
References 15[KB88] Arie Kaufman and Reuven Bakalash. Memory and processor architecture for 3Dvoxel-based imagery. IEEE Computer Graphics and Applications, 8(11):10{23,November 1988.[KBCY90] Arie Kaufman, Reuven Bakalash, Daniel Cohen, and Roni Yagel. A survey ofarchitectures for volume rendering. IEEE Engineering in Medicine and BiologyMagazine, 9(4):18{23, 1990.[Lev89a] Marc Levoy. Design for a real-time high-quality volume rendering worksta-tion. In Chapel Hill Workshop on Volume Visualization Conference Proceedings,pages 85{92. Department of Computer Science, University of North Carolinaat Chapel Hill, 1989.[Lev89b] Marc Levoy. Display of Surfaces From Volume Data. PhD thesis, The Univer-sity of North Carolina at Chapel Hill, 1989.[Mea85] Dr. Donald J. Meagher. Applying solids processing methods to medical plan-ning. In Proceedings of NCGA, pages 101{109. National Computer GraphicsAssociation, April 1985.[MHC90] Nelson Max, Pat Hanrahan, and Roger Craw�s. Area and volume coherencefor e�cient visualization of 3d scalar functions. In Proceedings of the San DiegoWorkshop on Volume Visualization, 1990.[OUT85] Toshiaki Ohashi, Tetsuya Uchiki, and Mario Tokoro. A three-dimensionalshaded display method for voxel-based representations. In Proceedings of EU-ROGRAPHICS 1985, pages 221{232. National Computer Graphics Association,September 1985.[PD84] Thomas Porter and Tom Du�. Compositing digital images. In ComputerGraphics, pages 253{259. ACM Siggraph '84 Conference Proceedings, 1984.[Sab88] Paolo Sabella. A rendering algorithm for visualizing 3d scalar �elds. In Com-puter Graphics, pages 51{58. ACM Siggraph '88 Conference Proceedings, 1988.[TG88] Filippo Tampieri and Donald Greenberg. Experimental distributed processingsystem for global illumination algorithms. Technical report, Cornell University,1988.[UK88] Craig Upson and Michael Keeler. Vbu�er: Visible volume rendering. InComputer Graphics, pages 59{64. ACM Siggraph '88 Conference Proceedings,1988.[Wes89] Lee Westover. Interactive volume rendering. In Conference Proceedings of theChapel Hill Workshop on Volume Visualization, 1989.[Wes90] Lee Westover. Footprint evaluation for volume rendering. In Computer Graph-ics. ACM Siggraph '90 Conference Proceedings, 1990.[WG91] Jane Wilhelms and Allen Van Gelder. A coherent projection approach fordirect volume rendering. In Computer Graphics. ACM Siggraph '91 ConferenceProceedings, 1991.[Whi91] Scott Whitman. Multiprocessor Methods for Computer Graphics Rendering.Jones and Bartlett, October 1991.[ZT89] O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method. McGraw-HillBook Company, 1989.

References 14References[BBN88] BBN Advanced Computers, Inc. Programming in C with the Uniform System,revision 1.0 edition, October 1988.[BBN89] BBN Advanced Computers, Inc. Inside the TC2000 Computer, preliminaryedition, August 14 1989.[BL90] Andrew Burke and Wm Leler. Parallelism and graphics: an introduction andannotated bibliography. In SIGGRAPH Course Notes: Parallel Algorithms andArchitectures for 3D Image Generation, 1990.[BP90] Didier Badouel and Thierry Priol. An e�cient parallel ray tracing scheme forhighly parallel architectures. In Proceedings of the Fifth Eurographics Workshopon Graphics Hardware, September 1990.[Cha90] Judith Ann Challinger. Object-oriented rendering of volumetric and geometricprimitives. Master's thesis, University of California, Santa Cruz, 1990.[Cro90] Franklin C. Crow. Parallel computing for graphics. Technical report, XeroxPalo Alto Research Center, 1990.[CWBV83] John G. Cleary, Brian Wyvill, Graham M. Birtwistle, and Reddy Vatti. Mul-tiprocessor ray tracing. Technical Report 83/128/17, University of Calgary,1983.[DCH88] Robert A. Drebin, Loren Carpenter, and Pat Hanrahan. Volume rendering. InComputer Graphics, pages 65{74. ACM Siggraph '88 Conference Proceedings,1988.[DS84] Mark Dipp�e and John Swensen. An adaptive subdivision algorithm and parallelarchitecture for realistic image synthesis. In Computer Graphics, pages 149{158. ACM Siggraph '84 Conference Proceedings, 1984.[EKM+91] John Ellis, Gershon Kedem, Richard Marisa, Jai Menon, and Herb Voelcker.Breaking barriers in solid modeling. Mechanical Engineering, 113(2):28{34,Febuary 1991.[Fle88] C. A. J. Fletcher. Computational Techniques for Fluid Dynamics. Springer-Verlag, 1988.[FPE+89] Henry Fuchs, John Poulton, John Eyles, Trey Greer, Jack Goldfeather, DavidEllsworth, Steve Molnar, Greg Turk, Brice Tebbs, and Laura Israel. Pixel-planes 5: A heterogeneous multiprocessor graphics system using processor-enhanced memories. In Computer Graphics, pages 79{88. ACM Siggraph '89Conference Proceedings, 1989.[Fuc77] Henry Fuchs. Distributing a visible surface algorithm over multiple processors.In Proceedings of ACM, pages 449{451, October 1977.[GRB+85] Samuel M. Goldwasser, R. Anthony Reynolds, Ted Bapty, David Bara�, Johnsummers, David A. Talton, and Ed Walsh. Physician's workstation with real-time performance. IEEE Computer Graphics and Applications, 5(12):44{56,December 1985.[Jac88] D. Jack�el. Reconstructing solids from tomographic scans - the PARCUM II sys-tem. In Advances in Computer Graphics Hardware II, pages 101{109. SpringerInternational, 1988.

7. Acknowledgements 13structures such as the transfer functions or viewing parameters, followed by rerendering.In that case, some of the data structures and code will be in the local instruction or datacaches, giving improved performance.The parallel raycasting method intuitively seems to be more easily extended to renderother types of volumetric datasets. Those datasets in which neighboring cells are notimplicit (such as �nite element meshes) will require an explicit visibility graph as opposedto the implicit one used here for a regular rectilinear dataset. In particular, pointers toadjacent cells will be needed in addition to the counts. For curvilinear computationalmeshes, ordering constraints may need to be imposed between two cells that are not evenneighbors since the mesh can be curved in <3. These complications will result in even largermemory requirements for the storage of the visibility graph which may be prohibitive forlarge volumetric datasets.6.4 Future WorkThis research is being continued along several directions:� Development of schemes for local memory utilization will reduce the overhead incurredin remote references.� The projection approach is an important method for volume rendering. It would beinteresting and worthwhile to design a more e�cient task generator or decompositionfor this algorithm.� In interactive use, two of the most likely updates will be to the transfer functions andto the viewing parameters. It may be possible to achieve very fast image update ratesfor changing transfer functions by obtaining, ordering, and caching all the samples foreach pixel and requiring only compositing operations for each change to the transferfunction. Changing the view would require the volumetric dataset to be resampled.Since the transfer function and viewing parameters are currently propagated to eachprocessor's local memory, disseminating updates to these data structures will be anissue. It may be that they will need to be in shared memory which will increasecontention. The tradeo�s will need to be explored.� Design of parallel algorithms which can utilize coherency in an e�cient manner. Thiswill be particularly important for e�cient rendering of embedded geometric primitives.� Extensions to the algorithms to handle curvilinear and �nite element datasets.7 AcknowledgementsSpecial thanks to Nelson Max for the use of his code implementing the projectionalgorithm [MHC90] and for discussions and ideas on the techniques for parallelization ofthe projection method. Allen Van Gelder, Kim Taylor, Jane Wilhelms, and Scott Whitmancontributed insightful commentary and encouragement. Thanks also to the sta� of theMassively Parallel Computing Initiative at Lawrence Livermore National Laboratories foruse of the machine and for their timely response to questions and problems.

6. Results 12its last task, until all processors have completed their last tasks. The load imbalance isseen to a�ect the speedup of the scan-line-per-task approach for large n (see �g. 6.3).� Task time: for the scan-line-per-task approach, this is the sum of the time eachprocessor spends rendering a scan line. For the pixel-per-task approach, this is the sumof the time each processor spends rendering pixels. For the projection method, thisis the sum of the time each processor spends projecting cells to the image, excludingthe explicit synchronization required for the use of the ready list and visibility graph.� Get cell synchronization: for the projection method, this is the sum of the timeeach processor spends getting a cell to render o� the ready list.� Update graph synchronization: for the projection method, this is the sum ofthe time each processor spends updating the visibility graph after rendering a cell,including possibly moving additional cells to the ready list.� Task overhead: for all methods, the sum of time for each processor in which thatprocessor was not in one of the above states. This is primarily the time required fortask generation, but may be a�ected by other unknown operating system ine�ciencies.In particular, it can be seen in �gure 6.4 that the GenOnA() task generator isextremely ine�cient for large n.6.3 ConclusionsThe parallel algorithm for the projection method given in this paper does not scalewell with the number of processors. The synchronization requirements for the properordering of cell rendering generate a signi�cant amount of overhead as n increases. Themain ine�ciencies for the scan-line-per-task approach for the raycasting method are loadimbalance for large n, and the penalty for using globally shared memory. The number oftasks, and therefore task length, has a signi�cant e�ect on scalability as can be seen by theine�ciencies in task generation for raycasting with a pixel per task.The results of this research indicate that the raycasting method has some advantagesfor parallelization on this type of architecture. In particular, rays (pixels) can be processedcompletely independently with no ordering constraints. However, it is crucial that rays begrouped together to form a single task as needed for e�cient processor utilization.The projection method, on the other hand, does have ordering constraints which com-plicate task generation. The techniques used in this project for the parallelization of theprojection approach require large amounts of memory in order to store the visibility graph,the use of locks around critical sections of code, and atomic operations. There are otherways the parallelization of the projection method could be approached. For instance, sev-eral cells at a time could be rendered per task. The determination of cell groupings to formtasks and the ordering of these tasks is an open problem. In addition, these algorithms maybe di�cult to generalize to more complex meshes.Raycasting using a task consisting of rendering an entire scan line shows promise forachieving interactive rendering speeds on large datasets. For the volumetric dataset that wasbenchmarked, the serial rendering time of a little over 9 minutes was reduced to 12 secondsusing 100 processors. A modi�ed algorithm which makes better use of local memory mayresult in code that will perform at interactive rates. In addition, the benchmarked timesmeasured were for the �rst execution which includes the propagation of data structures andcode to each processor. Interactive use will typically involve a loop of small changes to data

6. Results 11
Task generation

Pixel rendering

%

Processors
108642

10

20

30

40

50

60

70

80

90

100

10080604020Figure 6.4: Execution pro�le - raycasting with one pixel per task.
Update graph synchronization

Get cell synchronization

Task generation

Cell Rendering

%

Processors
108642

10

20

30

40

50

60

70

80

90

100

10080604020Figure 6.5: Execution pro�le - projection with one cell per task.for the scan-line-per-task approach. The measurements collected include:� Startup time: the sum of the time each processor spends getting started, that isfrom the time the code goes parallel to the �rst execution of a task. It is during thistime that data structures which are to be propagated to each processors local memoryare moved. The startup time was found to be negligible for all three approaches, butmay become an important factor as the rendering approaches interactive speeds.� Load imbalance: the sum of the time each processor spends waiting after �nishing

6. Results 10
10

*

*

*

**

*

*

*

raycasting - scan line per task

raycasting - pixel per task

Processors

% Increase

*

*

*

**

*

*

*

200

180

160

140

120

100

80

60

40

20

*

projection

1009080706050403020Figure 6.2: Percent increase in average task size.
Load imbalance

Scan line rendering

%

Processors
108642

10

20

30

40

50

60

70

80

90

100

10080604020Figure 6.3: Execution pro�le - raycasting with one scan line per task.6.2 Execution Pro�lesFigures 6.3, 6.4, and 6.5, illustrate the execution pro�les of the three approaches forvarious numbers of processors. All measurements are given as a percentage of the totalprocessor time which is de�ned as the number of processors multiplied by the time spentbetween going parallel and all processors completing their tasks. Only the most signi�cantmeasurements are shown. States which account for under 2% of the total processing timeare not shown. Thus, task generation does not appear in �gure 6.3 because it is negligible

6. Results 9
10

*
*

*

*

*

*

*

*

Speedup

Processors

*

* raycasting - pixel per task

*

*

*

*

*

*
* raycasting - scanline per task

1009080706050403020

40

30

20

10

projection

Figure 6.1: Speedup graphs.Only the portion of the algorithm which renders the image has been benchmarked. Thetime required to initialize the Uniform System, read a volumetric object in and initialize it,and output the resulting image to a �le or display device, is not included in these speedupmeasurements. All measurements have been averaged over three runs. Not much variationwas seen between runs.Although the results and analysis presented here are for one volume, similar behaviorhas been seen with other datasets. For the projection method, all three viewing cases werebenchmarked with similar results. No signi�cant performance di�erences were seen betweenthe three di�erent viewing cases.The volumetric dataset used to produce these benchmarks was a 100x120x16 electrondensity map for Staphylococcus Aureus Ribonuclease contributed by Dr. Chris Hill of theUniversity of York. The dataset was scaled by 5 to produce a 512x512 image. This viewingcon�guration generated 512 tasks for the scan-line-per-task approach; 262,144 tasks for thepixel-per-task approach; and 176,715 tasks for the projection approach. Figure 6.1 showsthe speedup graphs for all three approaches. T1 is about 550 seconds for the raycastingalgorithms and 313 seconds for the projection approach. Figure 6.2 gives the percentageincrease in the average length of the tasks. For the scan-line-per-task approach, a task isrendering one scan line. For the pixel-per-task approach, a task is rendering one pixel. Forthe projection approach, a task is rendering one cell. It can be seen that at 10 processors,there is an increase in task length of 80% for the raycasting approaches and 6% for theprojection approach. It is not completely clear what factors inuence this, but the amountand locality of global memory accesses inuencing e�cient use of the processor cachingmechanism may play a large part. For all methods, the average task length increases withthe number of processors, reecting the increasing memory and switch contention. Thiscontention is exacerbated by a small task length (many tasks), probably due to numerousaccesses for task generation.

6. Results 8The viewing case is easily determined by the number of back-facing faces. One back-facing face corresponds to viewing case one in �gure 5.1, two back-facing faces to viewingcase two, and three back-facing faces to viewing case three. During an initialization phaseeach cell is initialized with a count of the number of cells it directly obscures. One or morecells which are farthest from the viewpoint will initially have count=0. After the counts areinitialized, the ready list is initialized to include those cells with count=0.The ready list and visibility graph are updated using atomic operations by the paralleltasks as each cell is rendered. After a cell is rendered the counts of the neighbors whichdirectly obscure it are decremented. When a count becomes 0, the cell is added to theready list. Depending on the view, from one to three counts will be decremented andchecked for zero. Decrementing a count is an atomic operation, as is the addition of cellsto the ready list. The ordering on the cells that is enforced by this process will ensure thatthe compositing operations on each pixel in the image will be appropriately ordered.Summary of Parallel Projection AlgorithmThe task generator GenOnI() is used to generate one task for each cell in the volumetricdataset. Each task executes the following operations:� Lock the ready list and attempt to remove a cell for processing. If one is not available,release the ready list, wait for a short period of time, and retry.� Render the cell that was obtained from the ready list [MHC90].� Update the visibility graph using an atomic decrement. If this updating processidenti�es cells that are ready to be added to the ready list, then that list will need tobe locked since additions to the list must also be atomic. Once updating is completedthe processor is free to acquire a new cell for rendering.Memory Management for ProjectionMemory for the projection approach is managed in the same way as for the raycastingapproach, with the addition of the two extra data structures that are required for taskordering:� The visibility graph is scattered in shared memory in the same way as the scalarvolume. The array of pointers to the scattered visibility graph is propagated to eachprocessor's local memory.� The ready list is located in shared memory.6 Results6.1 Measured SpeedupThe measured speedup reported in this section has been calculated as T1=Tn where T1is the time for the algorithm to execute on a single processor using all local memory, andTn is the time for the algorithm to execute on n processors.

5. Parallel Volume Rendering 7
Three faces showingTwo faces showingOne face showing

Figure 5.1: Three viewing cases a�ecting parallelism in the projection method.5.2 Parallelization of the Projection MethodProcessor Management for ProjectionTask management for the projection algorithm is complicated by the fact that thecompositing operations for each pixel must be ordered. There are three viewing caseswhich will a�ect the number of cells that are available to be rendered in parallel (�g. 5.1):� One face visible: Initially an entire plane of cells will be available for rendering inparallel. Each cell rendered will a�ect the visibility of one other cell.� Two faces visible: One row of cells will initially be available for rendering in parallel.Each cell that is rendered will a�ect the visibility of two other cells.� Three faces visible: Initially there will be only one cell available for rendering. Eachcell rendered will a�ect the visibility of three other cells.For the projection method two additional data structures are kept in order to drive theparallelism:� The ready list is a list of cells which are currently available for rendering. Each taskremoves a single cell from this list for rendering.� The visibility graph indicates when a given cell can be transferred to the ready list.Cells are rendered from back to front. A cell can be rendered when all cells whichit obscures have been rendered. For each cell in the volume, a count is kept of thenumber of cells which are directly obscured by the given cell (i.e. are adjacent andbehind the cell). When this count reaches zero, the cell may be transferred to theready list.For the special case of a rectilinear mesh, all that is required in the visibility graph arethe counts of obscured cells. The identity of the obscured cells is inherent in the structureof the mesh. In a more general mesh, more information will need to be kept in the visibilitygraph. In particular, pointers to obscured cells will be required, and the initialization ofthe visibility graph will be much more complex. It is important to note that the visibilitygraph depends on the viewpoint and thus must be modi�ed to reect changes in the viewingspeci�cations.

5. Parallel Volume Rendering 65 Parallel Volume RenderingIn order to experiment with various parallel volume rendering algorithms, an object-oriented volume renderer [Cha90] has been ported to the BBN TC2000. This volumerenderer initially used the raycasting algorithm as the method for rendering an image,so the code has been extended to provide the projection approach as another renderingmethod [MHC90]. The serial version of this volume renderer provides a platform upon whichdi�erent parallel algorithms can be experimented with. Three primary issues involved in theparallelization of the rendering algorithms are discussed here. They include task generationfor the raycasting and projection methods, and memory management. After discussingthese issues, results and conclusions will be presented. All of the approaches presented hereutilize a parallel projection for viewing, although the methods are extensible to perspectiveprojections.5.1 Parallelization of the Raycasting MethodProcessor Management for RaycastingTwo approaches have been implemented for parallel rendering using the raycastingmethod:� Using GenOnI() a task is generated for each scan line of the image.� Using GenOnA() a task is generated for each pixel of the image.Memory Management for RaycastingData structures have been allocated in such a way as to minimize the memory andswitch contention. Scattering data across memories has been done whenever possible forlarge data structures, and as much information as possible is kept in local memory. Datastructures in shared memory include:� The scalar data volume is scattered across the globally shared memory of the proces-sors. The data structure is scattered by Z planes with each processor storing one ormore planes of constant Z.� The image memory is scattered across the globally shared memory. Each processorstores one or more scan lines of the image.Data structures in process private memory:� The description of the volume to be rendered, including such things as its dimensions,the array of pointers to the Z planes of the shared scalar volume, transformationmatrix, color and opacity lookup tables, etc.� The description of the image to be created including its dimensions and the array ofpointers to the locations of the scan lines in globally shared memory.� Description of world characteristics such as de�ned light sources, viewing speci�ca-tions, etc.

4. The BBN TC2000 54 The BBN TC2000The machine used in this project is a BBN TC2000 located at the Massively Paral-lel Computing Initiative at Lawrence Livermore National Laboratories. This particularmachine is con�gured with 128 processors and 2GB of main memory. In this section anoverview is given of the important hardware and software features of this machine.The BBN TC2000 is a multiprocessor architecture with a distributed shared memory[BBN89]. The TC2000 processors access the shared memory through an interconnectionnetwork called the Buttery switch. The architecture is modular and scalable and can becon�gured to contain between 1 and 512 function boards.A software library called the Uniform System is provided by BBN for controlling theparallel execution and memory use of an application. This library supplies functions formemory and processor management that are callable from C, Fortran, or C++. The goaland design philosophy of the Uniform System is to provide functionality to an applicationprogram in such a way that the full bandwidth, both memory and processor, of the machineis utilized. For a full description of the Uniform System the reader is referred to the TC2000documentation [BBN88].The Uniform System implements a large virtual address space that is shared by allprocessors. This approach allows the programmer to treat all processors as identical workers.Each processor has two kinds of memory at its disposal. Process private or local memoryis used for storage of all global or static variables, the heap, and the stack. Globally sharedmemory is made available and managed through the use of Uniform System functions.Functions are provided to allocate shared memory, to scatter large data structures acrossseveral memories of the machine, and to propagate or copy process private data betweenlocal memories of di�erent processors.Processors are treated as a group of identical workers. Applications are structured intotwo parts: functions which may perform the various application tasks in parallel, and one ormore task generation functions which specify the next task for execution. Several basic taskgenerators are supplied by the Uniform System, or the application may provide a specializedone. Claimed bene�ts of this approach include:� The generator mechanism is very e�cient. It is implemented in one process perprocessor with each processor executing a tight loop of generate task - execute taskwith no context switches.� A program written this way is insensitive to the number of processors.� The load is balanced dynamically.Many task generators, both synchronous and asynchronous, are provided. The two used inthis project are:� GenOnI(worker, range)Generates tasks of the formworker(0, i)for 0 � i < range.� GenOnA(worker, range1, range2)Generates tasks of the formworker(0, i1, i2)for 0 � i1 < range1 and 0 � i2 < range2.

3. Related Work 4The most useful visualization tools allow a researcher to interactively explore a dataset.One intent of this research is to determine whether it is possible to reach interactive render-ing speeds for volume rendering through the use of parallel processing. Both the raycastingand projection approaches to volume rendering seem to be amenable to parallelization. Inparticular, this research addresses the following questions:� How to parallelize the two volume rendering approaches?� What kind of speedup is attained? What are the ine�ciencies?Two goals which will guide the choice of algorithms include:� Algorithms should be scalable with respect to number of processors, volume size, andimage size.� Algorithms should be extensible to more complex meshes.3 Related WorkPrevious e�orts to achieve interactive rates for rendering of voxel-based objects throughthe use of parallel architectures come primarily from the medical imaging and solid model-ing communities. Specialized architectures have been developed to speed rendering in thoseapplications. A survey of some of these systems has been done by Kaufman [KBCY90].Many of these systems were initially designed for rendering solid models and were laterapplied to medical imaging. In most cases, the voxels that are visible are also opaque.These architectures do not handle the semi-transparent volumetric models and renderingtechniques described in the previous section. The specialized architectures that have beenproposed or developed for solid modeling applications include: the 3DP4 [OUT85], Insight[Mea85], the PARCUM II [Jac88], and the RayCasting Engine [EKM+91]. Architec-tures designed for medical imaging applications include: the Voxel Processor [GRB+85],and the Cube [KB88]. Levoy has proposed a parallelization of the raycasting approachon the Pixel-Planes 5, a parallel architecture developed for computer graphics [FPE+89,Lev89a].Related e�orts in the parallelization of computer graphics algorithms are surveyed byBurke and Leler [BL90] and Crow [Cro90]. Fuchs proposed a technique for distributing thez-bu�er hidden surface removal algorithm over a distributed-memory MIMD architecture[Fuc77]. Cleary, et al. give an algorithm for ray tracing which utilizes a world-space de-composition on a distributed-memory MIMD system [CWBV83]. The rays are representedas messages passed between the processors. Dipp�e and Swensen extend this approach toachieve better load balancing by using an adaptive world-space decomposition [DS84]. Par-allelization of global illumination algorithms in a distributed workstation environment hasbeen addressed by Tampieri and Greenberg [TG88]. Parallelization of the ray tracing al-gorithm on a distributed-memory MIMD architecture using an image-space decompositionis presented by Badouel [BP90]. This algorithm depends on an implementation of sharedvirtual memory with local caching. Whitman explores several image-space decompositionsand scheduling strategies on a shared-memory MIMD machine [Whi91]. A detailed analysisof the overhead incurred in the parallelization is presented.

2. Volume Rendering 3
volume

imageFigure 2.3: Volume rendering using the projection algorithm.any order.2.2 Rendering by ProjectionA cell consists of eight neighboring scalar values in the volumetric dataset which form thecorners of a hexahedron. Projection is an object-space algorithm in which each volume cellis sampled to give its contribution to every pixel in the image onto which the cell projects[UK88,Wes89,Wes90,MHC90,WG91]. For a given cell we are essentially integrating acrossthe depth of the cell to give a contribution at each pixel the cell a�ects. An illustration ofthis process is given in �gure 2.3.In this algorithm, the primary loop is through the cells of the volumetric dataset. Eachcell may be projected to the image independently, however compositing operations fromcells which project to the same pixel must be ordered. The compositing algorithm usedmay specify either front-to-back or back-to-front ordering.2.3 Why Parallel Volume Rendering?Volume rendering is a computationally intensive process. A rectilinear volumetricdataset may consist of 2563 samples, or 16MB of data if the scalar data values are bytes.The time required to render an image from such a volume will typically be something likeseveral minutes to an hour, depending on which of the existing algorithms are used and thedesired image resolution and quality.Volumetric datasets which are arranged on a regular rectilinear lattice are of the simplestform. More general lattices are commonly used by researchers to generate volumetricdatasets. The lattice spacing may be irregular, as in some computational uid dynamicsapplications where portions of the space need to be sampled/computed at a higher resolutionthan others. Or the mesh may be curved to match the simulation geometry. Computationalmeshes in <3 made up of tetrahedral or hexahedral elements that have been shaped are alsocommon in computational uid dynamics and �nite element analysis applications [Fle88,ZT89].

2. Volume Rendering 2
scalar value = 150

2550255

red

Red transfer functionOpacity transfer function

0

opacity

Figure 2.1: Volume rendering using transfer functions.
image

eyepoint

volumeFigure 2.2: Volume rendering using the raycasting algorithm.must then be composited or accumulated into the image [PD84]. There are currently twoalgorithms which are widely used for sampling the entire volume, raycasting and projection.2.1 Rendering by RaycastingRaycasting is an image-space algorithm which involves casting a ray from the viewpointthrough each image pixel and testing for intersection with the volume [UK88,Lev89b,Cha90].If a ray intersects the volume, the contents of the volume along the ray are sampled andcomposited and the resulting value is taken as the pixel contents. In essence, we areintegrating along the length of the ray that is passing through the volume of data. Thisprocess is illustrated in �gure 2.2.In this algorithm, the primary loop is through the image pixels. Each ray may beprocessed completely independently from any other ray, and the rays may be processed in

1. Introduction 11 IntroductionA volumetric dataset is a collection of scalar data in which each datum has an associated(usually implicit) location in three-dimensional space (<3). Volume rendering is a power-ful, but computationally intensive, computer graphics technique for visualizing volumetricdatasets. This paper presents results of investigations into approaches for volume renderingusing parallel processing on a shared-memory MIMD architecture.Volume rendering has been shown to be a useful technique for visualizing the results ofscienti�c computations. One motivation for this research is to provide a powerful interactivetool for the visual analysis of the results of simulations. In this context, it is desirablefor the analysis tool (volume renderer) to be made available on the same machine as thesimulation is running on. This will facilitate closer coupling of scienti�c simulations andvisualization tools in the future, ultimately leading to the ability to interactively steerscienti�c computations based on visual feedback. As the trend towards putting largescienti�c simulation applications on massively parallel machines continues, it is importantthat similar research is conducted on the parallelization of visualization techniques.Volume rendering is introduced in section 2, with speci�c attention to the raycastingand projection approaches currently in use. The intent of this research is to comparethe requirements, approaches, and speedup attained by the parallelization of these twoalgorithms. A brief survey of related work is given in section 3, followed by an overview ofthe hardware and software features of the BBN TC2000, a shared-memory MIMD machineused for this project (section 4). Speci�c approaches for the parallelization of the twovolume rendering algorithms are described in section 5. Results in the form of speedupmeasurements and execution pro�les are presented in section 6, followed by a discussion ofongoing research.2 Volume RenderingVolume rendering refers to the process of generating an image from a volumetric dataset.The dataset may have been sampled or computed over one of many distributions in <3. Inits simplest form, the dataset is arranged in regular intervals on a rectilinear lattice or mesh.An example of this might be many magnetic resonance images stacked together in memoryto create a three-dimensional array of data. Each image sample has an associated implicitlocation in <3. The research presented in this paper is based on volumetric datasets whichare arranged on a regular rectilinear lattice.How can such an entity be visualized so as to allow internal structure to be seen whilepreventing loss of information? This question has led researchers to a technique for renderingvolumetric datasets called direct volume rendering [DCH88,UK88,Sab88,Lev89b]. Usingthis technique, the entire volume of data can be rendered using various levels of transparencyrelated to the scalar data values in order to see the interior structure. There are manyalgorithms for accomplishing this; �gure 2.1 shows how lookup tables (commonly calledtransfer functions) can be used to obtain color and opacity values for a speci�c scalar datavalue in the array [UK88]. In general, the sample points desired within the data array willnot lie directly on those sample points that are given. An interpolation method will beemployed to generate the scalar data value at the desired sample point.Rendering the volumetric dataset involves sampling the entire dataset in some fashionand mapping each sampled value to a color and opacity. The contribution from each sample

Parallel Volume Renderingon a Shared-MemoryMultiprocessorJudy ChallingerUCSC-CRL-91-23RevisedMarch 1992Board of Studies in Computer and Information SciencesUniversity of California at Santa CruzSanta Cruz, CA 95064abstractVolume rendering is a powerful, but computationally intensive, computer graph-ics technique for visualizing volumetric datasets. This paper presents results ofinvestigations into techniques for volume rendering using parallel processing on ashared-memory, multiple-instruction, multiple-data (MIMD) architecture. In par-ticular, two widely used algorithms for volume rendering, raycasting and projection,have been parallelized on a BBN TC2000, and their performance has been measuredand analyzed. Preliminary results indicate that the raycasting approach to volumerendering has some advantages for parallelization on this type of architecture.Keywords: volume rendering, parallel, shared memory, multiprocessor, computergraphics, scienti�c visualization

