
tributed Softwareand DatabaseSystems, pages11–24, Oc-
tober 1984.

[6] H. Garcia-Molina and B. Kogan. An implementation of re-
liable broadcast using an unreliable multicast facility.Pro-
ceedings of 7th Symposium on Reliable Distributed Sys-
tems(Ohio State University, Columbus, OH), pages 101–
11. IEEE Computer Society Press, 10–12 October 1988.

[7] D. K. Gifford. Weighted voting for replicated data.Pro-
ceedings of 7th ACM Symposium on Operating Systems
Principles(Pacific Grove, California), pages 150–62. As-
sociation for Computing Machinery, December 1979.

[8] R. Golding and D. D. E. Long. Accessing replicated data
in a large-scale distributed system.International Journal
in Computer Simulation, 1(2), 1991, to appear.

[9] R. A. Golding. Accessing replicated data in a large-scale
distributed systems. Master’s thesis; published as Tech-
nical report UCSC–CRL–91–18. Computer and Informa-
tion Science Board, University of California at Santa Cruz,
June 1991.

[10] B. Martin, C. Bergan, and B. Russ. PARPC: a system for
parallel procedure calls.Proceedingsof 1987 International
Conference on Parallel Processing, 1987.

[11] R. M. Metcalfe and D. R. Boggs. Ethernet: distributed
packet switching for local computer networks.Communi-
cations of the ACM, 19(7):395–404, July 1976.

[12] P. Mockapetris. Domain names – concepts and facilities.
Request for comments 1034. ARPA Network Working
Group, November 1987.

[13] J.-F. Pâris. Voting with witnesses: a consistency scheme
for replicated files.6th International Conference on Dis-
tributed Computer Systems, pages 606–12. Institute of
Electrical and Electronics Engineers Computer Society,
1986.

[14] J. Postel. Internet control message protocol, Request
for comments 792. USC Information Sciences Institute,
September 1981.

[15] K. Trivedi. Probability and statistics with reliability, queu-
ing, and computer scienceapplications. Prentice-Hall, En-
glewood Cliffs, NJ, 1982.

9



0

5

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1

M
es

sa
ge

s

Failure probability f

Naive
Reschedule

Retry
Count

Figure 4: Total messages, varying failure probability,d = 0.5.

pected. At low failure probabilities,reschedule requires
more time than the other protocols, but at high failure
probabilities it does not retry failed messages and so can
complete – with failure – in little more time thannaive.
At high failure probabilities, theretry protocol requires
one-fifth the latency of thecount protocol, since it sends
only one message to the most distant host.

Figure 4 shows the overall number of messages sent
by each protocol. As always,naive sends one message
to each replica regardless of conditions. The number of
messages sent byreschedule approaches the number of
replicas as the probability of failure increases, since it be-
comes more likely that the protocol will have to send a
message to all replicas.Retry sends more messages than
reschedule, since it will retry messages that fail. This
becomes increasingly important as the probability of fail-
ure increases.Count sends slightly fewer messages than
retry, particularly when the probability of message fail-
ure f approaches unity. Thecount protocol is limited to
sending at most 25 message (5 replicas, 5 messages per
replica), whileretry can send a nearly unbounded num-
ber of messages in the worst case.

5 Conclusions

In this paper we have presented a family ofquorum
multicastprotocols, callednaive, reschedule, retry, and
count. We have shown that these protocols provide good
availability while using fewer messages and requiring less
latency than a simple multicast.

These protocols provide multicast to a subset of a group
of sites. The protocols can communicate with the closest

available sites and resort to more distant sites when the
nearby ones fail. By varying thereply count, they can be
used as a fault-tolerant one-to-one communication mech-
anism that contacts ‘spare’ replicas on failure, or as a one-
to-many multicast for contacting several replicas at once.

Quorum multicast protocols are also useful for their
clear definition of failure detection and its fault-tolerance.
They can be used to approximate actual failure detection
with high probability. The ability to retry communications
makes quorum multicasts more robust in the face of tran-
sient network problems than a simple multicast protocol,
making our protocols a convenient mechanism for build-
ing higher-level fault tolerant mechanisms.

We can choose between the protocols depending on
whether the probability of success, operation latency, or
message count are more important. When message fail-
ure is unlikely, the protocols all require about the same la-
tency, thoughnaive requires more messages than the other
three. As the likelihood of message failure increases,
count provides the best chance of successfully complet-
ing an operation and the lowest latency, whileresched-
ule uses the fewest messages. However, under patho-
logical conditions the protocols behave quite differently.
Count can send many messages and take several seconds
no replicas are available.Retry is perhaps a more rea-
sonable choice under pathological conditions, succeeding
less often thancount but taking between half and one-fifth
as much time. If availability is not of great importance,
reschedule andnaive both perform much better than the
other two protocols under high-failure conditions, since
they do not retry messages for extended periods of time.

References

[1] K. P. Birman and T. A. Joseph. Reliable communication in
the presence of failures.ACM Transactions on Computer
Systems, 5(1):47–76, February 1987.

[2] D. R. Boggs. Internet broadcasting. Technical report CSL–
83–3. Xerox Palo Alto Research Center, CA, October
1983.

[3] D. R. Cheriton and W. Zwaenepoel. One-to-many inter-
process communication in the V-system. Technical report
STAN–CS–84–1011. Computer Systems Laboratory, De-
partment of Computer Science, Stanford University, Au-
gust 1984.

[4] D. Comer. Internetworking with TCP/IP: principles, pro-
tocols, and architecture. Prentice Hall, Englewood Cliffs,
NJ, 1988.

[5] E. C. Cooper. Circus: a replicated procedure call facil-
ity. Proceedings of 4th Symposium on Reliability in Dis-

8



3.5

4

4.5

5

5.5

6

6.5

7

0 0.2 0.4 0.6 0.8 1

M
es

sa
ge

s

Delay Parameter d

Naive
Reschedule

Retry
Count

Figure 2: Messages for all operations.

of failure. The differences between the protocols were
less accentuated in the measurement results. The hosts
in the measurement experiment exhibited fewer message
failures than did those measured for traces, and the three
protocols all behave identically when no failures occur.

The four protocols perform quite differently when they
are unable to obtain a reply count of responses.Naive re-
quires exactly five messages.Reschedule also requires
exactly five messages, since it will generally send to all
replicas before it can determine that the operation has
failed. Theretry and count algorithms will generally
send more than five messages before they can declare
failure, but the difference between the two is dramatic.
The retry protocol sends between three and six times as
many messages as the other protocols, whilecount usu-
ally sends only one additional message. The difference is
due to the extra control thatcount exercises over sending
messages – no replica will be tried more than a fixed num-
ber of times.Retry may try nearby replicas a great many
times: if a nearby replica has failed, it will have time to
retry many times while waiting for a response (or timeout)
from the most distant replica.

Figure 2 shows the overall number of messages sent by
each protocol. Once again, since the probability of meet-
ing the reply count is high, the values for successful oper-
ations predominate. However, the large number of mes-
sages sent byretry make that the least attractive quorum
multicast protocol. The measurement results confirm the
simulation, though the low number of message failures
makesretry competitive with the other protocols.

0

20000

40000

60000

80000

100000

120000

0 0.2 0.4 0.6 0.8 1

M
il

li
se

co
n

ds

Failure probability f

Naive
Reschedule

Retry
Count

Figure 3: Total time, varying failure probability,d = 0.5.

4.6 Effect of failure probability

The simulation experiments also examined the perfor-
mance of all four protocols under different failure con-
ditions. The Internet measurements suggest that message
failure is usually unlikely, but when a host becomes par-
titioned from the rest of the network, or there is a patho-
logical condition in the Internet, it is nearly certain that a
message will fail to reach its destination. The simulation
allowed us to evaluate quorum multicast performance un-
der these worst-case conditions.

For these experiments we fixed the delay parameter
d at 0.5, because it was close to neither extreme. The
simulations used synthetic hyperexponential distributions
for communication latency and uniform message failure
probability, since we could not manipulate the Internet to
obtain traces with specific message failure rates. Message
failures were treated as independent events occurring with
a fixed probabilityf . Values off in the range 0.2 to 0.3 are
similar to the behavior of messages in the traces.

As expected, thecount was able to successfully gather
a reply count of responses more often than the other pro-
tocols, andretry succeeded less often thancount. Both
these protocols succeed more often thanreschedule and
naive, which only try each replica once. The data for
naive match availability figures for data replicated using
Majority Consensus Voting [7], estimated using Markov
analysis and assuming reliable communication channels
[13]. In that study, hosts were only checked once for avail-
ability, just as with thenaive andreschedule protocols in
these experiments.

Figure 3 shows the overall communication latency at
different values off . Naive requires the least time, as ex-

7



has no effect on the probability of success. Theretry pro-
tocol, however, retries nearby replicas more times when
the delay parameterd is larger, since this allows more time
for retries.Retry succeeds in more than 94% of all cases
whend � 0.1, while count performs even better. This
shows that persistence has a significant positive effect on
protocols for internetworks.

The data obtained by measuring a test application show
that all four protocols met the reply count more than 95%
of the time. Count succeeded more often than the other
protocols for almost all values ofd, with retry generally
succeeding more often thannaive andreschedule. These
results are similar to the simulation results.

4.4 Latency

For operations that are able to meet their reply count,
naive is generally the fastest of the four protocols, since it
always sends messages to every replica immediately. The
communication latency for the other protocols increases
approximately linearly as the delay parameterd increases,
taking about the same amount of time asnaive at d = 0.
Of the three,count takes longer thanretry, which in turn
takes very slightly longer thanreschedule. Reschedule
takes less time than the other two because of the rare cases
where theretry andcount protocols must send more than
one message to distant replicas to obtain the reply count.

The performance of the four protocols is quite different
when the reply count cannot be met – all four protocols
require several seconds to declare failure. While this is
quite a long time, failures constitute only a few percent
of all operations and the latency is not onerous.Naive is
the baseline measure, requiring about 4.8 seconds to de-
termine that a reply count cannot be obtained – almost an
order of magnitude longer than was generally required for
success. The latency of the other three protocols again in-
creases roughly linearly ind. Reschedule requires more
time thannaive since it must detect just as many failed
messages, but it may have delayed sending some of those
messages.Retry requires more time than all the others for
most values ofd. Count performs much better than any of
the other three protocols. It avoids the problem of having
to communicate with the most distant replica, since it can
stop when sufficient nearby replicas have failed.

The measured results differ slightly because fewer mes-
sages failed. While simulation indicated thatreschedule
takes more time thannaive to declare failure, and that this
time increases withd, the measured results show that the
two have quite similar latencies. The sample size is small
enough that this result is inconclusive.

800

1000

1200

1400

1600

1800

2000

2200

2400

0 0.2 0.4 0.6 0.8 1

M
il

li
se

co
n

ds

Delay Parameter d

Naive
Reschedule

Retry
Count

Figure 1: Communication latency for all operations.

Figure 1 shows the overall latency for each protocol.
Since the probability of meeting the reply count is quite
high, the values for successful operations predominate in
these graphs. However, it is worth noting that even with
a high probability of success, the low failure latency of
count makes it the fastest of the three quorum multicast
protocols, consistently faster even thannaive. Resched-
ule has the highest latency of the three for all values ofd.
Retry is better thannaive or reschedule for values ofd
less than about 0.6. This is the reverse of their positions
for successful operations. The latency of the quorum mul-
ticast algorithms increases approximately linearly asd in-
creases. The overall measurement results are consistent
with simulation results since the overall success rate was
in excess of 95%, despite the differences in failure behav-
ior.

4.5 Messages

The naive protocol always sends one message to each
host. For successful operations,reschedule sends fewer
messages, except atd = 0 when the two algorithms are
identical. This savings happens whenreschedule avoids
sending messages to distant replicas.Retry often uses at
least as many messages asnaive since it must try each
replica at least once before declaring failure, and messages
to nearby hosts may be retried.Count uses more mes-
sages thannaive for low values ofd, behaving much like
retry: sending messages to all replicas and occasionally
resending when a message fails. Whend is set to a higher
value, the protocol behaves more likereschedule, except
that it resends (on the average) about one message because

6



the reply count more often thanretry, since distant repli-
cas will be tried more times. This bound causes the two
protocols to exhibit significantly different behaviors when
message failures are likely. In addition, retrying a fixed
number of times evens out the number of times messages
are sent to each replica, preventing the protocol from try-
ing a nearby failed replica many times. Our message fail-
ure measurements suggest that retrying more than a few
times is usually of little value, since communication fail-
ures rarely lasted more than two or three messages. In
our performance evaluation we used an arbitrary limit of
l = 5. This protocol uses the same delaying techniques as
theretry protocol.

4 Performance evaluation

We used discrete-event simulation and measurement of a
sample application to analyze the performance of these
protocols. The simulation experiments also measured the
sensitivity of the results to the communication latency dis-
tribution, the length of message failure timeouts, and the
overall message failure rate. Some of the simulations used
traces of Internet communication behavior to determine
the communication latency and failure of each message,
while other used synthetic distributions derived from the
traces. In this section we will summarize our findings; de-
tails on the simulation methods can be found in [8], and a
more detailed report covering the performance evaluation
and network measurements is available [9].

4.1 Simulation techniques

The simulations used traces of Internet communication
behavior that we obtained using theping program, which
sends ICMP echo messages to remote hosts [14]. The re-
mote host is expected to reply to echo messages as soon
as possible. We collected traces of communication latency
and message failure between a host at UC Santa Cruz and
125 randomly selected Sun-4 systems throughout the In-
ternet. A set of several samples were taken for each host
every 20 minutes, over a period of seven days. These
traces do not capture any effects that are specific to quo-
rum multicast protocols, such as congestion at the client or
nearby gateways. Our measurements of an actual imple-
mentation confirm that this limitation does not invalidate
the simulated results.

We used these traces to drive a simulator. The simula-
tor performed several thousand runs, which consisted of
selecting five hosts from the 125 sampled, then simulat-
ing one multicast operation with a reply count of three for

each of the sets of samples recorded for those hosts. When
a host was to send a message, the failure or latency was
determined by looking up a sample in the trace. By per-
forming several thousand runs, we obtained results with
confidence intervals of less than 5% on all values.

The simulation also allowed us to examine the behavior
of each of the four multicast protocols (naive, reschedule,
retry, andcount) under artificially high failure conditions
that could not be created on the actual Internet. These
simulations involved deriving synthetic distributions for
communication latency and failure from the traces.

4.2 Direct measurement techniques

We constructed and measured a simple application run-
ning on the Internet to substantiate the simulation results.
This application was structured as a client communicating
with servers. The client ran on a few hosts, and sent UDP
packets to the servers. The server was a simple daemon
that listened for packets on a particular port, and echoed
them back to their origin. The source code to the server
was published on Usenet, and several people elected to run
it on their system. We the participating hosts into sets of
five, some of which contained hosts spread evenly over
Europe and North America, and some containing hosts
in smaller regions. The client multicast to each group of
five, using a reply count of three. The latency results have
95% confidence intervals generally between 10than 5%
for messages.

The measurement experiment validated most of the re-
sults obtained by simulation, since the relative perfor-
mance of each protocol is similar. The primary differ-
ences arose because the hosts showed fewer failed mes-
sages than those in the traces that drove the simulations.
An error in the client invalidated the results for failed op-
erations for thecount protocol, but successful operations
showed the expected behavior. Overall, the measurements
confirm the conclusion that quorum multicast protocols
can provide significant performance advantages for wide-
area applications, and show that there is a trade-off among
latency, traffic, and operation success.

4.3 Operation success

Operation success is measured by the fraction of all mul-
ticast operations that were successful in meeting the reply
count. Thenaive andreschedule protocols each exhibited
an approximately constant success fraction, at about 82%
of all operations. Since these two protocols each attempt
to send at most one message to a replica, the delay fraction

5



are necessary, though it can quickly either meet the re-
ply count or decide that it is unobtainable. It also has a
persistence of one message, that is, the failure of just one
message to a host causes the protocol to treat the host as
unavailable.

3.2.2 The reschedule protocol

Reschedule addresses the second problem withnaive.
This protocol sends fewer messages thannaive, though
often at the expense of extra latency. It still has a persis-
tence of one message, so it does not solve the transient
communication failure problem. It orders replicas by ex-
pected communication latency to determine the order in
which messages should be sent, causing it to communi-
cate with the closest available replicas. It attempts to send
the fewest possible messages by first sending messages to
theq closest replicas, and to additional replicas as the ear-
lier messages fail.

This approach has a problem: it will take much longer
thannaive to complete an operation when nearby replicas
have failed. The protocol cannot determine that a mes-
sage has failed until a timer has expired. Since timers
should not expire before the acknowledgment can arrive,
the timeout period is usually set to a large value – com-
monly chosen to cover more than 99% of all messages.
Our studies of the Internet showed that this was usually
about three times the average reply latency. If additional
messages are sent earlier, even though it is possibly a re-
ply is on it way, the operation can complete more rapidly
without wasting large numbers of messages. Thedelay
parameterd can be used to tune the protocol in this way.

Whend = 0, reschedule is identical tonaive: mes-
sages are sent to all replicas right away because the delay
timer for sending the next message expires immediately.
Whend = 1, reschedule only sends additional messages
when communication failures are detected Whend =

1
2 ,

messages are sent to additional replicas either if a failure
is reported, or if at one-half of the longest message failure
timeout.

This protocol meets the design goals better than the
naive protocol. It sends to the closest replicas first, which
tends to minimize message traffic if the nearest replicas
are available. It also will communicate with only as many
replicas as are needed to meet the reply count. The proto-
col will adapt somewhat to changing network conditions,
in that it orders the replicas by distance, and uses timeouts
to observe failures. However, since the protocol only has
a persistence of one message, it cannot handle transient
communication failures. We discuss the performance of

this protocol, in terms of fault-tolerance, messages and la-
tency, inx4.

3.2.3 The retry protocol

Neithernaive norreschedule accommodate transient fail-
ures. The next protocol,retry, is a modification of
reschedule that retransmits lost messages in the hope that
the failure was due to some transient problem and the next
message will be delivered and acknowledged. It contin-
ues to retransmit until either the reply count has been met
or until all replicas have been tried at least once. Such per-
sistence improves both the success latency and the proba-
bility that the reply count will be met, though at the cost of
sending more messages and possibly at the cost of having
longer failure latencies.

Initially, the retry protocol sends messages to theq
closest replicas, whereq is the reply count. When the
protocol receives a reply, it increments the count of suc-
cessful replies. If sufficient replies have been obtained it
declares the access a success. When it finds a message
has failed the protocol schedules a retry for that replica.
The first retry occurs immediately, but later retries are de-
layed. The performance simulators set each retry delay
twice as long as the previous (a choice inspired by the
collision-handling techniques used in Ethernet [11]). The
delay helps to avoid sending vast numbers of messages to
a nearby replica that has failed. As withreschedule the
delay parameterd is used to determine when to send mes-
sages to distant replicas.

The retry protocol terminates with failure when it has
received at least one reply or a timeout for every replica
and the reply count has not yet been met. As a result this
protocol has a variable persistence. Nearby replicas may
be retried many times before a distant replica can reply. In
the simulator, which doubles the delay after each message,
the expected number of retries for a replicar is bounded
above by log2 (Tn/ar), wherear is theexpected commu-
nication latencyof the rth replica, andTn is the failure
timeout period for the most distant replica.

3.2.4 The count protocol

Thecount protocol is similar toretry, except that it has a
fixed persistence. It maintains a counter for each replica
and stops retrying that replica whenl messages have been
sent to it. The protocol terminates when all replicas have
been triedl times or the reply count is met.

This protocol improves onretry in a number of ways.
By trying each replica a fixed number of times, it will meet

4



3.2 Quorum multicast protocols

We now present designs for a variant of multicast, thequo-
rum multicastprotocols. The design is guided by four
goals: make use of proximity; communicate with subsets
of the destinations; adapt to changing network conditions;
and minimize latency and message traffic. Some of these
goals conflict, so we will present protocols that trade one
for another.

Quorum multicast protocols send a message to asubset
of the destinations. For example, many replication proto-
cols require that a simple majority of the replicas perform
an operation, while others require only one or two repli-
cas.

The minimum number of destinations required is spec-
ified by areply countparameter. In many cases the mes-
sage need only be sent to enough of the closest repli-
cas to satisfy the requirement, avoiding message traf-
fic to the most distant replicas. Of course, this multi-
cast should be fault-tolerant, using more distant replicas
when those nearby are unavailable. The protocol may
not be able to meet the reply count if some of the repli-
cas are unavailable. Replicas can be unavailable due to
host failure, replica failure (perhaps due to insufficient re-
sources), network gateway or link failure, or controlled
shutdown. Since replication protocols generally require
request-response communication, the responses to a mul-
ticast serve as acknowledgment that the message was re-
ceived and processed.

The semantics of quorum multicast define the interface:

quorum-multicast(message, replica set, reply
count) ! reply set

The message is sent to at least a reply count of
the replicas. Exceptions:reply count not met.

The quorum multicast protocols maintain anexpected
communication latencyfor each possible host. When
a request is issued to communicate withq members of
a set of replicas, the communication protocol can order
the set by expected latency and communicate with theq
closest replicas. If responses are not received from all
q within a certain time, then messages can be sent to
more distant replicas. The delay before sending to distant
replicas is determined by the parameterd. The expected
latency can be determined by measuring recent perfor-
mance, on the assumption that replicated operations will
be performed much more often than the structure of the
network changes. Many Internet applications usemoving
averagesof recent behavior to determine such expecta-
tions [4].

The two extremes of sending all messages at once or
sending as few messages as possible are not always ap-
propriate for all applications. Three of the new protocols
are parameterized by adelay parameter0 � d � 1 that
allows an application to specify an intermediate position,
where sending more messages than strictly necessary is
used to improve operation latency. Whend = 0, the pro-
tocol will not wait to send to distant replicas. Whend = 1,
the protocol waits until a message failure is reported be-
fore sending to distant replicas. Since message failure is
detected using timeout, whend ¡ 1 the protocol will wait
some fraction of the timeout period before sending to more
distant replicas.

If the communication protocol has not received a reply
from a replica after some amount of time, the protocol as-
sumes that the message has failed. After some number of
messages have failed, the protocol declares the replica un-
available and does not attempt to retransmit messages un-
til the next communication request. Some protocols will
only try sending a message to a replica once, while other
protocols will try several times before giving up. Thisper-
sistenceis a tunable parameter in one of our protocols.
Once a protocol has declared enough replicas unavail-
able, it will return a negative indication to the replication
protocol and abandon the operation. Our measurements
of the Internet, detailed in another report [9], show that
short transient failures comprise more than three-fourths
all message failures. They also show that long transient
failures are uncommon, so a protocol can confidently de-
clare host failure after observing only a few lost messages.

In the next sections we will present four quorum mul-
ticast protocols. The first, callednaive, is a straightfor-
ward implementation of multicast that sends messages to
all replicas, providing a baseline to which the other pro-
tocols can be compared. The second, calledreschedule,
uses the delay parameter to send to fewer replicas. The
third and fourth, calledretry andcount, send to replicas
according to the delay parameter, but will retry messages
to replicas after a first message has failed.

3.2.1 The naive protocol

The first protocol, a simple multicast, is callednaive. It
sends one message iteratively to all replicas. Replies are
counted, and when a reply count has been obtained the
protocol returns, indicating success. When a reply or a
failure has been observed for every replica without reach-
ing the reply count it declares the access a failure.

There are two problems with this protocol: it neither ac-
counts for transient communication failures nor uses prox-
imity to improve performance. It uses more messages than

3



communications across a continent, and as long as several
seconds when satellites are involved.

The amount ofmessage trafficrequired for an operation
governs the degree the operation will interfere with other
communication in the network. The number of messages,
their size, and their destinations contribute to this effect.
A communication protocol will cause less interference if
it can send a message to a nearby host since the message
will traverse fewer intermediaries. Broadcast messages on
a LAN allow replication protocols to send requests to all
replicas in one message, while a separate message must
generally be sent to each replica in an internetwork.

Theavailability of a service can be defined as the like-
lihood of providing correct service at a given instant [15].
This must be contrasted withreliability, the probability of
providing correct service during a period of time. Highly-
available applications must befault-tolerant: they must
continue to provide service even when parts of the sys-
tem have failed. Internetworks areunreliable, meaning
they lose and duplicate messages from time to time, and
may deliver them out of order. Hosts can use timeouts
and acknowledgments to detect with high probability that
a message has not been received.

3 Multicast protocols

We have developed a family ofquorum multicastcommu-
nication protocols that can take advantage of good replica
placement. These protocols send a multicast to a subset of
a group of replicas, rather than to the entire group. They
first use the closest available replicas, falling back on more
distant replicas when nearby ones are unavailable, and are
parameterized so that the replication protocol can provide
hints to further improve performance. Replication proto-
cols can be implemented using them, limiting the cost of
message traffic and using nearby replicas for low latency.

A communication protocol that is to work well in inter-
networks must address their particular performance char-
acteristics: long, variable latency and occasional high
message loss. These characteristics make some tech-
niques used for replication in a local-area network inap-
propriate for internetwork use. The protocols should not
require broadcast, but instead send messages to replicas
in a more controlled fashion. The protocols should be
sensitive to the communication latency of replicas, and
should tend to communicate with nearby replicas, provid-
ing lower access latencies and limiting the portion of the
internetwork affected by an access. The protocols should
also address the problems associated with transient fail-
ures by resending messages to replicas.

3.1 Existing multicast protocols

Quorum multicast protocols are a specialization of ordi-
narymulticast protocols.Ordinary multicast sends a mes-
sage to a set of destinations in one operation. Replication
protocols can use multicast to send a message to all avail-
able replicas, later receiving a number of responses from
some or all of them. Simple request-response multicast
protocols define a simple interface:

multicast(message, replica set) ! reply set

The message is sent to all replicas in the set.
The operation reports no exceptions.

Several researchers have considered the problem of
providing a multicast facility on an internetwork that has
no inherent broadcast capability. Boggs [2] developed
directed broadcastcapabilities for internetworks that de-
liver a message to all hosts on a network segment, even
if the sender is not connected to that segment. Directed
broadcast cannot provide significant performance gain
when each replica is located on a separate subnet. Garcia-
Molina and Kogan [6] extend internetwork broadcast al-
gorithms with a novel mechanism that provides areliable
multicast facility on an internetwork with unreliable mul-
ticast, even if the network can partition.

In contrast to this work, the Isis system [1] provides a
distributed programming environment based on reliable
atomic multicastin a local area. It provides specialized
protocols to multicast to a process group, providing strong
guarantees on the ordering and atomicity of delivery and
failure detection.

Many other researchers have investigated multicast
protocols as part of distributed operating systems. Cheri-
ton [3] used multicast with distributedprocess groupsas
a primary communication mechanism in theV system, a
locally-distributed operating system at Stanford Univer-
sity.

Some RPC systems have provided one-to-many and
many-to-many communication semantics similar to a
request-response multicast protocol. The Circus repli-
cated RPC system [5] extended RPC to include replicated
calls to a group of processes, called a troupe; each process
in the troupe was required to perform the same computa-
tion and issue the same RPCs in the same order. The Par-
allel Remote Procedure Call (PARPC) system [10] imple-
mented one-to-many replicated procedure calls. Replica-
tion protocols could be implemented in both these system
using only a few lines of code.

2



1 Introduction

In this paper we present a new family of communica-
tion protocols that we termquorum multicasts. These
protocols are efficient and convenient for implementing
replicated and distributed applications. They provide a
communication mechanism similar to traditional multi-
cast protocols, but unlike other multicast protocols, the
quorum multicast protocols communicate with just asub-
setof the set of destinations. The quorum multicast pro-
tocols can dynamically select this subset to be the closest
available destinations, limiting the portion of the internet-
work affected by any particular multicast. Such protocols
are useful when implementing replication protocols based
on voting or when communicating with one of a group of
replicas in a fault-tolerant manner.

Two distinguishing characteristics of wide-area dis-
tributed applications are that they involve the coopera-
tion of multiple distinct processing systems, and that these
systems share information by message-passing. People
build distributed applications on a wide-area internetwork
because the application might share information between
geographically-distributed users or between users in dif-
ferent organizations with no centrally-administered sys-
tem. Several such systems already exist, such as elec-
tronic mail, news, and name services.

When systems dispersed over a wide area are to ac-
cess the same data, that data can bereplicated. Several
sites around the network maintain copies of the replicated
data. Replicated data can be more fault-tolerant than un-
replicated data, and can improve performance by locating
copies of the data near to their use. Many existing wide-
area systems, such as airline reservation systems and li-
brary card catalogues, do not use replication techniques,
relying instead on large central servers. This is in part
due to the beliefs that replication is inconvenient when
compared to centralized solutions and that replicated data
provide poor end-to-end performance. In this paper we
show that replication can provide good performance when
quorum multicasts are used, while in other work [8] we
have shown that they are a convenient mechanism for con-
structing replication protocols.

Copies of replicated data are held at a number ofrepli-
cas that consist of storage and a process that maintains
the data copy. Aclientprocess can communicate with the
replicas to read or update the data. Communication be-
tween the client and the replicas is performed according
to a replication protocolthat provides the client with the
illusion of a single data object. This is more complex than
using a single copy of the data, since operations must be

coordinated among the replicas.
Replication protocols hide this complexity by provid-

ing a set of operations performed by clients and a set per-
formed by replicas. Clients can read and update the data.
Replicas perform operations such as failure recovery, cre-
ation of new replicas, and information propagation be-
tween replicas.

Both the clients and the replicas reside onhosts. All
hosts are connected using an internetwork that consists
of local-area networks withgatewaysandpoint-to-point
links. When a host sends a message to another host, the
message will be forwarded through (perhaps many) gate-
ways and links to its destination.

2 Performance measures

There are several measures that can be used to evaluate the
performance of replicated data. These include the latency
of operations, the amount of message traffic caused by an
operation, and the data availability. Though the ideal pro-
tocol would provide the highest availability with the low-
est traffic and latency, trade-offs between these measures
must be made. The scale of the Internet further compli-
cates protocol performance, for a protocol that performs
well in a local-area network may not scale to the world-
wide Internet. We will show how quorum multicast pro-
tocols help provide good availability while using fewer
messages and requiring less latency than a simple multi-
cast.

Wide-area networks contain many more systems that
might share resources, implying that the potential load
on highly utilized components in an internetwork is much
higher than the load on components in a LAN. The poten-
tial users of an application at a local site number at most a
few hundred to a few thousand, while the number of po-
tential users of a wide-area application is orders of mag-
nitude larger. Systems such as the Domain Name Service
[12] and Usenet show that the load on some applications
scales with the number of users.

Sending a message between any two hosts on an inter-
network requires a variable amount of time, termed the
communication latency. The latency depends on the load
on the network and the available routes. In a wide-area
internetwork, communication latency can be the predom-
inant delay for operations on the replicated data, which of-
ten involve only a few disk accesses and a small amount
of computation. Communication with nearby replicas re-
quires a few milliseconds, while access times for distant
replicas often require several hundred milliseconds for

1



Quorum-oriented multicast protocols for
data replication

Richard A. Golding� and Darrell D. E. Long

UCSC–CRL–91–21
June 12, 1991

Concurrent Systems Laboratory
Computer and Information Sciences
University of California, Santa Cruz

Santa Cruz, CA 95064

Many wide-area distributed applications use replicated data to improve the availability of the data, and to
improve access latency by locating copies of the data near to their use. This paper presents a new family
of communication protocols, calledquorum multicasts,that provide efficient communication services for
widely replicated data. Quorum multicasts are similar to ordinary multicasts, which deliver a message to a
set of destinations. The new protocols extend this model by allowing delivery to a subset of the destinations,
selected according to distance or expected data currency. These protocols provide well-defined failure seman-
tics, and can distinguish between communication failure and replica failure with high probability. We have
evaluated their performance, which required taking several traces of the Internet to determine distributions for
communication latency and failure. A simulation study of quorum multicasts, based on these measurements,
shows that these protocols provide low latency and require few messages. A second study that measured a
test application running at several sites confirmed these results.

�Supported in part by the Concurrent Systems Project at Hewlett-Packard Laboratories.


