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abstract



0 In this paper we consider the problem of tracking a subset of a domain (calledthe target) which changes gradually over time. A single (unknown) probabilitydistribution over the domain is used to generate random examples for the learningalgorithm and measure the speed at which the target changes.Clearly, the more rapidly the target moves, the harder it is for the algorithmto maintain a good approximation of the target. Therefore we evaluate algorithmsbased on how much movement of the target can be tolerated between examples whilepredicting with accuracy �. Furthermore, the complexity of the class H of possibletargets, as measured by d, its VC-dimension, also e�ects the di�culty of trackingthe target concept.We show that if the problem of minimizing the number of disagreements with asample from among concepts in a class H can be approximated to within a factork, then there is a simple tracking algorithm for H which can achieve a probability� of making a mistake if the target movement rate is at most a constant times�2=(k(d+k) ln 1� ), where d is the Vapnik-Chervonenkis dimension ofH. Also, we showthat ifH is properly PAC-learnable, then there is an e�cient (randomized) algorithmthat with high probability approximately minimizes disagreements to within a factorof 7d + 1, yielding an e�cient tracking algorithm for H which tolerates drift ratesup to a constant times �2=(d2 ln 1� ).In addition, we prove complementary results for the classes of halfspaces and axis-aligned hyperrectangles showing that the maximum rate of drift that any algorithm(even with unlimited computational power) can tolerate is a constant times �2=d.
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1. Introduction 11 IntroductionIn the fairy tale, Rip van Winkle slept for 20 years and when he �nally woke up, hediscovered that he was out of step with the world. Presumably, Rip would have been muchbetter o� if he woke up every day. However, if he woke for only one day each week or monthor year how comfortable would Rip be with the world after his 20 year slumber? This leadsto the question \How long can one nap before losing touch with the world?" which is thesubject of this paper.More formally, let D be a probability distribution on some set X and H be a class off0; 1g-valued functions de�ned on X . In the sleeper example, each h 2 H represents apossible state of the world. When Rip van Winkle wakes for the tth time, the world is insome state ht 2 H. Rip gets xt, a randomly drawn (w.r.t. D) element of X , and is askedfor the value of ht(xt). One interpretation is that xt is a possible course of action, andht(xt) = 1 when xt is appropriate in the current world state. Just before Rip goes back tosleep, he is told the value of ht(xt).In other words, given (x1; h1(x1)), (x2; h2(x2)), : : :, (xt�1; ht�1(xt�1)), and a point xt,Rip is asked to predict the value of ht(xt). If Rip's prediction is incorrect we say that hemakes a mistake on xt. If Rip rarely makes mistakes, then he successfully tracks the stateof the world. In our model, an adversary chooses the probability distribution D and thesequence of functions ahead of time, before the xi's are generated.The sequence of examples could be uninformative for two di�erent reasons. First, x1through xt�1 may come from an uninteresting part of the domain. Any learning algorithmusing randomly drawn examples must deal with this potential di�culty. A more severeproblem is that the ht chosen by the adversary may be unrelated to the previous hi's. If theadversary randomly chooses ht to be either the constant function 1 or the constant function0, then no algorithm can expect to predict ht(xt) correctly more than half the time. Wedeal with this problem with an assumption that the state of world evolves slowly. Thusthe adversary must choose sequences of functions where each hi is \close" to hi�1. This ismade precise in Section 2.Many readers will notice the similarity of our model to the prediction model studiedby Haussler, Littlestone and Warmuth (1988, 1990) and others. The key di�erence is thatin our model there is no single target function, but rather a succession of related targetfunctions. Since the learner may receive only a single example before the target changes, itis unreasonable to expect that the hypotheses converge to a target. However, it is possibleto bound the probability of a mistake on a trial in terms of how much the target is allowedto change between trials and the complexity of H.Our results include:� a general-purpose algorithm which tolerates target movement rates up to c1�2=(d ln 1� )(Theorem 3 and Corollary 5), and� a possibly more computationally e�cient variant of this algorithm which toleratestarget movements of up to c2�2=(d2 ln 1� ) (Theorem 7),� bounds for the classes of axis-aligned halfspaces and hyperrectangles showing that forall n and � < 1=12, no algorithm can tolerate target movement greater than c3�2=n,where n is the dimension of the space from which examples are drawn (Theorem 14).11Since, in both the case of halfspaces and that of hyperrectangles in n-dimensional space, the �rstalgorithm above tolerates drift rates up to a constant times �2=(n ln 1� ), these bounds establish the fact thatthe �rst algorithm is within a constant times a log factor of optimal.



2 1. IntroductionIn the above, the ci's are constants, � denotes the desired probability of error, and d isthe VC-dimension of H. The �rst general-purpose algorithm above is computationallye�cient whenever the problem of �nding a member of H which minimizes the number ofdisagreements with a set of examples can be solved e�ciently. Its variant is computationallye�cient whenever the problem of �nding an element of H consistent with a set of examplescan be solved e�ciently, as is the case with both halfspaces and hyperrectangles.Our algorithms use only the most recent t examples (rather than the entire sequence) tomake their predictions. They work by either minimizing or approximately minimizing thenumber of disagreements with the most recent examples, and using the resulting hypothesisto predict the label of the next point. To analyze such algorithms, one might imagineapplying the results of Vapnik and Chervonenkis (1971) to show that if for each hypothesish in the class, we estimate the probability that h will make a mistake on the next trialby considering the fraction of the last t trials on which h made a mistake, none of theseestimates will be very far from the true estimated probabilities. The movement of thetarget prevents us from simply applying their results. To remedy this, we �rst bound theprobability that for any hypothesis h, the estimate we obtain is very far from the estimatewe would have obtained, had the target not been moving. Then we are ready to applyuniform convergence results.If we now apply the results of Vapnik and Chervonenkis, however, our analysis indicatesthat these algorithms are more than a factor of � from the best upper bounds we canprove on the maximum tolerable rate of drift. In the case of learning stationary targets, itwas observed by Blumer, Ehrenfeucht, Haussler and Warmuth (1989) that uniformly goodestimates of the quality of hypotheses were not required for learning in Valiant's (1984)PAC-model. Instead, one only needed to bound the probability that an \�-bad" hypothesiswas consistent with a sequence of examples. They were then able to shave a factor of 1=�o� the bound on the number of examples required for learning with accuracy � obtained bysimply applying the results of Vapnik and Chervonenkis (1971). However, in our case, theremay not be any hypothesis consistent with more than a few of the most recent examples.Nevertheless, given reasonable restrictions on the rate of drift there is, with high probability,some hypothesis having very few disagreements with a reasonable sized su�x of a randomsequence of examples. Thus, we are able to apply another of the results of Blumer, et al(1989), which bounds the probability that any �-bad hypothesis is consistent with all buta fraction �=2 of the examples. The number of examples required to bound this \�-bad buthighly consistent" probability by � is within a constant of that for the completely consistentcase. Thus, ignoring constants, the factor of 1=� savings is retained, reducing our trackingbounds by a factor of �.The result of this analysis is a simple \minimize disagreements" algorithm which iswithin a log factor of optimal for halfspaces and hyperrectangles. A slightly modi�edanalysis holds for the case in which the tracking algorithm uses a hypothesis which onlyapproximately minimizes disagreements with a su�x of the examples.In Section 4, we give a general purpose algorithmic transformation turning a randomizedpolynomial time hypothesis �nder A (as de�ned by Blumer, et al (1989)) which, with highprobability, returns a hypothesis consistent with an input sample, into an algorithm whiche�ciently approximately minimizes disagreements to within a factor of 7d+ 1, where d isthe VC-dimension of the target class. We use a technique due to Kearns and Li (1988) andAbe and Watanabe (1992), working in stages, where at each stage, we subsample accordingto the distribution which is uniform over the sample, hoping to get a subsample for which



2. Notation and Mathematical Preliminaries 3there is a consistent hypothesis, so that we can successfully apply A. We then return thebest hypothesis of those produced by A during the various stages. We use the tightestavailable PAC-learning bounds, due to Anthony, Biggs and Shawe-Taylor (1990), to arguethat with high probability, a hypothesis consistent with the subsample can't be too bad onthe whole sample.Littlestone and Warmuth (1989) describe a variant of the weighted majority algorithmwhere the weights are kept above some lower limit. This allows the weighted majorityalgorithm to recover and adapt to changes in the target. However, if the target changes ktimes, then their mistake bound for the weighted majority algorithm goes up by about afactor of k. It is di�cult to translate these bounds into our model as our targets potentiallychange with each example.Kuh, Petsche and Rivest (1990,1991) studied a variety of models in which the targetchanges over time, including cases in which the target drifts slowly. For many of theirmain results, it is assumed that the sequence of targets is produced by an adversary whichat each time has access to the earlier random examples seen by the tracking algorithm.In contrast, we assume that the sequence of targets is chosen by an adversary before anyrandom examples are generated.Aldous and Vazirani (1990) studied a di�erent version of learning in a changing envi-ronment. In their model the target concept is �xed, but the examples are generated by aMarkov process rather then from a �xed distribution.The conclusions contain potential applications, observations, and a list of open problems.The results presented here improve on preliminary results described by the authors(1991).2 Notation and Mathematical PreliminariesLet N denote the positive integers and Q denote the rationals. Let ln denote thatnatural logarithm, and log denote the logarithm base 2.After Vapnik (1989), we will adopt a naive attitude toward measurability, assuming thatevery set is measurable, and simply speak of probability distributions on sets. This assump-tion is not unreasonable, since if a digital computer is to input or output representationsof arbitrary set elements, the set must be countable. If X is a set, and D is a probabilitydistribution on X , and if �(x) is some mathematical statement containing x as a free vari-able, de�ne Prx2D(�(x)) as D(fx 2 X : �(x)g). De�ne Ex2D similarly for expectations ofrandom variables de�ned on X . We will drop the subscripts where there is no possibility ofconfusion.If X is a set and H is a family of f0; 1g valued functions de�ned on X , then the Vapnik-Chervonenkis (1971) (VC) dimension of H ismaxfjT j : T = ft1; :::; tkg � X; f(h(t1); :::; h(tk)) : h 2 Hg = f0; 1gjT jg: (2:1)We will assume throughout that all classes discussed have at least two elements, and thushave VC-dimension at least one.A tracking problem consists of a set (or domain) X and a family H of f0; 1g-valuedfunctions de�ned on X , called the target class. A f0; 1g valued function de�ned on X iscalled a concept. We will speak of a concept and the subset of X on which it takes value 1interchangeably. An example is an element of X � f0; 1g, and a sample is a �nite sequence



4 3. Increasingly unreliable evidence and hypothesis evaluationof examples. A function h agrees (resp. disagrees) with an example (x; �) when h(x) = �(resp. h(x) 6= �). A function is consistent with a sample if it agrees with all examples inthe sample. We often use the discrete loss function, l(�; �), de�ned to be 0 when � = �and 1 otherwise, to count numbers of disagreements.Let � be the set of all in�nite sequences of bits, and U be the distribution which sets eachbit in the sequence independently with probability 1=2. A (randomized) tracking strategyis a mapping from ([m(X � f0; 1g)m)�X � � to f0; 1g.If S = hftit2N is a sequence of concepts and �x 2 Xn with n � m, the m-sample of Sgenerated by �x, written samm(S; �x), is the sequence of pairs h(x1; f1(x1)); :::; (xm; fm(xm))i.Informally, samm(S; �x) is simply the �rst m examples which are used by a tracking strategyto predict fm+1(xm+1).Let D be a probability distribution over X . If � � 0, a sequence hftit2N of concepts iscalled (�; D)-admissible if for each t 2 N, Prx2D(ft(x) 6= ft+1(x)) � �.Let A be a tracking strategy. We say that A (�;�)-tracks H if there is an m0 2 N suchthat for all m � m0, for all probability distributions D on X , and for all (�; D)-admissiblesequences S = hftit2N of functions in H,Pr�x2Dm+1 ;�2U(A(samm(S; �x); xm+1; �) 6= fm+1(xm+1)) � �: (2:2)We say that H is (�;�)-trackable if there is a tracking strategy which (�;�)-tracks H.To discuss issues of computational e�ciency, we will need the following de�nitions. Wesay that H = fHn : n 2 Ng is a strati�ed tracking problem if for each n 2 N, (Qn;Hn) isa tracking problem.2 An algorithm for a strati�ed tracking problem consists of a trackingalgorithm An for each n. We assume that the random bits are presented on an auxiliarytape, and thus accessing the next random bit in the sequence takes unit time.We say that A = fAng e�ciently tracks H if there is a polynomial p and positiveconstants c and k such that for all relevant �; n,� each prediction is computed in time bounded by p(1=�; n; b), where b is the number ofbits needed to encode the \largest" example seen.� at most p(1=�; n; b) space is required to store information between trials,� if � < c(�=n)k, An (�;�)-tracks Hn.Note that the bound on the space required is not allowed to grow with the number oftrials. Thus an e�cient tracking algorithm may not, in general, keep all previously seenexamples.3 Increasingly unreliable evidence and hypothesis evaluationIn this section we analyze a simple tracking algorithm which ignores all examples beyondsome time in the past and uses the hypothesis which disagrees with the fewest remainingexamples for prediction. The results of this section, together with those of Section 5, showthat this apparently naive algorithm is within a constant times a log factor of optimal forthe classes of halfspaces and hyperrectangles. We also show that it is su�cient to onlyapproximately minimize disagreements to within a constant.2We assume rationals are encoded by encoding both the numerator and the denominator in binary.



3. Increasingly unreliable evidence and hypothesis evaluation 5As discussed in the introduction, the fraction of the considered examples disagreeingwith a hypothesis can be viewed as an estimate of the probability that the hypothesis willmake a mistake on the next example. In the following series of lemmas we bound theprobability that there exists a hypothesis h in class H such that the estimate of h's error issmall but the true probability that h will yield an incorrect prediction is large.We will make use of the standard Chernov bounds, which we state here.Lemma 1 (Angluin and Valiant (1979), Littlestone (1989), Hagerup and Rub (1990)):Let t 2 N, and let r1; :::; rt be independent f0; 1g-valued random variables. Choose�; 0 < � � 1. Let � =Pti=1Pr(ri = 1). ThenPr tXi=1 ri � (1 + �)�! � e��2�=3: (3:1)For each h 2 H, f 2 H, m 2 N, �x 2 Xm, denotePrx2D(h(x) 6= f(x)); (3:2)by erf (h) (D is to be understood from context), and denote1m mXi=1 l(h(xi); f(xi)) (3:3)by êrf(h; �x). Note that êrf is the empirical estimate of the error of h obtained when the(unchanging) target concept is f .Our �rst lemma follows immediately from the results of Blumer, et al (1989).Lemma 2: For any set X and concept class H over X, for any distribution D on X, forany f 2 H, for all 0 < � � 1=2, if m � 64d� ln 64� , where d is the VC-dimension of H, thenPrx2Dm(9h 2 H : erf (h) � �; êrf (h) < �=2) � �: (3:4)We are now ready to present the main result of this section. The following theoremshows that if a randomized tracking strategy is likely to predict with a hypothesis thatapproximately minimizes disagreements on the previous examples, then the probabilitythat the algorithm makes a mistake on the next example is small.Theorem 3: Let (X;H) be a tracking problem, d = VCdim(H), and choose � > 0. SupposeA is a randomized tracking algorithm which, with probability at least 1� �=6, predicts usingan h 2 H having at most k times the minimum number of disagreements on the previoustrials. Choose a distribution D on X andm � max�192d� ln 192� ; 72k� ln 6�� : (3:5)Then if the sequence of targets from H, S = hfiii2N, satis�es Pmi=1Prx2D(fi(x) 6=fm+1(x)) � m�=(24k), the probability that A makes a mistake on the (m + 1)st trial isat most �.Proof: Fix m and k. For each �x 2 Xm, let mindis(�x) be the set of all hypotheses in Hwhich approximately minimize disagreements with samm(S; �x) to within a factor of k.De�ne F to be the event that the hypothesis chosen by A is not in mindis(�x).



6 3. Increasingly unreliable evidence and hypothesis evaluationDe�ne F 0 to be the event that there are more than twice the expected number ofdisagreements between the previous trials and fm+1, i.e.,F 0 = f�x 2 Xm : mXi=1 l(fi(xi); fm+1(xi)) > m�=(12k)g: (3:6)Applying Lemma 1 (with � = 1), we havePr�x2Dm(F 0) � e�m�=(72k) � �=6; (3:7)since m � 72k� ln 6� .De�ne E = F [ F 0. Then Pr(E) � �=3.For each �x 2 Xm; � 2 �, let h�x;� be A's hypothesis after seeing the sequence(x1; f1(x1)); :::; (xm; fm(xm)) (3:8)of examples and the random sequence �. LetG = f(�x; �) 2 Xm � � : erfm+1(h�x;�) > �=3g; (3:9)be the set of sequences of points and random bits that cause A to produce an inaccuratehypothesis.If mistake is the event that A makes a mistake on trial m+ 1, we havePr(�x;y;�)2Dm�D�U (mistake) � Pr(mistake\ �E) +Pr(mistake \E) (3.10)� Pr(mistake\ �E) +Pr(E) (3.11)� Pr(mistake\ �E) + �=3 (3.12)� Pr(mistake\ �E \G) +Pr(mistake\ �E \ �G) + �=3(3.13)� Pr( �E \G) + 2�=3: (3.14)Next, we havePr( �E \G) = Pr(erfm+1(h�x;�) > �=3 and 1m mXi=1 l(fi(xi); fm+1(xi)) � �=(12k) (3.15)and h�x;� 2 mindis(�x)) (3.16)� Pr erfm+1(h�x;�) > �=3 and 1m mXi=1 l(fi(xi); fm+1(xi)) � �=(12k)(3.17)and 1m mXi=1 l(fi(xi); h�x;�(xi)) � �=12! (3.18)since fm+1 2 H and h�x;� 2 mindis(�x) implies that h�x;� has at most k times as manydisagreements as fm+1. Recalling that k � 1 and applying the triangle inequality for l, wehavePr( �E \G) � Pr erfm+1(h�x;�) > �=3 and 1m mXi=1 l(h�x;�(xi); fm+1(xi)) � �=6!(3.19)� �=3 (3.20)by Lemma 2, since m � 192d� ln 192� . Plugging in to (3.14) yields the desired result. 2



4. E�ciently Approximately Minimizing Disagreements 7If hfii is a (�; D)-admissible sequence of functions, then Prx2D(fi(x) 6= fm+1(x)) �(m� i+ 1)�, and mXi=1Prx2D(fi(x) 6= fm+1(x)) � m(m+ 1)�=2: (3:21)Thus we obtain the following corollary.Corollary 4: Let A be a tracking strategy that predicts using a randomly chosen hypothesiswhich, with probability 1 � �=6, approximately minimizes the number of disagreements onthe �rst m trials to within a factor of k. Choose � and m as in Theorem 3. Then if� � �12k(m+1), the probability that A makes a mistake on the (m + 1)st trial of a (�; D)-admissible sequence of functions is at most �.Note that by ignoring (not counting disagreements with) examples beyond a certainpoint in the past we can, loosely speaking, make any later trial \look like" the (m + 1)sttrial. This observation leads to the following Corollary.Corollary 5: Let X be a domain, and H be a class of concepts over X of VC-dimensiond. Assume A is a randomized algorithm which with probability 1� �=6 �nds an h 2 H whichapproximates, to within a constant factor k, the minimum number of disagreements on asample. Let A0 be the tracking algorithm which predicts using the hypothesis produced by Afrom the most recent m = d(c1d=�) log(1=�)e examples, where c1 > 0 depends on k. Thereis a positive constant c2, depending only on k, such that for any 0 < � < � where� � c2�2d log 1� ; (3:22)strategy A0 (�;�)-tracks H.4 E�ciently Approximately Minimizing DisagreementsIn this section we discuss the application of the techniques of Kearns and Li (1988) tothe problem of approximately minimizing disagreements from among the hypotheses in aclass H, showing that if there is an e�cient algorithm which returns a hypothesis with nodisagreements if there is one, then there is an e�cient randomized algorithm which withhigh probability returns a hypothesis that minimizes disagreements to within a factor ofa constant times the VC-dimension of H. Results very similar to those described hereare implicit in the work of Kearns and Li (Theorems 12 and 16), although some minormodi�cations are necessary.3 Also, we make use of the techniques of Kearns and Li (1988)in our proof. Furthermore, algorithm Min-Disagreements from Figure 4.1 is very similar tothe Algorithm B given in a recent paper by Abe and Watanabe (1992), which was describedto us some time ago by Abe. However, our applications appear to be substantially di�erent.First, the results of Anthony, Biggs and Shawe-Taylor (1990) may be applied4 to obtainthe following.3The di�erence between the result trivially obtainable by combining Theorems 12 and 16 of Kearns andLi (1988) and our result is that in the former, the sample is restricted to have the same number of positiveand negative examples.4For d > 1, use Theorem 2.1 of their paper with � = 1=2, and for d = 1 a simple argument along thelines of the proof for their Theorem 2.1 su�ces.



8 4. E�ciently Approximately Minimizing Disagreements1. Algorithm Min-Disagreements2. Inputs:3. a sample S of m examples;4. l, the number of iterations to run;5. d = VCdim(Hn);6. desired approximation factor  > 1.7. Uses:8. A randomized algorithm A for the consistency problem9. associated with Hn.10. choose an h 2 Hn arbitrarily;11. for j := 1 to ld do12. run A on S 0 obtaining hypothesis h0;13. if h0 is consistent with S then stop and return h014. end for;15. for dopt := 1 to m= do16. s := l(7d(m�dopt)=dopt) ln(9(m�dopt)=dopt)m;17. for j := 1 to l do18. draw S 0, an s-element subsample of S uniformly at random with19. replacement;20. run A on S 0 obtaining hypothesis h0;21. if h0 has fewer disagreements with S than h, set h := h0;22. end for;23. end for;24. return h; Figure 4.1: Algorithm Min-DisagreementsTheorem 6 (Anthony, et al (1990)): Let X be a set and let H be a concept class overX of VC-dimension d. Let D be a probability distribution over H. Choose f 2 H and� < 1=2. Then if m � (7d=�) ln(9=�),Pr�x2Dm(9h 2 H : 8i; h(xi) = f(xi) and Pry2D(h(y) 6= f(y)) � �) � 1=2: (4:1)Now, we turn to the main result of this section. If H is a concept class, then theconsistency problem associated with H is as follows:Given a sample, �nd any hypothesis in H consistent with the sample if there isone, otherwise return any h 2 H.A randomized polynomial time algorithm for the consistency problem returns, in timepolynomial in VCdim(H) and the size of the sample, an h in H. If the sample is consistentwith some hypothesis in H then, with probability q > 1=2, the returned h will be consistentwith the sample. Note that by repeatedly running such an algorithm (and checking eachresult against the sample) an arbitrarily high con�dence can be acheived.Algorithm Min-Disagreements (see Figure 4.1) uses a randomized polynomial time algo-rithm for the consistency problem to approximately minimize the number of disagreements.



4. E�ciently Approximately Minimizing Disagreements 9It should be obvious that if A runs in randomized polynomial time then the algorithmMin-Disagreements runs in time polynomial in d, l and m.Theorem 7: For any n 2 N, Hn � 2Qn of VC-dimension d, and set of m examples S, ifA solves Hn's consistency problem with probability q > 1=2 and there is an element of Hnconsistent with all but opt of the examples in S, then Algorithm Min-Disagreements withinputs S,m,l,d, �nds a hypothesis consistent with all but ( + 1)opt examples in S withprobability at least 1� exp(�(l(2q � 1)=2e1=)(opt=9(m� opt))7d=): (4:2)Proof: Choose m 2 N and let S = f(xi; yi) : 1 � i � mg be a sample. Letopt = minfjfi : h(xi) 6= yigj : h 2 Hg; (4:3)the minimum possible number of disagreements between the sample and an h 2 H. Wefocus our attention on the case where opt < m=(+1), since otherwise the theorem is trivialas any hypothesis is consistent with all but ( + 1)opt examples of S.Choose hopt from among those hypotheses in Hn which have opt disagreements with S.Let bad � S be the subset of the examples in S with which hopt disagrees. Let D be theuniform distribution over S, and let D0 be the uniform distribution over S � bad.Consider the stage of the algorithm where dopt = opt and a particular iteration j ofthe inner loop where A produces hypothesis h0. Let clean be the event that none of theexamples sampled during iteration j are in bad and consist be the event that h0 is consistentwith the subsample. By applying a standard approximation, we havePr(clean and consist) � q(1� opt=m)s (4.4)� q exp� �opt sm� opt� (4.5)(4.6)Now de�ne close to be the event that h0 agrees with all but  opt of the examples inS � bad, i.e. Prz2D0(h0(z) 6= hopt(z)) �  opt=(m� opt). (Note that when close occurs, h0agrees with all but ( + 1)opt of the examples in S.) We havePr(S0;�)2Ds�U (close j clean and consist)= Pr(S0;�)2(D0)s�U (close j consist) (4:7)since the distribution obtained by conditioning Ds on clean is (D0)s (recall that U is theuniform distribution over sequences of bits, so that � represents the randomization ofconsistency algorithm A). Note that if both clean and consist occur then h0 and hoptagree with the examples in the subsample. Thus,Pr(S0 ;�)2Ds�U(close j clean and consist)� Pr(S0;�)2(D0)s�U (close and consist)=Pr(consist)� 1qPr(S0;�)2(D0)s�U (Prz2D0(h0(z) 6= hopt(z)) >  opt=(m� opt)and 8(x; y) 2 S 0; h0(x) = hopt(x))� 1=2q; (4:8)where the last inequality follows from Theorem 6 and the algorithm's choice of s. Thus,Pr(S0;�)2Ds�U (close j clean and consist) � (2q � 1)=2q: (4:9)



10 4. E�ciently Approximately Minimizing DisagreementsNow we can bound the probability of close.Pr(S0;�)2Ds�U (close) � Pr(close and clean and consist) (4.10)= Pr(close j clean and consist)Pr(clean and consist) (4.11)� 2q � 12 exp� �opt sm� opt� (4.12)� 2q � 12 exp� �optm� opt� exp��7d ln 9(m� opt)opt � (4.13)� 2q � 12 e�1= �  opt9(m� opt)�7d= (4.14)Thus, the probability that the hypothesis returned after l iterations has more than( + 1)opt disagreements with S is at most 1� 2q � 12 e�1= �  opt9(m� opt)�7d=!l � exp �l(2q � 1)2e1= �  opt9(m� opt)�7d=! : (4:15)This completes the proof. 2Corollary 8: If  = 7d and l � (3m=(d(2q�1))) ln(1=�) then with probability at least 1��Algorithm Min-Disagreements returns a hypothesis consistent with all but ( + 1)opt of theexamples in S.Proof: If opt = 0, then the Corollary is trivial. Assume opt � 1. ThenPr(algorithm fails) � exp �l(2q � 1)2e1= �  opt9(m� opt)�7d=! (4.16)� exp� �7ld opt(2q � 1)18(m� opt)e1=(7d)� (4.17)� exp��7ld(2q� 1)18me1=7 � (4.18)� exp��ld(2q � 1)3m � (4.19)� �: (4.20)This completes the proof. 2We can now take advantage of the following two theorems, which address learning inValiant's PAC model.Theorem 9 (Pitt and Valiant (1988)): If H � [n2Qn is properly PAC learnable, thenthere is a randomized polynomial time algorithm which solves the consistency problem forH.Theorem 10 (Blumer, et al (1989)): If H = [nHn, where Hn � Qn is properly PAClearnable, then there is a polynomial p such that for all n 2 N, VCdim(Hn) � p(n).Combining these with Corollary 8 we obtain the following.Corollary 11: Let H be a strati�ed tracking problem. Then if the corresponding learningproblem is properly PAC learnable, H is e�ciently trackable.



5. Upper bounds on the tolerable amount of drift 11Combining Corollary 8 with Theorem 5, we obtain the following result for halfspacesand hyperrectangles in particular. Let HALFSPACESn be the set of indicator functions forthe following sets: ff�x 2 Qn : �a � �x � bg : �a 2 Qn; b 2 Qg: (4:21)Let BOXESn be the set of indicator functions for the set of axis parallel hyperrectangles inn-dimensional space, i.e. f nYi=1[ai; bi] : �a;�b 2 Qng: (4:22)Corollary 12: There is a constant c > 0 and there are e�cient tracking algorithms foreach of fHALFSPACESn : n 2 Ng and fBOXESn : n 2 Ng that (�;�)-track these classesfor � � c�2n2 log(1=�) : (4:23)Finally, Kearns and Li (1988) showed that, loosely speaking, signi�cantly improving thefactor of approximation of our algorithm for minimizing disagreements for hyperrectangles(in particular, removing the dependence on d) would lead to corresponding improvementson the approximation algorithm for set cover, which has not been signi�cantly improvedsince the 1970's. Nevertheless, it remains possible that, via other methods, one might obtaine�cient algorithms that track these classes at rates even closer to optimal. The results ofthis section have recently been improved somewhat (Long, 1992), but the linear dependenceon d remains.5 Upper bounds on the tolerable amount of driftIn this section we prove upper bounds on the tolerable amount of drift for two commonlystudied concept classes: halfspaces and axis-aligned rectangles. Our upper bounds show thatthe algorithm of Section 3 is within a log times a constant factor of optimal for each of theseclasses.First, we will prove an upper bound for BASICn, the class of indicator functions for thefollowing family of subsets of the unit interval:f[ni=1[i=n; (i+ ai)=n) : �a 2 [0; 1]ng: (5:1)This class can be viewed as dividing the unit interval into n subintervals of equal length.Every concept in the class is the union of an initial segment from each of the subintervals.It is easy to see that VCdim(BASICn) = n.Our argument for the upper bound on BASICn uses ideas from earlier arguments byEhrenfeucht, et al (1989) and Haussler, et al (1990) giving lower bounds on the probabilityof a mistake when predicting a stationary target function.The intuition behind the argument is as follows. Suppose there is a water truck rollingdown a section of dusty road at 10 kilometers per hour. Either the truck is empty or itis spraying water (unknown to us, but both possibilities are equally likely). Each minutea point on the road is picked at random and we predict whether or not the point is wetbefore looking at it. If the point has not yet been passed by the water truck, then we cansafely predict that it is dry. If a previously picked point had already been passed by thewater truck when it was picked, then we know whether or not the truck is spraying water



12 5. Upper bounds on the tolerable amount of driftand can always predict correctly. However, our prediction always has a 1/2 chance of beingwrong on the �rst point which the water truck has passed. This idea can be extended toto n watertrucks (each of which is independently spraying or empty) on n di�erent roads.Whenever a point on road i that has been passed by truck i is picked, and none of theprevious points had been passed by truck i when they were picked, we will make a mistakewith probability 1/2.Theorem 13: For all n 2 N, BASICn is not (�;�)-trackable if � � 1=e2 and � � e4�2=n.Proof: By contradiction. Assume that tracking strategy A (�;�)-tracks BASICn forsome 0 < � � 1=e2, n 2 N, and � � e4�2=n. Thus after seeing at least m0 examplesdrawn from distribution D and labeled by any (�; D)-admissible sequence of targets, theprobability that A makes a mistake on the next example is at most �.Without loss of generality, set � = e4�2=n. With the restriction on �, � � 1=n (andn � 1=�). Also, since no non-degenerate class is (�;�)-trackable if � > � and � � 1=3, wemay assume that � � 1=e2.Let t = bpn=�c. Since e � pe2n � pn=�, we get 23pn=� � t � pn=� andet � n=�. These inequalities will be used at the end of the proof.For each �z 2 f0; 1gn and 0 � i � t, de�ne f�z;i 2 BASICn as the indicator function for[nj=1 [j=n; (j+ i�zj)=n): (5:2)Since t � 1=� (using n � 1=�), every interval in the union has length at most 1=n.Note that f�z;0 is the function mapping everything to 0. Choose m such that m � t + 1and m � m0. Let S(�z) be the sequence of m elements of BASICn de�ned by S(�z) =(f�z;0; f�z;0; : : : ; f�z;0; f�z;1; f�z;2; : : : ; f�z;t). Let U be the uniform distribution on X = [0; 1]. Onecan easily verify that for all �z 2 f0; 1gn, S(�z) is (�; U)-admissible.Let E be the event that for a random �x 2 [0; 1]m, xm is the �rst \passed" point inits subinterval. More formally, xm � bnxmcn � t�n and for all 0 < i < t, xm�t+i 62�bnxmcn ; bnxmcn + i�n �.For each �z 2 f0; 1gn; �x 2 [0; 1]m, � 2 �, let mistake(�z; �x; �) be the event thatA(samm�1(S(�z); �x); xm; �) 6= f�z;t(xm); (5:3)i.e. that strategy A incorrectly predicts the label of themth example where � represents thestrategy's internal randomization. Finally, let U 0 be the uniform distribution over f0; 1gn.We have Pr(�x;�z;�)2Um�U 0�U(mistake(�z; �x; �))� Pr(mistake(�z; �x; �)jE)Pr(E) = 12Pr(E) (5:4)since, when given E, it is equally likely that f�z;t(xm) is 0 or 1, independent of the previousexamples. Now,Pr(E) = Pr�xm � bnxmcn � t�n & 80 < i < t; xm�t+i 62 �bnxmcn ; bnxmcn + i�n ��(5.5)= t� t�1Yi=1(1� �in ) (5.6)� t� t�1Yi=1 exp ��in1� �in ! (5.7)



6. Conclusions 13= t�exp t�1Xi=1 ��in1� �in ! (5.8)� t�exp  ��n1� �tn ! t22 ! (5.9)� t�exp � e2(e� 1) t2�n ! (since t � n=(e�)) (5.10)� 23pn�exp�� e2(e� 1)� (since 23pn=� � t � pn=�) (5.11)Noting that 23 exp �� e2(e�1)� > 2e2 yieldsPr(mistake) > pn�e2 (5.12)> �: (5.13)Since Pr(�x;�z;�)2Um+1�U 0�U (mistake(�z; �x; �)) > �; (5:14)there is a �z for which Pr(�x;�)2Um+1�U (mistake(�z; �x; �))> �; (5:15)contradicting the assumption that that A (�;�)-tracks BASICn.2Recall the de�nitions of HALFSPACESn and BOXESn from the previous section.The following theorem follows from the bounds for BASICn via a trivial embedding ofBASICn into HALFSPACESn and a similar embedding of BASIC2n into BOXESn using asimpli�ed version of the prediction preserving reductions (Pitt and Warmuth, 1990). Thesame embeddings were employed by Haussler, et al (1990). The details are omitted.Theorem 14: For all � < 1=e2 and n 2 N, HALFSPACESn is not (�;�)-trackable when� > e4�2=n, and BOXESn is not (�;�)-trackable when � > e4�2=2n.This theorem, along with the facts that the VC dimension of HALFSPACESn is n + 1and that of and BOXESn is 2n, establishes that the general purpose algorithm describedin Section 3 is within a constant times a log factor of optimal for these two natural conceptclasses.6 ConclusionsWe have de�ned a learning model in which the target concept is allowed to change overtime and discovered a general-purpose algorithm whose performance nearly matches ourlower bounds (on at least two natural target classes). However this algorithm relies on apotentially expensive subroutine for minimizing disagreements within a constant factor. Tocombat this di�culty, we have found an e�cient way to approximately minimize disagree-ments to within a factor that depends (linearly) on the VC-dimension. This gives us asecond generic algorithm which, although not proven able to tolerate quite as much drift,is more likely to be computationally e�cient (as it is for halfspaces, hyperrectangles, andany other target class which is properly PAC learnable).



14 6. ConclusionsOur algorithms are robust in the sense that they don't need to know the rate of drift� ahead of time, although attempting to achieve an accuracy � amounts to an implicitassumption of an upper bound on �.Although our results have usually been stated in terms of how much target motion can betolerated, they can viewed in other ways. Bounds like \all � < c�2=(d2 ln �) are tolerated"are easily converted to \the error rate, �, is at most c�d�1=(2��) for arbitrarily small �."Also, our bounds indicate how frequently one must sample to achieve a desired accuracywhen given a bound on the continuous rate of target drift. This interpretation may be themore useful one.Consider an assembly line process where the machines slowly drift out of alignment,gradually increasing the defect rate. One wants to sample the �nished products in orderto determine when an adjustment is required. It is often infeasible to inspect each itemproduced as the inspection process might be very expensive or even destroy the good. Thusa more complicated inspection plan indicating when to inspect and how to evaluate theinspection results is needed. The results in Section 3 are applicable to this problem.Intuitively, the following approach seems as if it should lead to improved trackingalgorithms. Instead of simply minimizing the number of disagreements with a su�x of theprevious examples, an algorithm might weight previous examples with gradually decreasingnonnegative weights which sum to one. Then for each hypothesis h in the target class,the algorithm might use the sum of the weights of the examples with which h disagrees asthe estimate of the probability that it will make a mistake on the next trial, then use thehypothesis which minimizes this, possibly more accurate, estimate. One wonders whethersuch an algorithm might signi�cantly improve on the simple \minimize disagreements"algorithm analyzed in this paper.It is easy to see how to alter our arguments to obtain results in a related model (oftencalled \agnostic learning") in which the algorithm doesn't know a priori a class whichcontains each of the sequence of targets, and tries to predict nearly as well as possibleusing hypotheses in a certain class H. More formally, suppose for a worst case sequence ofconcepts f1; f2; ::: (not necessarily in the hypothesis class H), for each t we de�ned �t tobe minh2HPr(h(x) 6= ft(x)). It can be shown by modifying the proofs of Section 3, thatfor � � c�3=(d ln(1=�)), an algorithm can achieve probability of mistake at most �t + � forall large enough t (Helmbold and Long, 1991). One wonders whether these results can beimproved.Haussler (1991) has generalized the results of Blumer, et al (1989) to apply to learningin many frameworks, one of which is the learning of real valued functions. Using Haussler'sresults, the techniques of Section 3 can trivially be extended to apply to uniformly boundedclasses of real valued functions (e.g., feed forward neural networks of a particular architec-ture which has one output node), where, in place of the Vapnik-Chervonenkis dimension,we use Pollard's (1984) pseudo-dimension, and instead of wanting to make the probabilityof mistake small, we want to make the expectation of the absolute value of the di�erencebetween our prediction and the truth small. In place of an algorithm for minimizing dis-agreements, we require an algorithm for minimizing the sum of absolute errors on a sample.It would be interesting to obtain results for more general loss functions, e.g. the squareloss. Also, we have no general lower bounds for the tracking of real valued functions.Other natural problems include: optimizing the constants and removing the 1= ln 1� gapbetween our bounds on �.



6. Conclusions 15AcknowledgementsWe would like to thank David Haussler for many pointers to the literature, especiallyabout exponential tail bounds, and Nicolo Cesa-Bianchi for proofreading an earlier draft ofthis work. We'd also like to thank the Machine Learning group at UC Santa Cruz in generalfor many valuable conversations about this work and related topics. David Helmbold waspartially supported by a Regents Junior Faculty Fellowship. Phil Long was supported byONR grant N00014-85-K-0454.ReferencesM. Anthony, N. Biggs, and J. Shawe-Taylor, (1990). The learnability of formal concepts. The 1990 Workshopon Computational Learning Theory, 246{257.D. Angluin and L. Valiant, (1979). Fast probabilistic algorithms for Hamiltonion circuits and matchings.Journal of Computer and System Sciences, 18(2):155{193.D. Aldous and U. Vazirani, (1990). A Markovian extension of Valiant's learning model. Proceedings of the31st Annual Symposium on the Foundations of Computer Science, pages 392{396.N. Abe and O. Watanabe, (1992). Polynomially sparse variations and reducibility among prediction prob-lems. IEICE Trans. Inf. & Syst., E75-D(4):449{458, 1992.A. Blumer, A. Ehrenfeucht, D. Haussler, and M.K. Warmuth, (1989). Learnability and the Vapnik-Chervonenkis dimension. JACM, 36(4):929{965.A. Ehrenfeucht, D. Haussler, M. Kearns, and L.G. Valiant, (1989). A general lower bound on the numberof examples needed for learning. Information and Computation, 82(3):247{251.D. Haussler, (1991). Decision theoretic generalizations of the PAC model for neural net and other learningapplications. Technical Report UCSC-CRL-91-02, University of California at Santa Cruz.D.P. Helmbold and P.M. Long, (1991). Tracking drifting concepts using random examples. The 1991Workshop on Computational Learning Theory, pages 13{23.D. Haussler, N. Littlestone, and M.K. Warmuth, (1988). Predicting f0; 1g functions on randomly drawnpoints. Proceedings of the 29th Annual Symposium on the Foundations of Computer Science, pages 100{109.David Haussler, Nick Littlestone, and Manfred Warmuth, (1990). Predicting f0; 1g-functions on randomlydrawn points. Technical Report UCSC-CRL-90-54, University of California Santa Cruz. To appear inInformation and Computation.T. Hagerup and C. Rub, (1990). A guided tour of Chernov bounds. Information Processing Letters, 33:305{308.M. Kearns and M. Li, (1988). Learning in the presence of malicious errors. Proceedings of the 20th ACMSymposium on the Theory of Computation, pages 267{279.T. Kuh, T. Petsche, and R. Rivest, (1990). Learning time varying concepts. In NIPS 3. Morgan Kaufmann.T. Kuh, T. Petsche, and R. Rivest, (1991). Mistake bounds of incremental learners when concepts drift withapplications to feedforward networks. In NIPS 4. Morgan Kaufmann.N. Littlestone, (1989). Mistake Bounds and Logarithmic Linear-threshold Learning Algorithms. PhD thesis,UC Santa Cruz.P.M. Long, (1992). Towards a more comprehensive theory of learning in computers. PhD thesis, UC SantaCruz.N. Littlestone and M.K. Warmuth, (1989). The weighted majority algorithm. Proceedings of the 30th AnnualSymposium on the Foundations of Computer Science.D. Pollard, (1984). Convergence of Stochastic Processes. Springer Verlag.L. Pitt and L.G. Valiant, (1988). Computational limitations on learning from examples. Journal of theAssociation for Computing Machinery, 35(4):965{984.L. Pitt and M.K. Warmuth, (1990). Prediction preserving reducibility. Journal of Computer and SystemSciences, 41(3).L.G. Valiant, (1984). A theory of the learnable. Communications of the ACM, 27(11):1134{1142.V.N. Vapnik, (1982). Estimation of Dependencies based on Empirical Data. Springer Verlag.



16 6. ConclusionsV.N. Vapnik, (1989). Inductive principles of the search for empirical dependences (methods based on weakconvergence of probability measures). The 1989 Workshop on Computational Learning Theory.V.N. Vapnik and A.Y. Chervonenkis, (1971). On the uniform convergence of relative frequencies of eventsto their probabilities. Theory of Probability and its Applications, 16(2):264{280.


