
22 A. Some proofswe have 1Xt=1(�t � �t � k�)2 � LA(G; N=�2):Hence, 1Xt=1((��t + k)� �t)2 = �2 1Xt=1(�t � �t � k�)2� �2LA(G; N=�2):The theorem follows from the fact that S was chosen arbitrarily.A.2 Proof of Lemma 5Fix z; � > 0. De�ne f : [0; 1� z]! R byf(x) = ln (x+ z + �)(1� x+ �)(x+ �)(1� x � z + �) :Note that it is su�cient to prove that f is convex over its domain, since the right hand sideof the claimed inequality is f(0) = f(1� z).De�ne g : [0; 1� z]! R by g(x) = ln x+ z + �x+ � :Then f(x) = g(x) + g((1� z)� x)f 0(x) = g0(x)� g0((1� z)� x)f 00(x) = g00(x) + g00((1� z)� x):Hence, the result follows from the convexity of g, which is easily veri�ed. 2A.3 Proof of Lemma 6Fix � > 0. De�ne f : [0; 1]! R byf(z) = (2� + 1)z�(1 + �) � ln (z + �)(1 + �)�((1 + �)� z) :We havef 0(z) = 2� + 1�(1 + �) � ��((1 + �)� z)(z + �)(1 + �)���((1 + �)� z)(1 + �) + (z + �)(1 + �)��2(1 + � � z)2 �= 2� + 1�(1 + �) � 2� + 1(z + �)(1 + � � z)� 0:Thus, f is monotonically increasing and is thus minimized when z = 0. The fact thatf(0) = 0 then completes the proof. 2

A. Some proofs 21[Hau88] D. Haussler. Learning conjunctive concepts in structural domains. Technicalreport, UC Santa Cruz, 1988.[JM88] W.D. Joubert and T.A. Manteu�el. Iterative methods for nonsymmetric linearsystems. Proceedings of the Conference on Iterative Methods for Large LinearSystems, pages 149{171, 1988.[KLPV87] M. Kearns, M. Li, L. Pitt, and L.G. Valiant. On the learnability of booleanformulae. Proceedings of the 19th Annual Symposium on the Theory of Compu-tation, pages 285{295, 1987.[Kul67] S. Kullback. A lower bound for discrimination in terms of variation. IEEEtransactions on Information Theory, 13:126{127, 1967.[Lit88] N. Littlestone. Learning quickly when irrelevant attributes abound: a newlinear-threshold algorithm. Machine Learning, 2:285{318, 1988.[Lit89] N. Littlestone. Mistake Bounds and Logarithmic Linear-threshold Learning Al-gorithms. PhD thesis, UC Santa Cruz, 1989.[LW89] N. Littlestone and M.K. Warmuth. The weighted majority algorithm. Proceed-ings of the 30th Annual Symposium on the Foundations of Computer Science,1989.[Myc88] J. Mycielski. A learning algorithm for linear operators. Proceedings of theAmerican Mathematical Society, 103(2):547{550, 1988.[PR85] V. Pan and J. Reif. E�cient parallel solution of linear systems. Proceedings ofthe 18th ACM Symposium on the Theory of Computation, 1985.[PW90] L. Pitt and M.K. Warmuth. Prediction preserving reducibility. Journal ofComputer and System Sciences, 41(3), 1990.[WH60] B. Widrow and M.E. Ho�. Adaptive switching circuits. 1960 IRE WESCONConv. Record, pages 96{104, 1960.A Some proofsA.1 Proof of Theorem 9De�ne B as follows. Given an instance x, B feeds �(x) to A, and if A predicts �, Breturns ��+ k. Then, when B gets � as a reinforcement, it feeds (�� k)=� to A.Choose f 2 F , and let S = h(xt; �t)it2N be a sequence of example-reinforcement pairs.Let h�tit2N be the sequence of predictions made by A on h(�(xt); (�t� k)=�)it2N. LetN = 1Xt=1(f(xt)� �t)2:Then since 1Xt=1((f)(�(xt))� �t � k�)2 = 1Xt=1(f(xt)� k� � �t � k�)2= 1=�2 1Xt=1(f(xt)� �t)2= N=�2

20 7. Conclusion7 ConclusionLinear functions are widely used. We expect that our algorithm may become a standardsubmodule for learning more complicated functions or for learning linear combinations ofpreviously learned functions.The fact that our algorithm must know a bound on the sum of the absolute values ofcoe�cients of the target function might make it appear somewhat unattractive to practi-tioners. However, this problem may be circumvented using standard doubling tricks whilestill retaining bounds within a constant factor of those of this paper. Nevertheless, to sim-plify application of our techniques to real-world problems, it would be useful to have avariant of our algorithm which avoided doubling techniques, and obtained similar boundswithout knowing anything about the hidden coe�cients.We also are interested in improving our lower bounds. Is it possible that similar lowerbounds hold even when the algorithm has more information about the hidden coe�cients,or even about the upcoming sequence of examples?We are also investigating the case in which the coe�cient vector changes gradually overtime, corresponding to a case in which some linear combination of the economists is closeto the actual GNP for a certain period, and then in later periods other linear combinationsdo well. The algorithm is to \track" the best linear combination with some additional costthat grows as a function of how much the coe�cient vector changes over time. This wouldgeneralize the methods of [LW89] with which one could track the best single economist.In addition, we would like to �nd algorithms which are optimal with respect to othernatural loss functions, in particular, j�t � �tj.Finally, since our algorithms have a similar avor to the linear threshold algorithms of[Lit88] [LW89] [Lit89], one might ask whether a similar algorithm is optimal for learningthe class containing all linear functions composed with the standard sigmoid function(1=(1 + e�x)). One can trivially obtain bounds from our results, but they are suboptimal.8 AcknowledgmentsWe'd like to thank Naoki Abe, Nicolo Cesa-Bianchi, Yoav Freund, David Haussler,David Helmbold, Victor Pan, Victor Pereyra, John Reif and Richard Snyder for valuableconversations.References[BHL91] A. Blum, L. Hellerstein, and N. Littlestone. Learning in the presence of �nitelymany or in�nitely many irrelevant attributes. The 1991 Workshop on Compu-tational Learning Theory, 1991.[CW91] N. Cesa-Bianchi and M.K. Warmuth. A comparison of on-line algorithms forlearning linear functions. Manuscript, 1991.[DH73] R.O. Duda and P.E. Hart. Pattern Recognition and Scene Analysis. John Wileyand Sons, 1973.[GL90] G.H. Golub and C.F. Van Loan. Matrix Computations. The Johns HopkinsUniversity Press, 1990.

6. Iterative solution of linear systems 19Corollary 18: There is an algorithm that, given an n � n nonsingular matrix A with knonzero entries and an n� 1 column vector ~b produces a sequence of approximations to thesolution ~x of A~x = ~b, for which the following statements hold: If jjA�1bjj � 1, in timeO((logn)kcond(A)2�2)it will produce an approximation x̂ satisfyingkx̂�A�1~bk2kA�1~bk1 � �:In time O(n(logn)kcond(A)2�2)it will produce an approximation x̂ satisfyingkx̂�A�1~bk2kA�1~bk2 � �Proof: To prove the �rst statement, note that from the previous corollary, the algorithmwill produce an x̂ satisfying kAx̂�~bk2 � kA�1~bk1�kA�1k2 in timeO((logn)k kAk2kA�1k2� !2):For such an x̂ we have kx̂�A�1~bk2kA�1~bk1 = kA�1(Ax̂�~b)k2kAx̂�~bk2 kAx̂�~bk2kA�1~bk1� kA�1k2kAx̂�~bk2kA�1~bk1 � �This gives the �rst result. The �rst result implies that we can produce an x̂ satisfyingkx̂�A�1~bk2kA�1~bk1 � �pn in time O(n(logn)kcond(A)2�2). For such an x̂ we havekx̂� A�1~bk2kA�1~bk2 � kA�1~bk1kA�1~bk2 �pn � �This completes the proof.Our analysis of the time required by our algorithm is presently somewhat crude, soits performance in practice might far outstrip the best bounds we are presently able toprove. Also, our algorithm for linear systems is a straightforward extension of our learningalgorithm. Perhaps more re�ned application of the ideas encompassed here might lead toimproved iterative algorithms for the solution of linear systems.

18 6. Iterative solution of linear systemsCorollary 16: Choose c > 0. There is an algorithm which, given an m� n matrix A andan m�1 column vector ~b such that there exists ~x with A~x = ~b such that jj~xjj1 � c and given� > 0, produces a vector ~x such that jjA~x�~bjj2 � �in O (k log n)�Kc� �2!time, where k is the number of nonzero entries in A, and K = maxfjjAijj2 : 1 � i � ng.Proof: We have, (A=4K)(~x=c) = (~b=4Kc)and jj~x=cjj1 � 1. By the previous corollary, we can �nd ~x such thatjj(A=4K)~x� (~b=4Kc)jj2 � �4Kcin O(k logn(�=4Kc)2) = O((k logn)�Kc� �2)time. The corollary follows from the fact thatjj(A(c~x)�~b)jj2 = Kcjj(A=4K)~x� (~b=4Kc)jj2: 2Finally, since we have bounds on the number of iterations required for the relative errorof the right hand sides to be no greater than � for each assumption of an upper bound onjj~xjj1, we don't need to know any bound a priori. An algorithm can guess an upper boundon jj~xjj1, and compute the corresponding bound on the number of iterations. If this numberof iterations has passed without success, it can double its guess and try again. After atmost log jj~xjj1 such stages, the algorithm will terminate. Since the time bound for the laststage dominates the that for all the previous stages, the following corollary easily follows.Corollary 17: There is an algorithm which, given an m�n matrix A and an m�1 columnvector ~b such that there exists ~x with A~x = ~b and given � > 0, produces a vector ~x such thatjjA~x�~bjj2 � �in O (k logn)� jjAjj2jj~xjj1� �2!time if jj~xjj1 � 1 and O k(logn)� jjAjj2� �2!otherwise, where k is the number of nonzero entries in A.Proof: Follows immediately from the above comment, together from the fact that jjAjj2 �maxfjjAijj2 : 1 � i � ng. 2The dependence of the time bound on jjAjj2 and jj~xjj1 is not surprising, since an absolutemeasure of error is used.Finally, we can bound the rate of convergence to the solution in the case that A is anonsingular square matrix.

6. Iterative solution of linear systems 17The theorem follows from the fact that I(~xjj~x1) � ln n and I(~xjj~xt) � 0 for all t. 2The following sequence of corollaries bounds the rate of convergence of residuals to thezero vector. The �rst corollary establishes the existence of an e�cient algorithm which usesthe fact that A and ~b are of a special form. Algorithms for more general systems will beobtained through transformations to this systems of this form.Corollary 15: There is an algorithm which, given an m � n matrix A, an m � 1 columnvector ~b and � > 0 such that there exists ~x with A~x = ~b and jj~xjj1 � 1, and such that foreach i; 1 � i � n; jjAijj2 < 1=2, produces a vector x̂ such thatjjAx̂�~bjj2 � �in O(k ln n�2)time, where k is the number of nonzero entries in A.Proof: First of all, we transform A by adding a column consisting entirely of zeros andfor each column in A, adding a column which is its negation. Clearly, if A0 is the result ofsuch a transformation, there exists ~x0 with jj~x0jj1 = 1 and each ~x0 nonnegative such thatA0~x0 = ~b. Also, it is easily seen how to transform an estimate x̂0 of ~x0 to an estimate x̂ of ~xsuch that A0x̂0 = Ax̂.The algorithm is to generate ~x1; ~x2; ::: from A0 and ~b as described at the beginning ofthis section, and after generating each ~xt, to test whetherjjA0~xt �~bjj2 � �and terminate when this is true. As discussed above, each iteration requires O(k) time,since there are exactly twice as many nonzero elements in A0 as in A.We claim that there are at most 2 log(2n+ 1)�2iterations. Assume the contrary for contradiction. Then for each t � 2 log(2n+1)�2 ,jjA0~xt �~bjj2 > �which implies pXt=1 jjA0~xt �~bjj22 > 2 log(2n+ 1)which is a contradiction. This completes the proof. 2In our next corollary, we establish the existence of an algorithm for each a prioriassumption of an upper bound on jj~xjj1. Our algorithm works by transforming the instanceof a problem into an instance satisfying the requirements of the previous corollary, applyingthe algorithm of the previous corollary, then transforming the solution received.

16 6. Iterative solution of linear systemsBy applying Lemma 4, we obtainnXi=1w(t+1);i = nXi=1wt;i�ut(Ai)t= nXi=1wt;i! nXi=1 xt;i�ut(Ai)t� nXi=1wt;i! nXi=1 xt;i �12 � 1�t + �t�+ 12 ��t � 1�t�ut(Ai)�= nXi=1wt;i! nXi=1 xt;i "12 � 1�t + �t�+ 12 ��t � 1�t� (Ai �~b) � (~b� ~�t)jj~b� ~�tjj2 #= nXi=1wt;i!"12 � 1�t + �t�+ 12 ��t � 1�t� (~�t �~b) � (~b� ~�t)jj~b� ~�tjj2 #= nXi=1wt;i!�12 � 1�t + �t�+ 12 � 1�t � �t� jj~b�A~xtjj2� :This implies that ln nXi=1w(t+1);i!� ln nXi=1wt;i! � ln �12 � 1�t + �t�+ 12 � 1�t � �t� jjA~xt �~bjj2� :Next, we have nXi=1 xi(lnw(t+1);i � lnwt;i) = nXi=1 xiut(Ai) ln �t= (ln �t) nXi=1 xi (Ai �~b) � (~b�A~xt)jj~b� ~�tjj2= 0since P xiAi = ~b. Hence I(~xjj~xt+1)� I(~xjj~xt) is no more thanln �12 � 1�t + �t�+ 12 � 1�t � �t� jjA~xt �~btjj2� :Setting E = jjA~xt �~btjj2, we getI(~xjj~x(t+1))� I(~xjj~x(t)) � log �12 � 1� + ��+ 12 � 1� � ��E�= log2412 0@s1�E1 +E +s1 +E1�E1A+ 12 0@s1� E1 + E �s1 +E1�E1AE35= log 12 24(1 + E)s1�E1 +E + (1�E)s1 + E1� E35= log 12 hp1 +Ep1�E +p1�Ep1 + Ei= logp1� E2� �12 jjA~xt �~bjj22:

6. Iterative solution of linear systems 15and ut : Rn ! R is de�ned byut(~y) = 8<: ~y�(~b�A~xt)jj~b�A~xtjj2 if A~xt 6= ~b1 otherwise:For each i and t, let xt;i = wt;iPni=1wt;i :In the above, the columns A1; :::; An of the matrix correspond to the componentsxt;1; :::; xt;n of the instances of the learning algorithm, each ~xt corresponds to a ~vt, and~b corresponds to a response �t. Note that the base of the exponent is of a di�erent formthan that of the learning algorithm. This is due to the fact that we cannot guarantee thatthe exponent will be positive, and thus we use a di�erent approximation for �x. Optimizing� for the resulting bounds yields the above choice.Note that if jj~b�A~xtjj2 is precomputed and a list data structure is used for representingeach Ai, ut(Ai) can be computed in time proportional to the number of nonzero entries inAi. Note further that if A is represented using an appropriate data structure,6 A~xt can becomputed in time depending on the number of nonzero entries in A, so an entire iterationcan be computed in time depending on the number of nonzero entries in A.Also, note that we obtain the same sequence of estimates if we normalize ~w after eachtrial, as was done in the learning algorithm.First, we obtain bounds on the performance of our algorithm on a very restricted classof linear systems. More general results will be obtained by transforming problems into thisrestricted form.The following theorem is the basis for our analysis of this algorithm.Theorem 14: Let A be anm�nmatrix and ~b be am�1 column vector such that there exists~x 2 [0; 1]n; jj~xjj1 = 1 with A~x = ~b. Suppose further that for each i; 1 � i � n; jjAijj2 < 1=2:Then if ~x1; ~x2; ::: are de�ned as above,1Xt=1 jjA~xt �~bjj22 � 2 lnn:Proof: First, note that due to the normalization of ~x, we obtain the same sequence ~x1; ~x2; :::if we let ut(~y) = 8<: (~y�~b)�(~b�A~xt)jj~b�A~xtjj2 if A~xt 6= ~b1 otherwise:In this proof, we will assume that ~w1; ~w2; ::: are generated using this de�nition.As in Theorem 8, we use I(~xjj~xt) as a measure of progress. For each t, let ~�t = A~xt.Thus ~�t is the vector of right hand sides obtained by \plugging in" our proposed solutionto the left hand sides of the input linear system.Choose t. We have,I(~xjj~xt+1)� I(~xjj~xt) = " ln nXi=1w(t+1);i!� ln nXi=1wt;i!#� nXi=1 xi(lnw(t+1);i � lnwt;i)! :6Here we assume without loss of generality that A has no rows consisting entirely of zeroes and at mostone such column.

14 6. Iterative solution of linear systemsProof: Choose n 2 N; M; c;N > 0. As before, the adversary strategy is broken intotwo stages. In the �rst stage, the adversary maintains consistency with some element ofLINEAR(n;M; c), and in the second stage, the adversary greedily expends a \noise budget."For the �rst stage, which consists of n � 1 examples, the tth instance is given byx(t)i = (M if i = t0 otherwiseand the tth response is always 0. Note that if for each t, v(t) 2 Rn is de�ned byv(t)i = (c if i = t0 otherwisethen for each t � n� 1, v(t) is consistent with the �rst t� 1 examples, and thus minimizesthe observed loss on these examples. Yet if �(t) is the prediction made using v(t), then foreach t, �(t) = cM , thus n�1Xt=1(�(t) � �(t))2 = (cM)2(n� 1): (5:2)Note that v(n) is consistent with all the examples of the �rst stage.The second stage is virtually identical to the second stage of Theorem 11, replacing(1=2; :::; 1=2) with (0; :::; 0), and responding with whichever of �cM and cM is farthestfrom the algorithm's prediction. One can easily see that, as in Theorem 11, the algorithmcan be forced to have total loss of N in the second stage. Combining this with (5.2) yieldsthe desired result. 2This result suggests that our algorithm is to be preferred to linear least squares inpractice in situations where little is known about the generation of examples, in particular,the generation of the noise.6 Iterative solution of linear systemsIn this section, we present an iterative algorithm for the approximate solution of systemsof linear equations which shares some characteristics with the learning algorithm treated inthe previous sections. All vectors of this section are assumed to be column vectors.As in the learning case, we have a basic algorithm which solves special types of systems,and we obtain a general algorithm by transforming instances into this special form. Thefollowing is an algorithm which, given an m� n matrix A and a m � 1 vector ~b such thatthe L2 norm of each of the columns of A and of ~b is less than 1=2, produces a sequence~x1; ~x2; ::: of n� 1 column vectors.Let A1; :::; An be the columns of A. The algorithm computes a sequence ~w1; ~w2; ::: ofelements of Rn as follows. Let wi;1 = 1 for all i. For each t and i, letwi;t+1 = wt;i�ut(Ai)twhere for each t 2 N, �t = 1 + jjA~xt �~bjj21� jjA~xt �~bjj2! 12= exp(tanh�1(jjA~xt �~bjj2))

5. Lower bounds 13we have Xt<m(�(t)� ~� � ~x(t))2 = b4Nc4 :Also, (�(m) � ~� � ~x(t))2 = 4N � b4Nc4 ;so Xt (�(t)� ~� � ~x(t))2 = 4N4 = N:Also, the loss on each trial t of phase two is at least (~� � ~x(t) � �(t))2, thus the total loss ofstage two is at least N .Combining this with (5.1) yields the desired result. 2Note that this argument proves a stronger result than that stated in the theorem, since allof the instances of the sequence of examples, as well as the entropy of the hidden coe�cientvector and the amount of noise, may be given to the algorithm before the �rst predictionis made and adversary can then choose the responses of each example so that the loss ismaximized.Note also that in the case that � = 0, the adversary uses only functions with just onenonzero coe�cient. This, combined with Theorem 8, implies that the inherent complexityof the problem of learning functions which simply output a selected component is the same(at least to within a constant factor) as that of learning the class of all functions computingweighted averages, which is quite surprising. Classes of weighted-average functions whoseweights have high entropy (which requires many non-zero weights) are easier to learn. Thisis in contrast to the case of learning boolean functions, such as boolean linear-thresholdfunctions, where in general (for classes closed under permutation of the attributes) learninggets harder as the number of relevant variables increases [Lit88] [LW89] [Lit89] [BHL91].5(Some of the upper bounds of [Lit89] depend on a product of two factors, one of whichshows the same decreasing dependence on entropy observed here; that decrease is typicallydwarfed by an increase in the other factor as the number of relevant variables increases.)The following is a straightforward extension of the previous theorem. Its proof istherefore omitted.Corollary 12: We haveoptWA(n;M; �;N) 2
(M2(lnn� �) +N)optLINEAR(n;M; c;N) 2
((cM)2 ln n+N):By a least squares algorithm, we mean any algorithm which hypothesizes a linearfunction at each trial that minimizes the sum of the squared errors on previous examples.Next, we show that a least squares algorithm can have total loss which depends linearly onthe number of variables n.Theorem 13: For each n 2 N; M; c;N > 0, there exists a least squares algorithm B anda sequence S 2 SLINEAR(n;M; c;N) such thatLB(S) � (cM)2(n� 1) +N:5For certain especially simple classes mistake bounds can again drop as the number of relevant variablesbecomes a signi�cant fraction of all of the variables.

12 5. Lower boundsUsing similar techniques, we can easily prove similar theorems for classes formed bylinear combinations of functions taken from some �xed �nite set, e.g. for bounded degreepolynomials. Furthermore, our algorithm can be trivially modi�ed to yield an optimal (towithin a constant factor) loss bounded algorithm for the learning problem in which theobject hidden from the learner is an m � n matrix, the instances are l �m matrices, andthe responses are the l� n matrices obtained by multiplying the instances with the hiddenmatrix, where the loss is the sum of the squares of the di�erences between the entries of thepredicted matrix and the true matrix. This can be accomplished by running several copiesof our algorithm in parallel, one for each pair formed by choosing a row from the instancesand a column from the hidden matrix.5 Lower boundsWe begin by proving a lower bound on optWA(n; 1; �; N). Our more general lowerbounds can be derived from this initial result. For the proof, we will need the followingnotation. For u; v 2 N; v � log u + 1, let bit(u; v) be the vth least signi�cant bit of thebinary representation of u (e.g., bit(6; 1) = 0; bit(6; 2) = 1; bit(6; 3) = 1).Theorem 11: We have optWA(n; 1; �; N)� (lnn � �)4ln2 +N � 12 :Proof: Consider an adversary which adaptively constructs a sequence of examples asfollows. Our adversary consists of two stages. In the �rst stage, the adversary maintainsconsistency with some function in WA(n; 1; k) � WA(n; 1; �). In the second stage, theadversary greedily uses up its \noise budget."Let l = blog nc; k = d�=(ln 2)e. The instances ~x(1); :::; ~x(l�k) of the �rst stage areconstructed as follows: x(t)i = 1 if bit(i; t) = 1 and i � 2l, otherwise x(t)i = 0. Theadversary responds with 1 if the algorithm's prediction is no more than 1=2, otherwise theadversary responds with 0. Thus the loss of the algorithm on each trial of stage one is atleast 1=4.De�ne ~� as follows: if i � 2l and for each t � l � k, bit(i; t) = �(t), then let �i = 2�k,and otherwise, let �i = 0. Since the number of l bit vectors \satisfying" a (l� k)-bit maskis 2k, jj~�jj1 = 1. Also, by construction, the linear function induced by ~� is consistent withthe examples of the �rst phase. Trivially, H(~�) = k ln 2 � �. Since the �rst phase consistsof l� k trials, the total loss of the �rst phase is at least14(bln n=(ln 2)c � d�=(ln 2)e): (5:1)In the second stage, which consists of b4Nc+1 trials, each instance is (1=2; 1=2; :::; 1=2),and for the �rst b4Nc trials the adversary simply responds with whichever of 0 or 1 is furtherfrom the algorithm's prediction. On the last trial, if the algorithm's prediction is no morethan 1=2, the adversary responds with 1=2+(1=2)p4N � b4Nc, otherwise he responds with1=2� (1=2)p4N � b4Nc.Let m = l� k+ b4Nc+ 1 be the total number of trials of the adversary. Since the factthat ~� � (1=2; :::; 1=2) must equal 1=2 implies that for each t; l � k < t < m,(~� � ~x(t) � �(t))2 = 1=4;

4. Transformations and more general learning problems 11and optLINEAR(n;M; c;N)to be inffsupfLA(S) : S 2 SLINEAR(n;M; c;N)g : A 2 A([0;M]n; [�cM; cM])g:Next, we apply Theorem 9 to get loss bounds for more general linear functions.Theorem 10:optWA(n;M; �;N)�M2optWA(n; 1; �; N=M2) 2 O(M2(ln n� �) +N)optLINEAR(n;M; c;N)� (2cM)2optWA(2n+ 1; 1; 0; N=(2cM)2) 2 O((cM)2 lnn +N)Proof: We will prove only the second bound. The �rst can be proved analogously.Choose n;M; c appropriately. We present a 2cM -reduction from LINEAR(n;M; c) toWA(2n+ 1; 1; 0). The theorem then follows immediately from Theorem 9 and Theorem 8.De�ne the instance transformation � : [0;M]n ! [0; 1]2n+1 by�(~x) = �x1 +M2M ; :::; xn +M2M ; �x1 +M2M ; :::;�xn +M2M ; 12�and de�ne : LINEAR(n;M; c)! WA(2n + 1; 1; 0) as follows. If g 2 LINEAR(n;M; c) isde�ned by g(~x) = nXi=1 �ixi;then let (g) = f , where f is de�ned byf(~x) = 2n+1Xi=1 �ixi;where �i = 8>>><>>>: �i=c if i � n and �i � 0��i�n=c if n < i � 2n and �i�n < 01� 1c Pi j�ij if i = 2n+ 10 otherwise.Note that for each i, �i is nonnegative, and thatPi �i = 1. Choose g 2 LINEAR(n;M; c); ~x 2[0;M]n. Let ~� be the coe�cient vector of g, I+ = fi : �i > 0g and I� = fi : �i � 0g. Wehave (g)(�(~x)) = 0@Xi2I+ �i(xi +M)2cM 1A+ 0@Xi2I� ��i(�xi +M)2cM 1A + 12 1� 1cXi j�ij!= 12cM nXi=1 �ixi!+ Xi j�ij2c !+ 12 1� 1cXi j�ij!= g(~x)2cM + 1=2:Thus there is a 2cM -reduction from LINEAR(n;M; c) to WA(2n + 1; 1; 0). The theoremnow follows immediately from Theorem 9. The �rst bound can be proved by giving anM -reduction from WA(n;M; �) to WA(n; 1; �) along the lines of the reduction given above.The details are omitted. 2

10 4. Transformations and more general learning problems3.5 Noise toleranceNote that the smallest we can make the constant on the \noise term" (at the expenseof the term depending on n and H(�)) by increasing � is 4. However, our analysis issomewhat loose, which leaves open the possibility that our algorithm's loss (or that of arelated algorithm) is bounded by k(lnn �H(�)) +N(�) for some constant k.4 Transformations and more general learning problemsIn this section, we use transformations to obtain loss bounds for more general classesof linear functions. These transformations generalize the prediction preserving reductionsthat have been used in a similar manner in the learning of f0; 1g-valued functions [Hau88][Lit88] [KLPV87] [PW90].We will need the following de�nition. Let X and Y be sets, and let F and G befamilies of real-valued functions de�ned on X and Y respectively. Let � � 0. We saythat F �-reduces to G if and only if there is a function � : X ! Y , called an instancetransformation, a function : F ! G, called a target transformation, and k 2 R such thatfor all x 2 X; f 2 F , f(x) = � (f)(�(x))+ k:We are now ready for the following theorem, which gives loss bounds for a class offunctions in terms of those for a class to which the function can be �-reduced.Theorem 9: Let X and Y be sets, and let F and G be families of real-valued functionsde�ned on X and Y respectively. Let A be an algorithm for Y . Choose �;N � 0. Then ifF �-reduces to G, there exists an algorithm B for X, such thatLB(F ; N)� �2LA(G; N=�2):Proof: In Appendix A.For each n 2 N;M; �; c > 0 we will need the following de�nitions. Let WA(n;M; �) bethe set of f : [0;M]n ! [0;M] such that there exists ~� 2 [0; 1]n; jj~�jj1 = 1 whose entropyis at least � such that f(~x) = ~� � ~x for all ~x. Let LINEAR(n;M; c) be the set of linearfunctions de�ned on [0;M]n such that the sum of the absolute values of their coe�cients isat most c. Since the entropy is only de�ned for non-negative coe�cients summing to 1, weomit the entropy parameter from LINEAR.Let SWA(n;M; �;N) be the set of all �nite sequences S = h(~x(t); �(t))i1�t�m of examplesin [0;M]n � [0;M] such that there is some f 2WA(n;M; �) such thatmXt=1(f(~x(t))� �(t))2 � N:De�ne SLINEAR(n;M; c;N) as the analogous set of sequences of examples in [0;M]n �[�cM; cM]. Let optWA(n;M; �;N)be de�ned to beinffsupfLA(S) : S 2 SWA(n;M; �;N)g : A 2 A([0;M]n; [0;M])g

3. The basic learning algorithm 93.3 Choosing �How did we come up with our choice of �t = �t+��t+� 1��t+�1��t+� for the algorithm A�? Considerthe upper bound for �t given by the Inequality 3.2 for the case when �t = ~� � ~xt:�t � ln(1 + (�t � 1)�0t)� �0t ln �t:Our above choice for �t is obtained by minimizing this upper bound for �t, i.e. we maximizeour bounds on the decrease of I(~�jj~vt) caused by the update in trial t.However, there are better choices for �t for the case when �t = ~� � ~xt. Assumefact(�t; xt;i) = �x0t;it . Then from (3.1) we get�t = ln(nXi=1 vt;i�x0t;it)� �0t ln �t:Note that exp(�t) =Pni=1 vt;i�x0t;i��0tt ; and therefore that@ exp(�t)@�t = 0 i� �t = ~vt+1 � ~xt and@2 exp(�t)@2�t � 0 when@ exp(�t)@�t = 0 and �t � 0:Thus exp(�t), and therefore �t, has exactly one minimum when �t 2 [0;1]. Denote the�t at the minimum as �t;opt. Now if we updated with �t;opt and fed ~x0t to A� after theupdate was made, the algorithm would predict �t. Thus with the optimum choice for �tthe algorithm is in some sense \corrective."Since we have determined the choice for �t which gives the best bound when �t = ~� � ~xt,why not use it? First, we know no closed form for �t;opt. We can use a number ofheuristics for approximating �t;opt such as gradient descent, Newton's method or binarysearch. Another choice is to iterate the update of A� a number of times with the sameinstance ~xt.However, even if the computational cost of approximating �t;opt is not a deterrent, thereis a second reason for not choosing a �t that is too close to �t;opt. This is illustratedwith the following example. Assume there is a long sequence of examples consistent with~� = (1=2; 1=2) except that the �rst example ((1; 0); 1) is noisy. In this case, in order to beconsistent, we must hypothesize ~v2 = (1; 0), e�ectively choosing �1 = 1. Now all futureupdates cannot correct the second component of the weight vector of ~v2, leading to anunbounded loss on future examples consistent with (1=2; 1=2).So in case of noise it is advantageous to choose �t not too close to �t;opt and insteadmake a less drastic update.3.4 Tuning �If one has a prior idea of N(~�) ahead of time, one can tune � to optimize the �rst boundof the preceding theorem. Nonetheless, lower bounds given later in the paper show thattuning � can only yield an improvement of a constant factor over the choice � = 1=p2.

8 3. The basic learning algorithmTo get the remaining bounds we rewrite the second inequalitymXt=1� p2j�t � �tj1 + 2� !2 + p2j�t � �tj1 + 2� ! (1 + 2�)j�t � ~� � ~xtjp2�(1 + �) ! � � lnn +H(~�)and apply Lemma 3, obtainingmXt=1� 1(1 + 2�)2 (�t � �t)2 + (1 + 2�)24�2(1 + �)2 (�t � ~� � ~xt)2 � � ln n+H(~�):The above immediately gives the �rst loss bound of the theorem:LA� � (1 + 2�)2(lnn�H(~�)) + (1 + 2�)44�2(1 + �)2N(~�):For the second bound, observe that when � = 1=p2,(1 + 2�)2 = (1 + 2�)44�2(1 + �)2 � 5:83:This completes the proof. 23.1 Choosing an initial weight vectorIf we choose ~v1 to be something other than (1=n; :::; 1=n), reecting some prior bias onwhich weighted combination of the experts predicts well, then the bounds in the previoustheorem hold if we replace \lnn � H(~�)" by \I(~�jj~v1)". Thus, our algorithm can takeadvantage of increasingly accurate prior beliefs. However, for �xed z,max~�:H(~�)=z I(~�jj~v1)is minimized by choosing ~v1 = (1=n; :::; 1=n). This partially con�rms the intuition thatwhen one knows nothing about the experts, one should begin by simply taking the averageof their predictions.3.2 Trading between �t and entropyThere is a curious trade o� between N(~�) and H(~�) in the upper boundLA1=p2(S) � 5:83(lnn +min~� (N(�)�H(�))):For example, assume the algorithm receives a single example ((1; 0; � � � ; 0); 1). Since werequire that ~� 2 [0; 1]n and jj~�jj1 = 1, only ~�1 = ((1; 0; � � � ; 0); 1) is consistent. The upperbound for ~� = ~�1 is 5:83 lnn, since N(~�1) = H(~�1) = 0:However for ~� = (1=n; 1=n; � � � ; 1=n)the bound is 5:83, which is still far away from the actual loss on the single example. Howevernotice that the minimum in the loss bound is not achieved at the consistent vector ~�1.

3. The basic learning algorithm 7Now, we wish to bound j ln �j. First, let us assume that �t � �t. Let z = �t � �t. Thenln � = ln (�+ z + �)(1� �+ �)(�+ �)(1� �� z + �) :Applying Lemmas 5 and 6, we get thatln � � (2� + 1)z�(1 + �) = (2� + 1)(�t� �t)�(1 + �) :By symmetry, when �t � �t, if we let z = �t � �t, we obtainln 1� � (2� + 1)z�(1 + �) = (2� + 1)(�t� �t)�(1 + �) :Hence j ln �j � (2� + 1)z�(1 + �) = (2� + 1)j�t � �tj�(1 + �) :Plugging into (3.3) yields the desired result. 2We can apply the previous lemma to obtain the following loss bounds.Theorem 8: Choose n;m 2 N. Let S = h(~xt; �t)i1�t�m be any sequence of m examplesfor ([0; 1]n; [0; 1]). Then for each � > 0,LA� � min~� (1 + 2�)2(lnn �H(~�)) + (1 + 2�)44�2(1 + �)2N(~�)!where the minimum is over all ~� 2 [0; 1]n with jj~�jj1 = 1 and for each such ~�, N(~�) =Pmt=1(~� � ~xt � �t)2. In particular,LA1=p2(S) � 5:83(lnn+ min~� (N(~�)�H(~�))):Further, for any sequence S = h(~xt; �t)i1�t�m S of m examples for ([0; 1]n; [0; 1]) for whichthere exists ~� 2 [0; 1]n; jj~�jj1 = 1 such that for all t; 1 � t � m, ~� � ~xt = �t, we haveLA� (S) � (1 + 2�)22 (lnn�H(~�))Proof: Since I(~�jj~v1) = lnn �H(~�) and and I(~�jjvm+1) � 0,mXt=1�t = I(~�jjvm+1)� I(~�jj~v1) � � lnn+H(~�):Thus using the last bound on �t given in the previous lemma we get:mXt=1(� 2(1 + 2�)2 (�t � �t)2 + j�t � ~� � ~xtjj�t � �tj�(1 + �)) � � ln n+H(~�):In the case when ~� � ~xt = �t, then the above inequalities simplify and it is easy to get theloss bound stated at the end of the lemma.

6 3. The basic learning algorithmwhere fact(�t; xt;i) 2 [� xt;i+�1+2�t ; 1+(�t�1)xt;i+�1+2�] (any value in this range may be chosen by animplementor of the algorithm) and �t = � �t+��t+�� �1��t+�1��t+��. 4 Note that since xt;i+�1+2� 2 (0; 1),Lemma 2 assures that the interval in which fact(�t; xt;i) must lie has positive length.As in [Lit89] in the case of linear threshold algorithms, we use the relative entropybetween the coe�cient vector ~� of a target function and the coe�cient vector ~vt of thealgorithm's hypothesis as a measure of progress. Our key lemma relates the change in thismeasure of progress on a particular trial to the loss of the algorithm on that trial. Looselyspeaking, it says that the algorithm learns a lot when it makes large errors.Lemma 7: Choose � > 0 and n; t 2 N. Choose ~� 2 [0; 1]n such that jj~�jj1 = 1. Leth(~xt; �t)it2N be a sequence of examples from [0; 1]n � [0; 1]. Let h~vtit2N be the sequence ofcoe�cient vectors hypothesized by A� and h�tit2N be the sequence of A�'s predictions. Let�t = I(~�jj~vt+1)� I(~�jj~vt) and for z 2 R let z0 denote z+�1+2� . Then�t � � I((�0t; 1� �0t)jj(�0t; 1� �0t)) + �t � ~� � ~xt1 + 2� ln �t� � 2(1 + 2�)2 (�� �)2 + j�t � ~� � ~xtjj�t � �tj�(1 + �) :Proof: From the de�nition of �t and fact(�t; xt;i) and from Lemma 2 it follows that�t = nXi=1 �i ln vt;ivt+1;i= ln(nXi=1 vt;ifact(�t; xt;i)) + nXi=1 �i ln 1fact(�t; xt;i) (3.1)� ln(nXi=1 vt;i(1 + (�t � 1)x0t;i))� nXi=1 �ix0t;i ln �t= ln(1 + (�t � 1)�0t)� ~� � ~xt + �1 + 2� ln �t= ln(1 + (�t � 1)�0t)� �0t ln �t + �t � ~� � ~xt1 + 2� ln �t: (3.2)Since �t can be written as �0t�0t 1��0t1��0t we can rewrite the last expression as�I((�0t; 1� �0t)jj(�0t; 1� �0t)) + �t � ~� � ~xt1 + 2� ln �t;leading to the �rst inequality of the lemma.Next, we upper bound the last expression by using Lemma 1 and replacing the secondterm with its absolute value, obtaining:�t � � 2(�0t � �0t)2 + j�t � ~� � ~xtj j ln �tj1 + 2� : (3:3)4Note that if �(x) = (1 + e�x)�1 is the usual sigmoid function, as � goes to zero, �t approachesexp(��1(�t)� ��1(�t)).

3. The basic learning algorithm 5Lemma 1 ([Kul67]): For �; � 2 [0; 1] I((�; 1� �)jj(�; 1� �)) � 2(�� �)2.The following series of lemmas give approximations for quantities arising in our analysis.The �rst three can be easily veri�ed. The proofs of the last two are included in the appendix.Lemma 2: For all � > 0; x 2 [0; 1],�x � 1 + (� � 1)x:The inequality is an equality i� x = 0 or x = 1.Lemma 3: For all x; y 2 R x(x� y) � 12(x2 � y2):Lemma 4: For all � > 0; x 2 [�1; 1],�x � 12 �� + 1��+ 12 �� � 1��x:Lemma 5: For all z; � and x such that � > 0, 0 < z � 1 and 0 � x � 1� z,ln (x+ z + �)(1� x+ �)(x+ �)(1� x� z + �) � ln (z + �)(1 + �)�(1� z + �) :Proof: In Appendix A.Lemma 6: For all � > 0, and z such that 0 � z � 1,ln (z + �)(1 + �)�((1 + �)� z) � (2� + 1)z�(1 + �) :Proof: In Appendix A.We use a \unit cost" model of computation, in which the usual arithmetic operations onreal numbers (addition, multiplication and exponentiation) take unit time. For simplicity,we assume that there is no roundo� error.3 The basic learning algorithmThe basic learning algorithm A� is designed to perform well on the set of linear functionsde�ned on [0; 1]n whose coe�cients are nonnegative and sum to 1. These functions can beviewed as computing weighted averages. Intuitively, the larger � is the more robust thealgorithm is against noise, and, correspondingly, the more slowly the algorithm learns.The Algorithm A� may be stated formally as follows. We maintain a vector of normalizedweights which is updated at the end of each trial. For each t, let ~vt 2 [0; 1]n be thealgorithm's weights before trial t. When given the instance ~xt = (xt;1; :::; xt;n) 2 [0; 1]n attrial t, the algorithm predicts with �t = ~vt � ~xt. Let �t 2 [0; 1] be the response at trial t.We initialize the weight vector to ~v1;i = 1=n for all i. At the end of each trial eachweight is multiplied by a factor that depends on �:vt+1;i = vt;ifact(�t; xt;i)Pni=1 vt;ifact(�t; xt;i) ;

4 2. Preliminaries2 PreliminariesLetR represent the real numbers andN represent the positive integers. Let log representthe base 2 logarithm, and let ln represent the natural logarithm.For ~x = (x1; :::; xn) 2 Rn, jj~xjj1 = nXi=1 jxijjj~xjj2 = vuut nXi=1 x2i = px � x:For an m� n real matrix A and k 2 f1; 2g, de�nejjAjjk = sup� jjA~xjjkjj~xjjk : ~x 2 Rn� :Also, we will �nd it necessary to discuss sequences ~x1; ~x2; ::: of vectors. In such cases, wewill refer to the ith component of �xt 2 Rn as xt;i.For a nonsingular square matrix A, let the condition number of A, denoted by cond(A),be de�ned as jjAjj2jjA�1jj2. A matrix's condition number measures how close to singular itis, with a large condition number indicating a nearly singular matrix.Suppose ~�;~v 2 [0; 1]n are such that jj~�jj1 = jj~vjj1 = 1. We de�ne the entropy of ~� to bePni=1��i ln�i, where 0 ln 0 is taken to be 0, and denote this quantity by H(~�). The relativeentropy between ~v and ~�, denoted by I(~�jj~v), is given byI(~�jj~v) = nXi=1 �i ln �ivi :For any two such ~� and ~v, it is well known that I(~�jj~v) � 0 and that I(~�jj~v) = 0 i� ~� = ~v.Let X be a set, Y � R. An example for (X; Y) is an element of X � Y . If (x; �) is anexample, we view � as the correct response to the instance x. If f is a function from X toY , we say that f is consistent with an example (x; y) if f(x) = y, and that f is consistentwith a sequence S of examples if it is consistent with each example of S.Each prediction of an on-line learning algorithm (for (X; Y)) is determined by theprevious examples and the current instance. Associated with an on-line learning algorithmA we de�ne a mapping of the same name from (X� Y)��X to Y . Let A(X; Y) be the setof such mappings corresponding to learning algorithms for (X; Y).Fix X and Y and a learning algorithm A. For a �nite sequence of examples S =h(xt; �t)i1�t�m let �t be the prediction of A on the t-th example,i.e. �t = A(((x1; �1); :::; (xt�1; �t�1)); xt). Then the quadradic loss is de�ned as follows:LA(S) = mXt=1(�t � �t)2:The loss of A on a particular trial t is (�t��t)2. Finally, if F is a class of functions from Xto Y , let LA(F ; N) be the supremum of LA(S) over all �nite sequences S = h(xt; �t)i1�t�mof examples such that there exists f 2 F with Pmt=1(f(xt)� �t)2 � N .We will need the following three simple lemmas. The �rst is due to Kullback [Kul67].

1. Introduction 3underestimated the GNP, and one who always gave an estimate slightly greater than thecorrect GNP. Suppose further that the average of the estimates of the two wild economistswas always exactly correct, so that there was a weighting with zero total loss. It is easyto see that in this example the loss of the above strategy is unbounded: the wild people'scontribution will be steadily decreased and in the limit the prediction of the economist whois always slightly o� will dominate.It turns out that the following intuition can be translated into an essentially optimallearning algorithm. If the aggregate opinion was greater than the true GNP, then thosewhose predictions were too small were \pulling" the aggregate in the right direction, andthe marginal e�ect of increasing their weights is to improve the aggregate prediction, evenif their predictions were very inaccurate. Thus one would want to increase the weights ofthose whose predictions were too small, and decrease the weights of those whose predictionswere too large. Of course, these changes are reversed when the aggregate prediction is toosmall.Our algorithms use the above philosophy of updating the weights with the additionalcrucial feature that the smaller the aggregate error, the \gentler" the updates. In particular,if the aggregate prediction is correct, the weights are not changed.As is done in [Lit89] for linear threshold functions, we use the relative entropy betweenour weights and a target set of weights as a measure of progress. The relative entropy isan information theoretic notion normally used to measure the distance between probabilitydistributions. (Though the formulas for relative entropy and entropy are both important inour work, we do not know of a natural way of interpreting the weights used in our algorithmand those of the hidden function as probabilities. They formally resemble probabilitydistributions in that they form vectors of non-negative numbers that sum to 1.)A variant of our learning algorithm leads to an algorithm for iteratively producingestimates ~x1; ~x2; � � � of the solution of the linear system A~x = ~b such that, if A�1 exists, theestimates converge to A�1~b. Even if A is square and singular or is even non-square, if thesystem has a solution, then A~x1; A~x2; ::: converges to ~b.The time per iteration is linear in the number of non-zero entries of A and thus ouralgorithm is well suited for sparse matrices. Further, our algorithm converges for allcoe�cient matrices. We know of no other algorithm which requires time linear in thenumber of nonzero entries in A which converges for all matrices.The best bounds we can prove on the number of iterations required by our algorithmis signi�cantly worse in some cases than the corresponding bounds for available iterativemethods. We can show that the number of iterations required for the relative error (inthe L2 norm) of the hypothesized solution to be smaller than a given � grows at mostpolynomially with the number of variables, 1=�, and the condition number [GL90] of thecoe�cient matrix. The number of iterations for the best existing algorithms [GL90] [JM88][PR85] to converge is at most logarithmic in 1=� and the condition number of the coe�cientmatrix. It is possible that a better bound on the convergence rate of our algorithm canbe obtained with a tighter analysis. In any case, a potentially important contribution ofour paper is the introduction of nonstandard methods for iteratively solving sparse linearsystems.

2 1. IntroductionN is the total loss of the best �xed weight vector. It follows almost immediately fromMycielski's results that the Widrow-Ho� rule is within a constant of optimal for a closelyrelated problem, where, instead of assuming that the hidden weight vector � consists ofnonnegative components summing to one, we assume that it has Euclidian length of atmost one, and instead of choosing instances ~x1; ~x2; ::: from [0; 1]n, one assumes that theEuclidian length of the instances is at most 1. A more detailed comparison of our algorithmto the Widrow-Ho� rule including experimental comparisons is given in [CW91].Our algorithms are motivated by the algorithms of [Lit88] [Lit89] for learning simpleboolean functions, such as clauses with a small number of literals. In that case thepredictions and responses are boolean. A mistake occurs when the prediction and responsedisagree, and the loss is taken to be the total number of mistakes in all trials. Algorithmsare given in those papers for learning k-literal clauses whose worst case mistake bounds areat most a constant factor from optimal. We generalize the techniques developed there tothe learning of linear functions de�ned on Rn. Optimal algorithms for a simple continuouscase have already been given in [LW89]. In our notation, this is the case when exactly oneof the hidden �i's is 1 and the rest are 0.2As in [Lit88] [Lit89] [LW89] and the Widrow-Ho� rule [DH73], our algorithms maintain avector of n weights that is updated each trial after the response is received. Let ~vt representthis weight vector before trial t. Our algorithms always predict with the current weightvector: i.e., they predict �t = ~vt � ~xt. Note that in the noise-free case it is easy to always�nd a coe�cient vector v consistent with the previously observed examples, i.e., such thatfor all j less than t, ~v � ~xj = �j . However, consistency is neither necessary nor su�cient toobtain the performance we describe. We can show that an algorithm that predicts using anarbitrary consistent linear function can have loss of
(n). Our algorithms do not necessarilymaintain consistency with previously observed examples. Instead, they are designed so thatthey \learn a lot" from a large loss, so that the cumulative loss is only logarithmic in ninstead of linear.To get some intuition about updates of the weights that might achieve the above, let usgo back to our initial example of predicting the GNP. An obvious strategy for the advisorwould be to predict with the average estimate of the economists. Suppose, however, theadvisor notices that some economists are better at predicting the GNP. A good method forthe advisor would be to initially weigh all opinions equally, and adjust the weight assignedto each economist based on her performance.When using a weighted average for prediction, a natural interpretation of the weightsis as the relative \credibilities" of the economists. Given this interpretation, a naturalreweighting strategy is to reduce the weights of each economist according to some monotonefunction of how far o� her estimate was (e.g., the Weighted Majority algorithm [LW89]),and then normalize so that the weights sum to one. In the discrete case this approach canlead to logarithmic total mistake bounds [Lit88] [Lit89] [LW89]. Furthermore, it was shownin [LW89] that in the continuous case the loss of the advisor is at most O(logn) plus aconstant times the least individual loss of any of the n economists.3However, if one wishes to learn a linear combinations without assuming that any oneeconomist does well individually, then this strategy does not work. Suppose that therewere three economists: one who always wildly overestimated the GNP, one who wildly2These results are with respect to the loss function j�t � �tj.3Again, these results are with respect to the loss function j�t � �tj.

1. Introduction 11 IntroductionSuppose, for budget purposes, each year each member of a panel of economists predictsthe next year's GNP and an advisor to the president wishes to combine their predictions toobtain a single prediction. If we measure the loss for each year as the square of the di�erencebetween the advisor's prediction and actual GNP, a reasonable goal for the advisor is tominimize the worst case total loss over the years, assuming that some �xed weighted averageof the economists is always reasonably close to the actual GNP. In this paper, we presentnear-optimal strategies for combining opinions in situations like this.In more abstract terms, we study the on-line learning of linear functions. We assumethat learning proceeds in a sequence of trials. At trial number t the learning algorithm (theadvisor) is presented with an instance ~xt 2 [0; 1]n (the estimates of the n economists, wherethe GNP is measured in units such that it can never possibly be greater than 1) and isrequired to return a real number �t. After predicting, the algorithm receives a real number�t from the world, called a response, which can be interpreted as the truth. In the simplestcase we consider, �t = ~� � ~xt for each trial, where ~� is a hidden coe�cient vector in [0; 1]nwhose components sum to 1 and � denotes the dot product. The loss of an algorithm overa sequence of m trials is Pmt=1(�t � �t)2.We present a family of algorithms: fA� : � > 0g. We prove that for each � > 0, theworst case loss of A� is at most (1+2�2)(lnn�H(~�))=2 where H(~�) = �Pni=1 �i ln�i is theentropy of the hidden coe�cient vector. Thus, by choosing a small enough �, we can makethe bound arbitrarily close to (lnn�H(~�))=2. Since for all relevant ~�, H(~�) � 0, the upperbound on total loss of A� approaches (lnn)=2 as � approaches 0. Also, as ~� approaches(1=n; 1=n; :::; 1=n),H(~�) approaches ln n, and our bounds approach 0. We show that for allvalues of H(~�) and choices of �, A� is optimal to within a constant factor. Note that ourbounds hold for an arbitrarily large number m of trials.In reality, there may not be any �xed set of weights such that the corresponding weightedaverage of economists' estimates always equals the actual GNP. In that case, for any �nitesequence of trials and any � > 0, the loss of A� is still bounded by O(minflnn �H(~�) +Pmt=1(~� � ~xt��t)2g), where the minimum is over all choices of ~� 2 [0; 1]n whose componentssum to one.1 In particular, this implies that the total loss of A� is O(logn+N), where Nis the total loss obtained from the best �xed weight vector. This performance is obtainedeven though the algorithm is not given any information about future examples and aboutthe error term (the sum in the above expression). As in the case in which all examples areconsistent with some hidden function, we can show that our algorithms are optimal to withina constant factor. We can also give algorithms for more general linear functions de�nedon more general domains by transforming such problems into the basic problem discussedabove. These transformations resemble those studied in [Hau88] [KLPV87] [Lit88] [PW90].Mycielski [Myc88] gives worst case bounds on the total loss of the Widrow-Ho� rule (alsosometimes called the delta rule) [WH60] [DH73]. However, instead of giving his bounds interms of Pmt=1(~� � ~xt � �t)2, he gives bounds in terms of maxt(~� � ~xt � �t)2. His bounds,however, grow with the number of trials m. The focus of the research of this paper is toobtain bounds independent ofm. Furthermore, it was shown in [CW91] that the worst-casetotal loss of the Widrow-Ho� rule in the setting of this paper is
(n + N), where, again,1There is a subtle trade o� between the two summands in the minimum. Even if there is a ~� suchthat �t = ~� � ~xt for all 1 � t � m, the minimum sometimes occurs at a ~�0 with higher entropy for whichPmt=1(~�0 � ~xt � �t)2 > 0.

On-Line Learningof Linear FunctionsNicholas Littlestone�Philip M. LongyManfred K. WarmuthzUCSC-CRL-91-29October 1, 1991Revised: October 30, 1991Board of Studies in Computer and Information SciencesUniversity of California at Santa CruzSanta Cruz, CA 95064abstractWe present an algorithm for the on-line learning of linear functions which isoptimal to within a constant factor with respect to bounds on the sum of squarederrors for a worst case sequence of trials. The bounds are logarithmic in the numberof variables. Furthermore, the algorithm is shown to be optimally robust withrespect to noise in the data (again to within a constant factor).We also discuss an application of our methods to the iterative solution of sparsesystems of linear equations.�The research reported here was primarily done while this author was at Harvard supported by ONR grantN00014-85-K-0445 and DARPA grant AFOSR-89-0506. Address: NEC Research Institute, 4 IndependenceWay, Princeton, NJ 08540. Email address: nickl@research.nj.nec.com.ySupported by ONR grant N00014-91-J-1162. Email address: plong@saturn.ucsc.eduzSupported by ONR grant N00014-91-J-1162. Part of this work was done while employed by IIAS-SISFujitsu Limited in Numazu, Japan. Email address: manfred@mira.ucsc.edu.

