
Empirical Evaluation ofMultilevel Logic Minimization ToolsFor a Lookup Table-based Field-ProgrammableGate Array TechnologyMartine Schlag, Pak K. Chan and Jackson KongComputer EngineeringUniversity of California, Santa CruzSanta Cruz, California 95064, U.S.A.AbstractWe examine empirically the performance of multi-level logic minimization tools fora lookup table-based Field-Programmable Gate Array (FPGA) technology. The ex-periments are conducted by using the university tools misII for combinational logicminimization and mustang for state assignment, and the industrial tools xnfmapfor technology mapping and apr for automatic placement and routing. We mea-sure the quality of the multi-level logic minimization tools by the number of routedcon�gurable logic blocks (CLBs) in the FPGA realization. We report three results:a) there is a linear relationship between the number of literals and the number ofrouted CLBs, and b) in all 34 MCNC-89 benchmark �nite state machines, one-hotstate assignment resulted in substantially less CLBs than any other state encod-ing methods available in mustang, c) we present a delay model to provide routingdelay prediction based on fanout, and apply the model to estimate the delays ofthe FPGA implementation of logic expressions prior to technology mapping, placeand route. These results are useful for prototyping a design in FPGAs, and thentransferring the design to a di�erent technology (e.g., CMOS standard cell). Itprovides valuable information on the di�erence in performance of a design realizedin di�erent technologies.1 IntroductionThe advent of FPGA technology provides a mechanism for rapid prototyping. When aprototype is operational, the design may be transferred to a di�erent technology (suchas custom or semi-custom VLSI) for mass production. It is valuable to be able to predictdi�erences in performance of a design across di�erent technologies.One way to achieve this is to use the same set of design tools at higher levels in thedesign ow, such as multi-level logic minimization tools for technology independent min-imization, followed by quick technology mappings to di�erent technologies. We pose thefollowing question. Is there an intermediate form that serves as the basis for estimationof performance of a design across di�erent technologies?1

The performance of multi-level logic minimization tools for CMOS standard cell im-plementation is relatively well known and studied. But little is known about the per-formance of multi-level logic minimization tools with respect to FPGAs. So to answerthis question, we examine empirically the performance of multi-level logic minimizationtools for a lookup table-based FPGA realization [1]. The experiments are conducted byusing misII2.0 for combinational logic minimization and mustang for state assignment.The vendor's supplied program xnfmap is used for technology mapping, and apr is usedfor automatic placement and routing 1. We measure the quality of the multi-level logicminimization tools in relationship with the FPGA technology by the number of routedcon�gurable logic blocks (CLBs) and speed of the realization of the prototypes. Wepresent the following results:1. There is a linear relationship between the number of literals and the number ofrouted CLBs.2. In all 34 MCNC-89 benchmark �nite state machines, one-hot state assignment re-sulted in substantially less CLBs than any other state encoding methods availablein mustang.3. We present a delay model to provide routing delay prediction based on fanout,and apply the model to estimate the delays of the FPGA implementation of logicexpressions prior to technology mapping, place and route.2 A lookup table-based FPGA architectureXilinx FPGAs are dense arrays of gates that can be con�gured { and recon�gured { bythe system designer through software, rather than by chip manufacturer in the fabricationline. With realization times measured in hours, systems incorporating up to thousandsof gates on a single FPGA can be designed, programmed and evaluated within a fewweeks [1].The basic building block which provides the logic functionality in the XC3000 seriesFPGA architecture is shown in Fig. 2. This is a Con�gurable Logic Block (CLB), whichhas a maximum of 5 logic inputs. Each CLB has a programmable combinational logicsection and two ip-ops. A programmable combinational logic section can implementany 5-variable logic function or two functions of at most 4 variables each, as long as theyhave at most 5 variables altogether. Each CLB also has two outputs called x and y,which drive the programmable interconnect networks (not shown). The outputs of thecombinational logic section can go directly to x and y or through ip-ops FF1 and FF2.3 A system for rapid prototyping using FPGAsAs depicted in Fig. 1, our design environment is based on wireC which uses xdp as thefront end for schematic entry [2]. We have con�gured wireC to handle eqn format �legenerated by misII [3]. We built a parts library for wireC which outputs Xilinx Netlist1Xnfopt, which was developed by Exemplar Logic, Inc., has been frequently misidenti�ed as theXilinx mapper in the literature. Xnfopt does combinational logic synthesis, xnfmap is developed byXilinx, and is a complete mapper. 2

File format (XNF). The XNF �les are then mapped by the vendor's xnfmap technologymapper to generate LCA �les. We use the vendor's apr program to place and route theLCA netlist to generate the �nal design. The design can be simulated by susie [4] at thefunctional level before placement and routing, and at the timing level afterwards.4 Relationship between the number of literals andnumber of CLBSWe study the performance of two technology independent minimization tools: misII andmustang for the FPGA technology.Because one of the goals of research in multi-level logic minimization is the develop-ment of technology independent minimization algorithms, literal count in logic expres-sions has been used as an indicator of the quality of their algorithms [5, 3, 6]. Bothintuition [3] and empirical studies [7] support the use of this measure. In particular, theexperiments reported in [7] were conducted with respect to standard cell technology. Westudy the performance of misII with respect to FPGA technology to further strengthenthe argument.We use two benchmark suites. The �rst suite of circuits come from the MCNC-89�nite state machine benchmarks [8]. Our experiments are conducted by using mustangfor state assignment, and misII for logic expression minimization using the algebraicstandard script once. Infeasible expressions (with the number of fanins greater than 5)are repetitively splitted. The logic equations are translated to XNF format and technologymapped by xnfmap to produce LCA �les. The LCA �les are then placed and routed by apr.Fig. 3 shows an empirical relationship between the number of literals and the number of(routed) CLBs that we obtained. It shows the ratio of literals to CLBs is roughly 5:1.Some state assignment strategies tend to generate designs that are not routable; this willbe elaborated in Section 5.The second suite of circuits come from the MCNC-89 combinational logic benchmarks.Only those circuits that can be implemented with the XC3000 series FPGAs are included.The circuits are mapped using three di�erent lookup table-based technology mappers:Chortle-crf [9], xnfmap and rmap [10]. Fig. 4 shows an empirical relationship betweenthe number of literals and the number of (routed) CLBs. Again, it shows the ratio ofliterals to CLBs is roughly 5:1, with no essential di�erence among di�erent technologymappers. The only exception is the C499 ECC benchmark which has a large number ofXOR gates.This empirical result can be applied to guide the partitioning of a large design intomultiple FPGAs. It can also be used to estimate whether a design can be accommodatedin an FPGA, simply by counting the literals.4.1 Characterization of technology mappingIn this section, we provide some intuition as to why the ratio of literals to CLBs is roughly5:1. This requires some understanding of the interaction between misII and the mapperxnfmap. Notice that we are actually measuring the performance of misII in relationshipto a single technology mapper xnfmap2. Other mappers for FPGAs exist [9, 11, 12, 13, 14],2Xnfmap is a complete mapper, it does mapping of both combinational and sequential logic. Mapperssuch as mispga and chortle are limited to mapping of combinational logic.3

but they are limited to combinational circuits. We believe that the pairing operation inxnfmap is quite universal, and would exist in any other future mapper. As mentionedearlier, an XC3000 CLB has a maximumof 5 logic inputs. A programmable combinationallogic section can implement any 5-variable logic function or two functions of a maximumof 4 variables each. Each CLB also has two outputs, x and y.With the idea that the combination of gcx, gkx, and decomp operations in misIItends to break complex logic expressions into smaller subexpressions by factorization andsharing of common subexpressions, and a technology mapper would attempt to maximizethe utilization of a CLB by pairing of small subexpressions. We o�er a simple explanationof why the ratio of literals to CLBs is roughly 5:1. Figs. 5.a to 5.d enumerate all thecon�gurations in which literals can share a CLB. The numbers in the �gures illustratethe lower bounds on the ratios of literals to CLBs for each con�guration.The number of literals can be much larger than the number of inputs, but misIIdoesn't seem to generate this type of expression with the benchmark circuits. Also, theexact ratio of literals to CLBs depends on the relative occurrences of these con�gurations.In particular, if all con�gurations are equally likely and all the literals appear as inputvariables to the CLBs (i.e., no intermediate variables are generated by the mapper), thenwe have Table 1.a. In practice, not all con�gurations are equally likely. We studied60 designs and determined their literal to CLB ratios. This statistic is summarized inTable 1.b.

4

5 State assignment for FPGASWe examine the problem of assigning values for the states in a �nite state machine(FSM) so as to minimize the number of CLBs and delay. Research in multi-level logicminimization employs literal count in the combinational part of the FSM as the indicatorof the quality of a state assignment algorithm [15, 16]. For that matter, it is not widelyreported that one-hot encoding provides small literal counts. Perhaps it was dismissedbecause the number of ip-ops employed in the one-hot encoding scheme is the numberof states. Hence, research in state assignment targeting multi-level logic minimizationhas focused on minimum-length (or close to minimum-length) encodings.It is a common belief that the cost in logic complexity of one-hot encoding is usuallysomewhat higher than for other methods, but it is generally not far out of line. Moreover,because the transitions in one-hot encoding are all two-step, it leads to circuits slowerthan could be built employing a single-transition-time assignment [17, p.177]. However,in the FPGA technology, ip-ops are essentially free in XC3000 series, as each CLB hasone or two programmable ip-ops. The naive one-hot encoding after all may be thewinner over elaborate minimum-length encoding schemes developed [18]3. We pose thefollowing question. What is the best strategy, measured in terms of the number of CLBsand speed, among the options provided by the state assignment program mustang [15]?5.1 State encoding for minimizing CLBsThe �nite state machines are from the MCNC-89 benchmarks [8]. The experiment is con-ducted using mustang for state assignment, and misII for logic expression minimizationapplying the standard script once. The logic expressions are translated to XNF formatand technology mapped by xnfmap to produce LCA �les. The LCA �les are then placedand routed by apr to produce the �nal design, all using XC3020PC-84 packages . Tables2 and 3 show the number of CLBs and literals for most of the encoding schemes availablein mustang.We emphasize that the number of CLBs reported are the number of routed CLBs usedto implement a complete FSM on an XC3020PC-84 package, not just the combinationalpart of it. Designs with more than 64 CLBs are not routed. Clearly, the number of CLBsusing one-hot encoding is substantially less than any other encoding scheme available inmustang for all 31 �nite state machines in Tables 2 and 3.To demonstrate further that the superiority of one-hot is not simply an anomaly of thebenchmark set with small number of states, we introduce three larger designs: planet,scf, styr into the experiments. We report the literal and CLB counts in a separateTable 4; the designs are routed using di�erent packages. The same trend that one-hot issuperior is again observed for these larger designs. More importantly, FSMs encoded instrategies other than one-hot often cannot be completely routed.In general, the number of literals can be further reduced by using a much longeroptimization script in misII. However, the literal counts for one-hot encoding usingthe short standard script are comparable to other encoding methods using the longoptimization script.3Our experiments were conducted in Aug 1990, without prior knowledge of [18].5

5.2 State encoding and delayIt is informative to know the speed of the �nite state machines under di�erent methodsof encoding. Table 3 shows the speed reported by the design editor xact of FSMsencoded with di�erent strategies. Again, it shows that one-hot-encoded FSMs outperformFSMs encoded in other schemes overwhelmingly in speed. It is because one-hot encodingproduces next-state logic functions which have fewer inputs than the next-state logicfunctions fromminimum-length encodings. The one-hot encoding scheme suits the FPGAarchitecture which has limited fanin but ample ip-ops in a CLB. We present the logicequations of the one-hot encoded FSM bbara and the one generated by the minimum-length fanout-oriented option (-tp) in Tables 5.a and b, respectively.6 Delay estimation from logic expressionsWe have suggested a simple way of estimating the number of routed CLBs from theliteral count of the logic expressions. We ask: can we estimate the delay of a routeddesign simply from the logic expressions, prior to technology mapping, placement androuting? This concept arose from the work of [19] on delay estimation from technologyindependent logic equations. There are two aspects to this question. One concerns theconstituents of delay in a routed design. The second concerns the structures of a designbefore and after technology mapping onto a FPGA.6.1 Delay components in an FPGADelays in FPGA-based design are layout sensitive. The sources of delay in a XilinxFPGA [1] are:1. Con�gurable Logic Block delay: this is the delay due to the combinational logic, setuptime, and ip-ops in a CLB.2. I/O Block delay: this is the delay due to the I/O bu�ers and pads.3. Interconnect delay: there are three types: a) Direct lines. The delay due to direct lines isless than a nanosecond. b) General-purpose interconnect and switch matrices. These arethe primary constituents of the delay which can range from a few nanoseconds to tens ofnanoseconds. c) Long lines. These rare interconnection resources are for routing globalsignals, but may be used for some \local" routing if the general purpose interconnect isexhausted.4. Bu�er delay: this is due to repowering bu�ers at the output of some switch matriceswhich restore signal levels.The structure of a logic circuit is dictated initially by the design. In the course ofimplementation, this structure may be altered by tools such as the logic minimizer, andthe technology mapper. For example, if the number of variables in a logic expressionexceeds 5 (infeasible), then the logic minimizer/technology mapper would have to de-compose the logic expression into feasible sub-expressions. Intermediate variables andnodes are created during the decomposition, which in e�ect would increase the delay.Our premise is that the structure of a design is not altered much by the mapper. Thisis particularly true for a design consisting primarily of small logic expressions, for exam-ple, the combinational logic of a one-hot encoded FSM (see Table 4.a). In such designs,6

the CLB and I/O Block delays are straightforward to determine, but the interconnectdelays are sensitive to the structure of a design; we estimate the interconnection delayfrom the logic expressions based mainly on the fanouts of the logic variables. We shallpresent evidence to support this conclusion.6.2 A delay modelIn our delay model, we relate the interconnect delay to the number of fanouts of asignal. This arose from the observation that the XC3000 FPGA architecture has limitedrouting resources. As the fanout of a signal grows, it uses up more and more routingresources, and hence increases the delay. Fig. 7 shows the \nominal delay" of a signalversus fanout, which is determined in XACT by packing sink CLBs as closely as possiblearound a source CLB. For example, in Fig. 8, block EE is the source CLB and therest are sinks. Block EE has a fanout of 24. So the \nominal delay" is not necessarilythe best-case delay. The worst-case delay can be quite large and therefore is not asmeaningful as the nominal delay. This delay model tends to underestimate the delaysof large circuits because routing congestion is not taken into account. Also, the delaymodel may overestimate the delays of small circuits because of pairing (fanin to the sameCLB). There are two knees in the curve in Fig. 7. The initial (roughly linear) portionof the curve would indicate that the signal is transmitted through the general-purposeinterconnect and switch boxes. As the number of fanouts exceeds 8, the router startsto consume the long lines for routing. The second knee would indicate that anotherlevel of long lines and general-purpose interconnect are used. We apply the delay modelto a timing veri�er to estimate the \worst-case" propagation delay of one-hot encodedFSMs from their logic expressions. We plot both the measured and the estimated delaysin Fig. 9. The mean error is �4:12ns, and the overall relative error (O.R.E.) is 0.18,indicating a fairly accurate estimation.7 ConclusionWe have observed certain empirical facts about the performance of multi-level logic min-imization tools in relationship to a lookup table-based FPGA technology. These obser-vations are made based on speci�c tools that are commonly used in lookup table-basedFPGA designs. There is no intention to claim that these observations are universal.First, we suggested that as a rule of thumb, dividing the literal counts of a set of logicexpressions by 5 gives an estimate of the number of routed XC3000 CLBs to implementthe logic expressions. This result can be applied to guide the partitioning of the logicexpressions portion of a large design into multiple FPGAs. We can estimate the numberof routed CLBs to implement the logic expressions simply by counting the literals.We extended the idea to estimate the delays of the implementation of logic expressionsprior to technology mapping, place and route. An empirical delay model is suggestedwhich can be used for delay prediction based on logic expressions. Our results suggest thatlogic expressions are a good intermediate form to bridge the estimation of performanceof a design across di�erent technologies.Second, we suggest that the one-hot state encoding strategy is a good candidate for�nite state machines targeted for lookup table-based FPGA technology. One-hot encodedFSMs tend to be more routable and outperform some of their single-transition-time-7

assignment counterparts by substantial margins, both in speed and the number of CLBs.Finally, we note that as there have been advances in algorithms for state assignment [20],it would be interesting to study the feasibility of MUSE for FPGA technology.7.1 AcknowledgementsThe authors are grateful for the comments of the referees. Martine Schlag was supportedin part by the National Science Foundation Presidential Young Investigator Grant No.MIP-8896276. The authors thank Steve Kelem of Xilinx Inc. for his comments.References[1] XILINX: The Programmable Gate Array Data Book. 2100 Logic Drive, San Jose,CA 95124, 1991.[2] C. Ebeling and Z. Wu, \WireLisp: Combining graphics and procedures in a circuitspeci�cation language," in IEEE International Conference on Computer-Aided De-sign ICCAD-89, (Santa Clara, CA), pp. 322{325, IEEE Computer Society Press,5{9 November 1989.[3] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. R. Wang, \MIS: AMultiple-Level Logic Optimization System," IEEE Transactions on Computer-AidedDesign of Integrated Circuits and Systems, vol. CAD-6, pp. 1062{1081, Nov. 1987.[4] ALDEC, 3525 Old Conejo Rd., Suite 111, Newbury Park, CA 91320, Susie Simula-tor: User's Guide, 1989.[5] D. Bostick, G. D. Hachtel, M. R. Lightner, P. Moceyunas, C. R. Morrison, andD. Ravenscroft, \The Boulder optimal logic design system," in IEEE InternationalConference on Computer-Aided Design ICCAD-87, (Santa Clara, CA), pp. 62{65,IEEE Computer Society Press, 9{12 November 1987.[6] K. Bartlett, W. Cohen, A. D. Geus, and G. Hachtel, \Synthesis and Optimizationof Multilevel Logic under Timing Constraints," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. CAD-5, pp. 582{595, Oct.1986.[7] M. Lightner and W. Wolf, \Experiments in Logic Optimization," in IEEE Inter-national Conference on Computer-Aided Design ICCAD-88, (Santa Clara, CA),pp. 286{289, IEEE Computer Society Press, 7{10 November 1988.[8] R. Lisanke, Logic Synthesis and Optimization Benchmarks, User Guide, Version2.0. Microelectronics Center of North Carolina, MCNC P.O. Box 12889, ResearchTriangle Park, NC 27709, December 1988.[9] R. J. Francis, J. Rose, and Z. Vranesic, \Chortle-crf: Fast technology mapping forlookup table-based FPGAs," in ACM IEEE 28th Design Automation ConferenceProceedings, (San Francisco, California), pp. 227{233, June 1991.8

[10] M. Schlag, J. Kong, and P. K. Chan, \Routability-driven technology mapping forlookup table-based FPGAs," Tech. Rep. UCSC-CRL-92-06, Board of Studies inComputer Engineering, University of California at Santa Cruz, Santa Cruz, CA95064, Feb. 1992. To appear in ICCD'92.[11] R. Murgai, Y. Nishizaki, N. Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli,\Logic synthesis for programmable gate arrays," in ACM IEEE 27th Design Au-tomation Conference Proceedings, (Orlando, Florida), pp. 620{625, June 1990.[12] R. Murgai, N. Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli, \Improvedlogic synthesis algorithms for table look up architectures," in IEEE Interna-tional Conference on Computer-Aided Design ICCAD-91, (Santa Clara, California),pp. 564{567, November 1991.[13] R. J. Francis, J. Rose, and K. Chung, \Chortle: A technology mapping programfor lookup table-based �eld programmable gate arrays," in ACM IEEE 27th DesignAutomation Conference Proceedings, (Orlando, Florida), pp. 613{619, June 1990.[14] K. Karplus, \Xmap: a technology mapper for table-lookup �eld programmable gatearrays," in ACM IEEE 28th Design Automation Conference Proceedings, (San Fran-cisco, California), pp. 240{243, June 1991.[15] S. Devadas, H.-K. Ma, A. R. Newton, and A. Sangiovanni-Vincentelli, \MUSTANG:State assignment of �nite state machines targeting multilevel logic implementa-tions," IEEE Transactions on Computer-Aided Design of Integrated Circuits andSystems, vol. CAD-7, pp. 1290{1299, December 1988.[16] M. Bolotski, D. Camporese, and R. Barman, \State Assignment for Multi-LevelLogic using Dynamic Literal Estimation," in IEEE International Conference onComputer-Aided Design ICCAD-89, (Santa Clara, CA), pp. 220{223, IEEE Com-puter Society Press, 6{9 November 1989.[17] S. H. Unger, The Essence of Logic Circuits. Englewood Cli�s, New Jersey: PrenticeHall, 1989.[18] S. K. Knapp, \Accelerate FPGA macros with one-hot approach," Electronic Design,Sept. 1990.[19] D. E. Wallace and M. S. Chandrasekhar, \High-Level Delay Estimation forTechnology-Independent Logic Equations," in IEEE International Conference onComputer-Aided Design ICCAD-90, (Santa Clara, CA), pp. 188{191, IEEE Com-puter Society Press, Nov. 1990.[20] X. Du, G. Hachtel, B. Lin, and A. R. Newton, \MUSE: A multilevel symbolicencoding algorithm for state assignment," IEEE Transactions on Computer-AidedDesign of Integrated Circuits and Systems, vol. CAD-10, pp. 28{38, January 1991.9

List of Figures1 Design ow. : 112 Architecture of an XC3000-series Con�gurable Logic Block. : : : : : : : 123 Routed CLBs vs literals of FSM benchmarks. : : : : : : : : : : : : : : : 124 Routed CLBs vs literals of combinational logic benchmarks. : : : : : : : 135 Di�erent pairing con�gurations. The dashed line in the box denotes thepartition of the lookup table into 2 smaller tables. : : : : : : : : : : : : : 146 Distributions of literals to CLBs (a) equiprobable (b) measured from 1271CLBs, 60 designs. : 147 Nominal delay vs fanouts in an XC3020PC84-100. : : : : : : : : : : : : : 178 Measurement of nominal delay in XACT. : : : : : : : : : : : : : : : : : : 189 Delays of one-hot encoded FSMs: measured (in XACT 2.12) vs estimated. 19List of Tables1 Distributions of literals to CLBs (a) equiprobable (b) measured from 1271CLBs, 60 designs. : 112 Number of literals and CLBs for di�erent state encoding strategies: ob-tained using misII standard script and Xilinx xnfmap and apr on anXC3020PC84-100. Mustang options are: -a graph embedding performedby using a simulated annealing-based algorithm; -e expand state codesto use up unused state codes; -n a state assignment option which usesa fanin-oriented algorithm to produce an encoding of states; -p a stateassignment option which uses a fanout-oriented algorithm to produce anencoding of states; -t a variation in fanin and fanout oriented heuristicswhich sometimes produces better results; -r using random encoding withthe default seed; -ran machine is encoded using random encoding with arandom seed; -s states of the machine are assigned sequential codes. : : : 153 (Continuation from Table 2) : 164 Large designs: number of literals and CLBs for di�erent state encodingstrategies using misII standard script, xnfmap and apr with default set-tings. Delay of unrouted designs are not available (NA). : : : : : : : : : 165 Combinational logics of FSM bbara (a) one-hot encoded (b) -tp ag en-coded. : 17
10

LCA
EQN

LCAXNFXNFwireCEntrySchematic High-levelLanguageBdsynLogic miniespressomisIIFunctionalsimulatorsusie
Timingsimulatorsusieaprand RouteAuto PlaceMapperTechnologyxnfmap
Figure 1: Design ow.literals:CLB # of instances1:1 02:1 13:1 14:1 45:1 46:1 47:1 28:1 2mean 5.4 (a)

literals:CLB # of instances1:1 22:1 303:1 734:1 2885:1 3366:1 4427:1 838:1 17mean 5.1standard deviation 1.19(b)Table 1: Distributions of literals to CLBs (a) equiprobable (b) measured from 1271 CLBs,60 designs.
11

INPUTs OUTPUTsFunctionCombinationalCLKedc
ba FF2FF1GF yx

Figure 2: Architecture of an XC3000-series Con�gurable Logic Block.

0 50 100 1500200400600800
Literals

Number of CLBs��� � ��� ��� � �� ��� � ��� �� � �� �
��

� ��
�

� �
��� �� ��� � ��� ��� � �� �

������ �� � �� �
��

� ��
�

� �
��

��� � �� � ��� ��� � ��
�

���� �� �� � �� �
��

� ��
�

� �
����� � �� � ��� ��� � �� �

���� �� �
� � �� �

��� ��
�

� �
����� ? ?? ? ??? ??? ? ?? ?

??? ??? ?? ? ?? ?
??

? ??
?

? ?
??

? ?? � �� � ��� ��� � ��
�

������ �
� ��� �

� �
� ��

�
� �

��
��� � �� � ��� ��� � �� ������� �� � �� �

� �
� ��

�
� �

����� | || | ||| ||| | ||
|

|||||| || | || |
||

| ||
|

| |
||||| � �� � ��� ��� � �� �

������ �
� � �� �

��
� ��

�
� �

����� ~ ~~~ ~~~ ~~~ ~ ~~ ~~~ ~~ ~~ ~~ ~ ~~ ~ ~~~ ~~
~

~ ~ ~~~~~Figure 3: Routed CLBs vs literals of FSM benchmarks.12

0 50 100 1500200400600800
Literals

Number of CLBs
2 chortle� xnfmap� rmap

2 222 2
2 22 22 222

C499
� �� ��
� �� �� ���

C499
� �� � �
� �� �� ���

C499
Figure 4: Routed CLBs vs literals of combinational logic benchmarks.

13

(b)(a)
4:14:15:15:16:16:17:18:18:17:16:15:1

5:1Use all 5 inputs Use only 4 inputsliterals:CLB literals:CLB

Figure 5: Di�erent pairing con�gurations. The dashed line in the box denotes the parti-tion of the lookup table into 2 smaller tables.
3:14:12:12:16:15:14:14:1

3:13:1
(d)(c)

Use only 3 inputs Use only 2 inputsliterals:CLB literals:CLB
Figure 6: Distributions of literals to CLBs (a) equiprobable (b) measured from 1271CLBs, 60 designs. 14

FSM # of mustang -a mustang -e mustang -n mustang -p mustang -rStates # # # # # # # # # #Lit CLB Lit CLB Lit CLB Lit CLB Lit CLBbbara 10 173 33 146 30 135 27 125 26 151 32bbsse 16 187 34 187 34 173 34 201 41 203 41bbtas 6 46 8 45 7 46 7 52 9 62 10beecount 7 110 20 101 18 106 20 107 18 114 20cse 16 304 62 304 62 256 52 246 50 294 59dk14 7 223 41 217 41 224 45 223 43 240 48dk15 4 127 26 127 26 131 26 144 27 133 23dk17 8 108 20 108 20 121 24 134 26 136 26dk27 7 32 5 26 4 33 5 29 4 31 4dk512 15 130 28 129 27 121 24 118 22 133 27don�le 24 333 69 314 64 329 65 297 58 323 65dvram 6 309 65 295 61 278 57 283 59 305 64ex2 19 247 51 276 59 196 43 231 53 234 51ex3 10 99 18 98 20 105 20 137 27 145 30ex4 14 116 22 128 24 108 20 120 23 115 22ex5 9 124 28 131 26 112 21 112 22 128 26ex6 8 144 26 144 24 136 26 135 26 136 25ex7 10 132 27 122 25 90 16 135 27 135 27keyb 19 246 48 278 56 242 48 430 87 377 80lion 4 22 4 22 4 22 3 26 4 27 3lion9 9 114 22 95 19 83 16 94 17 130 24mark1 15 139 30 139 30 137 29 148 30 138 31mc 4 37 6 37 6 23 4 34 7 39 7opus 10 122 24 119 23 118 21 110 21 114 21ris 5 281 58 283 59 273 59 279 60 292 59s8 5 80 13 77 12 79 15 81 15 90 16shiftreg 8 41 5 41 5 30 4 26 4 46 7sse 16 187 34 187 34 173 24 201 41 203 41tav 4 93 18 93 18 123 25 111 22 90 18train11 11 123 23 109 21 110 21 115 23 129 26train4 4 15 2 15 2 19 2 19 2 22 4TOTAL 310 4444 870 4393 861 4132 803 4503 894 4715 947Table 2: Number of literals and CLBs for di�erent state encoding strategies: obtainedusing misII standard script and Xilinx xnfmap and apr on an XC3020PC84-100. Mustangoptions are: -a graph embedding performed by using a simulated annealing-based algo-rithm; -e expand state codes to use up unused state codes; -n a state assignment optionwhich uses a fanin-oriented algorithm to produce an encoding of states; -p a state assign-ment option which uses a fanout-oriented algorithm to produce an encoding of states;-t a variation in fanin and fanout oriented heuristics which sometimes produces betterresults; -r using random encoding with the default seed; -ran machine is encoded usingrandom encoding with a random seed; -s states of the machine are assigned sequentialcodes.
15

FSM mustang -ran mustang -s mustang -tn mustang -tp (one-hot)# # delay # # delay # # delay # # delay # # delayLit CLB (ns) Lit CLB (ns) Lit CLB (ns) Lit CLB (ns) Lit CLB (ns)bbara 135 28 98 120 23 90 133 25 86 125 26 108 79 15 65bbsse 207 42 140 181 34 136 169 32 145 180 33 140 128 26 98bbtas 55 8 64 48 6 63 55 8 84 52 9 80 29 5 69beecount 109 20 121 107 21 116 106 20 123 113 19 110 82 14 74cse 303 64 175 252 50 131 239 51 125 237 46 160 195 37 135dk14 244 52 160 242 53 177 224 45 174 223 43 140 149 28 134dk15 121 23 113 144 27 117 121 23 100 144 27 111 108 21 86dk17 133 26 121 115 23 110 116 24 107 103 20 123 70 12 72dk27 45 7 70 33 5 54 33 6 60 28 5 53 29 4 42dk512 139 28 102 126 27 117 109 20 87 118 21 100 63 11 55don�le 319 64 145 318 66 NA 319 71 NA 297 58 174 159 29 80dvram 311 62 162 255 52 131 267 57 145 267 59 162 83 26 73ex2 241 51 146 236 51 158 194 40 138 221 46 111 129 21 82ex3 127 27 97 106 20 87 101 18 86 132 29 104 75 12 54ex4 127 26 103 117 23 127 114 22 117 115 22 103 72 18 73ex5 127 25 111 108 23 102 116 23 113 114 22 97 73 11 75ex6 147 27 133 131 25 110 136 26 114 134 26 144 109 23 95ex7 137 31 113 114 20 96 87 17 91 130 27 125 77 11 69keyb 411 85 NA 254 49 144 236 49 188 430 87 NA 194 42 120lion 22 3 50 22 3 49 22 3 50 26 4 48 31 4 52lion9 112 23 118 96 19 111 85 15 122 83 14 109 65 10 61mark1 133 29 132 141 30 139 138 32 126 148 30 134 99 27 133mc 23 4 53 23 4 51 23 4 53 34 7 64 33 6 48opus 117 22 115 117 21 117 124 21 107 113 21 128 90 20 86ris 279 59 129 283 58 134 273 55 163 285 59 155 114 22 66s8 82 16 85 87 13 79 78 15 98 81 15 87 61 11 70shiftreg 46 7 60 49 9 58 30 4 62 30 4 58 36 5 39sse 201 40 143 181 34 120 169 32 137 180 33 149 128 26 88tav 90 18 95 111 22 99 111 22 93 111 22 100 79 15 82train11 115 23 116 114 23 116 109 22 116 107 22 97 79 12 57train4 22 4 45 16 2 43 19 2 48 19 2 49 25 4 43TOTAL 4680 944 4247 836 4056 804 4380 858 2743 528Table 3: (Continuation from Table 2).
FSM # of mustang -r mustang -tn mustang -tp (one-hot) PackageStates # # delay # # delay # # delay # # delayLit CLB (ns) Lit CLB (ns) Lit CLB (ns) Lit CLB (ns)planet1 48 641 144 NA 569 124 NA 614 132 NA 366 100 135.4 3042PC84-125scf 121 907 216 NA 852 205 NA 832 191 NA 529 138 123.4 3064PG132-100styr 30 657 149 NA 576 128 NA 555 121 NA 377 86 137.1 3042PC84-125Table 4: Large designs: number of literals and CLBs for di�erent state encoding strategiesusing misII standard script, xnfmap and apr with default settings. Delay of unrouteddesigns are not available (NA). 16

INORDER = x3 x2 x1 x0 PS9 PS8 PS7 PS6 PS5 PS4 PS3 PS2PS1 PS0;OUTORDER = NS9 NS8 NS7 NS6 NS5 NS4 NS3 NS2 NS1 NS0z1 z0;NS9 = PS9*[94] + [91]*[95];NS8 = [93]*[96] + PS6*[91] + PS8*[86];NS7 = [92]*[97] + PS3*[91] + PS7*[86];NS6 = PS8*[93] + PS6*[86];NS5 = PS6*[93] + z1;NS4 = [91]*[98] + PS4*[86];NS3 = PS7*[92] + PS3*[86];NS2 = PS3*[92] + z0;NS1 = PS4*[91] + PS1*[86];NS0 = PS1*[91] + PS0*[86];z1 = PS5*![84];z0 = PS2*[99];[84] = !x2*![86];[85] = PS0 + PS1 + PS4 + PS9;[86] = !x0 + !x1;[91] = !x3*[84];[92] = x3*[84];[93] = x2*![86];[94] = !x3*!x2 + [86];[95] = PS0 + PS7 + PS8;[96] = [85] + PS2 + PS3 + PS7;[97] = [85] + PS5 + PS6 + PS8;[98] = PS2 + PS5;[99] = x3*!x2 + [86]; (a)
INORDER = x3 x2 x1 x0 PS3 PS2 PS1 PS0;OUTORDER = NS3 NS2 NS1 NS0 z1 z0;[11] = !PS3*!PS2*![74]*[81];[23] = !PS3*!PS2*PS1*!PS0*[79];[29] = !PS3*[66]*[79];NS3 = [72] + z0 + [29];NS2 = !PS3*PS2*[65]*[74] + PS3*[68]*[80] + [73] +NS3 + [23];NS1 = !PS3*[86] + [68]*[79] + z0 + z1 + [29] + [23] + [11];NS0 = !PS3*PS0*[90] + [81]*[89] + [73] + [72];z1 = [67]*[92];z0 = PS3*[66]*[93];[65] = !x0 + !x1;[66] = PS2*PS1*!PS0;[67] = !PS3*PS2*![74];[68] = PS2*!PS1*PS0;[72] = [68]*[94];[73] = [80]*[96] + z1 + [11];[74] = !PS0 + !PS1;[77] = !x2*![65];[79] = x3*[77];[80] = !x3*[77];[81] = x2*![65];[83] = x1*!x0;[84] = !x1*x0;[85] = !x1*!x0;[86] = PS1*[65]*[88] + !x3*!x2*[66] + !PS1*[87] + PS0*[79];[87] = !PS2*PS0*[81] + [79];[88] = !PS0 + !PS2;[89] = !PS3*!PS0 + [68] + [66];[90] = !PS2*[91] + !PS1*![77];[91] = !x3*!x2*PS1 + [65];[92] = [85] + [84] + [83] + [81];[93] = [85] + [84] + [83] + [79];[94] = PS3*[95] + !PS3*[80];[95] = [85] + [84] + [83];[96] = PS3*[66] + [67]; (b)Table 5: Combinational logics of FSM bbara (a) one-hot encoded (b) -tp ag encoded.

0 5 10 15 200510
15Delayin ns Fanout� � � � � � � � � � � � � � � � � � �

� �
Figure 7: Nominal delay vs fanouts in an XC3020PC84-100.17

Package 3020PC84, XACT

M0 R P3 3 P3 4

M1 R
D

P3 0

HA

P3 5 P3 6

HB

P3 7 P3 9

HC

P4 0 P4 2

HD

GND P4 4 P4 5

HE

P4 6 P4 7

HF

P4 8 P4 9

HG

P5 2 P5 3

HH

RST

DPG
M

P5 6

BCL

P2 9

P2 8 GA GB GC GD GE GF GG GH

P5 7

P5 8

P2 7

P2 6 F A FB F C FD FE FF FG F H

P5 9

P6 0

P2 5

P2 4 EA EB EC ED EE EF EG EH

P6 1

P6 2

P2 3

VCC

P2 1 DA DB DC DD DE DF DG DH

P6 3

VCC

P6 5

P2 0

P1 9 CA CB CC CD CE CF CG CH

P6 6

P6 7

P1 8

P1 7 BA BB BC BD BE BF BG BH

P6 8

P7 0

P1 6

P1 5 AA AB AC AD AE AF AG AH

P7 1

P7 2

T CL

P1 3

PWR
DN

P1 1 P1 0 P9 P8 P5 P4 P3 P2 GND P8 4 P8 3 P8 2 P8 1 P7 8 P7 7 P7 6

P7 3

P7 5 CCL
K

Figure 8: Measurement of nominal delay in XACT.
18

Delay(ns)
Finite StateMachines

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150shiftregdk27train4mclionex3dk512train11lion9bbararisex7bbtass8dk17dvramex4beecountex5don�leex2tavopusdk15sseex6bbssekeybmark1dk14cse

� �� � ���� � �� �������� ��� ��� � � � ���

� � ��� � ����� �� ��� ���� � � ��� �� � ����: measured delay�: estimated delay

Figure 9: Delays of one-hot encoded FSMs: measured (in XACT 2.12) vs estimated.
19

