(6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

tributed Software and Database Systepagjes 11-24, Oc-
tober 1984.

H. Garcia-Molina and B. Kogan. An implementation of re-
liable broadcast using an unreliable multicast facilRyo-
ceedings of 7th Symposium on Reliable Distributed Sys-
tems(Ohio State University, Columbus, OH), pages 101—
11. IEEE Computer Society Press, 10—-12 October 1988.

D. K. Gifford. Weighted voting for replicated dat&ro-
ceedings of 7th ACM Symposium on Operating Systems
Principles(Pacific Grove, California), pages 150-62. As-
sociation for Computing Machinery, December 1979.

R. Golding and D. D. E. Long. Accessing replicated data
in a large-scale distributed systerimternational Journal
in Computer Simulatiorl(2), 1991, to appear.

R. A. Golding. Accessing replicated data in a large-scale
distributed systems. Master’s thesis; published as Tech-
nical report UCSC-CRL-91-18. Computer and Informa-

tion Science Board, University of California at Santa Cruz,

June 1991.

B. Martin, C. Bergan, and B. Russ. PARPC: a system for
parallel procedure call®roceedings of 1987 International
Conference on Parallel Processint87.

R. M. Metcalfe and D. R. Boggs. Ethernet: distributed
packet switching for local computer networkSommuni-
cations of the ACM19(7):395-404, July 1976.

P. Mockapetris. Domain names — concepts and facilities.
Request for comments 1034. ARPA Network Working
Group, November 1987.

J.-F. Paris. Voting with witnesses: a consistency scheme
for replicated files.6th International Conference on Dis-
tributed Computer Systempages 606—12. Institute of
Electrical and Electronics Engineers Computer Society,
1986.

J. Postel. Internet control message protocdRequest
for comments 792. USC Information Sciences Institute,
September 1981.

K. Trivedi. Probability and statistics with reliability, queu-
ing, and computer science applicatiofrentice-Hall, En-
glewood Cliffs, NJ, 1982.

351 available sites and resort to more distant sites when the
eduie - nearby ones fail. By varying theply count they can be
used as a fault-tolerant one-to-one communication mech-
anism that contacts ‘spare’ replicas on failure, or as a one-
to-many multicast for contacting several replicas at once.
20 i Quorum multicast protocols are also useful for their
clear definition of failure detection and its fault-tolerance.
& They can be used to approximate actual failure detection

with high probability. The ability to retry communications
e makes quorum multicasts more robust in the face of tran-
sient network problems than a simple multicast protocol,
making our protocols a convenient mechanism for build-
ing higher-level fault tolerant mechanisms.

We can choose between the protocols depending on
whether the probability of success, operation latency, or
message count are more important. When message fail-
ure is unlikely, the protocols all require about the same la-
tency, thougmaiverequires more messages than the other
pected. At low failure probabilities,eschedule requires three. As the likelihood of message failure increases,
more time than the other protocols, but at high failurgunt provides the best chance of successfully complet-
probabilities it does not retry failed messages and so dag an operation and the lowest latency, whitsched-
complete — with failure — in little more time thamive. ule uses the fewest messages. However, under patho-
At high failure probabilities, theetry protocol requires logical conditions the protocols behave quite differently.
one-fifth the latency of theount protocol, since it sends Count can send many messages and take several seconds
only one message to the most distant host. no replicas are availableRetry is perhaps a more rea-

Figure 4 shows the overall number of messages seohable choice under pathological conditions, succeeding
by each protocol. As alwaysaive sends one messagéess often thagount but taking between half and one-fifth
to each replica regardless of conditions. The numbergdf much time. If availability is not of great importance,
messages sent Ingschedule approaches the number ofeschedule andnaive both perform much better than the
replicas as the probability of failure increases, since it bether two protocols under high-failure conditions, since
comes more likely that the protocol will have to send they do not retry messages for extended periods of time.
message to all replicafketry sends more messages than
reschedule, since it will retry messages that fail. This
becomes increasingly important as the probability of falR Ef€r ences
ure increasesCount sends slightly fewer messages than _ _ o
retry, particularly when the probability of message fail_[1] K. P. Birman and T_. A. Joseph. Rellabl_e communication in

. A the presence of failuresACM Transactions on Computer
uref _approaches unity. Theount protpcol is limited to Systems5(1):47—76, February 1987.
sending at most 25 message (5 replicas, 5 messages I|ger

replica), whileretry can send a nearly unbounded num] D.R.Boggs. Internet broadcasting. Technical report CSL—
ber of messages in the worst case 83-3. Xerox Palo Alto Research Center, CA, October

1983.

Reschedule —+-
Retry -z -
309 Count -x--

254 ! x

R

Messages
.

T T T]
0.2 04 0.6 0.8 1
Failure probability f

FIGURE 4: Total messages, varying failure probability= 0.5.

[3] D. R. Cheriton and W. Zwaenepoel. One-to-many inter-
process communication in the V-system. Technical report

STAN-CS-84-1011. Computer Systems Laboratory, De-

5 Conclusions

In this paper we have presented a family gquiorum
multicastprotocols, calledhaive, reschedule, retry, and
count. We have shown that these protocols provide good]
availability while using fewer messages and requiring less
latency than a simple multicast.

These protocols provide multicast to a subset of a groygj
of sites. The protocols can communicate with the closest

partment of Computer Science, Stanford University, Au-
gust 1984.

D. Comer. Internetworking with TCP/IP: principles, pro-
tocols, and architecturePrentice Hall, Englewood Cliffs,
NJ, 1988.

E. C. Cooper. Circus: a replicated procedure call facil-
ity. Proceedings of 4th Symposium on Reliability in Dis-

7. 120000 4

R Naive ——

Reschedule —+- x
- LB Retry -z - !

654 N B. . -8--87 1000004 Count -x---

80000

5.5+
60000

Messages
X
Milliseconds

40000

4.5 N T ;
*o R S X

4 Naive -— > 20000 < BT
Reschedule —+—- *{ - -
Retry -= - i

—ae
Count -x e

-

3.5

T T T T] T T
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6
Delay Parameter d Failure probability f

FIGURE 2: Messages for all operations. FIGURE 3: Total time, varying failure probabilityd = 0.5.

4.6 Effect of failureprobability

of failure. The differences between the protocols Wefge simulation experiments also examined the perfor-

less accentuated in the measurement results. The hggiSce of all four protocols under different failure con-

in the measurement experiment exhibited fewer messggg,ns. The Internet measurements suggest that message

failures than did those measured for traces, and the thigg, e is usually unlikely, but when a host becomes par-

protocols all behave identically when no failures occur.iitioned from the rest of the network, or there is a patho-

Ingical condition in the Internet, it is nearly certain that a
essage will fail to reach its destination. The simulation

quires exactly five message®Reschedule also requires allowed us to evaluate quorum multicast performance un-

exactly five messages, since it will generally send to gf?r these Worst-ca§e cond|t|0ns_.
replicas before it can determine that the operation had Or these experiments we fixed the delay parameter

failed. Theretry and count algorithms will generally d_ at 05_’ because it was close to ne|ther_extr_em_e. _The
send more than five messages before they can deciiqulations used synthetic hyperexponential distributions
failure, but the difference between the two is dramatifé).r comr_nunl_catlon latency and umform message failure
Theretry protocol sends between three and six times %rsobablllty, since we could not manipulate the Internet to
many messages as the other protocols, wédlent usu- obtain traces with specific message failure rates. Message
ally sends only one additional message. The di]‘ferencé‘ﬂj}gureS were tr_e_ated as indep_endent events occurring with
due to the extra control thabunt exercises over sending‘”"_f'XeOI probabilityf. Values off in the range (2 to 0.3 are

messages — no replica will be tried more than a fixed nuﬁﬁm'lar to the behavior of messages in the traces.

ber of times.Retry may try nearby replicas a great many As expected, theount was able to successfully gather
times: if a nearby replica has failed, it will have time t& "€Ply count of responses more often than the other pro-

retry many times while waiting for a response (ortimeouﬁZCOlS' andretry succeeded less often thaount. Both
from the most distant replica. these protocols succeed more often theschedule and

naive, which only try each replica once. The data for
Figure 2 shows the overall number of messages sentayve match availability figures for data replicated using
each protocol. Once again, since the probability of medfajority Consensus Voting [7], estimated using Markov
ing the reply count is high, the values for successful opemalysis and assuming reliable communication channels
ations predominate. However, the large number of m¢$3]. In that study, hosts were only checked once for avail-
sages sent byetry make that the least attractive quorurability, just as with thenaive andr eschedule protocols in
multicast protocol. The measurement results confirm these experiments.
simulation, though the low number of message failuresFigure 3 shows the overall communication latency at
makesretry competitive with the other protocols. different values of. Naive requires the least time, as ex-

The four protocols perform quite differently when the
are unable to obtain a reply count of respond¢aive re-

has no effect on the probability of success. Taey pro-
tocol, however, retries nearby replicas more times when
the delay parametetis larger, since this allows more time
for retries. Retry succeeds in more than 94% of all cases
whend > 0.1, while count performs even better. This
shows that persistence has a significant positive effect org
protocols for internetworks. i
The data obtained by measuring a test application show®
that all four protocols met the reply count more than 95%

2400

2200

2000

1800

1600

Naive —-—
Reschedule —+-
Retry -z -
Count -x---

1400

1200

of the time. Count succeeded more often than the other L e
protocols for almost all values af with retry generally ' '
succeeding more often thaaive andreschedule. These I
results are similar to the simulation results.

10008 -89 T

T T T]
04 0.6 0.8 1
Delay Parameter d

02

FIGURE 1: Communication latency for all operations.

4.4 Latency

For operations that are able to meet their reply count,

naiveis generally the fastest of the four protocols, since it Figqure 1 shows the overall latency for each protocol
always sends messages to every replica immediately. 'ghe 9 - . Y P o
o . ince the probability of meeting the reply count is quite
communication latency for the other protocols increasgs, | f ful . . .
. : . gh, the values for successful operations predominate in
approximately linearly as the delay parameténcreases, these graphs. However, it is worth noting that even with
taking about the same amount of timerssve atd = 0. : L ' ;
Of the threecount takes longer thanetry, which in turn a high probability of success, the low failure latency of

takes very slightly longer th hedule. Reschedule count makes it the fastest of the three quorum multicast

; rotocols, consistently faster even thaaive. Resched-
takes less time than the other two because of the rare case :
utehas the highest latency of the three for all valued.of
where the etry andcount protocols must send more tha

. . . etry is better thamaive or reschedule for values ofd
one message to distant replicas to obtain the reply Cou!

Th ; fthe f tocolsi ite diff §s than about.8. This is the reverse of their positions
€ periormance ot the Tour protocols Is quite difiere 6r successful operations. The latency of the quorum mul-
when the reply count cannot be met — all four protoco,

: | ds to declare fail While thi &astalgorithmsincreases approximately linearly &s
require several seconds to declare failure. e tNISdases. The overall measurement results are consistent

quite a long time, failures constitute only a few IoerceWith simulation results since the overall success rate was

of all operaﬂons and the Iate_n_cy IS not oneroisuve is in excess of 95%, despite the differences in failure behav-
the baseline measure, requiring aboi@ deconds to de-.

termine that a reply count cannot be obtained — almost an

order of magnitude longer than was generally required for

success. The latency of the other three protocols againjng essages

creases roughly linearly id. Reschedule requires more

time thannaive since it must detect just as many failedhe naive protocol always sends one message to each

messages, butitmay have delayed sending some of thasst. For successful operatiomgschedule sends fewer

messagesRetry requires more time than all the others fanessages, except @t= 0 when the two algorithms are

most values ofl. Count performs much better than any ofdentical. This savings happens whesschedule avoids

the other three protocols. It avoids the problem of havirgnding messages to distant replicBstry often uses at

to communicate with the most distant replica, since it cégast as many messages rasve since it must try each

stop when sufficient nearby replicas have failed. replica at least once before declaring failure, and messages
The measured results differ slightly because fewer mésnearby hosts may be retriecCount uses more mes-

sages failed. While simulation indicated thaschedule sages thanaive for low values ofd, behaving much like

takes more time thamaive to declare failure, and that thisretry: sending messages to all replicas and occasionally

time increases witd, the measured results show that thesending when a message fails. Wies set to a higher

two have quite similar latencies. The sample size is smadlue, the protocol behaves more likeschedule, except

enough that this result is inconclusive. thatitresends (on the average) about one message because

the reply count more often thamtry, since distant repli- each of the sets of samples recorded for those hosts. When
cas will be tried more times. This bound causes the tadost was to send a message, the failure or latency was
protocols to exhibit significantly different behaviors whedetermined by looking up a sample in the trace. By per-
message failures are likely. In addition, retrying a fixddrming several thousand runs, we obtained results with
number of times evens out the number of times messagesfidence intervals of less than 5% on all values.

are sent to each replica, preventing the protocol from try-The simulation also allowed us to examine the behavior
ing a nearby failed replica many times. Our message faif-each of the four multicast protocolsdive, reschedule,

ure measurements suggest that retrying more than a fetvy, andcount) under artificially high failure conditions
times is usually of little value, since communication failthat could not be created on the actual Internet. These
ures rarely lasted more than two or three messages.simulations involved deriving synthetic distributions for
our performance evaluation we used an arbitrary limit cbmmunication latency and failure from the traces.

| = 5. This protocol uses the same delaying techniques as

theretry protocol. . .
4.2 Direct measurement techniques

; We constructed and measured a simple application run-
4 Performance evaluation ning on the Internet to substantiate the simulation results.

We used discrete-event simulation and measurement gpz'f application was structured as a client communicating
sample application to analyze the performance of thauith servers. The client ran on a few hosts, a_nd sent UDP
protocols. The simulation experiments also measured H?é:k_ets to the servers. The Server was a simple daemon
sensitivity of the results to the communication latency gidhat listened for p_ack_et_s on a particular port, and echoed
tribution, the length of message failure timeouts, and (feem ba(_:k to their origin. The source code to the server
overall message failure rate. Some of the simulations udtp pub_hshed onUsenet, and s_e_vergl people glected torun
traces of Internet communication behavior to determiﬁé’n their system_. We the _part|C|pat|ng hosts into sets of
the communication latency and failure of each messa ye, Some of which Cont_alned hosts spread e_v_enly over
while other used synthetic distributions derived from th; urope and North Amerlc_a, and Some containing hosts
traces. In this section we will summarize our findings; adl smal_ler regions. The client multicast to each group of
tails on the simulation methods can be found in [8], and'§€: USing areply countof three. The latency results have
more detailed report covering the performance evaluatipn? confidence intervals generally between 10than 5%

and network measurements is available [9]. for messages. _ _
The measurement experiment validated most of the re-

i) i sults obtained by simulation, since the relative perfor-
4.1 Simulation techniques mance of each protocol is similar. The primary differ-

The simulations used traces of Internet communicatiSACeS arose because the hosts showed fewer failed mes-

behavior that we obtained using thing program, which S29€s th_an thos_e in f[he traces that drove the S|mulat|0ns.

sends ICMP echo messages to remote hosts [14]. Theﬁré_e_rror in the client invalidated the results for fa|led_ op-

mote host is expected to reply to echo messages as &Jghons for thecount protocql, but successful operations

as possible. We collected traces of communication laterfEypVved the expected behavior. Overall, the measurements

and message failure between a host at UC Santa Cruz $@firm the conclusion that quorum multicast protocols

125 randomly selected Sun-4 systems throughout the §&n Provide significant performance advantages for wide-

ternet. A set of several samples were taken for each HY&2 applications, and show that there is a trade-off among

every 20 minutes, over a period of seven days. Thddency, traffic, and operation success.

traces do not capture any effects that are specific to quo-

rum multicast protocols, such as congestion at the cIi_ent4)B Oper ation success

nearby gateways. Our measurements of an actual imple-

mentation confirm that this limitation does not invalidat®peration success is measured by the fraction of all mul-

the simulated results. ticast operations that were successful in meeting the reply
We used these traces to drive a simulator. The simutaunt. Thenaive andr eschedule protocols each exhibited

tor performed several thousand runs, which consistedanf approximately constant success fraction, at about 82%

selecting five hosts from the 125 sampled, then simulaf-all operations. Since these two protocols each attempt

ing one multicast operation with a reply count of three fdo send at most one message to a replica, the delay fraction

are necessary, though it can quickly either meet the tieis protocol, in terms of fault-tolerance, messages and la-
ply count or decide that it is unobtainable. It also hastancy, in§4.

persistence of one message, that is, the failure of just one

message to a host causes the protocol to treat the hos?f

unavailable. 5‘% Theretry protocol

Neithernaive norreschedule accommodate transient fail-
ures. The next protocolretry, is a modification of
reschedule that retransmits lost messages in the hope that

Reschedule addresses the second problem wiidive. the failure was due to some transient problem and the next
This protocol sends fewer messages thaive, though message will be delivered and acknowledged. It contin-
often at the expense of extra latency. It still has a persis to retransmit until either the reply count has been met
tence of one message, so it does not solve the transfdnntil all replicas have been tried at least once. Such per-
communication failure problem. It orders replicas by egistence improves both the success latency and the proba-
pected communication latency to determine the orderhitity that the reply count will be met, though at the cost of
which messages should be sent, causing it to commuinding more messages and possibly at the cost of having
cate with the closest available replicas. It attempts to séfgger failure latencies.
the fewest possible messages by first sending messageslittially, the retry protocol sends messages to e
theq closest replicas, and to additional replicas as the eglesest replicas, wherg is the reply count. When the
lier messages fail. protocol receives a reply, it increments the count of suc-
This approach has a problem: it will take much long&gssful replies. If sufficient replies have been obtained it
thannaive to complete an operation when nearby replicé§clares the access a success. When it finds a message
have failed. The protocol cannot determine that a més failed the protocol schedules a retry for that replica.
sage has failed until a timer has expired. Since timerge first retry occurs immediately, but later retries are de-
should not expire before the acknowledgment can arrif@yed. The performance simulators set each retry delay
the timeout period is usually set to a large value — corff¥ice as long as the previous (a choice inspired by the
monly chosen to cover more than 99% of all messagé8llision-handling techniques used in Ethernet [11]). The
Our studies of the Internet showed that this was usuafi§lay helps to avoid sending vast numbers of messages to
about three times the average reply latency. If additiorfanearby replica that has failed. As witeschedule the
messages are sent earlier, even though it is possibly a4@lay parameted is used to determine when to send mes-
ply is on it way, the operation can complete more rapid§ges to distant replicas.
without wasting large numbers of messages. Thky Theretry protocol terminates with failure when it has
parameted can be used to tune the protocol in this wayleceived at least one reply or a timeout for every replica
Whend = 0, reschedule is identical tonaive: mes- and the reply count has not yet been met. As a result this
sages are sent to all replicas right away because the defgjocol has a variable persistence. Nearby replicas may
timer for sending the next message expires immediatd}§. retried many times before a distant replica can reply. In
Whend = 1, reschedule only sends additional messagei§e simulator, which doubles the delay after each message,
when communication failures are detected Whiea 1, the expected number of retries for a replices bounded
messages are sent to additional replicas either if a fail@RPVe by 10g(Tn/ar), wherea is theexpected commu-

is reported, or if at one-half of the longest message failfiéation latencyof the rth replica, andT, is the failure
timeout. timeout period for the most distant replica.

3.2.2 Thereschedule protocol

This protocol meets the design goals better than the
naive protocol. It sends to the closest replicas first, whichio 4 The count protocol
tends to minimize message traffic if the nearest replicas
are available. It also willcommunicate with only as manihecount protocol is similar taretry, except that it has a
replicas as are needed to meet the reply count. The préixed persistence. It maintains a counter for each replica
col will adapt somewhat to changing network conditiongnd stops retrying that replica whemessages have been
in that it orders the replicas by distance, and uses timeosgsit to it. The protocol terminates when all replicas have
to observe failures. However, since the protocol only hagen tried times or the reply count is met.
a persistence of one message, it cannot handle transiefihis protocol improves onetry in a number of ways.
communication failures. We discuss the performance Ry trying each replica a fixed number of times, it willmeet

3.2 Quorum multicast protocols The two extremes of sending all messages at once or
sending as few messages as possible are not always ap-
Propriate for all applications. Three of the new protocols

Yre parameterized bydelay parametef < d < 1 that

eéﬁ_ows an application to specify an intermediate position,
here sending more messages than strictly necessary is

%3Rd to improve operation latency. Wher- 0, the pro-

¥&col will not wait to send to distant replicas. Wher:= 1,

We now present designs for a variant of multicast,ghe-
rum multicastprotocols. The design is guided by fo
goals: make use of proximity; communicate with subs
of the destinations; adapt to changing network conditio
and minimize latency and message traffic. Some of th
goals conflict, so we will present protocols that trade o

for another. " | q the protocol waits until a message failure is reported be-
Quorum multicast protocols send a messagesitset fore sending to distant replicas. Since message failure is

of the destinations. For example, many replication Prot9aected using timeout, wheh< 1 the protocol will wait

cols require that a simple majority of the replicas perforgbme fraction of the timeout period before sending to more

an operation, while others require only one or two mpléﬁstant replicas
cas.

he mini ber of destinati iredi If the communication protocol has not received a reply
The minimum number of destinations required is spegz, , 5 replica after some amount of time, the protocol as-

ified by areply countparameter. In many cases the MeShmes that the message has failed. After some number of

sage need only be sent to enough of the closest re 'éssages have failed, the protocol declares the replica un-

](c:_as tohsatlsfy tr(;_e requwerll_went, av]?ldlng meshs_age Tré’\f/hilable and does not attempt to retransmit messages un-
ic 1o the most distant rep Icas. O course, this mu % the next communication request. Some protocols will
cast should be fault-tolerant, using more distant repllcgﬁly try sending a message to a replica once, while other
Whek? th(t))lse nearby z;re unzlivallable_.f The pr;)tﬁcol I""Eﬁfytocolswilltry several times before giving up. Tlpisr-
not be able to _rln%?t t R? relpy counttl) some O'I tble rgp istenceis a tunable parameter in one of our protocols.
ﬁas ?r_el unaval Iz_i E;:' i ep |cashcande unaval ?fl' € UBie a protocol has declared enough replicas unavail-
ost failure, replica failure (per aps due to insufficient "Sble, it will return a negative indication to the replication
sources), network gateway or link failure, or COntm”eggotocol and abandon the operation. Our measurements

shutdown. Since replication protocols generally requi he Internet, detailed in another report [9], show that
rt transient failures comprise more than three-fourths

request-response communication, the responses to a

t'CQSt serve as acknowledgment that the message Wa%ﬁerhessage failures. They also show that long transient
ceived and pr(_)cessed.))) failures are uncommon, so a protocol can confidently de-
The semantics of quorum multicast define the mterfac&ére host failure after observing only a few lost messages.
In the next sections we will present four quorum mul-
ticast protocols. The first, calledaive, is a straightfor-
ward implementation of multicast that sends messages to
The message is sent to at least a reply count of all replicas, providing a baseline to which the other pro-
the replicas. Exceptionseply count not met. tocols can be compared. The second, catlesthedule,
uses the delay parameter to send to fewer replicas. The
The quorum multicast protocols maintain erpected third and fourth, calleaetry andcount, send to replicas
communication latencyor each possible host. Wherpccording to the delay parameter, but will retry messages

a request is issued to communicate witmembers of g replicas after a first message has failed.
a set of replicas, the communication protocol can order

the set by expected latency and communicate With:]'th%
closest replicas. If responses are not received from
g within a certain time, then messages can be sentTtwe first protocol, a simple multicast, is calledive. It
more distant replicas. The delay before sending to distaehds one message iteratively to all replicas. Replies are
replicas is determined by the parametierThe expected counted, and when a reply count has been obtained the
latency can be determined by measuring recent perfpretocol returns, indicating success. When a reply or a
mance, on the assumption that replicated operations Vallure has been observed for every replica without reach-
be performed much more often than the structure of timg the reply count it declares the access a failure.
network changes. Many Internet applications mgeving There are two problems with this protocol: it neither ac-
averagesof recent behavior to determine such expectesunts for transient communication failures nor uses prox-
tions [4]. imity toimprove performance. Ituses more messages than

guorum-multicast(message, replica set, reply
count) — reply set

.ﬁ.l The naive protocol

communications across a continent, and as long as sevdrdl EXxisting multicast protocols
seconds when satellites are involved.

The amount ofmessage trafficequired for an operation Quorum multicast protocols are a specialization of ordi-
governs the degree the operation will interfere with othBarymulticast protocolsOrdinary multicast sends a mes-
communication in the network. The number of messag&gge to a set of destinations in one operation. Replication
their size, and their destinations contribute to this effegfotocols can use multicast to send a message to all avail-
A communication protocol will cause less interference @ble replicas, later receiving a number of responses from
it can send a message to a nearby host since the message or all of them. Simple request-response multicast
will traverse fewer intermediaries. Broadcast messagegdg@tocols define a simple interface:

a LAN allow replication protocols to send requests to all
replicas in one message, while a separate message Mustyy|tjcast(message, replica set) — reply set
generally be sent to each replica in an internetwork.

Theavailability of a service can be defined as the like- The message is sent to all replicas in the set.
lihood of providing correct service at a given instant[15]. The operation reports no exceptions.
This must be contrasted witkliability, the probability of

providing correct service during a period of time. Highly- geveral researchers have considered the problem of
available applications must ault-tolerant they must 6yiding a multicast facility on an internetwork that has
continue to prowde service even Wher_1 parts of the S¥% inherent broadcast capability. Boggs [2] developed
tem have failed. Internetworks arereliable meaning gjrected broadcastapabilities for internetworks that de-
they lose and duplicate messages from time to time, R 4 message to all hosts on a network segment, even
may deliver them out of order. Hosts can use timeoyiShe sender is not connected to that segment. Directed
and acknowledgments to detect with high probability thgfsadcast cannot provide significant performance gain
a message has not been received. when each replica is located on a separate subnet. Garcia-
Molina and Kogan [6] extend internetwork broadcast al-
gorithms with a novel mechanism that provideskable
multicast facility on an internetwork with unreliable mul-
ticast, even if the network can partition.

3 Multicast protocols

We have developed a family gbiorum multicastommu-) . _
nication protocols that can take advantage of good replicdn contrast to this work, the Isis system [1] provides a
placement. These protocols send a multicast to a subséligifibuted programming environment based on reliable
a group of replicas, rather than to the entire group. Th@ﬁPm'C multlcasi_n a local area. It provides s_pe_C|aI|zed
first use the closest available replicas, falling back on mdtgotocols to multicast to a process group, providing strong
distant replicas when nearby ones are unavailable, and&fgrantees on the ordering and atomicity of delivery and
parameterized so that the replication protocol can provi@@ure detection.
hints to further improve performance. Replication proto- Many other researchers have investigated multicast
cols can be implemented using them, limiting the cost pfotocols as part of distributed operating systems. Cheri-
message traffic and using nearby replicas for low latentgn [3] used multicast with distributgarocess groupas

A communication protocol that is to work well in inter-2 primary communication mechanism in tesystem, a
networks must address their particular performance chigeally-distributed operating system at Stanford Univer-
acteristics: long, variable latency and occasional highy-
message loss. These characteristics make some tecBome RPC systems have provided one-to-many and
nigues used for replication in a local-area network inaprany-to-many communication semantics similar to a
propriate for internetwork use. The protocols should ncequest-response multicast protocol. The Circus repli-
require broadcast, but instead send messages to repletsd RPC system [5] extended RPC to include replicated
in a more controlled fashion. The protocols should lmalls to a group of processes, called a troupe; each process
sensitive to the communication latency of replicas, aimdthe troupe was required to perform the same computa-
should tend to communicate with nearby replicas, provitien and issue the same RPCs in the same order. The Par-
ing lower access latencies and limiting the portion of thedlel Remote Procedure Call (PARPC) system [10] imple-
internetwork affected by an access. The protocols shomiénted one-to-many replicated procedure calls. Replica-
also address the problems associated with transient fadn protocols could be implemented in both these system
ures by resending messages to replicas. using only a few lines of code.

1 Introduction coordinated among the replicas.

Replication protocols hide this complexity by provid-
In this paper we present a new family of communicéRg a set of operations performed by clients and a set per-
tion protocols that we ternguorum multicasts These formed by replicas. Clients can read and update the data.
protocols are efficient and convenient for implementirfgeplicas perform operations such as failure recovery, cre-
replicated and distributed applications. They provideaion of new replicas, and information propagation be-
communication mechanism similar to traditional multitween replicas.
cast protocols, but unlike other multicast protocols, the Both the clients and the replicas reside loosts All
guorum multicast protocols communicate with justdo- hosts are connected using an internetwork that consists
setof the set of destinations. The quorum multicast prof local-area networks witlgatewaysand point-to-point
tocols can dynamically select this subset to be the closisks. When a host sends a message to another host, the
available destinations, limiting the portion of the internethessage will be forwarded through (perhaps many) gate-
work affected by any particular multicast. Such protocotgays and links to its destination.
are useful when implementing replication protocols based
on voting or when communicating with one of a group of

replicas in a fault-tolerant manner. 2 Performance measures

Two distinguishing characteristics of wide-area dis-
tributed applications are that they involve the cooperathere are several measures that can be used to evaluate the
tion of multiple distinct processing systems, and that thegerformance of replicated data. These include the latency
systems share information by message-passing. Pe@plgperations, the amount of message traffic caused by an
build distributed applications on a wide-area internetwogperation, and the data availability. Though the ideal pro-
because the application might share information betweg@ol would provide the highest availability with the low-
geographically-distributed users or between users in dikt traffic and latency, trade-offs between these measures
ferent organizations with no centrally-administered symust be made. The scale of the Internet further compli-
tem. Several such systems already exist, such as efeges protocol performance, for a protocol that performs
tronic mail, news, and name services. well in a local-area network may not scale to the world-

When systems dispersed over a wide area are to\ame Internet. We will show how quorum multicast pro-
cess the same data, that data candpticated Several tocols help provide good availability while using fewer
sites around the network maintain copies of the replicatetssages and requiring less latency than a simple multi-
data. Replicated data can be more fault-tolerant than aast.
replicated data, and can improve performance by locatingvide-area networks contain many more systems that
copies of the data near to their use. Many existing widgight share resources, implying that the potential load
area systems, such as airline reservation systems andrihighly utilized components in an internetwork is much
brary card catalogues, do not use replication technigukigher than the load on components in a LAN. The poten-
relying instead on large central servers. This is in paral users of an application at a local site number at most a
due to the beliefs that replication is inconvenient whefiaw hundred to a few thousand, while the number of po-
compared to centralized solutions and that replicated dasatial users of a wide-area application is orders of mag-
provide poor end-to-end performance. In this paper W&ude larger. Systems such as the Domain Name Service
show that replication can provide good performance whgr?] and Usenet show that the load on some applications
guorum multicasts are used, while in other work [8] wecales with the number of users.
have shown that they are a convenient mechanism for congending a message between any two hosts on an inter-
structing replication protocols. network requires a variable amount of time, termed the

Copies of replicated data are held at a numbeepfi- communication latencyThe latency depends on the load
casthat consist of storage and a process that maintaorsthe network and the available routes. In a wide-area
the data copy. Alientprocess can communicate with theternetwork, communication latency can be the predom-
replicas to read or update the data. Communication li@ant delay for operations on the replicated data, which of-
tween the client and the replicas is performed accorditamn involve only a few disk accesses and a small amount
to areplication protocolthat provides the client with the of computation. Communication with nearby replicas re-
illusion of a single data object. This is more complex thaguires a few milliseconds, while access times for distant
using a single copy of the data, since operations mustrieelicas often require several hundred milliseconds for

Quorum-oriented multicast protocols for
data replication

Richard A. Goldingand Darrell D. E. Long

UCSC-CRL-91-21
June 12, 1991

Concurrent Systems Laboratory
Computer and Information Sciences
University of California, Santa Cruz

Santa Cruz, CA 95064

Many wide-area distributed applications use replicated data to improve the availability of the data, and to
improve access latency by locating copies of the data near to their use. This paper presents a new family
of communication protocols, calleguorum multicaststhat provide efficient communication services for
widely replicated data. Quorum multicasts are similar to ordinary multicasts, which deliver a message to a
set of destinations. The new protocols extend this model by allowing delivery to a subset of the destinations,
selected according to distance or expected data currency. These protocols provide well-defined failure seman-
tics, and can distinguish between communication failure and replica failure with high probability. We have
evaluated their performance, which required taking several traces of the Internet to determine distributions for
communication latency and failure. A simulation study of quorum multicasts, based on these measurements,
shows that these protocols provide low latency and require few messages. A second study that measured a
test application running at several sites confirmed these results.

*Supported in part by the Concurrent Systems Project at Hewlett-Packard Laboratories.

