
University of CaliforniaSanta CruzCarafe: An Inductive Fault Analysis Tool For CMOS VLSI CircuitsA thesis submitted in partial satisfactionof the requirements for the degree ofMaster of ScienceinComputer EngineeringbyAlvin Lun-Knep JeeJune 1991The thesis of Alvin Lun-Knep Jee isapproved:F. Joel FergusonKevin KarplusTracy LarrabeeDean of Graduate Studies and Research



Copyright c byAlvin Lun-Knep Jee1991



iiiContentsAbstract viiAcknowledgements viii1. Introduction 11.1 The Carafe Project : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11.2 Thesis Organization : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 22. Background 32.1 The Three Stages of IC Testing : : : : : : : : : : : : : : : : : : : : : : : : : 32.2 De�nitions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 42.3 Fault Models : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 62.3.1 Stuck-at Fault Model : : : : : : : : : : : : : : : : : : : : : : : : : : 72.3.2 Bridge Fault Models : : : : : : : : : : : : : : : : : : : : : : : : : : : 82.4 Inductive Fault Analysis : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 93. Carafe 133.1 Carafe Defect Model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 133.2 Locating the Faults : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 133.2.1 Bridge Faults : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 133.2.2 Break Faults : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 153.3 Reducing the Number of Reported Faults : : : : : : : : : : : : : : : : : : : 163.4 Modeling the Faults for Simulation : : : : : : : : : : : : : : : : : : : : : : : 173.5 Ranking the Faults : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 183.6 Implementation Details : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 193.6.1 Circuit Representation : : : : : : : : : : : : : : : : : : : : : : : : : : 19



iv3.6.2 Circuit Extraction : : : : : : : : : : : : : : : : : : : : : : : : : : : : 203.6.3 Bridge Fault Extraction : : : : : : : : : : : : : : : : : : : : : : : : : 213.6.4 Break Fault Extraction : : : : : : : : : : : : : : : : : : : : : : : : : 213.6.5 Sensitive Area Calculation : : : : : : : : : : : : : : : : : : : : : : : : 214. Results 244.1 MCNC Standard Cells : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 254.2 Defect Coverages : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 275. Current Limitations of Carafe 305.1 Break Faults : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 305.2 Analyzing Large Circuits : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 306. Applications of Carafe 326.1 Grading Test Sets for Defect Coverage : : : : : : : : : : : : : : : : : : : : : 326.2 Physical Design for Testability : : : : : : : : : : : : : : : : : : : : : : : : : 326.3 Design for Manufacturability : : : : : : : : : : : : : : : : : : : : : : : : : : 337. Conclusions and Further Research 34References 36



vList of Figures2.1 Typical Integrated Circuit Testing Stages. : : : : : : : : : : : : : : : : : : : 32.2 Relationship between spot defects, circuit faults, and behavioral faults. : : : 62.3 1-bit full adder descriptions (a) Logical (b) Transistor level. : : : : : : : : : 72.4 Example of a defect causing a bridge fault. : : : : : : : : : : : : : : : : : : 112.5 Example of a defect causing a break fault. : : : : : : : : : : : : : : : : : : : 123.1 Bridge fault type 1. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 143.2 Bridge fault type 2. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 153.3 Break fault type 1 and an inconsequential break fault. : : : : : : : : : : : : 153.4 Modeling bridge and break faults as extra transistors. : : : : : : : : : : : : 183.5 Sensitive area for a break fault between point A and B. : : : : : : : : : : : 193.6 Sensitive area for a break fault with a horizontal length. : : : : : : : : : : : 224.1 Plot of the bridge fault sensitive areas for the C7552 ISCAS'85 circuit sortedfrom highest to lowest. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 284.2 Plot of the cumulative sorted bridge fault sensitive areas for the C7552ISCAS'85 circuit. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 29



viList of Tables2.1 Percent of defect coverage required for various combinations of yield anddesired defect level. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 102.2 Percentage of circuit faults caused by spot defects. : : : : : : : : : : : : : : 124.1 Bridge faults for ISCAS'85 benchmark circuits. : : : : : : : : : : : : : : : : 244.2 Bridge faults to power and to ground : : : : : : : : : : : : : : : : : : : : : : 254.3 Bridge faults for logic gates broken down by e�ect. : : : : : : : : : : : : : : 264.4 Percentage of defects causing bridge faults broken down by e�ect. : : : : : : 27



Carafe: An Inductive Fault Analysis Tool For CMOS VLSI CircuitsAlvin Lun-Knep JeeabstractTraditional fault models for testing CMOS VLSI circuits do not take into account theactual mechanisms that precipitate faults. As a result, the failure modes of a circuit aspredicted by these fault models may not reect the realistic failure modes of the circuit.This thesis reports on the Carafe software which determines the realistic bridge faultsof a CMOS circuit based on its layout. Each fault found by Carafe is assigned a relativeprobability based on the geometry of the fault site and defect distributions of the fabricationprocess. Carafe improves upon previous software in that it is easier to use, more robust,and more time and memory e�cient so that larger circuits can be analyzed.Keywords: Fault Models, VLSI Testing, CMOS, Inductive Fault Analysis



viiiAcknowledgementsI would like to thank my advisor, Dr. F. Joel Ferguson, for introducing me to the projectand being tolerant of the many schedule slips.A number of fellow classmates helped with parts of the Carafe program. George Riusakiimported the basic corner-stitched-tile routines from the Berkeley Magic layout tool. DavidPrather and David Staepalere provided much appreciated help with the somewhat nasty\features" of using X and motif to create a graphical user interface for Carafe.This research was supported in part by the Semiconductor Research Corporation Grant90-DJ-141. Krzysztof Ko�zmi�nski of the Microelectronics Center of North Carolina suppliedtheir standard cell implementations of the ISCAS'85 benchmark circuits.



11. IntroductionStudies have shown that the traditional method of testing for manufacturing defectsin integrated circuits (ICs) may not be e�ective enough for current testing goals. Thetraditional method of generating tests for ICs assumes that a defect will always manifestitself as a signal line stuck at a speci�c logical value. In most CMOS technologies usedtoday, a defect causes a short or open that may not behave as a signal line stuck at alogic value [GCV80][SMF85]. The traditional testing method does not consider the faultybehavior of a circuit and thus may not identify enough defective circuits.The problem is that the traditional method does not consider the actual faults that canoccur. In order to generate e�ective tests, we must �rst determine the faults that can occur.Inductive fault analysis (IFA) [Fer87] was developed to do just that. IFA uses the layout ofa circuit along with certain defect parameters to determine exactly what alterations occurto the circuit as a result of defects. Tests can be generated to target these alterations anddetect a higher percentage of defective ICs.1.1 The Carafe ProjectThe IFA process was demonstrated by the development of the program FXT. FXT wasmeant to be primarily a research tool to establish the feasibility of the IFA process and wasnot intended for general use. Carafe is a program that implements the defect simulationand defect-to-fault translation parts of IFA as easy-to-use software for general distribution.FXT showed that over 99% of the faults caused by small defects were either shorts oropens. For this reason, Carafe is designed to identify the possible short (bridge) and open(break) faults that can occur in a circuit based on its layout. Carafe reports these faultsas extra transistors inserted into the extracted transistor netlist of the circuit. With theseextra transistors, each fault may be simulated to determine the e�ect of the fault on thecircuit as a whole. Carafe automatically generates scripts for fault simulation that can beused directly with the switch-level simulator COSMOS [BBB+87].



2For each fault found by Carafe, the relative likelihood of occurrence is calculated andreported. This likelihood is made relative to all of the other faults that were found in thecircuit and indicates the relative importance of detecting the fault. If a speci�c fault is verylikely to occur, it is more important to detect it and warrants more expense to derive atest to detect it than if it were less likely to occur. This metric may also be used to aid indetermining how to modify the layout of the circuit to make faults easier to detect or lesslikely to occur.1.2 Thesis OrganizationChapter 2 reviews some of the concepts of testing ICs and describes the most prevalentfault models used. The inductive fault analysis procedure, which serves the basis for theCarafe program, is outlined.Chapter 3 describes the scope and the features of the Carafe program. Carafe usesinductive fault analysis to provide information that can aid in determining how a defectivecircuit will behave and identify areas that are susceptible to defects. This chapter alsocontains a few details of the inner workings.Chapter 4 presents experimental results and observations. Carafe was used to ana-lyze the MCNC standard cell implementation of the ISCAS'85 benchmark circuits. Theperformance of Carafe and the results of analyzing the circuits are presented.Chapter 5 is a brief discussion of Carafe performance and limitations.Chapter 6 describes applications of the Carafe program.The conclusion of this thesis is in Chapter 7. Here, the major points of the thesis aresummarized. Other experiments using Carafe are proposed for future research.



32. BackgroundThis chapter provides a review of IC testing. The �rst section describes the di�erentstages of the IC testing process. The next section de�nes the terms used throughout therest of this thesis. The third section describes the various fault models used to generatetests for ICs. The fourth section discusses the need to test for defects rather than faultsthat can occur in a circuit and describes a systematic process to determine the faults thatarise from defects.2.1 The Three Stages of IC TestingTesting an IC usually occurs in multiple stages. Figure 2.1 shows the three typical stagesof IC testing. Untested ICs enter the �gure at the left and move right through each stage ofthe test. The ICs found to be bad are removed from further testing while the ICs emergingfrom the last stage are considered fully functioning. The cost of testing each IC becomesprogressively larger in each stage; therefore, it would be best to detect as many defectiveICs as possible in the early stages of the test.The �rst stage in the test is the gross test. Gross testing is usually nothing more thanapplying power to the chip, applying a few test inputs to the IC and watching the outputsto see if they do anything at all. If the chip responds to clock signals and the outputs takeon valid logic values, it is passed to the next stage.
Untested
Integrated
Circuits

Good
Integrated
Circuits

Bad Integrated Circuits

Pass Pass Pass

Fail Fail Fail

Gross Boolean ParametricFigure 2.1: Typical Integrated Circuit Testing Stages.



4A Boolean test is applied to the ICs that pass the gross test. This stage is sometimesreferred to as DC testing since the speeds at which the input patterns are applied to theICs are much slower than the speeds that the ICs were designed for and the detailed timingof the inputs and outputs are not considered. This step checks the functionality of the chipeither by exercising the functions of the IC or, more commonly, by exercising each logicalgate within the IC regardless of the overall function of the IC. This stage of the test hasbeen given a great deal of attention in attempts to ensure that very few defective ICs moveon to the next stage.The last stage of testing checks the parametric aspects of the ICs. Parametric testing isalso called AC testing since time-dependent aspects of the ICs are tested. Characteristicssuch as rise and fall times of the ICs outputs must be tested to ensure that they are withinthe design speci�cations. The amount of current that the IC uses during normal operationis also checked to make sure it is within the speci�cations.ICs passing the last stage of the test are considered good. This may or may not be truedepending on the e�ectiveness each stage of the test. Defective ICs that have passed onestage of the test are not guaranteed to be detected by the next stage. Documentation offaulty ICs passing all stages was presented by Williams and McCluskey [WB81, MB88].2.2 De�nitionsSince some of the terms used in this thesis have been used inconsistently in the literature,they will be de�ned here.Defects: anomalies that occur during the fabrication of the IC. These include improperlyaligned photolithographics masks, specks of dust on the masks, or uneven ion implantdistributions. The defects that we will be concerned with in this thesis are localizeddefects or spot defects. Spot defects are usually caused by specks of dust on thephotolithographic masks or contaminants in the processing chemicals.Circuit Faults: changes in the electrical description of the circuit. These include brokenwires, shorted wires, extra transistors, and missing transistors. In this thesis, the



5circuit faults that we will be concerned with are caused by spot defects since circuitfaults caused by large defects are usually easily detected.Behavioral Faults: changes to the behavior of the the circuit. This is what traditionallyis thought of as a fault. These faults are abstractions of circuit faults. Examples ofbehavioral faults include changes to the function of the circuit, logical faults; faultswhich cause the circuit to be slower, delay faults; and faults that increase the amountof current drawn in normal operation, IDDQ faults.Figure 2.2 shows the relationship between spot defects, circuit faults, and behavioralfaults. Many spot defects may cause the same circuit fault. For example, a long wire canbe broken anywhere along its length by many di�erent spot defects, but they will all causethe same circuit fault. Also, many circuit faults can cause the same behavioral fault.The �gure also shows that some circuit faults are not a result of spot defects. Thesecircuit faults can be caused by global defects such as improper metalization or a scratchacross the surface of the wafer. Again, we are concerned only with the e�ects of spot defectsin this thesis, since faults caused by global defects are usually easily detected with grosstesting.Finally, we see that some behavioral faults do not seem to be caused by circuit faults.These behavioral faults may not be possible given the layout of the circuit. A behavioralfault may describe a bridge between two nodes that may never occur if the two nodes areon opposite sides of the IC. The bridge may still occur, but everything in between the twonodes must also be bridged together and such a bridge would be easy to detect. Anotherreason for behavioral faults not caused by circuit faults is that the faulty device may noteven exist when the circuit is implemented. An example of this is shown in the 1-bit fulladder of Figure 2.3. Here, we have both a logical description of the adder and one possibletransistor-level implementation of the adder. A logical fault may involve an exclusive-ORgate or an AND gate, but in the implementation of the adder, it is di�cult to determinewhich transistors are part of the AND gate and which are part of the exclusive-OR gate.



6
Spot Defects: Fabrication

anomalies.

Circuit Faults: Changes to the
circuit level description.

Behavioral Faults: Changes to the
behavior of the circuit.Figure 2.2: Relationship between spot defects, circuit faults, and behavioral faults.2.3 Fault ModelsIn order to test for defective ICs, we must predict how a defective IC behaves bydeveloping a fault model. Since predicting the behavior of an entire faulty IC is di�cult,fault models usually deal with a much smaller unit to test such as a single logic gate.The job of the fault model is to predict the behavior of defects. The closer the faultmodel's prediction comes to reality, the more e�ective the test set is likely to be at identifyingdefective ICs. Unfortunately, the fault model that describes the behavior of every defectivecircuit in every detail is usually too complex to be useful for large circuits. This is analogousto circuit simulation. Treating transistors as pure switches requires less simulation time, butmay not be accurate in some cases. Using a set of di�erential equations to model transistorsas in SPICE would be very accurate, but would require a great deal of time for even MSIchips.Some of the fault models currently being used will be discussed in the following sections.To simplify the task of testing ICs, all of the fault models assume that only one fault ispresent in the circuit at a time. When testing new ICs, it may be that there are more than



7
A

(a)

Cin

Cout

B Sum

(b)

A B

Cin

A CinB

Cin

A

B

Cin

Cin
B

A

Cout

Sum

A

B

A B A B Cin
B

A

Figure 2.3: 1-bit full adder descriptions (a) Logical (b) Transistor level.one fault present, but in most cases, multiple faults can be detected by using the tests thatwere generated to detect single faults [ABF90]. The �rst fault model we will consider thesingle-stuck-at fault model.2.3.1 Stuck-at Fault ModelThe most popular logical fault model is the single-stuck-at (SSA) fault model. The SSAfault model deals with a circuit at the logic gate level. A fault in this model is representedas a signal line stuck at a logic value of 0 of 1. Since the faults generate only logicalvalues, as opposed to arbitrary analog voltages, generating tests from the SSA fault model



8is computationally relatively simple. When the SSA model was developed, the primaryfabrication technology was TTL. In TTL logic, many defects do indeed manifest themselvesas a logical stuck fault. Unfortunately, many of the defects that can occur in current CMOSprocesses are not manifested as logical stuck-at faults [FS88].2.3.2 Bridge Fault ModelsIn bipolar logic, break faults tend to cause signal wires to be stuck at a speci�c logicvalue. Bridge faults do not have that e�ect and may not show up as stuck-at faults. Theresulting logic value of the wires being bridged together can usually be determined byexamining what is driving each wire. The following are some of the bridge fault modelsthat have been developed to test for bridge faults. The �rst two models, wired-AND andwired-OR, were developed for bipolar logic and have limited application to CMOS logic.The last two bridge fault models, voting model and extra current model, were developedbecause of the ine�ectiveness of the �rst two models in CMOS applications.Wired-AND Bridge Model and Wired-OR Bridge ModelBridge faults usually create a new logical function. In bipolar, the logical functions thatrepresent a bridge fault are logical AND and the logical OR. These functions are used todetermine the �nal logic value of all the signal wires that are bridged together. In the caseof an AND bridge fault, for example, the logic value that is propagated to all of the logicgates driven by the bridged signal wires is the logical AND of the logic values of all thebridged wires. These two bridge fault models enable fairly simple test generation, sincethe faulted values that are propagated through the circuit are valid logic values and thefunction to calculate the resulting value is simple.Bridge Fault Voting ModelThis bridge fault model deals not with logic gates, but with the transistors that make upthe logic gate [Ack88]. This model was created because in CMOS technologies, knowing the



9logic values on the output of the bridged gates is sometimes not enough to determine theresulting logic value. This model takes into account the strength of the transistors drivingthe output to determine the �nal voltage of the bridge fault and in turn the logic value topropagate.Since this model computes the logical value of the bridge fault, only valid logic values arepropagated through the circuit, thus this model provides a more accurate representation ofbridge faults for CMOS circuits with a small additional overhead compared to the previousbridge fault models.Extra Current ModelAll of the other models discussed here detect the presence of a fault by propagatingerroneous logic values to the outputs of the IC where they can be checked. The extracurrent model does not not propagate erroneous logic values to the output, but uses aninherent feature of many CMOS design styles to indicate a defective IC.Certain CMOS logic design styles use very little power once the logic gates stabilize intoa logic state. For this reason, CMOS is heavily used in battery-powered applications such aswrist watches and handheld calculators. It is this feature that allows an alternate methodof detecting defective CMOS ICs. Since many of the defects that can occur in CMOScircuits cause the circuit to draw more current than defect-free ICs, monitoring the amountof current the IC draws can be used to identify defective ICs. To detect a bridge fault, thetest pattern must set the inputs so that the bridged wires will be driven to di�erent logicvalues, causing extra current which can be detected at the power supply pins of the IC.2.4 Inductive Fault AnalysisThe goal of testing is to detect defective ICs so that they are not shipped to customers.The success of testing is measured by the fraction of good ICs among all the ICs that wereshipped. This measure is known as the quality level (QL). The e�ectiveness of a given testat detecting defective ICs is given by the fraction of all defects that were not detected by



10Defects Per Million (DL)% Yield 50 100 200 30090 99.953 99.905 99.810 99.71580 99.978 99.955 99.910 99.86670 99.986 99.972 99.944 99.91660 99.990 99.980 99.961 99.94150 99.993 99.986 99.971 99.957Table 2.1: Percent of defect coverage required for various combinations of yieldand desired defect level.the test. This metric is called the test transparency (TT). Williams and McCluskey derivedthe relationship between QL, TT and the overall fabrication process yield (Y) to beQL = Y TT : (2:1)Since TT cannot be measured directly, it is estimated from the fault coverage (C), thepercentage of faults detected by the test patterns, byTT = 1� C: (2:2)QL is computed from the defect level (DL), the number of defective ICs shipped using thefollowing equation: QL = 1�DL: (2:3)DL is usually measured in defects per million. Table 2.1 shows the defect coverage requiredfor di�erent yields to achieve a given defect level. A commonly accepted defect level is 200DPM. To achieve this, we can see that greater than 99.9% of the defects must be detectedby the tests if the yield is 80% or less.As we have just seen, detecting a high percentage of the possible defects is very importantfor low defect levels. Since traditional fault models do not take defects into account at all,it is unlikely that tests generated from those fault models will consistently detect enoughdefects to ensure adequate quality levels [FS88]. The last two bridge fault models presented



11
Spot

Defect

Conducting
Regions Figure 2.4: Example of a defect causing a bridge fault.in the previous section dealt with defects directly, but in order for those models to befeasible, the list of possible defects for the IC must be known.Inductive Fault Analysis (IFA) was developed by Ferguson, Maly and Shen to determinethe list of possible defects that can occur in an IC based on its layout and the fabricationprocess. Clearly, the list of defects is directly dependent on the layout of the IC rather thanan abstracted representation of the IC such as a logic gate representation. IFA performsdefect simulation on the layout of the IC using predetermined defect sizes to determine thee�ect of the defect on the circuit. Figure 2.4 shows a defect that causes extra material todeposited that causes a bridge fault to occur. A similar defect, depending on the fabricationtechnology, could prevent material from being deposited and thus cause a break fault asshown in Figure 2.5.IFA was implemented in the program FXT, which was used to analyze several circuitsfrom a CMOS standard cell library. The resulting circuit faults caused by defects simulatedby FXT are summarized in Table 2.2. Since transistor-stuck-on faults can be treated asbridge faults between the source and drain of the transistor, we can see that >99% of thedefects cause either bridge faults or break faults.



12
Spot DefectConducting RegionFigure 2.5: Example of a defect causing a break fault.

% Defects Circuit Fault Type�50% Bridge�40% Break�10% Transistor-Stuck-On<1% OthersTable 2.2: Percentage of circuit faults caused by spot defects.



133. CarafeThe IFA process was shown feasible by the FXT software; however, FXT was primarilya research tool and was not intended to be used as a general IFA tool. The goal of Carafe isto provide a robust and stable implementation of the IFA process in an easy-to-use package.3.1 Carafe Defect ModelCarafe models all spot defects as small squares. A square defect model was chosen tomake the calculations faster than can be done with circular defects. Since large, globaldefects, such as mask misalignment and scratches across the surface of the wafer, usuallycause drastic changes to the behavior of a circuit. These defects are easily detected by mosttest sets, so they are not considered by Carafe. Since greater than 99% of all the faultscaused by local spot defects are either shorts between two di�erent electrical nodes or anopen in a once continuous electrical node, Carafe is geared towards �nding the possiblebridge and break faults that can occur in a circuit given its layout.3.2 Locating the FaultsThe possible bridging and break faults in a circuit that can be caused by spot defectsdepend on the feature sizes of the circuit's physical layout. Smaller features are more proneto be a�ected by defects than large features. Features separated by a great distance areclearly less likely to bridge together than features that are relatively close to one another.Thus, Carafe requires the layout of the circuit to determine the possible bridge and breakfaults.3.2.1 Bridge FaultsIn Carafe, there are two types of bridging faults. The �rst type is a bridging faultbetween two regions on the same layer. The other bridging fault type is between two



14
Spot

Defect

Conducting
Regions Figure 3.1: Bridge fault type 1.regions on di�erent layers, such as polysilicon and metal. The �rst bridging type is causedby extra material being deposited (or not etched away) between two regions of conductingmaterial that are physically close to each other. An example is shown in Figure 3.1. Aspeck of dust on a photolithographic mask may produce such defects if the size of the dustparticle is large enough. The other type of bridging faults occurs when the oxide insulationbetween two layers of material is not formed correctly and the two layers are allowed tocome in contact with each other. Figure 3.2 shows two di�erent types of conducting layersthat would not normally be electrically connected together but are connected due to adefect causing the insulating layer to be breached. Note that a bridge that occurs betweenone part of an electrical node with another part of itself is not a fault as far as Carafe isconcerned. Only bridge faults between di�erent electrical nodes are reported by Carafe.The �rst type of bridge faults are found by taking each region of material and checkingto see if another region of the same material lies within a certain distance away from theoriginal region. The distance used is the largest defect diameter under consideration. SinceCarafe models defects as small squares, the diameter is the length of one side of the defect.The process is repeated for every region of every type of material.The second type of bridging fault can only occur between overlapping conducting regionson di�erent layers. For example, a bridge between a region of polysilicon and a region ofmetal can only happen if the two regions are overlapping since we are assuming only singlespot defects. Finding these bridges entails �nding all of the overlaps of one type of materialwith the other.



15
Conducting Region 2

Conducting Region 1

Spot DefectFigure 3.2: Bridge fault type 2.
Spot Defects

Contact
Cut A

Contact
Cut BFigure 3.3: Break fault type 1 and an inconsequential break fault.3.2.2 Break FaultsAs with the bridge faults, there are two types of break faults. The �rst type of breakfault causes the separation of an electrical node into two or more nodes on the same layer.The break fault on the left in Figure 3.3 shows a break of this type between contact cut Aand contact cut B.



16The second break type occurs at the junction of two dissimilar layers of conductingmaterial. This is more commonly called an open contact. A single spot defect can causethese break faults by preventing the insulating oxide from being etched away where thecontact holes are supposed to be. This results in one part of the electrical node beingseparated from the other part of the node. There is a chance that a break fault could occurand not partition the netlist of the circuit|perhaps the break fault only isolates a smallcorner or piece of a larger region of material in a way that does not a�ect the circuit. Thebreak fault on the right in Figure 3.3 shows an example of a break fault that does not a�ectthe path from contact cut A to contact cut B. Redundancy can also prevent the division ofan electrical node as a result of a single break fault by providing multiple conducting paths.Only the break faults that alter the circuit level description are reported by Carafe.Determining the possible breaks of the second type is relatively simple. The only placeswhere the second type of break fault can occur are at the contacts or vias. A simple searchfor all of the contacts between the di�erent layers of material yields a list of all possiblebreak faults of the second type.The �rst type of break fault is much more di�cult to derive from the circuit's layout.The break faults in a given region of conducting material are dependent on the directionsof current in the region. If the orientations of the current within a region of conductingmaterial are known, the break faults can be easily found. Unfortunately, the orientationsof current are not always readily determined.3.3 Reducing the Number of Reported FaultsMany defects cause identical faults. These faults are identical in the sense that hey havethe same e�ect on the circuit's electrical behavior. More than one bridge fault bridging thesame two nodes together is a simple example. All but one of those bridge faults can bedeleted from the fault list.Identical break faults have one of two forms. In the �rst form, there is a cycle or morethan one path from one point of the node to another. In this case a single break will not



17isolate those two points from one another and thus all of the break faults that are found inthe cycle can be removed since they will not a�ect the electrical behavior of the circuit (asingle break in this case may a�ect the parametric behavior of the circuit, but such faultsare not considered in Carafe.) In the second form, there is more than one break fault insuccession. In this form, each break fault has the exact same e�ect on the circuit, namelyisolating point A from point B. These redundant faults are dealt with in the same way asredundant bridge faults. Inconsequential breaks that do not change the netlist of the circuitcan also be deleted from the fault list.By removing inconsequential faults and all but one fault from each class of identicalfaults, Carafe reduces the time for fault simulation and test pattern generation. Since faultsimulation with the COSMOS fault simulator is orders of magnitude more expensive thanfault extraction with Carafe, any reduction in the number of faults that need to be simulatedwill greatly improve the overall computation time.3.4 Modeling the Faults for SimulationDetermining the possible faults is only a small part of the testing picture. Once therealistic faults are identi�ed, fault simulation can be used to determine the e�ect of eachfault on the circuit. Fault simulation may show whether the fault actually a�ects thebehavior of the circuit, and whether the fault can be detected by any speci�c test set.The �rst step in �nding all of the possible faults in the circuit is the extraction of thetransistor-level representation of the circuit. This is done using the standard region mergingalgorithms. Next, for each fault that Carafe �nds, a transistor is inserted into the originalnetlist to model the e�ect of that fault. For bridge faults, a transistor is inserted across thetwo nodes of the bridge fault. Turning the transistor on causes a short to appear acrossthe two nodes. Break faults are modeled with the insertion of transistors between the twopoints to be broken. Turning the transistor o� isolates the two points of the break faultfrom each other. Examples of these transistors are shown in Figure 3.4.



18
(a) (b)Figure 3.4: Modeling bridge and break faults as extra transistors.If all of the bridge transistors are turned o� and all of the break transistors are turnedon, the circuit will behave as if there were no faults in it at all.Once the fault transistors are in place in the netlist, the bridge and break faults canthen be simulated as stuck-at faults at the gate nodes of the fault transistors. In doing so,we can now simulate bridge and break faults using a switch level, stuck-at fault simulatorto determine the e�ect of these faults and determine the bridge and break fault coverage ofany given test set. Carafe generates a simulation command �le for use with the switch-levelfault simulator COSMOS.3.5 Ranking the FaultsCarafe uses the concept of sensitive area to determine the likelihood of each fault. Thesensitive area is de�ned as the area in which the center of a defect of a given diametermust fall in order to cause the fault. An example of the sensitive area for a break faultin a rectangular region of conducting material is shown in Figure 3.5. The sensitive areaestimates the likelihood of the given fault occurring. Larger sensitive areas imply morelikely to occur faults.The sensitive areas calculated for the faults are dependent on the layer in which theregions of material lie. For most fabrication processes, defects due to spot defects are morelikely to occur during the fabrication of the upper layers, such as the metal layers, thanin the lower layers, such as the polysilicon layers. For this reason, Carafe has provisions



19
Square DefectConducting Region

Sensitive Area

A BFigure 3.5: Sensitive area for a break fault between point A and B.for including any defect distributions that occur in a given fabrication line organized bylayer and by defect radii. This allows maximum exibility in using Carafe with real defectdistributions to achieve more realistic fault results and likelihoods of occurrence.3.6 Implementation DetailsThis section provides some of the implementation details of the Carafe program. Thissection is by no means a complete and thorough account of the complete program, but itdescribes the major data structures and algorithms used.Carafe is written in the \C" programming language under the UNIX operating system.The code was written with portability in mind to increase the usefulness and availability ofthe program. The original code was written and debugged on an IBM PC and ported toSun workstations with no recoding.3.6.1 Circuit RepresentationCarafe uses the layout of circuits to determine the realistically possible bridge and breakfaults. Carafe can read electronic representations of circuit layout in either the Calma GDSformat or the Berkeley Magic format.



20The internal representation of a layout is kept in a data structure similar to the datastructure of the Berkeley Magic CAD tool [OHM+84]. The layouts are represented in aseries of planes which contain corner-stitched tiles representing the regions of material usedin the fabrication process. The structure of the tiles allows e�cient area searches andenumerations, which are used frequently in the circuit and fault extraction algorithms.Because the tiles are rectangular, only Manhattan geometries can be represented in thetile planes. Layouts containing non-Manhattan geometries are represented by a series ofsmall rectangles to approximate the original polygon.Each tile plane may represent more than one fabrication layer. The most commonexample of this is the plane that contains the transistors. In this case, both forms ofdi�usion (n-di�usion and p-di�usion) reside on the same tile plane as polysilicon, eventhough di�usion and polysilicon are entirely di�erent fabrication layers. This was done sothat the extraction of the circuit's transistors would not involve computationally expensivegeometric operations. A quick check of the tile's contents can reveal the locations of thetransistors. For more information refer to the Carafe User's Manual [Jee90].3.6.2 Circuit ExtractionThe circuit extraction done by Carafe is similar to the circuit extraction done byMagic [SO86]. The extractor groups the tiles into electrical nodes by a recursive algorithm.Two touching tiles are considered to be in the same electrical node if they are the sametype or they are speci�ed to be electrically connected in the technology �le. Carafe's circuitextractor is much simpler than the magic circuit extractor, since Carafe does not extractnode resistance or parasitic capacitances. Carafe only extracts the transistors of a circuitand their connectivity.Before the nodes are extracted, the transistor regions are determined using the sameprocess described above except that only the tiles representing transistors, as speci�ed inthe technology �le, are considered. The length and width of each transistor is computed foruse in simulation. The length and width of rectangular transistors are simple to compute,



21but non-rectangular transistor channels are more di�cult to calculate. The length of thetransistor is computed by averaging the lengths of the perimeter of the transistor that arenot adjacent to di�usion. The width of the channel is determined by averaging the lengthsof the perimeter that are adjacent to di�usion.3.6.3 Bridge Fault ExtractionTo determine the possible bridge faults we take every tile that belongs to an electricalnode and enumerate all of the tiles that are within a speci�ed distance from the original tile.For each tile found in the search, if the tile belongs to a di�erent node than the original,a potential bridge has been found. A list of all bridge faults found is created, and checkedeach time a new bridge fault is found to prevent duplicate bridge faults from appearing.The distance that is searched is the largest defect size that the user is interested in.This distance is used only to determine the possible bridge faults and does not a�ect thecalculation of sensitive areas for the faults.3.6.4 Break Fault ExtractionThe break fault extractor is currently not implemented, but is being developed andshould be ready in the near future.3.6.5 Sensitive Area CalculationThere are several di�erent types of sensitive areas that are found by Carafe. This sectiondescribes each type and how they are calculated.Break-Fault Sensitive Area : the following is a description of the di�erent types ofpossible break-fault sensitive areas and the method used to calculate them.Intraplanar : these break faults occur on a single layer of conducting material.Figure 3.6 shows an example of this type of break fault. The equation for thistype of sensitive area is SA = L(2R�W ) (3:1)



22
R

L

W

Spot DefectConducting RegionSensitive Area

Figure 3.6: Sensitive area for a break fault with a horizontal length.where L is the direction of the current,W is the width of the conducting materialand R is the radius of the defect currently being used.Interplanar : these break faults occur in the connections between two di�erent layersof conducting material. These connections, known as contact cut or vias, canfail, separating the node into two pieces. The sensitive area for this type of breakfault is given by SA = (2R�W )(2R� L) (3:2)where W and L are the length and width of the contact cut and R is the currentdefect radius.Bridge-Fault Sensitive Area : the following is a description of the di�erent types ofpossible bridge faults and the equations used to �nd their sensitive areas.Intraplanar : for bridge faults that occur between two regions of the same typeof conducting material, there are three possible orientations for length of thesensitive area: horizontal, where the regions are above and below each another;



23vertical, the regions are to the left and right of each other; or diagonal, the regionsare not directly above, below, to the left, or to the right of each other. Thehorizontal and vertical sensitive areas are computed similar to the intraplanarbreak faults using the equationSA = L(2R�W ) (3:3)where L is the length of the area between the regions, W is the distance betweenthe two regions, and R is the current defect radius. For diagonal bridge faults,the sensitive area is given by SA = 2RpW 2 + L2 (3:4)where W and L are the Manhattan distances between the two nearest corners ofthe two regions.Interplanar : these bridge faults occur when the insulating material between twolayers becomes defective allowing the two layers to become connected. Carafeassumes that these faults can only occur where two regions of di�erent layersdirectly overlap each other. The equation used to compute this type of sensitivearea is SA = (2R+ L)(2R+W ) (3:5)where L and W are the dimensions of the area of overlap and R is the currentdefect radius.Each sensitive area is multiplied by the defect density found in the fabrication statistics�le for the layers of the sensitive area for the given defect radius. The fabrication statistics�le allows any defect radius distribution to be incorporated into the sensitive areas calculatedby Carafe. The �nal sensitive area for each fault is the sum of all the sensitive areas foundfor every defect radius, multiplied by the defect density (DD) added together. The equationof the �nal sensitive area for a speci�c circuit fault is given in Equation 3.6.FinalSA = Xr2Defect radii Xi2# of SASAi(radius[r])DD(layersi; r) (3:6)



244. ResultsCarafe was used to analyze the set of standard ISCAS'85 benchmark circuits [BF85]implemented using a CMOS standard cells by the Mircoelectronics Center of North Carolina.Since the MCNC implementations of the benchmark circuits were in a hierarchical, standardcell form, they were attened into one level of hierarchy before extracting the faults.The defect radius used in these experiments was 4 microns and the defects were as-sumed to equally likely on all layers of material. The experiments were all run on SunSPARCstation 1+ workstations.Table 4.1 summarizes the performance of Carafe and the number of faults that werefound. The �rst column shows the number of nodes that the circuit contained. SinceCarafe works at the transistor level, not the gate level, all nodes, including nodes internalto logic gates, are reported. The second column shows the area of the circuit in squaremicrons. The next column shows the number of bridge faults that were found. The lastcolumn in the table shows the time in CPU seconds that Carafe needed to perform thecircuit extraction, fault extraction, fault likelihood computations, and the generation of thefault simulation command �les.Bridge faults to power and ground will probably behave as stuck faults. Nodes thatare internal to gates bridged to power or ground may not act as a stuck-at fault. TheCircuit # Nodes Area (�2) Bridge Faults Time (s)C17 23 217.8x102 77 0.98C432 429 6.419x105 2941 56.88C499 832 10.88x105 5778 153.89C880 667 11.66x105 5624 145.80C1355 963 19.32x105 7396 243.53C1908 1146 17.74x105 8819 335.19C2670 1697 40.17x105 19891 1196.12C3540 2177 54.35x105 24628 1944.44C5315 3623 111.11x105 55290 9194.24C6288 4352 88.86x105 35631 4704.37C7552 4771 143.42x105 72999 15310.80Table 4.1: Bridge faults for ISCAS'85 benchmark circuits.



25ISCAS Circuit Bridge Faults Bridges to Power Bridges to GroundC17 77 25 25C432 2941 501 473C499 5778 904 912C880 5624 815 835C1355 7396 1127 1127C1908 8815 1294 1362C2670 19891 2220 2402C3540 24628 2989 2944C5315 55290 5489 5881C6288 35631 5476 5412C7552 72999 6868 6980Table 4.2: Bridge faults to power and to groundnext section will address this issue. Table 4.2 shows the number of bridge faults that werebridged to power or to ground.4.1 MCNC Standard CellsCarafe was used to analyze some of the standard cell gates from MCNC. Each bridgefault found in the standard cells were simulated with all possible input vectors using SPICEwith the bridge fault modeled as a 0.1
 resistor. The inputs to the cells were appliedthrough single-drive inverters from the same standard cell library. Applying the inputs inthis manner provides a realistic instance of the faulty cell, if the bridge fault involved any ofthe input nodes. A more detailed analysis of the cell library would use other cells to drivethe inputs also, since the drive strength of the other cells could a�ect the circuit's behaviorwhen the bridge fault involves the faulty cell's inputs. The logic gates that were analyzedwere 2-input versions of the AND, NAND, OR, NOR, and XOR logic gates. The maximumdefect size was set to 4 microns and the defects were assumed to be equally likely on alllayers of material. The results of this experiment are shown in Table 4.3. The �rst columnindicates the gate that was analyzed with the number of bridge faults found for each gatein the second column.Many of the cells have feed-through lines in the metal-2 layer that allow signals to



26Gate Bridges Feed-thru Stuck-at No E�ect OtherAND 19 26% 53% 5% 16%INV 5 0 80% 20% 0NAND 11 0 73% 9% 18%NOR 11 0 73% 0 27%OR 19 26% 42% 11% 21%XOR 31 32% 29% 13% 26%Table 4.3: Bridge faults for logic gates broken down by e�ect.extend from one wiring channel to an adjacent channel separated by a row of cells. Thethird column in the table shows the percentage of the faults that bridged a node of the gateto one of these feed-through lines. In this experiment, bridge faults to these feed-throughshave no e�ect on the function of the gate since the feed-throughs were not connected to anyother gates. In a real circuit, these feed-throughs could be driven by other gates. In thiscase, the logic function of both the gate driving the feed-through and the faulty gate wouldbe a�ected.The fourth column of the table shows the percentage of the bridge faults that behavedas stuck-at faults. The SPICE simulations for these faults produced outputs that were thesame as the outputs of the gate in the presence of a stuck-at fault. These bridge faultswould be detected by any test set with complete stuck-at coverage.The \No E�ect" column shows the percentage of the bridge faults that had no e�ect onthe logical function of the gate. The bridge faults in this category usually created outputvoltages other than GND or Vdd, but were within 1.5 volts of GND or Vdd and thus weretreated as valid logic values. These faults may be detected as an increased propagationdelay or as increased quiescent power supply current. The last column of the table showsthe percentage of the bridge faults that either changed the function of the gate or producedinvalid logic values at the output of the gate, but are not represented in the other columns.The data in Table 4.3 is of value for automatic test pattern generation. Assumingcomplete stuck-at coverage, the number of faults that need to be considered for detectingbridge faults within the cell is at most the sum of the faults that fall into the \Feed-Thru"and \Other" categories.



27Gate Bridges Feed-thru Stuck-at No E�ect OtherAND 100% 17% 52% 12% 19%INV 100% 0% 78% 22% 0%NAND 100% 0% 62% 22% 16%NOR 100% 0% 60% 0% 40%OR 100% 21% 43% 7% 29%XOR 100% 18% 33% 12% 37%Table 4.4: Percentage of defects causing bridge faults broken down by e�ect.The data in Table 4.4 is more useful for evaluating the defect coverage levels of test sets.It shows the percentage of spot defects that caused bridge faults arranged by the e�ect onthe gate. The �rst column shows the name of the gate analyzed. The fourth column inthe table shows the percentage of spot defects that caused a stuck-at bridge fault. Since acomplete stuck-at test set is certain to detect all bridge faults in this category, it will haveat least this percentage of bridge-fault-inducing spot defects. Those in the sixth columnmay cause a logical fault that is not detected by a complete stuck at test set.4.2 Defect CoveragesThe sensitive areas for all the bridge faults for the MCNC ISCAS'85 circuits were sortedand plotted against the number of faults. An example plot for the C7552 circuit is shown inFigure 4.1. The C7552 contains 1474 logic gates and 4741 nodes (including nodes internalto logic gates). The maximum defect size chosen for this experiment was 4 microns and thedefects were assumed to be equally likely on all layers of material.Figure 4.1 clearly shows that some of the bridge faults are much more likely to occurthan others. A cumulative density function plot of the same data is shown in Figure 4.2.From the �gure, we can see that the most likely 30% of the bridge faults account for over57% of the spot defects that cause bridge faults. If realistic defect distribution densitieswere used, the percentage of defects represented by the most likely 30% of the faults wouldprobably be greater.



28
C7552

Square Microns

Faults
0

5,000

10,000

15,000

20,000

25,000

0 20,000 40,000 60,000Figure 4.1: Plot of the bridge fault sensitive areas for the C7552 ISCAS'85 circuitsorted from highest to lowest.



29
C7552

Square Microns

Faults
0

5 x 106

10 x 106

15 x 106

20 x 106

25 x 106

0 20,000 40,000 60,000Figure 4.2: Plot of the cumulative sorted bridge fault sensitive areas for the C7552ISCAS'85 circuit.



305. Current Limitations of CarafeIn this chapter, we will discuss a few aspects of extracting break faults including a planto implement them and a discussion of some some potential pitfalls. Then, we will showhow to use Carafe to analyze large circuits.5.1 Break FaultsBreak faults have always been more di�cult to extract from the layout of circuits thanbridge faults. The di�culty lies in determining the exact path of current between transistors.Once the path is found, the break faults can be easily found.To �nd the direction of current, we �nd the topology of each node to determine therelationship of each transistor to the other transistors in the node. Once this is determined,the direction of current and thus the break faults can be found. We are currently usingarbitrary polygons to represent the nodes and are investigating various algorithms thatproduce a skeleton of the polygon, which should reveal the topology of the node.Multiple contact cuts connecting the same regions together make it more di�cult to �ndthe break faults since all of the contact cuts must be broken in order to create a break fault.Odd-shaped transistors, such as \U" shaped, present another di�culty in determining theexact topology of a node since these transistors may not be represented as a single point ofcontact in the node skeleton.5.2 Analyzing Large CircuitsFrom the data in Table 4.1, it would seem that using Carafe to analyze large circuits isimpractical because of the CPU time required. We have found that the fault simulation ofthese circuits with switch-level simulators is much more time consuming than extracting thefaults. This problem may be solved by using a logic-level fault simulation and partitioningthe circuit in a hierarchical fashion.



31In a hierarchical design, the faults for the logic gates need only be extracted once sincethe gate does not change. All that is necessary after �nding the faults for each gate is�nding the faults that occur in the interconnect wiring. Carafe has already been modi�edto �nd the bridge faults in the interconnect wires only. Finding the faults for a circuit thisway would decrease the time needed to �nd all of the faults in the circuit. Finding the faultsin this manner, however, will miss the faults that occur in the interaction of two adjacentlogic gates in the circuit. These faults will need to be studied in more detail to determinetheir importance.



326. Applications of CarafeThe sensitive areas can be used for a variety of applications. A few of them are discussedin this chapter.6.1 Grading Test Sets for Defect CoverageOne important aspect of the sensitive area for a fault is that it provides a way to convertfault coverage to defect coverage. It has been shown that quality level is related to defectcoverage of the test set used. Since sensitive area allows us to relate fault coverage to defectcoverage, we can now relate fault coverage to quality level.The ratio of a fault's sensitive area to the circuit's total sensitive area provides anestimate on the percentage of defects that would be detected given that the fault is detected.By summing all the sensitive areas of the faults detected by a given test set, we can determinethe defect coverage of the test set.6.2 Physical Design for TestabilityThe testability of an IC is usually not considered during the IC design process. ICdesigners are reluctant to modify an IC design to accommodate the testing process oncethe design is �nished. Carafe can be used to analyze the design in the early stages to agpotential testing problems.The list of faults generated by Carafe can help guide the layout of circuits. Since it isvery di�cult to design and fabricate a circuit with no defects at all, it would be bene�cialto design the circuit so that any defects that do occur manifest themselves as easy-to-detectfaults. Some di�cult-to-detect faults are those that introduce feedback into the circuit andthose that create invalid logic values. We would want the likelihood of these kinds of faultsto be much lower than the likelihood of more easily detected faults such as stuck-at faults.The circuit designer can take the list of likelihoods of the faults from Carafe as a guide tomodify the circuit to be easier to test.



336.3 Design for ManufacturabilityCarafe can be used to estimate the relative manufacturability or yield of a given circuitlayout. The sum of the sensitive areas for all of the faults for a given circuit can be comparedto the sum of sensitive areas for the same circuit with a di�erent layout. Since the sensitiveareas are related to the number of spot defects that cause faults, the design with a lowersensitive area sum will be more resistant to spot defects and thus have a higher yield. By thesame token, the sensitive areas may be used to re�ne spacing rules for a given fabricationprocess to improve yields.



347. Conclusions and Further ResearchCarafe is a program for analyzing CMOS circuits for realistic bridge and break faultscaused by spot defects. Using the possible fabrication defects to determine which faults canoccur provides a much more realistic picture of how a circuit can fail. Fault simulating therealistic faults provides a measure of test quality that is superior to stuck-at fault coverage.Test sets generated for realistic faults should be more e�ective and provide a higher qualitylevel of ICs shipped.Carafe improves on previous implementations of IFA in several ways. More e�cientalgorithms are used in Carafe so that larger circuits may be analyzed. Carafe createscommand scripts for use with the COSMOS fault simulator to aid in fault simulation andtest set grading. Carafe was written so that it will work with almost any CMOS fabricationprocess available. The reduction of the number of faults improves fault simulation timetremendously and fault simulation is currently the bottleneck.Since using Carafe to analyze an entire chip can generate an unwieldy amount of data,it is possible to use Carafe to characterize small sections of a circuit individually and thencombine the together to characterize the realistic faults for a much larger circuit. Thisworks well with standard cell and gate array implementations of circuits. Carafe can beused to analyze each logic gate or primitive individually and to analyze the interconnectingwires for faults separately. Partitioning the work in this manner results in a more palatablemethod of characterizing large circuits. Work is currently underway to generate bridgingfault test patterns for circuits where the bridging faults are assumed to occur only in theinterconnecting wires of standard cell implementations of circuits.Many interesting experiments have yet to be done with Carafe, including:� Determine the actual e�ectiveness of various stuck-at test sets in detecting the realisticfaults.� Determine the sensitivity of defect distributions on the sensitive areas. Since defectdistributions are generally di�cult to obtain, this would be a worthwhile experiment.



35� Develop a test pattern generation tool that tests for bridge and break faults directlyrather than the usual stuck-at fault.� An entire standard cell library could be analyzed as was done in Section 4.1.



36References[ABF90] Miron Abramovici, Melvin A. Breuer, and Arthur D. Friedman. Digital SystemsTesting and Testable Design. Computer Science Press, 1990.[Ack88] JohnM.Acken. DerivingAccurate FaultModels. PhD thesis, StanfordUniversity,1988.[BBB+87] R.E. Bryant, D. Beatty, K. Brace, K. Cho, and T. She�er. COSMOS: A compiledsimulator for MOS circuits. In Proceedings of Design Automation Conference,pages 9{16. ACM and IEEE, 1987.[BF85] F. Brglez and H. Fujiwara. A neutral netlist of 10 combinational benchmarkcircuits and a target translator in FORTRAN. In Proceedings of the IEEEInternational Symposium on Circuits and Systems, 1985.[Fer87] F. Joel Ferguson. Inductive Fault Analysis of VLSICircuits. PhD thesis, CarnegieMellon University, Department of Electrical and Computer Engineering, October1987.[FS88] F. Joel Ferguson and John P. Shen. A CMOS fault extractor for inductivefault analysis. IEEE Transactions on Computer-Aided Design, 7(11):1181{1194,November 1988.[GCV80] J. Galiay, Y. Crouzet, and M. Vergniault. Physical versus logical fault models inmos lsi circuits: Impact on their testability. IEEE Transactions on Computers,C-29(6):283{287, June 1980.[Jee90] Alvin Jee. Carafe user's manual. Technical Report UCSC-CRL-90-61, Universityof California at Santa Cruz, 1990.[MB88] E.J. McCluskey and F. Buelow. IC quality and test transparency. In Proceedingsof International Test Conference, pages 295{301. IEEE, 1988.[OHM+84] John K. Ousterhout, Gordon T. Hamachi, Robert N. Mayo, Walter S. Scott, andGeorge S. Taylor. Magic: A VLSI layout system. In Proceedings of the DesignAutomation Conference, pages 152{159, 1984.[SMF85] J.P. Shen,W.Maly, andF.J. Ferguson. Inductive fault analysis ofMOS integratedcircuits. IEEE Design and Test of Computers, 2(6):13{26, December 1985.[SO86] Walter S. Scott and John K. Ousterhout. Magic's circuit extractor. IEEEDesignand Test, pages 24{34, February 1986.[WB81] ThomasW.Williams andN.C.Brown. Defect level as a function of fault coverage.IEEE Transactions on Computers, C-30(12):987{988, December 1981.


