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156. Conclusions and Ongoing DirectionsGetting systems to develop their knowl-edge bases from experience is a di�cult butimportant challenge. It is hoped that theexample the Morph project provides of howseveral learning methods can be combinedto exploit experience in the form of pws willprovide at least one framework on which re-search in experiential learning may proceed.The Morph project will be continuing overa number of years as we strive to bring itsplaying level up to the current brute-forcechess machines. To do this the e�ort willbe to make the learning mechanisms andtheir mutual cooperation as sharp as possi-ble. Hopefully, this will prepare the way formore compelling applications of these meth-ods beyond chess. For example, it may bepossible in organic synthesis systems to im-prove search time with experience using sim-ilar graph methods [Levinson, 1991b].The following points are worth remember-ing:� In combining the many learning meth-ods in the Morph system we have nottaken the methods as they are normallyused but have extracted their essenceand combined them bene�cially.� Guided by appropriate performance mea-sures, modi�cation and testing of thesystem proceeds systematically.� Interesting ideas arise directly as a re-sult of taking the multi-strategy view.Some examples:1. The genetic inversion operator de-scribed in Section 2.4.2.2. Optimal pattern population. Justas we are trying to get the learn-ing methods to work in harmony,we are attempting the same co-ordination with Morph's patterns.The idea is to get a set of patternsthat are good predictors as a whole

rather than to �nd strong individ-ual patterns (though the latter maybe part of the former).3. Higher level concepts via hiddenunits. Once a good set of patternshas been obtained we may be ableto introduce a more sophisticatedevaluation function. This func-tion, patterned after neural nets,would have hidden units that ex-tract higher level interactions be-tween the patterns. For example,conjunctions and disjunctions maybe realized and given weights dif-ferent from that implied by theircomponents.AcknowledgmentsThank you to Je� Keller for constructing thenew move selection evaluation function, toPaul Zola and Kamal Mostafa for the ini-tial Morph implementation, and to RichardSutton for sharing our enthusiasm for rein-forcement learning.



14 5. Performance Results
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Figure 5.1: Cumulative Average oftwo versions of Morph.Version (a) is the basic Morph in existence threemonths ago. Version (b) adds the reverse node or-dering pattern addition scheme to Version (a).
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Figure 5.2: Cumulative Average oftwo versions of Morph.Version (a) adds the split evaluation function on topof reverse node ordering Morph. Version (b) addsannealing on top of Version (a).



5.1. Performance Evaluation 135. Performance ResultsTo date Morph has not defeated GnuChess,though it has obtained over 20 draws viastalemate, repetition of position and the 50-move rule. Despite the lack of success againstGnuChess there have been many encourag-ing signs in the nine months since Morph wasfully implemented:� Even though no information about therelative values of the pieces (or thatpieces are valuable) have been suppliedto the system, after 30 or more games oftraining Morph's material patterns areconsistent and credible [Levinson andSnyder, 1991]. The weights correspondvery well to the traditional values as-signed to those patterns. These resultsrecon�rm other e�orts with TD learn-ing [Christensen and Korf, 1986] andperhaps go beyond by providing a �nergrain size for material.� After 50 games of training, Morph be-gins to play reasonable sequences ofopening moves and even the beginningsof book variations. This is encourag-ing because no information about devel-opment, center control and king safetyhave been directly given the systemand since neither Morph or GnuChessuses an opening book. It is not rarefor Morph to reach the middlegameor sometimes the endgame with equalchances before making a crucial mistakedue to lack of appropriate knowledge.� Morph's database contains many pat-terns that are recognizable by humanplayers and has given most of thesereasonable values. The patterns in-clude mating patterns, mates-in-one,castled king and related defenses andattacks on this position, pawn struc-tures in the center, doubled rooks, devel-oped knights, attacked and/or defendedpieces and more.

5.1 Performance EvaluationTo explore new additions to Morph, oneimplementation is compared with anotherby using the average number of traditionalchess points per game as the metric. Eachimplementation is run until the metric is nolonger increasing this. (Most Morphs stoplearning at between 1500 and 2000 gamesof play). The one with the higher rating isconsidered the better. We have concludedthat only one such comparison is su�cientbecause the same version of Morph usuallyreaches the same average.The \meaning" of the hidden units towhich weights are associated in neural nets isusually not clear, whereas in Morph it is spe-ci�c structures that are given weights. Theresulting transparency of Morph's knowledgehas allowed us to �ne tune ts learning mech-anisms - with various system utilities it ispossible to ascertain exactly why Morph isselecting one move over another.5.2 Improvement throughAdding New LearningMethodsAdding learning strategies is a gradualprocess. Each method must be added one ata time to see if it increases performance. Ifit does than it is kept. Since Morph's initialimplementation signi�cant performance in-creases have occurred due to such additions.The following two graphs show Morph's cu-mulative average over time. These graphscompare the performance of four versions ofthe system. Each version is an extension ofthe previous one. Figure 5.1a shows a ba-sic Morph, Figure 5.1b shows the result ofadding reverse node ordering, Figure 5.2ashows the result of splitting the evaluationfunction, and Figure 5.2b shows the result ofadding annealing.



12 4. Relationship to Other Approachessearch to check plans and the restriction totactical positions distinguish it from Morph.Also, Paradise is not a learning program:patterns and planning knowledge are sup-plied by the programmer. Epstein's Hoylesystem [Epstein, 1990] also applies a seman-tic approach but to multiple simultaneousgame domains.Of course, the novel aspects of the Morphsystem could not have been achieved withoutthe unique combination of learning methodsdescribed here.



114. Relationship to Other ApproachesAbove, we have described how the chesssystem combines threads of a variety ofmachine-learning techniques that have beensuccessful in other settings. To produce thiscombination, design constraints usually asso-ciated with these methods have been relaxed.We feel the integration of these diversetechniques would not be possible withoutthe uniform, syntactic processing providedby the pattern-weight formulation of searchknowledge. To appreciate this, it is usefulto understand the similarities and di�erencesbetween Morph and other systems for learn-ing control or problem-solving knowledge.For example, consider Minton's explanation-based Prodigy system [Minton, 1984]. Theuse of explanation-based learning is one sim-ilarity: Morph speci�cally creates patternsthat are \responsible" (as preconditions) forachieving future favorable or unfavorablepatterns. Also similar is the use of \utility"by Morph's deletion routine to determine if itis worthwhile to continue to store a pattern.The decision is based on accuracy and signif-icance of the pattern versus matching or re-trieval costs. A major di�erence between thetwo approaches is the simplicity and unifor-mity of Morph's control structure: no \meta-level control" rules are constructed or usednor are goals or subgoals explicitly reasonedabout. Another di�erence is that actionsare never explicitly mentioned in the system.Yee et al.[Yee et al., 1990] have combinedexplanation-based learning and TD learningin a manner similar to Morph. They applythe technique to Tic-Tac-Toe.It is also interesting to compare Morph toother adaptive-game playing systems. Mostother systems are given a set of features andasked to determine the weights that go withthem. These weights are usually learnedthrough some form of TD learning [Tesauroand Sejnowski, 1989]. Morph extends theTD approaches by exploring and selectingfrom a very large set of possible features

in a manner similar to genetic algorithms.It is also possible to improve on these ap-proaches by using Bayesian learning to deter-mine inter-feature correlation [Lee and Ma-hajan, 1988].A small number of AI and machine learn-ing techniques in addition to heuristic searchhave been applied directly to chess, andthen, usually to a small sub-domain.Theinductive-learning endgame systems [Michieand Bratko, 1987; Muggleton, 1988] have re-lied on pre-classi�ed sets of examples or ex-amples that could be classi�ed by a com-plete game-tree search from the given posi-tion [Thompson and Roycroft, 1983]. Thesymbolic learning work by Flann [Flann andDietterich, 1989] has occurred on only a verysmall sub-domain of chess. The concepts ca-pable of being learned by this system aregraphs of two or three nodes in Morph. Suchconcepts are learned naturally by Morph'sgeneralization mechanism.Tadepalli's work [Tadepalli, 1989] on hier-archical goal structures for chess is promis-ing. We suspect that such high-level strate-gic understanding may be necessary in thelong run to bring Morph beyond an in-termediate level (the goal of the currentproject) to an expert or master level. Minton[Minton, 1984], building on Pitrat's work[Pitrat, 1976], applied constraint-based gen-eralization to learning forced mating plans.This method can be viewed as a special caseof our pattern creation system. Perhaps themost successful application of AI to chess wasWilkin's Paradise (PAttern Recognition Ap-plied to DIrecting Search) system [Wilkins,1980], which, also building on Pitrat's work,used pattern knowledge to guide search intactical situations. Paradise was able to �ndcombinations as deep as 19-ply. It made lib-eral use of planning knowledge in the formof a rich set of primitives for reasoning andthus can be characterized as a \semanticapproach." This di�erence plus the use of



10 3. Integration3. IntegrationIt is useful to reect on how the di�erentmethods support each other synergisticallywithin Morph:1. TD learning requires a set of features forevaluating states, these features are con-stantly being created, generalized anddeleted by other learning modules.2. The patterns created by some of the cre-ation modules, while potentially usefulhave not been designed to speci�callyhandle the mis-evaluations that occurduring play. They also do not producethe macros that are required to reducesearch. Speci�c patterns for these pur-poses are created by backing up extremepatterns through goal regression(EBG).3. Because the feature set is changing dy-namically, convergence of TD learningcan not be guaranteed. However, thecooling process of simulated annealingis used to give each pattern a decreas-ing learning rate thus guaranteeing lo-cal convergence for that pattern. Ex-perience has shown that the weights towhich these patterns converge are ap-propriate ones. Once parts of the sys-tem have converged properly they pro-vide a sound basis for the slower learn-ing patterns in the system to convergeto appropriate weights as well.4. Bit strings are usually used to representpatterns in genetic algorithms. Unfortu-nately, in chess a bit string representa-tion of chess positions is probably not anappropriate one for learning, as features(substrings) are probably too speci�c tobe useful. Thus, we use the structuredgraph patterns described in Section 2.1,since they may be invariant across manyboard positions.5. TD learning and weight-updating areonly as strong as the heuristic evaluationfunction that supports them. It is this

function that determines how the manyweights arising from a given position arecombined to provide a single value forthat position. Recall that we have optedto use a di�erent function for weight-updating than that used during play.



2.4. Learning System 9Explanation Based Generalization(EBG)In order for Morph to compete using 1-ply of search, a means must exist by whichcombinational (or macro) knowledge is givento the system. Macros can be representedas pws by constructing a sequence of themsuch that each pattern is a precondition ofthe following one. With successive weightsgaining in extremeness the system is thenmotivated to move in this direction. Buthere it is worth mentioning the advantage ofpws over macros: while executing one macro,the system has the potential to switch intoanother more favorable macro rather thanbeing committed to the former.To construct such sequences of pws in theMorph system a form of EBG or goal regres-sion is used. The idea is to take an extremepattern in one position and back it up to getits preconditions in the preceding position.If this new pattern is also most extreme theprocess can be continued etc. We like tocall this technique \reverse engineering" asthe pw-sequence is discovered through retro-grade analysis. The advantages of this tech-nique are more than just learning \one moremacro": each of the patterns can be used toimprove the evaluation of many future posi-tions and/or to start up the macro at anypoint in the sequence.Node ordered induced subgraphsA simple and rapid mechanism for gettinguseful patterns in Morph proceeds as follows:Take the graph of a position, number thenodes in a connected fashion using a heuris-tic rule, choose a random size n, and returnthe induced subgraph formed by the �rst nnodes in the node ordering (and the edgesbetween them). Morph uses two relativelygame-independent node ordering rules: Inforward node ordering, nodes are ordered bymost recently moved piece while maintainingconnectivity of the nodes. In reverse nodeordering nodes are ordered by which piece is

next to move while maintaining connectiv-ity of the nodes. In both schemes capturedpieces and kings in check are placed high inthe list and ties (for squares and unmovedpieces, for instance) are broken randomly.The inclusion of random factors in the abovescheme also fall well within the genetic al-gorithm viewpoint, since the system is thencapable of generating and exploring a largeset of possibilities.Pattern DeletionAlso, as in genetic algorithms there mustbe a mechanism for insigni�cant, incorrector redundant patterns to be deleted (forgot-ten) by the system. A pattern should con-tribute to making the evaluations of posi-tions it is part of more accurate. The utilityof a pattern can be measured as a functionof many factors including age, number of up-dates, uses, size, extremeness and variance.We are exploring a variety of utility func-tions [Minton, 1984]. Using the utility func-tion, patterns below a certain level of utilitycan be deleted. Deletion is also necessaryfor e�ciency considerations: the larger thedatabase the slower the system learns.



8 2. System DesignGenetic OperatorsGenetic algorithms [Holland, 1975] are ameans of optimizing global and local search[Glover, 1987]. In these algorithms solutionsto a problem are encoded in bit strings thatare made to evolve over time into better solu-tions in a manner analogous to the evolutionof species of animals. The bits in the so-lution representation are analogous to genesand the entire solution to a chromosome. Insuch systems there are a �xed number of so-lutions at any one time (a generation). Mem-bers of each generation inter-breed to formthe next generation. Each genetic algorithmhas a �tness function that rates the qual-ity of the solution in a particular generation.When it is time for a new generation to becreated from the current generation the solu-tions that are more �t are allowed to be themore active breeders. Breeding usually in-volves three processes: crossover, inversion,and mutation.The three methods work as follows. Crossoverinvolves randomly selecting a point the samedistance along both parents and splitting thesolutions in half. Then the tails of each par-ent are swapped producing two hybrid chil-dren. Inversion involves taking a single solu-tion in the current generation, selecting twopoints along the bit string and then invertingthe bits between the two points. The result-ing bit string is a solution in the new gener-ation. Finally, mutation involves ipping abit in a solution of the new generation. Thenew generation will be of the same size as theold generation [Davis and Steenstrup, 1987].Adapting genetic algorithms forMorphMorph uses patterns to reason about po-sitions that it encounters. These patternshave countless variations; far too many to bestored in a computer. Thus, it is necessaryto pick the best set of patterns to generatethe most accurate evaluations of positions.Likewise, it is desirable to weed out those

patterns that lead to erroneous evaluationsor are too speci�c to be used often. Thus,Morph's search takes place in the space ofpossible pattern sets.In Morph:� Patterns are the basic elements of agiven population. These patterns do notrepresent solutions but instead representimportant elements of positions to belooked for.� The initial population is created via amethod called seeding where we intro-duce all two node graph patterns (suchas white bishop attacks black queen)into the database.� The �tness function that Morph usesfavors those patterns that are found inpositions often, have low variance andhave extreme values.� Parameters exist for keeping the num-ber of patterns below a �xed number.This number balances the desire to havemany patterns with the desire to playand learn quickly. Thus, although weare currently measuring Morph's perfor-mance over a number of games, it isprobably more appropriate to measureit in terms of computing time - in whichthe size of the database becomes an im-portant factor.� Morph has operators that are analogousto those used in genetic algorithms butdi�er in some important respects be-cause graphs are not bitstrings. In par-ticular, they are not ordered nor do theyhave a �xed length. Morph's general-ization and specialization operators (seeabove) are similar to crossover and mu-tation, respectively. While we currentlydo not have an inversion operator inMorph, one could imagine the utility ofswapping white and black color designa-tions in all or part of a graph pattern.
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four main methods for extracting or creatingthese subpatterns are used:1. generalization and specialization of ex-isting patterns as in concept induction2. pattern extraction and mutation opera-tors as in genetic algorithms3. goal and subgoal regression as in explanation-based generalization.4. node ordered induced subgraphsThe proper mix of these methods is an im-portant issue currently being explored.Generalization and SpecializationIn concept induction schemes [Michalski,1983; Mitchell et al., 1986; Niblett andShapiro, 1981; Quinlan, 1986] the goal is to�nd a concept description to correctly clas-sify a set of positive and negative examples.In general, the smaller description that doesthe job, the better. Sometimes the conceptdescription needs to be made more speci�c tomake a further distinction whereas at othertimes it can be simpli�ed without loss of dis-criminative power.In Morph, of course, positive and nega-tive examples are not supplied. Still, onecan view the evaluations arising from TDlearning as serving this purpose. Morph cre-ates generalizations of learned patterns bytaking maximum common subgraphs of twopatterns that have similar weights and sim-ilar structures. Whereas in a standard con-cept induction scheme the more speci�c pat-terns may be deleted, in Morph we keep themaround for the moment because they can leadto further important distinctions. The regu-lar deletion module may delete them later, ifthey should no longer prove useful.Morph will specialize a pattern if its weightmust be updated a large amount (indicatinginaccuracy). The pattern is specialized byadding a connected edge (and node) to themost recently moved or captured piece in thegraph.



6 2. System Designin statistical mechanics [Davis and Steen-strup, 1987]. Statistical mechanics attemptsto describe the properties of complex sys-tems. It is often desirable to take systems ofmolecules and reduce them to the lowest pos-sible energy by lowering the temperature ofthe system. Through experience it has beenfound that if the temperature is reduced tooquickly the system will have a small proba-bility of being at an optimally low temper-ature. Metropolis et al [Metropolis et al.,1953] developed a technique for lowering thetemperature gradually to produce (on the av-erage) very low energy systems at the lowesttemperature: Cool the system at a particu-lar temperature, let the system reach equi-librium, then adjust the temperature to anearby (usually lower) value. Continue untilthe �nal temperature is reached.Kirkpatrick et al [Kirkpatrick et al., 1983]adapted annealing to computer science, by�nding information analogies for their phys-ical counterparts [Davis and Steenstrup,1987]:� The energy of the system became anobjective function that describes howgood of a state the system is currentlyin.� Moving a physical system to its lowestenergy state is then analogous to �ndingthe state that optimizes the objectivefunction.� The state of the system is then the dif-ferent informational parameters that thesystem can have.� The temperature is a mechanism forchanging the parameters.Our situation is similar to that of the sta-tistical physicist. Morph is a complex systemof many particles (patterns). The goal is toreach an optimal con�guration, i.e. one inwhich each weight has its proper value. Theaverage error (i.e. the di�erence of Morph'sprediction of a position's value and that oftemporal-di�erence) serves as the objectiveevaluation function. Intuitively, the average

error is an acceptable performance evalua-tion metric if one accepts the empirical andanalytic arguments that TD learning is aconvergent process [Sutton, 1988a]: since TDlearning will produce evaluations close to thetrue ones the error will be high or low de-pending on Morph's degree of accuracy.The state of Morph's system is made upof the patterns' weights. Temperature cor-responds to the rate at which a patternmoves towards the value recommended byTD learning. In addition to using a (global)temperature that applies to all patterns, eachpatterns has its own independent tempera-ture. The reason this is done is because eachpattern has its own learning curve dependingon the number of boards it has occurred in.A pattern that has occurred in many boardshas its temperature reduced more quicklythan a pattern that occurred in only a fewboards. This is because the �rst pattern hasmore examples to learn from and hence earlyconvergence is appropriate. Each pattern'slearning rate is a�ected by its number of up-dates and the global temperature as follows:Weightn = Weightn�1 � (n� 1) + k � newn + k � 1Weighti is the weight after the ith update,new is the what TD recommends that theweight should be, n is there number of thecurrent update and k is the global tempera-ture. When k = 0 the system only considersprevious experience, when k = 1 the systemaverages all experience, and when k > 1 thepresent recommendation is weighted moreheavily then previous experience. Thus, rais-ing k creates faster moving patterns.Performance Example of AnnealingFigure 2.3 and Figure 2.4 show two updatehistories for a given pattern: how its weightchanges over time. The �rst �gure shows apattern in a version that did not use simu-lated annealing. It tends to uctuate withina certain range. The second �gure displays



2.4. Learning System 5of updates. TD learning and simulated an-nealing and their use in Morph are describedin the following two subsections.Temporal-Di�erence LearningTD learning was designed for situationswhere the learner does not get immediatefeedback for his predictions; instead, thelearner makes a sequence of predictions andthen is given the true value of the last pre-diction only. The learner is usually trying topredict the value of a particular phenomenongiven a set of input values. In most TD sys-tems a subset of the input is used. Still, insome simple domains the entire state can beused as input to a evaluation function, e.g.the markov model learning [Sutton, 1988b].Associated with each input feature is a realvalued weight, it is precisely this weight thatgets updated and is used to make the nextevaluation.After the learning system makes a se-quence of predictions and receives feedbackfor the �nal prediction, TD learning proceedsto modify the weights of the input featureson each state working back from the �nalstate in the sequence to the �rst state. Theweights of the features associated with the �-nal state are updated in the direction of thetrue value supplied by the environment. Foreach of the other states, weights are updatedin the direction of the new evaluation for thesucceeding state.An Example of TD LearningAssume that there is an election and a TDsystem is trying to predict the percentageof the votes to be received by candidate A.Suppose, there exist two newspapers thatpublish polls, S and T , on the percentageof votes each candidate will receive. TheTD system will use S and T to predict A'spercentage as follows: P = (sS + tT )=(s +t). s and t are real-valued weights denotingthe credibility of each poll. Lets say thatthe newspapers come out with three polls

before the election. The system will makethree predictions before the election and thenwill update the credibility weights s and t,according to the results of the election.Initially s = 1, t = 1Poll 1: S = .5, T = .4; P = .45Poll 2: S = .2, T = .35; P = .275Poll 3: S = .3, T = .5; P = .4Election Result = .45Updating at Poll 3 -- move s, and t so that Ptends (say half way)towards .45s = 1.08, t = 1.8, giving P = .425;Updating at Poll 2 -- move toward .425s = 0, t = 1, giving P = .35Updating at Poll 1 -- move toward .35s = 0, t = 1, giving P = .4Since Morph must make a sequence ofpredictions (board evaluations) but only re-ceives feedback for the last one (0 { lose, 1{ win, .5 draw) TD learning is appropriate.This has been true for other adaptive gameplaying systems in which the credit assign-ment task is di�cult and critical [Samuel,1959; Levinson et al., 1990; Tesauro and Se-jnowski, 1989; Tesauro, 1991]. In Morph, TDlearning is implemented close to the stan-dard way. It deviates in one important pointthough: while most systems use a �xed set offeatures determined before learning begins,Morph's feature set changes over time. As wewish to keep Morph's human supplied knowl-edge to a minimum, it is left on its own todetermine the proper feature set. Morph'smaterial patterns greatly enhance the rate ofTD learning since they provide useful sub-goals that may occur anywhere in a game.This is especially so since Morph tends tolearn these values early on in training.Simulated AnnealingSimulated annealing is a learning proce-dure that has been derived from a practice



4 2. System Designf(x; y) = 8>>><>>>: �:5(2� 2x)(2� 2y) + 1 if x � 12 and y � 12x�:5+y�:5(2x�1)(2y�1)((2x�1)2�(2y�1)2)(2x�1)2(2y�1)2 if x � 12 and y < 12f(y; x) if x < 12 and y � 122xy otherwiseFigure 2.2: Move selection evaluation function.that the current board is a losing positionand patterns with weight 1 suggest that thecurrent board is a winning position.The second function is a weighted average:Eval = Pni=1wi � (jwi � :5j�)Pni=1 jwi � :5j�Where fwig, 1 � i � n, are the weights ofthe patterns matching the current board and� is a con�gurable power, usually between 1and 5.The reason this function is useful for up-dating is that, being an average, it causesweights to move minimally to include thenew data point; thus the system state re-mains relatively stable.Performance ExampleThe following example demonstrates thenecessity for using the �rst evaluation dur-ing play. Lets say that Morph is in a gamewhere he is losing and he knows it. Thiswould mean that all evaluations for the nextpossible move are below .5. From experiencewe have found that this is usually caused byone extremely bad pattern. For instance itcould be a material pattern that says Morphis down a queen with weight .2. Further letssay that there are only two possible alter-natives for Morph: Position A with just the.2 pattern and Position B with the .2 pat-tern and a .3 pattern (such as pawn attack-ing Morph's rook). Obviously, position Ashould be considered better since it only hasone unfavorble pattern. Unfortunately, func-tion 2 will choose position B since it returns

a weighted average of .22. Further troublewith using function 2 for move selection canbe seen by considering a new position C witha .2 and a .4 pattern. Because of the use ofextremeness, function 2 will give position Can evaluation of .21 and incorrectly preferB. Note that function 1 evaluates A, B, andC as .20, .12, and .16, respectively and thusmaintains the proper order.2.4 Learning SystemThe learning system has three parts de-�ned in the following three subsections. Foreach main learning method used we will em-phasize the main concept and structure be-hind the method and how they have beenadapted for utilization in Morph.Positional Credit Assignment andWeight-UpdatingEach game provides feedback to the sys-tem about the accuracy of its evaluations.The �rst step is to use the outcome ofthe game to improve the evaluations as-signed to positions during the game. This isdone using temporal-di�erence (TD) learn-ing [Samuel, 1959; Samuel, 1967; Sutton,1988a]. Once new positions have beengiven evaluations, the weights of patternsthat were used to evaluate the positions aremoved in the direction of the desired or \tar-get" evaluation. Using a temperature as insimulated annealing allows each pattern tomove at its own rate, based on the number



2.3. Evaluation Function 3players, e.g. \up 2 pawns and down 1 rook,"\even material," etc.Much of the following discussion will re-fer to graph patterns alone. But it should beunderstood that material patterns and graphpatterns are processed identically by the sys-tem.Along with each pattern is stored a weightin [0,1] as an estimate of the expected trueminimax evaluation of states that satisfy thepattern. In order to determine the util-ity of a pattern and whether it should beretained other statistics about patterns aremaintained.2.2 Associative Pattern DatabaseThe pattern database expedites associa-tive retrieval by storing the patterns in apartially-ordered hierarchy based on the rela-tion \subpattern-of" (\more-general-than").Thus, at one end of the hierarchy are simpleand general patterns such as \white bishopcan take black pawn" and at the other endare complex and speci�c patterns such asthose associated with full positions.Empirically, it has been shown that on typ-ical databases using a simple associative re-trieval algorithm [Levinson, 1984; Levinson,1991a] only a small fraction of the patterns inthe database need be considered to evaluatea position. An even more powerful retrievalalgorithm is being developed [Levinson andEllis, 1991].2.3 Evaluation FunctionThe evaluation function takes a positionand returns a value in [0,1] that representsan estimate of the expected outcome of thegame from that position (0=loss, .5=draw,1.0=win). Although heuristic evaluation isnot directly a learning technique it it is ac-cessed by virtually every learning strategy inthe system; thus having an integral role inthe learning process.

Morph uses two di�erent evaluation func-tions. One is used for evaluating boards dur-ing play (for move selection), and the otherone is used for evaluating boards during up-dating (as a basis for learning). Both evalu-ation mechanisms apply the following proce-dures:1. Take a position as input.2. Determine all of the most speci�c pat-terns that match the position.3. Apply a speci�c function to all the pat-terns.4. Return the result of step three.Thus, the two evaluation functions di�eronly in the third step, the function appliedto the set of matched patterns.The evaluation function that evaluatesboards during play uses a function forstep three that has the following properties,where w1 and w2 are weights of patterns:1. if w1 > :5 and w2 > :5 then f(w1; w2) >max(w1; w2) unless either w1 or w2 is 1then f = 1.2. if w1 = :5 then f(w1; w2) = w23. if w1 = � and w2 = 1� � then f = :54. if w1 < :5 and w2 < :5 then f <min(w1; w2) unless either w1 or w2 is 0then f = 0.5. if w1 > :5 and w2 < :5 then w2 < f <w1. f is more towards the most extremeweight.The entire function is displayed in Figure2.2. This binary function is applied itera-tively to all matching patterns.These mathematical constraints to theevaluation function have a strong intuitivebacking. For instance, rule 1 states that iftwo patterns suggest that a position is good(> :5) the board should then be consideredbetter than either of them alone. .5 is theweight that is assigned to a pattern that doesnot have any positive or negative connota-tion. Patterns with weight 0 suggest strongly



2 2. System Design2. System DesignHere we give a description of the Morphplaying and learning system. In particularwe will emphasize how diverse learning meth-ods are being applied for experience-basedlearning.Morph makes a move by generating all le-gal successors of the current position, eval-uating each position using the current pat-tern database and choosing the most favor-able position. After each game patterns arecreated, deleted and generalized and weightsare changed to make evaluations more ac-curate (in the system's view) based on theoutcome of the game. Patterns are deletedperiodically if they are not considered use-ful. All performance results in Section 5 arebased on training against GnuChess Level I,a program that is stronger than at least 60%of tournament players.In this section the chess system design isdescribed in detail. The model has four basicparts, which are described in the followingsubsections.2.1 Patterns and theirRepresentationThe basic unit of knowledge to be storedis a pattern. Patterns may represent an en-tire position or represent a boolean featurethat has occurred in one or more positionsand is expected to occur again in the fu-ture. We purposely choose a uniform rep-resentation scheme to maximize the poten-tial cross-fertilization of pattern knowledgeand to simplify the implementation and pro-cessing requirements. Positions are repre-sented as unique directed graphs in whichboth nodes and edges are labelled [Levin-son, 1991b]. Nodes are created for all piecesthat occur in a position and for all squaresthat are immediately adjacent to the kings.The nodes are labelled with the type andcolor of the piece (or square) they represent.For kings and pawns (and also pieces that

0Z0Z0Z0ZZ0Q0Z0ok0o0Z0onoZ0Z0Z0Z00Z0ZpOqZZPZrZ0Z0PZ0Z0ZPOZ0A0ZRJ0���	�- n kQ pFigure 2.1: A board and subgraph(pattern) that resides within it.would otherwise be disconnected from thegraph) the exact rank and �le on the boardin which they occur is also stored. The exactsquares of kings and pawns allows the systemto generate speci�c endgame patterns andpatterns related to pawn structure. Edgesrepresent attack and defend relationships be-tween pieces and pawns: Direct attack, indi-rect attack, or discovered attack (a defenseis simply an attack on one's own piece). Atmost one directed edge is assigned from onenode to another and the graph is orientedwith black to move. Patterns come fromsubgraphs of position graphs (see Figure 2.1)and hence are represented the same way ex-cept that they may label any node with anexact or partial square designation. The rep-resentation has recently been extended to in-clude other squares as nodes besides thoseadjacent to kings.There are actually two types of patternsstored in the Morph system. In addition tothe above mentioned graph patterns , Morphstores \material" patterns: vectors that givethe relative material di�erence between the



11. IntroductionCurrently a tremendous amount of com-putation is wasted because most computersdo not learn from their experience. Con-sider a system that after 10 hours of cal-culation designs a synthesis plan for an or-ganic molecule X [Levinson, 1991b] . Nowisn't it silly that if we give it molecule Xagain or more to the point something sim-ilar to X another 10 hours of computing arerequired? Thus, we can expect in the fu-ture that increasing responsibility for inte-grating experience will be given to systems.We have argued elsewhere that one way thatsearch experience can be compiled is as aset of patterns coupled with weights(\pw"s)[Levinson, 1989a]. Patterns are features usedfor evaluating states and weights indicate thesigni�cance of the patterns (positive or neg-ative) and by how much. To give the systemresponsibility for creating and applying itsown pws, pattern learning methods must becoupled with weight updating methods andheuristic evaluation. Furthermore, with littlesupervised feedback from the environment,methods for assigning values to states (creditassignment) must also be present. The coor-dination of such methods in a bene�cial wayis the topic of this paper.Interestingly, despite the recognition ofthe criticality of search and the high-coststhat are paid to achieve it,only a little ef-fort has been applied to getting chess sys-tems to utilize previous search experiencesin future searches [Scherzer et al., 1990;Slate, 1987]. Thus, excluding random fac-tors from the system (or human interven-tion), one can expect a chess system to playexactly the same way against the same seriesof moves, whether it has won or lost, andtake the same amount of time to do so!We have built a chess system, Morph[Levinson, 1989b; Levinson and Snyder,1991] that is required to learn from its ex-perience with little supervised training, littledomain knowledge and little search. Obvi-

ously, with such little assistance, Morph re-quires a powerful learning component. In-deed, Morph uses a number of machine learn-ing techniques that have been useful in othersettings to learn patterns and their signi�-cance. Patterns denote con�gurations of in-teraction between squares and pieces. A uni-form heuristic evaluation method combinesthe signi�cances in a given position to reach a�nal evaluation for that position. The learn-ing mechanism combines weight-updating,genetic algorithms, explanation-based gen-eralization, structural induction, annealingand temporal-di�erence learning modules tocreate, delete, generalize and evaluate graphpatterns. An associative pattern retrievalsystem organizes the database of patterns fore�cient processing.



Method Integration forExperience-Based LearningJe�rey Gould and Robert LevinsonUCSC-CRL-91-27August 28, 1991Baskin Center forComputer Engineering & Information SciencesUniversity of California, Santa CruzSanta Cruz, CA 95064 USAabstractThis paper describes how a variety of machine learning methods can be combinedsynergistically to produce an adaptive pattern-oriented chess program. Majoraspects of the following machine learning methods are used: temporal-di�erencelearning, simulated annealing, genetic algorithms, explanation-based generalization,structured concept induction and heuristic evaluation. The need for these methodscomes from the research constraints placed on the chess system. The system,"Morph", is limited to using just 1-ply of search, little domain knowledge and nosupervised training. Thus, the system is responsible for �nding a useful set offeatures (patterns) for evaluating states and for determining their signi�cance (inthe form of a weight). To get the learning methods to cooperate e�ectively somedesign constraints normally associated with these methods need to be relaxed. Thepaper also argues that a bene�t of a multi-strategy viewpoint is that new researchideas arise from the multiple perspectives.Keywords: machine learning, integrated learning systems, temporal-di�erencelearning, genetic algorithms, pattern induction.


