
[12] M. Rosenblum and J. K. Ousterhout, \The LFSstorage manager," in USENIX Summer Confer-ence, pp. 315{324, June 1990.[13] L.-F. Cabrera, E. Hunter, M. J. Karels, andD. A. Mosher, \User-process communicationperformance in networks of computers," IEEETransactions on Software Engineering, vol. 14,pp. 38{53, Jan. 1988.[14] L. W. McVoy and S. R. Kleiman, \Extent-like performance from a Unix �le system," inUSENIX Winter Conference, 1991.

7



A more immediate goal is to measure the e�ect ofadding fault-tolerance on the performance prototype,particularly when a failure has occurred.5 ConclusionsIn this article we have presented a general I/O archi-tecture for manipulating very large data objects athigh data-rates. The principle behind our architec-ture is simple: aggregate arbitrarily many (slow) stor-age devices into a faster logical device, making all ap-plications unaware of this aggregation. In our schemethe maximumdata-rate of individual secondary stor-age devices ceases to limit the maximum data-ratethat can be achieved. Known techniques of hierarchi-cal clustering can be used to scale the performanceachieved with our approach to exploit advances intechnology that become available. This architecturegeneralizes to distributed systems current I/O chan-nel architectures, disk striping techniques, and theproposed disk array architecture Raid.We have modeled the data-rate behavior of this ar-chitecture in the case of multiple storage agents con-nected to a common local-area network, where themaximum data-rate of the network is higher thanthat of each of the individual storage agents. Weobserved good scaling properties. A simpli�ed im-plementation of the architecture con�rmed that largeaggregate data-rates are achieved from slower I/O de-vices.The transfer size of objects was found to have a sig-ni�cant e�ect on the performance of the system. Thisis because small transfer sizes increase the number ofseeks as well as the latency observed at the disks. Byusing sequential storage preallocation and data stag-ing, seeks can be minimized and performance signi�-cantly improved.Tolerance to failures in the Swift architecture isvery exible. Each component can be hardened in-dividually. Computed data redundancy can be usedto protect against failures of the storage agents. Themetadata can be hardened using standard data basetechniques. Multiple interconnections can be used toguarantee alternative paths to the data and metadataof the system.AcknowledgementsWe are grateful to D. Edelson, A. Emigh, R. Golding,and M. Long for their assistance, and to L. Haas forcareful reading of earlier versions of this manuscript.

References[1] Imprimis Technology, ArrayMaster 9058 Con-troller, 1989.[2] Thinking Machines, Incorporated, ConnectionMachine Model CM-2 Technical Summary, May1989.[3] P. Pierce, \A concurrent �le system for a highlyparallel mass storage subsystem," in Proceed-ings of the 4th Conference on Hypercubes, (Mon-terey), Mar. 1989.[4] D. Patterson, G. Gibson, and R. Katz, \Acase for redundant arrays of inexpensive disks(RAID)," in Proceedings of the ACM SIGMODConference, (Chicago), pp. 109{116, ACM, June1988.[5] S. Ng, \Pitfalls in designing disk arrays," in Pro-ceedings of the IEEE COMPCON Conference,(San Francisco), Feb. 1989.[6] L.-F. Cabrera and J. Wyllie, \QuickSilver dis-tributed �le services: An architecture for hor-izontal growth," in Proceedings of 2nd IEEEConference on Computer Workstations, (SantaClara, California), IEEE Computer Society,March 1988.[7] M. Nelson, B. Welch, and J. Ousterhout,\Caching in the Sprite network �le system,"ACM Transactions on Computer Systems, vol. 6,pp. 134{154, Feb. 1988.[8] K. Salem and H. Garcia-Molina, \Disk striping,"in Proceeding of the 2nd International Confer-ence on Data Engineering, pp. 336{342, IEEE,Feb. 1986.[9] H. Garcia-Molina and K. Salem, \The impactof disk striping on reliability," IEEE DatabaseEngineering Bulletin, vol. 11, pp. 26{39, Mar.1988.[10] L.-F. Cabrera and D. D. E. Long, \Swift: A stor-age architecture for large objects," Tech. Rep.IBM Almaden Research Center RJ7128, Inter-national Business Machines, Oct. 1990.[11] L.-F. Cabrera and D. D. E. Long, \Exploit-ing multiple I/O streams to provide high data-rates," in Proceedings of 1991 Summer UsenixConference, (Nashville, Tennessee), Usenix As-sociation, June 1991.6



better than access to the local SCSI disk. When com-pared with NFS, it provided almost twice the data-rates for reads and exceeded the NFS data-rate forwrites by more than eight times. Though Swift dif-fers fromNFS signi�cantly, this establishes the abilityof Swift to aggregate data-rates of slower I/O devices.To measure the data-rate performance of the pro-totype, three, six, and nine megabytes were read fromand written to a Swift object. To calculate con�denceintervals, eight samples of each measurement weretaken. Analogous tests were performed using the lo-cal SCSI disk and the NFS �le service. Maintainingcold caches was achieved by using /etc/umount.The three storage agents were Sun 4/20s with 16megabytes of memory and a local 104 megabyte localSCSI disk also under SunOS 4.1.1. These hosts wereplaced on a 10 megabit/second dedicated Ethernet.Aside from the standard system processes, each ofthe servers was dedicated to the Swift storage agentsoftware.For Swift, the Ethernet was limiting performancefactor. Using three storage agents, the utilization ofthe network ranged from 77% to 80% of its measuredcapacity of 1:12 megabytes/second. A fourth storageagent would only saturate the network while not sig-ni�cantly increasing performance. The NFSmeasure-ments were run over a lightly-loaded shared depart-mental Ethernet, not over the dedicated laboratorynetwork. The tra�c present in this shared networkwhen the measurements were made was less than 5%of its capacity, which should not signi�cantly a�ectthe measured data-rates.When compared with the local SCSI disk perfor-mance, the Swift prototype only performs between29% and 36% better. This contrasts sharply withprevious measurements taken under SunOS 4.1 wherethe Swift prototype performed about 250% betterthan local SCSI read access. This change is due toa signi�cant improvement in the SunOS �le systemunder SunOS 4.1.1 [14]. In contrast to its read perfor-mance, when writes are considered, the Swift proto-type shows between a 274% and a 280% increase overthat of the local SCSI disk. The ideal performanceimprovement would have been 300% if the intercon-nection mediumwere not limitingperformance. Sinceits performance is less than 300% of the local SCSIperformance, this supports the assertion that the fac-tor most limiting its performance is the Ethernet.When the Swift prototype is compared with thehigh-performance NFS �le server, its performance isbetween 180% and 197% better in the case of reads.This shows that Swift can successfully provide in-creased I/O performance by aggregating several low-speed storage agents and driving them in parallel.

In the case of writes, the Swift prototype per-forms between 767% and 809% better than the high-performance NFS �le server. When interpreting thesemeasurements one should also keep in mind that thewrite data-rate measurements in NFS reect thewrite-through policy of the server. We have not yetimplemented a write-through policy for the Swift pro-totype. This makes data-rates for write somewhatdi�cult to compare with those of Swift.To determine the e�ect of doubling the data-ratecapacity of the interconnection, we added a secondEthernet segment between the client and additionalstorage agents. This second network segment isshared by several groups in the department. Duringthe measurement period its load was seldom morethan 5% of its capacity.We did not expect to obtain data-rates twice asgreat as those using only the dedicated laboratorynetwork since we expected the network subsystemof the client to be highly stressed. To our surprise,our measurements show that forwrite operations theSwift prototype almost doubled its data-rate.In the case of reads, the increase in performance ofthe Swift prototype is less pronounced. This can beattributed to several factors including the increasedload on the client, a lack of bu�er space, and to theincreased complexity of the read protocol which re-quires many more packets to be sent than does thewrite protocol.These measurements demonstrate that the Swiftarchitecture can make immediate use of a faster in-terconnection medium and that its data-rates scaleaccordingly.The prototype demonstrates that the Swift archi-tecture can achieve high data-rates on a local-areanetwork by aggregating data-rates from slower dataservers. The prototype also validates the concept ofdistributed disk striping in a local-area network byproviding data-rates higher than both the local SCSIdisk and the NFS �le server.4 Future WorkOne area of the Swift architecture that requires fur-ther work is eliminating the requirement that re-sources be preallocated. We are investigating waysto apply real-time scheduling techniques to the prob-lem of providing performance guarantees.A second area of future work is that of co-scheduling resources. The support of continuous mul-timedia applications requires that peripheral proces-sors and the communication subsystem be scheduledtogether.5



it.The Swift architecture provides the distinct ad-vantage that the application can choose its reliabil-ity level. Since data transfer is segment based, eachtransfer plan can specify a required reliability. Fora given reliability level and performance constraint,an appropriate group size can be selected based onavailable resources.3 Two Validation StudiesWe have done two studies to validate the Swift archi-tecture. The �rst was a simulation study of a possiblelocal-area network implementation of Swift. The sec-ond was a proof-of-concept Ethernet-based prototypeof a simpli�ed version of the architecture. The com-plete set of results can be found elsewhere [10, 11].3.1 LAN Simulation of SwiftThe simulator was used to locate the componentsthat were the limiting factors for a given level ofperformance. The simulator did not model caching,computing data parity blocks, any preallocation ofresources, nor did it attempt to provide performanceguarantees. Traces of �le system activity would havebeen required in order to model these e�ectively andsuch traces were unavailable to us. In addition, thesimulator did not model the storage mediator as it isnot in the path of the data transmitted to and fromclients, but is consulted only at the start of an I/Osession.In our simulation of Swift, to read, a small re-quest packet is multicast to the storage agents. Theclient then waits for the data to be transmitted bythe storage agents. A write request transmits thedata to each of the storage agents. Once the blockshave been transmitted the client awaits an acknowl-edgement from the storage agents that the data havebeen written to disk.Our model of the disk access time is conservativein that the seek time and rotational latency are as-sumed to be independent uniform random variables,and no attempt was made to order requests to sched-ule the disk arm, pessimistic assumptions when ad-vanced layout policies are used [12].The data transfer processing costs were taken intoaccount by assuming that protocol processing re-quired 1500 instructions [13] plus 1 instruction perbyte in the packet.The load that could be carried depended both onthe number of disks used and the block size. The de-lay was dominated by the disk, with an average seek

time of 16 milliseconds, an average rotational delay of8:3 milliseconds and a transfer rate of 2:5 megabytesper second. The result was that transferring 32 kilo-bytes required about 37 milliseconds on the average.As the block size was increased, seek time and ro-tational delay were mitigated and the transfer timebecame more dependent on the amount of data trans-ferred.As small transfer sizes require many seeks in orderto transfer the data, large transfer sizes have a sig-ni�cantly positive e�ect on the data-rates achieved.For small numbers of disks, seek time dominated tothe extent that its e�ect on performance was almostas signi�cant as the number of disks.When 4 disks were used, the system saturatedquickly. For larger numbers of disks, the responsetime was almost constant until the knee in the per-formance curve was reached. For 32 disks, the max-imum sustainable load was reached at about 22 re-quests per second. At this point the disks were 50%utilized on the average. The rate of requests that areserviceable increased almost linearly in the number ofdisks. Increased rotational delay and a slight loadingof the communication medium prevents it from beingstrictly linear.The maximum sustainable data-rate is that whichis observed by the client when the average time tocomplete a request is equal to the average time be-tween requests. For transfer units of 4 kilobytes, themaximum sustainable data-rate for 32 disks is ap-proximately 2 megabytes per second. When transferunits of 32 kilobytes are used, the maximum sustain-able data-rate increases to nearly 12 megabytes persecond for the same 32 disks. The increase in e�ectivedata-rate is almost linear in the size of the transferunit.The clear conclusion is that when su�cient inter-connection capacity is available the data-rate is al-most linearly related to both the number of stor-age agents and to the size of the transfer unit. Thereason the transfer unit impacts so much the data-rates achieved by the system is that seek time andlatency at the disks are enormous when compared tothe speed of the processors and the network transferrate. This also shows the value of careful data place-ment and indicates that resource preallocation maybe very bene�cial to performance.3.2 LAN Implementation of SwiftIn a simpli�ed Ethernet-based prototype of Swift wefound that its performance was limited by the speedof the Ethernet. The prototype provided networkdata-rates that were between two and three times4



more detail.2.1 Distribution AgentThe distribution agent acts on behalf of its clients, thedata producer and the data consumer, in the storageand retrieval of all data. Although not required, weexpect that in practice both the data producer andthe data consumer be co-resident in the same host asthe distribution agent.The distribution agent interacts with the storagemediator to obtain directory service, access rights toobjects, encryption keys, and transfer plans. In addi-tion, all computed transformations of the data, suchas encryption and erasure correcting codes, are doneby the distribution agents. Authentication is accom-plished through a secure exchange of keys with thestorage mediator to obtain a trusted channel.The primary task of the distribution agent is toimplement distributed striping of the data over sev-eral storage agents. When reading, it assembles theobject from the incoming data streams according thethe transfer plan. When writing, it distributes thedata object among the several storage agents. In bothcases it performs any parity computations necessaryto provide fault tolerance.2.2 Storage MediatorThe storage mediator is central to establishing andadministering resources. It negotiates with the stor-age agents to reserve su�cient space and transfer ca-pacity. It also determines how to best meet the re-siliency requirements and returns this as part of thetransfer plan.The transfer plan contains the list of segmentsmaking up the object, the transfer unit for each seg-ment, the transfer unit for each storage agent, a listof storage agents to hold the data, a list of storageagents to act as checks on the data.Encryption is the mechanism used to provide au-thentication, access control, and security of the data.The storage mediator is the sole repository for en-cryption keys. It will use a secure key exchange pro-tocol to authenticate the distribution agents.Since the Swift architecture is based on preallo-cation, it easily provides sequential write sharing,namely the ability for two clients to have alternate ac-cess to the same data. The storage mediator will usea call-back mechanism to provide cache coherency.When a distribution agent requests access to an ob-ject which still may exist in the cache of some otherclient, the storage mediator will cause that cache tobe ushed as part of the resource allocation protocol.

In order to achieve high performance, a pessimisticstorage allocation strategy is used. Since all resourcesare preallocated, requests that would exceed currentstorage capacity will be denied. Similarly, requeststhat would exceed the current transfer capacity willbe denied. These requests can be reissued at a latertime when more resources are available.The storage mediator must be highly available andthe metadata it maintains be highly fault tolerant.For example, each directory entry contains the nameof the object, its protection status, a list of data seg-ments and storage agents that hold the object. Ahot stand-by approach can be used to ensure thatthe storage mediator will be able to provide services.Load sharing among the copies of the storage medi-ator can improve performance of the system. Theintegrity of the storage mediator's data can be in-sured in several ways. One method is to let Swiftadminister the metadata specifying a high degree ofresiliency. Another would be to use standard database techniques [6].2.3 Storage AgentsThe storage agents administer all aspects of sec-ondary storage media, including data layout opti-mization and o�-line data alignment. Each storageagent may administer many storage devices that canbe disks, or other high speed devices including diskarrays.Since the Swift architecture is intended for objectsmuch larger than any cache, we believe that cacheswill be used most often for staging data into transferunits than for storing complete objects. For smallobjects we expect caches to be as bene�cial as in othersystems [7].Object descriptors store redundant information.This allows the reconstruction of all objects by scav-enging the data in the storage agents, should a catas-trophic failure, or a software error, render the storagemediator inoperative.For any long-term storage system, reliability is animportant concern. In an architecture that uses diskstriping [8], the increased number of devices increasesthe probability that some will be inoperative [9].Through the appropriate use of redundancy, the reli-ability of the system can be enhanced to any desiredlevel.The solution we have chosen for Swift is to use re-dundant storage for erasure correcting codes [4]. Byusing the error detecting capabilities of the disks, asingle parity disk is su�cient to tolerate a single fail-ure [9, 4]. In this way, if a disk fails then the infor-mation on the other disks can be used to reconstruct3



Storage
Agents

Storage
Mediator

Distribution
Agent

...

Interconnection Medium

ClientFigure 1: Components of the Swift Architecturework stations if data redundancy is not used.We also present the summary of an Ethernet-basedproof-of-concept local-area prototype of Swift. Thisimplementation demonstrated the validity of diskstriping over a set of servers placed on the network.Our prototype achieved data rates higher than writ-ing to the local disk and also higher than those ob-tained by the NFS �le service.2 The Swift ArchitectureThe only way to address the disparity between thetransfer rate of disk devices and the higher data-ratesmandated by new applications is to use several disksin parallel. Much like memory interleaving, fastersecondary storage systems can be built from a col-lection of slower storage devices. Several concurrentI/O architectures, such as Imprimis ArrayMaster [1],DataVault [2], CFS [3] and Raid [4, 5], are based onthis observation. Swift uses this approach to achieveany required data-rate to secondary storage up to sat-uration of the interconnection medium. Figure 1 hasa diagram of the architectural structure of Swift.The Swift architecture distinguishes four logicalcomponents: distribution agent , data producer , stor-age mediator , and storage agents.A distribution agent operates in close cooperationwith the data producer . It is responsible for assem-bling the data streams coming in from the multipledata repositories (in the case of reading), and dis-tributing the data to be striped over the several datarepositories (in the case of writing). Encryption anddecryption are also the responsibility of the distribu-tion agent.The storage mediator is central to Swift. It op-erates in close cooperation with the storage agentsand is responsible for providing directory services,authentication, enforcing access control, produc-ing transfer plans, administering storage allocation,cache coherency, and ensuring serializability of con-

current activities.The storage agents drive the storage devices at thedata repositories and are responsible for storing andretrieving data at negotiated rates. They are also re-sponsible for keeping enough information to allow thereconstruction of objects from its constituent partsshould the storage mediator fail.Swift assumes that an interconnection mediumwith su�cient capacity will be available for the ap-plications. This assumption is reasonable since high-speed communications networks that operate in ex-cess of 1 gigabit per second are being developed.When creating a directory that will store Swift ob-jects, its name and protection status, as well as thedegree of redundancy of all objects stored in it, arespeci�ed. The degree of resiliency of the directoryitself is also speci�ed to the storage mediator.In order to store an object in Swift, the data pro-ducer contacts the distribution agent with the name,estimated size, estimated maximum data-rate, andresiliency requirements of the object to store. Thedistribution agent in turn contacts the storage medi-ator with these requirements. The storage mediatordetermines the degree of redundancy required for theobject. It then determines which of the storage agentswill service this request and how the object will bestriped across them. The storage mediator requestsinternal object repository handles to each of the stor-age agents. Upon completion of this request eachstorage agent has reserved the necessary resources interms of storage and transfer capacity for it to storeits assigned part of the object. The storage media-tor collects all the handles from the storage agents,returning the collection of internal object repositoryhandles to the distribution agent as part of the trans-fer plan for the object.Once the storage plan is created, the distributionagent does not use the storage mediator as an inter-mediary; it sends data directly to the storage agents.The distribution agent returns a handle for the ob-ject to the data producer. This handle, which is in-ternally generated by the distribution agent, is usedwith each request to transfer data. The distributionagent routes the (possibly modi�ed) data to the ap-propriate storage agents. This scenario assumes thatthe data producer knows how to contact a distribu-tion agent.The scenario for retrieving data is analogous, withthe only di�erence being that the transfer plan tellsthe distribution agent from which storage agents thedata must be fetched. The �nal collation and presen-tation to the client is done by the distribution agent.In the following subsections the distribution agent,storage mediator, and storage agent are presented in2



Swift: A Storage Architecture for Large ObjectsLuis-Felipe CabreraComputer Science DepartmentIBM Almaden Research CenterInternet: cabrera@ibm.com Darrell D. E. LongComputer & Information SciencesUniversity of California at Santa CruzInternet: darrell@sequoia.ucsc.eduAbstractManaging large objects with high data-rate require-ments is di�cult for current computing systems. Wedescribe an Input/Output architecture, called Swift,that addresses the problem of storing and retrievingvery large data objects from slow secondary storageat very high data-rates. Applications that requirethis capability are poorly supported in current sys-tems, even though they are made possible by high-speed networks. These range from storage and visu-alization of scienti�c computations to recodring andplay-back of color video in real-time. Swift addressesthe problem of providing the data rates required bydigital video by exploiting the available interconnec-tion capacity and by using several slower storage de-vices in parallel.We have done two studies to validate the Swift ar-chitecture: a simulation study and an Ethernet-basedproof-of-concept implementation. Both studies indi-cate that the aggregation principle proposed in Swiftcan yield very high data-rates. We present a briefsummary of these studies.1 IntroductionThe disparity between processing speed, networktransfer rates, and the performance of disk storagesystems will increase in the future. The processingspeed of computing systems continues to increase atan exponential rate. Advances in communicationstechnology are providing increased transfer rates evenmore rapidly than the increases in processing speed.In contrast to these advances, disk storage technol-ogy remains much the same. Although the density ofthe media has greatly increased, there has been littleimprovement in either access times or data transferrates. In the case of optical storage, the access timeshave increased and the data transfer rates have de-creased relative to magnetic media. Due to physical

considerations, substantial increases in disk storagedata transfer rates seem unlikely.Because of increased processing power and the po-tential for high network transfer rates, new applica-tions are emerging. These applications range frombulk data transfer for super computers to managingdigital color video in real-time. Today, managing dig-itized color video in real-time is impossible. Storingjust a few minutes of digitized color video requiresgigabytes of storage. Storing or retrieving it in real-time requires sustained transfer rates on the order of20 megabytes per second.Our architecture, called Swift, addresses the prob-lem of storing and retrieving large data objects fromslow secondary storage at very high data-rates. Swiftis based on the premises that: (1) the network inter-connection will be capable of supporting much higherdata-rates than individual storage agents; (2) re-sources can be preallocated for storing and transmit-ting data; (3) multiple storage agents can be drivenconcurrently using data striping; and (4) failures ofstorage agents can be masked using data redundancy.Swift is based on a client-server model and ad-dresses the issues of authentication, access control,and encryption. Since it is a distributed architec-ture made up of independently replaceable compo-nents, it can provide very high reliability. It is adapt-able to di�erent network interconnection topologiesand technologies. Swift operates by having a stor-age mediator reserve resources from storage agentsin a session-oriented manner, and then presenting adistribution agent with a transfer plan. The distribu-tion agent stores or retrieves the data at the storageagents following that plan.Even though Swift was designed with very largeobjects in mind, it can handle small objects such asthose encountered in normal �le systems with twopenalties: one round trip time for a short networkmessage to consult the storage mediator, and com-puting the required data redundancy. Swift is alsowell suited as a swapping device for high performance1


