous case the loss of the advisor is at most O(logn) plus a
constant times the least individual loss of any of the n economists.>

However, if one wishes to learn a linear combinations without assuming that any one
economist does well individually, then this strategy does not work. Suppose that there
were three economists: one who always wildly overestimated the GNP, one who wildly

?These results are with respect to the loss function |A: — pe.

? Again, these results are with respect to the loss function |A; — pe|.

1. Introduction 1

1 Introduction

Suppose, for budget purposes, each year each member of a panel of economists predicts
the next year’s GNP and an advisor to the president wishes to combine their predictions to
obtain a single prediction. If we measure the loss for each year as the square of the difference
between the advisor’s prediction and actual GNP, a reasonable goal for the advisor is to
minimize the worst case total loss over the years, assuming that some fixed weighted average
of the economists is always reasonably close to the actual GNP. In this paper, we present
near-optimal strategies for combining opinions in situations like this.

In more abstract terms, we study the on-line learning of linear functions. We assume
that learning proceeds in a sequence of trials. At trial number ¢ the learning algorithm (the
advisor) is presented with an instance Z; € [0, 1]™ (the estimates of the n economists, where
the GNP is measured in units such that it can never possibly be greater than 1) and is
required to return a real number A;. After predicting, the algorithm receives a real number
p¢ from the world, called a response, which can be interpreted as the truth. In the simplest
case we consider, p; = ji - ¥; for each trial, where [i is a hidden coefficient vector in [0, 1]™
whose components sum to 1 and - denotes the dot product. The loss of an algorithm over
a sequence of m trials is >.7% (A, — py)?.

We present a family of algorithms: {As : 6§ > 0}. We prove that for each é > 0, the
worst case loss of Ag is at most (14262)(Inn— H())/2 where H (@) = — Y7, p; In p; is the
entropy of the hidden coefficient vector. Thus, by choosing a small enough 6, we can make
the bound arbitrarily close to (Inn — H(f))/2. Since for all relevant fi, H(fi) > 0, the upper
bound on total loss of As approaches (Inn)/2 as § approaches 0. Also, as i approaches
(1/n,1/n,....,1/n), H(ji) approaches In n, and our bounds approach 0. We show that for all
values of H(fi) and choices of ¢, As is optimal to within a constant factor. Note that our
bounds hold for an arbitrarily large number m of trials.

In reality, there may not be any fixed set of weights such that the corresponding weighted
average of economists’ estimates always equals the actual GNP. In that case, for any finite
sequence of trials and any 6 > 0, the loss of As is still bounded by O(min{lnn — H(f) +
S (- & — pe)?}), where the minimum is over all choices of @ € [0, 1]" whose components
sum to one.! In particular, this implies that the total loss of As is O(logn + N), where N
is the total loss obtained from the best fixed weight vector. This performance is obtained
even though the algorithm is not given any information about future examples and about
the error term (the sum in the above expression). As in the case in which all examples are
consistent with some hidden function, we can show that our algorithms are optimal to within
a constant factor. We can also give algorithms for more general linear functions defined
on more general domains by transforming such problems into the basic problem discussed
above. These transformations resemble those studied in [Hau88] [KLPV87] [Lit88] [PW90].

Mycielski [Myc88] gives worst case bounds on the total loss of the Widrow-Hoff rule (also
sometimes called the delta rule) [WH60] [DH73]. However, instead of giving his bounds in
terms of Y72, (fi - T; — p;)?, he gives bounds in terms of max,(f - Z; — p;)?. His bounds,
however, grow with the number of trials m. The focus of the research of this paper is to
obtain bounds independent of m. Furthermore, it was shown in [CW91] that the worst-case
total loss of the Widrow-Hoff rule in the setting of this paper is Q(n + N), where, again,

!There is a subtle trade off between the two summands in the minimum. Even if there is a @ such
that py = @ - & for all 1 <t < m, the minimum sometimes occurs at a i’ with higher entropy for which

S Fo—) >0,

On-Line Learning
of Linear Functions

Nicholas Littlestone*
Philip M. Long!
Manfred K. Warmuth?

UCSC-CRL-91-29
October 1, 1991
Revised: October 30, 1991

Board of Studies in Computer and Information Sciences
University of California at Santa Cruz
Santa Cruz, CA 95064

ABSTRACT

We present an algorithm for the on-line learning of linear functions which is
optimal to within a constant factor with respect to bounds on the sum of squared
errors for a worst case sequence of trials. The bounds are logarithmic in the number
of variables. Furthermore, the algorithm is shown to be optimally robust with
respect to noise in the data (again to within a constant factor).

We also discuss an application of our methods to the iterative solution of sparse
systems of linear equations.

*The research reported here was primarily done while this author was at Harvard supported by ONR grant
N00014-85-K-0445 and DARPA grant AFOSR-89-0506. Address: NEC Research Institute, 4 Independence
Way, Princeton, NJ 08540. Email address: nickl@research.nj.nec.com.

tSupported by ONR grant N00014-91-J-1162. Email address: plong@saturn.ucsc.edu

{Supported by ONR grant N00014-91-J-1162. Part of this work was done while employed by ILAS-SIS
Fujitsu Limited in Numazu, Japan. Email address: manfred@mira.ucsc.edu.

