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[Pâris88] J.-F. Pâris and D. D. E. Long. Efficient dynamic voting algorithms. 4th Interna-
tional Conference on Data Engineering (Los Angeles), pages 268–75. Institute of Electri-
cal and Electronics Engineers, February 1988.
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for a priori prediction, and am investigating the correlatability of latency and failure at

different hosts sharing routing paths.
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has observed a few sequential message failures to a particular host it is likely that host is

unavailable.

Based on these traces, I have analyzed the performance of quorum multicast protocols.

They provide a robust mechanism for communicating with replicas, and can require fewer

messages and less time than naive multicasts. The count protocol appears to be a good

choice in low-failure situations, while reschedule is most appropriate when messages are

at a premium or when message failure is likely. Count is a good choice when operation

success is important, since its persistence causes it to succeed more often than the other

protocols.

8.1 Future work

In any work this size there are a number of loose ends that can be tidied up. I have

not investigated the operation throughput that can be achieved using quorum multicast

protocols. This is of little concern when a distributed service is used but lightly, while a

service that is used more heavily must contend with congestion and overload. I intend

to extend the performance evaluation to include throughput and a more accurate failure

model in the near future.

While simulation and measurement methods produce detailed performance evalua-

tions, analytic methods are often useful for fast, qualitative looks at the effect of one pa-

rameter or another. The quorum multicast protocols can be modeled as embedded Markov

systems. The model’s state transition graph is acyclic, which allows one to apply very

simple methods to obtain exact results. I am investigating this model with the intent of

measuring the distributions of operation latency.

It would seem certain that the measurements of Internet performance will yield more

results. I am investigating the actual correlation between the latency of one message and

the next. It is also necessary to establish metrics of quality for latency predictors so that the

moving-average method of prediction can be evaluated. I am also interested in methods
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Chapter 8

Summary

In this thesis I have presented a family of quorum multicast communication protocols

that can be used to implement replicated data. These protocols depend on an unreliable

datagram service like that provided by the Internet. My three new protocols are called

reschedule, retry, and count.

Quorum multicast protocols provide multicast to a subset of a group of sites. If the

subset of sites is selected by shortest expected communication time, the protocols will

communicate with the closest available sites and fall back to more distant sites when the

nearby ones fail. The size of the subset is specified as the reply count, which is a parameter.

By varying the reply count, quorum multicasts can be used as a fault-tolerant one-to-

one communication mechanism that contacts ‘spare’ replicas on failure, to a one-to-many

multicast. These protocols provide failure indications to higher level software. If a host

has failed, or the network connecting the hosts has failed, these protocols are guaranteed

to report a failure. If a host is available, it is unlikely (but not impossible) that the protocol

will report a failure.

I recorded traces of Internet communication behavior as part of the performance eval-

uation. The analysis of these traces indicates that the communication latency distribution

for most sites is reasonably predictable. The analysis also shows that failed messages gen-

erally occur in short runs of a few failures, and that these failures are not independent.

These observations lead me to the conclusions that communication behavior of the next

message can be predicted from the behavior of recent messages, and that when a protocol
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than the others.

7.4 Summary

The measurement experiment was largely a success. It validated most of the results

obtained by simulation. The primary differences arose because the hosts showed fewer

failed messages than those in the traces that drove the simulations. An error in the client

invalidated the results for failed operations for the count protocol, but successful opera-

tions showed the expected behavior. Overall, the measurements confirm the conclusion

that quorum multicast protocols can provide significant performance advantages for wide-

area applications, and show that there is a trade-off among latency, traffic, and operation

success.



105

4

5

6

7

8

9

10

11

12

13

0 0.2 0.4 0.6 0.8 1

M
es

sa
ge

s

Delay parameter d

Naive
Reschedule

Retry

Figure 7.6: Measured message count for failed
operations. Group 2 measured from
midgard.ucsc.edu.

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

0 0.2 0.4 0.6 0.8 1

M
es

sa
ge

s

Delay parameter d

Naive
Reschedule

Retry

Figure 7.7: Measured message count for all
operations. Group 2 measured from
midgard.ucsc.edu.



104

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

0 0.2 0.4 0.6 0.8 1

M
es

sa
ge

s

Delay parameter d

Naive
Reschedule

Retry
Count

Figure 7.5: Measured message count for
successful operations. Group 2 measured from
midgard.ucsc.edu.

d = 0:4 and flattening out thereafter. The 95% confidence intervals on these results are

uniformly less than 5%, and generally much smaller. Since these hosts exhibited fewer

message failures than did those in the 125-host traces, this experiment should show little

difference between the reschedule, retry, and count protocols.

The measured results for failed operations are again similar to simulation results, as

seen in Figure 7.6 (compare Figure 6.6). Naive and reschedule each use five messages as

always. Retry uses an increasing number as d increases, but the count is much lower than

in simulation results because there were fewer message failures. The results for count are

omitted due to the error in the client.

Finally, the overall message count results in Figure 7.7 are similar to those obtained by

simulation (compare Figure 6.7). As always the results are dominated by successful oper-

ations. The low number of messages retry used in failed operations makes it competitive

with the other protocols, unlike the simulation results where it used far more messages



103

450

500

550

600

650

700

750

800

850

900

0 0.2 0.4 0.6 0.8 1

M
il

li
se

co
n

ds

Delay parameter d

Naive
Reschedule

Retry

Figure 7.4: Measured communication latency for
all operations. Group 2 measured from
midgard.ucsc.edu.

d, the measured results show that the two have quite similar latencies. The sample size

is small enough that this result is inconclusive. The results for retry are consistent with

simulation results. The spikes at high values of d are due to the small sample size, where

the data exhibit extremely wide confidence intervals. The results for count are omitted

due to the client error.

As seen in Figure 7.4, despite the differences with failed operations, the overall results

are consistent with simulation results (compare Figure 6.4) since the overall success rate

was in excess of 95%. The reschedule and retry protocols all exhibited an increasing

latency as d ranges from zero to one. Count is omitted from this graph.

The message counts for operations that met their reply count are reported in Figure 7.5

(compare Figure 6.5). The three new quorum multicast protocols all show similar behavior,

unlike the simulation results where reschedule used significantly fewer messages than

the others. However, the curves have about the same shape, decreasing from d = 0:0 to
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Figure 7.1 shows the success fraction for each protocol (compare Figure 6.1). The data

show that all four protocols met the reply count more than 95% of the time. Count suc-

ceeded more often than the other protocols for almost all values of d, with retry generally

succeeding more often than naive and reschedule. These results are similar to the simu-

lation results.

Figure 7.2 shows the mean latency required for successful operations (compare Fig-

ure 6.2). Again the results appear to be similar to those obtained by simulation. Naive

is generally the fastest of the protocols, and the latency of the other three protocols in-

creases approximately linearly in the delay parameter d. Count appears in general to re-

quire slightly more time than the other protocols, but the difference is somewhat smaller

than the half-width of the confidence interval so this measurement is inconclusive.

The results for failure latency, shown in Figure 7.3, are somewhat different from those

obtained by simulation (compare Figure 6.3). While simulation indicated that reschedule

would take more time thannaive to declare failure, and that this time would increase with
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Table 7.2: Summary of host performance.

From From From
midgard.ucsc.edu slice.ooc.uva.nl beowulf.ucsd.edu

Average Average Average
Message latency Message latency Message latency

success (ms) success (ms) success (ms)
asc.cise.nsf.gov 85% 280 84% 263
aupair.cs.athabascau.ca 70% 1723 87% 2699
baldulf.cs.purdue.edu 92% 103 98% 310
beowulf.ucsd.edu 88% 67 96% 11
bugs.sics.se 87% 449 93% 233
cricket.ece.arizona.edu 95% 141 95% 163
dslab2.cs.uit.no 88% 507 89% 559
elettra.dm.unibo.it 82% 314 97% 81
fysap.fys.ruu.nl 92% 332 97% 37
helpdesk.rus.uni-stuttgart.de 82% 2246 79% 2207
hornet.cs.vu.nl 93% 7204 94% 404
iggy.gw.vitalink.com 91% 334 94% 367 89% 337
issun3.stc.nl 88% 557 73% 571
longtarin.irisa.fr 94% 437 92% 213
manray.berkeley.edu 95% 38 93% 81
midgard.ucsc.edu 97% 17 97% 362
nachiketa.ms.uky.edu 15% 183 7% 684
odin.ethz.ch 94% 309 97% 107
plains.ndsu.nodak.edu 91% 372 91% 362
relay.cs.toronto.edu 90% 219 97% 248
scott.prime.com 66% 288 94% 1101
skydesign.arc.nasa.gov 22% 47 24% 181
sol.acs.unt.edu 94% 116 91% 82
sole.cs.ucla.edu 3% 128 0% —
spud.img.rit.edu 5% 301 89% 318
tik.vtt.fi 53% 758 94% 391
tnofel.fel.tno.nl 85% 603 85% 662
tyrannosaurus.scrc. 41% 172 85% 372

symbolics.com
ubitrex.mb.ca 93% 459 97% 770
yragael.inria.fr 92% 310 91% 211
zeno.gso.uri.edu 59% 243 95% 359

parameter d in the same way. The measured 95% confidence intervals for latency are gen-

erally around 10 to 15%, and generally less than 5% for messages. However, there are

exceptions, which will be noted with the appropriate graphs. Further, given the sample

size even tight confidence intervals may not be meaningful since their coverage could be

low.

The graphs presented here show the results obtained using midgard.ucsc.edu to poll

the second group. This group consisted of hosts from all over North America and Europe,

and four of the hosts were generally available. The average communication latency ranged

from 38 ms to 603 ms.
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For these groups, one server host was selected from each of the Netherlands, the rest of

Europe, eastern US and Canada, western US, and the Bay area. The sixth group consisted

of sites in California, and the seventh of sites in the eastern half of North America. These

two groups modeled the behavior of regionally-replicated data.

The client program polled these groups from three client hosts: midgard.ucsc.edu, a

host at UC Santa Cruz; beowulf.ucsd.edu, a host at UC San Diego; and slice.ooc.uva.nl, a

host at the Universiteit van Amsterdam. Every group was measured from midgard and

either slice or beowulf. Each of these sites is connected to the Internet by a different regional

network. Measurements from the two sites in California are generally similar, suggesting

that the results are not significantly biased by the BARRnet (to which UC Santa Cruz is

connected).

Table 7.2 lists the overall message success rate and average latency for all 31 server

hosts. Some of them belonged to more than one group and so were polled from all three

client hosts.

7.3 Measurement results

In this section I present the results of the measurement experiment, and compare them

to those obtained by simulation. The two sets of results are not identical since different

hosts were used for the measurements, as can be seen by comparing Table 7.2 with Ta-

ble 5.1. Further, the simulation results are the averages of the performances of several

thousand combinations of hosts, while each measurement in this chapter used a single

fixed selection of hosts. Finally, the number of samples obtained for each measurement

are much smaller in this chapter: about 400 per protocol compared with half a million per

protocol in the simulations (504 data points, one thousand iterations minimum).

Agreement between these results and simulation results is therefore not quantitative,

but qualitative. The measured results confirm the simulation results if the relative per-

formances of each protocol are similar, and if each measurement varies with the delay
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Table 7.1: Systems participating in measurement
experiment.

Host Type Organization
asc.cise.nsf.gov Sun 4 Raleigh Romine, NSF
aupair.cs.athabascau.ca Sun 4 Lyndon Nerenberg, Athabasca Univ.
babar.acs.oakland.edu VAX 3100 Thomas Hacker, Academic Computing Services,

Oakland Univ.
baldulf.cs.purdue.edu Sun 4 Shawn Ostermann, Internetworking Research Group,

Purdue Univ.
beowulf.ucsd.edu Sun 4 U. C. San Diego
bugs.sics.se Sun 4 Stephen Pink, Swedish Institute of Computer Science
cricket.ece.arizona.edu Sun 4 (anonymous)
django.colorado.edu DEC 3100 Al Marti, Univ. Colorado Boulder
dslab2.cs.uit.no HP 9000/300 Tage Stabell-Kulø, Dept. of CS, Univ. of Tromsø
elettra.dm.unibo.it Sun 4 Özalp Babaog̃lu, Dept. of Mathematics, Univ. of Bologna
estella.daimi.aau.dk HP 9000/300 Michael Glad, CS Dept., Aarhus Univ.
fysap.fys.ruu.nl HP 9000/300 Peter Mutsaers, Physics Dept., Rijksuniversiteit Utrecht
helpdesk.rus.uni- SGI PI Kurt Jaeger, Comp. Center, Univ. of Stuttgart

stuttgart.de
hornet.cs.vu.nl Sun 4 Kees J. Bot, Dept. of Math. and CS, Vrije Universiteit,

Amsterdam
ibminet.awdpa.ibm.com IBM RT/PC Steve DeJarnett, IBM Personal System Programming,

Palo Alto
iggy.gw.vitalink.com Sun 4 Erik J. Murrey, Vitalink Communications Corp.
issun3.stc.nl Sun 4 Jon Wilkes, SHAPE Technical Centre, The Hague
longtarin.irisa.fr Sun 4 Patrick Sanchez, INRIA-IRISA (Rennes)

Campus de Beaulieu
manray.berkeley.edu Sun 4 George Neville-Neil, Mammoth Project, UC Berkeley
midgard.ucsc.edu Sun 4 Concurrent Systems Lab, UC Santa Cruz
nachiketa.ms.uky.edu Sun (4?) Raj Yavatkar, Dept. of CS, Univ. of Kentucky
nro.cs.athabascau.ca Sun 3 Lyndon Nerenberg, Athabasca Univ.
odin.ethz.ch Sun 4 Rudolf Baumann, Institut für Molekularbiologie

und Biophysik, ETH Hönggerberg
plains.ndsu.nodak.edu Solbourne 5 Blayne Puklich, North Dakota State Univ.
relay.cs.toronto.edu Sun 4 Ken Lalonde, Univ. of Toronto
scott.prime.com Sun 3 Graeme Williams, Constellation Software Inc.
skydesign.arc.nasa.gov Sun 3 RIACS, NASA Ames Research Center
sol.acs.unt.edu Solbourne 5E Billy Barron, Univ. of North Texas
sole.cs.ucla.edu HP 9000/300 Robert J. Collins, CS Dept., UC Los Angeles
spud.img.rit.edu Sun 4 Lance Ware, Center for Imaging Science,

Rochester Inst. of Tech.
tik.vtt.fi HP 9000/800 Tor Lillqvist, Technical Research Centre of Finland
tnofel.fel.tno.nl Sun 4 Rene van den Assem, TNO Physics and Electronics Lab
tyrannosaurus.scrc Sun 3 Randolph K. Zeitvogel, Symbolics MACSYMA Division

.symbolics.com
ubitrex.mb.ca Sun 4 Danny Boulet, Ubitrex Corp.
uop.uop.edu Sun 3 Nick Sayer, CS Dept., Univ. of the Pacific
yragael.inria.fr Sun 4 Philippe Mussi, INRIA
zeno.gso.uri.edu Macintosh II James Gallagher, Grad. School of Oceanography,

Univ. of Rhode Island

7. relay.cs.toronto.edu, scott.prime.com, spud.img.rit.edu, tyrannosaurus.scrc.symbolics.com,
zeno.gso.uri.edu

The first five of the seven groups were spread evenly over the sample area, allowing

measurement of the performance of quorum multicasts to very widely distributed replicas.
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client logged all its operations to a file, from which I verified that the other results were

correct, and that the values reported for successful count multicasts were correct.

7.2 Experiment design

The hosts for this experiment were selected by the people running them, rather than

randomly as in the measurements in Chapter 5. This self-selection may introduce a differ-

ent bias to these measurements than was observed in previous measurements. Table 7.1

lists the 37 sites that participated in this experiment.

These sites were distributed all over North America and Europe. I divided them into

seven groups: five sites in the San Francisco Bay area; six in the rest of the western United

States; nine in the eastern United States; four in Canada; four in the Netherlands; five in

the rest of northern Europe; and four in southern Europe. No responses were obtained

from other parts of the world – the lack of sites in Japan is notable.

I initially polled all hosts several times to ensure all the daemons were working. Some

daemons did not respond to these initial polls, and attempts to identify and solve the

problem were unsuccessful. I excluded these sites from the remainder of the experiment.

There did not appear to be a geographic bias to the sites that were excluded.

The 31 functioning sites were arranged into seven groups of five “server hosts” each

(with some overlap). Each group was polled using all four quorum multicast protocols,

with a reply count of three. The groups were:

1. issun3.stc.nl, longtarin.irisa.fr, ubitrex.mb.ca, asc.cise.nsf.gov, midgard.ucsc.edu

2. tnofel.fel.tno.nl, dslab2.cs.uit.no, cricket.ece.arizona.edu, nachiketa.ms.uky.edu,
manray.berkeley.edu

3. fysap.fys.ruu.nl, odin.ethz.ch, aupair.cs.athabascau.ca, baldulf.cs.purdue.edu,
iggy.gw.vitalink.com

4. hornet.cs.vu.nl, helpdesk.rus.uni-stuttgart.de, sol.acs.unt.edu, plains.ndsu.nodak.edu,
skydesign.arc.nasa.gov

5. tik.vtt.fi, bugs.sics.se, elettra.dm.unibo.it, yragael.inria.fr, issun3.stc.nl

6. manray.berkeley.edu, iggy.gw.vitalink.com, skydesign.arc.nasa.gov, sole.cs.ucla.edu,
beowulf.ucsd.edu
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7.1 Daemon and client structure

The experiment consisted of a server daemon that ran continuously at several sites on

the Internet, and a client program that ran every half hour at three sites. The clients sent

packets containing 64 bits of data: a 32-bit sequence number and a 32-bit delay value,

while the daemons replied with a 192-bit packet containing the sequence number, delay

value, and two 64-bit timestamps.

The server daemon was coded in portable C, and used the BSD socket mechanism

to passively listen for UDP packets on port 4296. When the daemon received a packet,

it built a reply packet and recorded an arrival timestamp. It then waited a number of

seconds as specified by the delay value, then recorded a departure timestamp and sent the

reply packet. The delay mechanism was intended to simulate the effects of long-duration

computations in the server, but was not used in this experiment.

The client was coded in C++, and used the BSD socket mechanism to send UDP mes-

sages. It also used the system SIGALRM timer to implement message failure and delay

timeouts. The program read a series of operation specifications, and started one opera-

tion every 10 seconds. These operation specifications indicated an experiment number,

the protocol to be used, the reply count, and a list of server IDs.

The client also used a file of information on each server, including the server’s ID,

the name of its host, its UDP port, and moving averages of message latency and failure

probability. The client updated an in-memory copy of these records every time a message

was received, and wrote them back to disk after all operations were processed. This file

was initialized with pessimistic values: all hosts were assigned an expected latency of

5 seconds and a message failure probability of 95%. The client detected message failure

using a timer set to the 95th percentile expectation, as described in x5.5. The values quickly

converged to more normal values as the experiment progressed.

There was an error in the client that invalidates one of the results it measured. It

appears I implemented the termination condition for the count protocol incorrectly, and

so the message count and latency for failed operations for that protocol are incorrect. The
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Chapter 7

Measured performance evaluation

In the last chapter I used simulation to back up the claim that quorum multicast pro-

tocols have advantages for implementing replication protocols. These simulations could

not always model all of the relevant effects of a system, such as the effects of loading a

client system or gateways, and timer accuracy was unrealistically high.

In this chapter I measure an application running on the Internet to substantiate the sim-

ulation results. This application was structured as a client communicating with servers.

The client ran on a few hosts, and sent UDP packets to the servers. The server was a simple

daemon that listened for UDP packets on a particular port, and echoed them back to their

origin. I published the source code for the daemon on Usenet, and 37 people ran copies

on their systems. I then ran a test client on three systems, two in the United States and one

in the Netherlands, to collect latency, message count, and success measurements as I did

with the simulations.

These measurements will confirm the simulations results if the performance of each

protocol relative to the others is similar. The measured performance will be different

than the simulated performance, since the two used different sets of hosts. However, the

shape of each curve should be similar, allowing for differences in communication failure

probability and latency.
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simulations – when no replicas are available. Retry is perhaps a more reasonable choice

under pathological conditions, succeeding less often than count but taking between half

and one-fifth as much time. If availability is not of great importance, reschedule andnaive

both perform much better than the other two protocols under high-failure conditions, since

they do not retry messages for extended periods of time.

6.6 Summary

I used discrete-event simulation as the first method to evaluate the performance of

quorum multicast protocols. Using traces of message behavior from the measurements of

the Internet, I found that those protocols that persistently retry messages upon failure get

successful operations more often. The latency of an operation increases roughly linearly

as the delay parameter d increase from 0 to 1, with the count protocol generally the fastest

and reschedule the slowest. The number of messages sent per operation decreases as d

ranges from 0 to about 0:4 in the 125-host traces, and from 0:4 to 1 the number of messages

is roughly stable. The reschedule protocol uses the least messages, and retry the most.

I also examined the effects of using a longer message failure timeout. My conclusion

is that larger timeout periods increase latency significantly, while not changing message

behavior. The protocols’ performance appears to be sensitive to the distribution of failures.

Finally, I found that the count and retry protocols have troublesome behaviors when the

probability of message failure is high. The other protocols require fewer messages and

lower latency at the expense of succeeding less often.
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Figure 6.12: Total messages, varying f , d = 0:5.

particularly when the probability of message failure f approaches unity. The count proto-

col is limited to sending at most 25 message (5 replicas, 5 messages per replica), while retry

can send an unbounded number of messages in the worst case. When the simulator used

latency distributions derived from the 24-host data set, retry used slightly fewer messages

and – by coincidence – peaked at the same value as count. The disparity between the la-

tency of distant and nearby hosts was smaller in the 24-host data set, which caused retry

to send fewer messages.

There are a number of conclusions to be drawn from these results, keeping in mind the

limitations of the assumptions I have made. The results suggest that count provides the

highest availability of replicated data of the protocols we are considering. Once again,

this is as expected, since this protocol will try the most times to contact each replica.

The data for low probabilities of message failure suggest that the relative latency and

message performances of the protocols are all similar when the message failure probability

is f � 0:2. However, under pathological conditions the protocols behave differently.

Count can send many messages and take quite a bit of time – more than 100 seconds in our
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Figure 6.11: Total time, varying f , d = 0:5.

these experiments.

Figure 6.11 shows the communication latency required for all operations as f is varied.

Naive requires the least time, as expected. At low failure probabilities, reschedule requires

more time than the other protocols, but at high failure probabilities it spends no time

retrying failed messages and so can complete – presumably with failure – in little more

time than naive. At high failure probabilities, the retry protocol requires one-fifth the

latency of the count protocol, since it sends only one message to the most distant host.

Figure 6.12 shows the overall number of messages sent by each protocol, using distri-

butions derived from the 125-host data set. As always, naive sends one message to each

replica regardless of conditions. The number of messages sent by reschedule approaches

the number of replicas as the probability of failure increases, since it becomes more likely

that the protocol will have to send a message to all replicas. Retry sends more messages

than reschedule, since it will retry messages that fail. This becomes increasingly impor-

tant as the probability of failure increases. Count sends slightly fewer messages than retry,
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Figure 6.10: Success fraction, varying f , d = 0:5.

experiment determined message latency. Message failure was once again assumed inde-

pendent, and occurred with a fixed probability f . The performance of all four protocols

was sampled at values of f ranging from 0 (complete success) through 1 (complete mes-

sage failure). Values of f in the range 0:2 to 0:3 are similar to the behavior of messages in

the 125-host sample.

The results of this experiment are summarized in Figures 6.10, 6.11, and 6.12. As

expected, figure 6.10 shows that count can be expected to successfully gather a reply count

of responses more often than the other protocols, and that retrywill succeed less often than

count. Both these protocols succeed more often than reschedule and naive, which only

try each replica once.

The data for naive match availability figures for Majority Consensus Voting reported

in previous work by Pâris [Pâris86]. That study used Markov analysis to measure the

availability of replicated data given reliable communication channels. In that study, hosts

were only checked once for availability, just as with the naive and reschedule protocols in



90

connections these messages were routed through. Nonetheless, I was encouraged by pre-

vious work on the effect of different distributions on the validity of this kind of simulation

[Carroll89] and decided to proceed with exponentials.

While the results of the third set of experiments were not identical to those of the first,

they were sufficiently close to those of the trace-based simulations to warrant confidence

that I could proceed with the fourth set of experiments. The most significant abstraction

I made in this set of experiments was to assume that message failures were independent

events. In the last chapter I presented experimental results showing that they are not, in the

Internet. Independent message failure increases the probability that each protocol would

meet its reply count. This assumption makes it less likely that the retry and count protocols

have to retry many times before successfully sending a message. This decreases both

the number of messages and amount of time required for these protocols to complete an

operation. Nevertheless, I found that the results all showed the same relative performance

among the protocols, and the results for all operations were within about 20% of the

expected values for latency and messages. These simulations thus give a preliminary look

at the relative behavior of quorum multicast protocols.

6.5 Effect of failure probability

The fourth set of experiments examined the performance of all four protocols under

different failure conditions. The Internet measurements suggest that the probability of

failure is low under normal circumstances, so failure probabilities less than about 0.4 are

of interest. However, when a host becomes partitioned from the rest of the network, or

there is a pathological condition in the Internet, the probability of a message failing to

reach its destination becomes essentially one. This simulation allowed me to evaluate the

quorum multicast performance under these worst-case conditions.

In this fourth set of experiments I fixed the delay parameter d at 0:5, because it was

close to neither extreme. The synthetic communication latency distributions for the last
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Figure 6.9: Messages for all operations, using
maximum timeout.

communication traces.

Synthetic distributions are necessary for simulating network conditions that cannot be

reproduced on a real internetwork. For example, in the next section I consider the effects

of varying probabilities of message failure. I could not arbitrarily and reliably disrupt

Internet communication to obtain these data, so I used synthetic distributions instead.

I derived a distribution for the communication latency and message failure for each

host from the 125-host traces. For message failure, I assumed each message was inde-

pendent, and had a uniform probability of being received, equal to the overall message

success measured in the traces. For communication latency, I fit exponential curves to the

observed communication latency distributions by finding the minimum latency xmin, and

using the maximum likelihood estimator
�̂
= E[X�xmin]

�1 to define an exponential prob-

ability density function for the communication latency a

r

. I found that the exponential fit

well for most of the hosts, but failed quite badly for some, particularly the sites in Finland,

Norway, and France. I believe that this failure is related to the nature of the transoceanic
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Figure 6.8: Communication latency for all
operations, using maximum timeout.

a minimum as d increases from zero, while the moving-average curves drop more slowly.

The retry protocol exhibits the greatest difference, using only a fraction of a message more

than naive. This occurs because the difference between the maximum latencies of the clos-

est and farthest replicas is much less than the difference between their moving averages.

Since there is less of a disparity between nearby and distant replicas, the retry protocol has

less time to retry messages to nearby replicas and so behaves better.

Generally, longer timeouts appear detrimental to quorum multicast protocols, and the

moving average technique is generally more appropriate.

6.4 Effect of synthetic distributions

I conducted a third set of experiments to validate the accuracy of using derived dis-

tributions, rather than traces, to drive protocol simulations. The only difference between

these experiments and previous ones is that synthetic distributions were substituted for
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predominate. However, the large number of messages sent by retry using the 125-host

data set make that the least attractive quorum multicast protocols as far as messages are

concerned. This is a very different result from that obtained with the 24-host data set,

where the three new protocols exhibited only slight differences overall.

6.2.4 Choosing between the protocols

One can choose between the protocols, and tune the protocols, depending on whether

the probability of success, operation latency, or message count are more important. If

success is the overriding concern, then count should be used. Otherwise, if the probability

of message failure is low, then naive provides the fastest response, though it sends the

greatest number of messages. The other protocols use fewer messages, at the cost of

somewhat greater latency. If the probability of message failure is somewhat higher, count

provides the lowest latency while reschedule requires the fewest messages.

6.3 Effect of timeout period

The second set of simulation experiments allowed me to determine how sensitive the

protocols are to the failure timeout period. In this experiment the timeout period for

each host was set to the latency of the slowest message to that host. This assures than no

messages would be rejected because they arrived too late. However, this usually produced

a timeout period between two and twenty times as long as that produced by the moving-

average technique (x5.5).

Figures 6.8 and 6.9 show the overall latency and messages, respectively, required by

each protocol for the 125-host data sets. Overall latencies are about twice as long as the la-

tencies observed using moving averages (see Figure 6.4). Further, the differences between

the retry and count protocols are much less pronounced in this simulation. The message

count for naive is five, as always, but the other protocols use fewer messages overall than

with moving average timeouts. The reschedule and count protocols both drop rapidly to
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Figure 6.7: Messages for all operations.

the two is dramatic. Using the 125-host set of traces, the retry protocol sends between

three and six times as many messages as the other protocols, while count usually sends

only one additional message. The difference is due to the extra control that count exercises

over sending messages – no replica will be tried more than a certain number of times, while

retrymay try nearby replicas a great many times, as was discussed in x4.5. Retry exhibits

this behavior when the most distant replica has an average communication latency much

longer than that of nearby replicas. If a nearby replica has failed, the protocol will have

time to retry it many times while waiting for a response (or timeout) from the most distant

replica.

When the simulations were run using the 24-host data sets, the behavior was somewhat

different. In that data set, which exhibited fewer message failures, the count and retry

protocols required fewer messages than naive.

Figure 6.7 shows the overall number of messages sent by each protocol. Once again,

since the probability of meeting the reply count is high, the values for successful operations
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Figure 6.6: Messages for failed operations.

d. Since retrymust try every host once, it will require at least as many messages as naive.

If messages to nearby hosts fail, they may be retried thus adding to the average message

count.

The count protocol uses more messages than naive for low values of d, but requires

about 10% fewer messages for values of d � 0:5. When d is set to a low value, count

behaves much like retry, sending messages to all replicas and occasionally resending when

a message fails. When d is set to a higher value, the protocol behaves like reschedule,

except that it resends (on the average) about one message because of failure.

The four protocols perform quite differently when they are unable to obtain a reply

count of responses. Figure 6.6 shows the number of messages required. Naive is used as

the baseline measure, requiring exactly five messages no matter what. Reschedule also

requires exactly five messages, since it will generally send to all replicas before it can

determine that the operation has failed. The retry and count algorithms will generally

send more than five messages before they can declare failure, but the difference between
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Figure 6.5: Messages for successful operations.

6.2.3 Messages

Figure 6.5 shows the number of messages sent for successful operations. Naive pro-

vides a baseline of 5 messages, since it always sends one message to each host. The

reschedule algorithm sends fewer messages than naive, except at d = 0 when the two

algorithms are identical. This savings happens because reschedule avoids sending mes-

sages to distant replicas. When d � 0:5, the number of messages drops to a steady value

of less than 3:5. The message count drops as d increases because small values of d make

it likely that an extra message will be sent to a distant replica before some nearby replica

can respond. When the delay timeout period – d times the message failured timeout pe-

riod T

r

– exceeds the expected communication latency, this effect should be negligible.

Since d = 1 corresponds to the message failure timeout period T

r

, and this period is set

to approximately three times the expected communication latency, the message count de-

creases to a minimum at a value of d slightly greater than one-third. As the variance of

communication latencies decreases, the closer to d = 1=3 this point will be.

The retry protocol uses at least as many messages as any other protocol at all values of
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Figure 6.4: Communication latency for all
operations.

replicas before declaring failure, delaying messages to distant replicas slows down failed

operations approximately linearly.

The count protocol performs much better than any of the other three protocols when a

reply count of responses cannot be obtained. Count avoids the problem of having to com-

municate with the most distant replica, since it can stop when sufficient nearby replicas

have failed.

Figure 6.4 shows the overall latency for each protocol. Since the probability of meeting

the reply count is quite high, the values for successful operations predominate in these

graphs. However, it is worth noting that even with a high probability of success, the

low failure latency of count makes it the fastest of the three quorum multicast protocols,

consistently faster even than naive. Reschedule has the highest latency of the three for all

values of d. Retry is better than naive or reschedule for values of d less than about 0:6.

This is the reverse of their positions for successful operations. The latency of the quorum

multicast algorithms increases approximately linearly as d increases.
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protocol may try communicating with a distant replica several times. Since the probability

of message failure is not negligible, this effect translates into longer average latencies. In

the 24-host traces, with their lower failure probability, the reschedule and count protocols

performed almost identically.

The performance of the four protocols is quite different when the reply count cannot be

met, as is shown in figure 6.3. All four protocols require several seconds to declare failure.

While this is quite a long time, failures constitute only a few percent of all operations and

the latency is not onerous. Naive is the baseline measure, requiring about 4:8 seconds to

determine that a reply count cannot be obtained – almost an order of magnitude longer

than was generally required for success. Reschedule requires more time than naive, since

it must detect just as many failed messages as naive, but it may have delayed sending

some of those messages. The time required to declare failure increases roughly linearly as

d increases. The retry protocol is slightly faster than naive or reschedule at small values

of d, but requires more time than either for larger delay settings. Since retry must try all
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Figure 6.2: Communication latency for
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The results using the smaller set of traces were similar, but produced somewhat higher

success fractions for all algorithms. Naive and reschedule both showed a likelihood of

99.2%; retry about 99.8%; and count succeeded in excess of 99.9% of the operations at-

tempted. The overall message failure probability in the 24-host set of traces was lower

than in the 125-host set, so this difference was expected.

6.2.2 Latency

Figure 6.2 shows the communication latency for successful operations in the 125-host

traces. Naive is generally the fastest of the four protocols, since it always sends messages

to every replica immediately. The other three protocols exhibit similar communication

latencies, with count taking somewhat longer than retry, which in turn takes very slightly

longer than reschedule. Reschedule takes less time than the other two because of the rare

cases where the retry and count protocols must send more than one message to distant

replicas to obtain the reply count. Retry takes less time than count because the latter
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Figure 6.1: Success fraction, varying d.

The simulation results for five replicas are summarized in the graphs in figures 6.1–6.7.

The results for three and nine replicas are similar. These results were obtained using the

large (125-host) set of communication traces.

6.2.1 Operation success

Figure 6.1 shows the fraction of all multicast operations that were successful in meeting

the reply count. The naive and reschedule protocols each exhibited an approximately

constant success fraction, at about 82% of all operations. Since these two protocols each

attempt to send at most one message to a replica, the delay fraction has no effect on the

probability of success. The retry protocol, however, retries nearby replicas more times

when the delay parameterd is larger, since this allows more time for retries. Retry succeeds

in approximately 95% of all cases when d � 0:5 and more than 94% for d � 0:1, while count

performs even better. In all, count is most likely to succeed, with likelihood in excess of

99%; retry succeeds somewhat less often, but substantially more often than reschedule

and naive. This shows that persistent protocols are worthwhile.
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imum response time observed for the host. This experiment shows the effectiveness of

adapting to changes in network conditions by predicting timeout and expected response

time. The third set of experiments substituted synthetic latency and failure distributions

for the communication traces. These distributions were derived from the communication

traces, and the experiment showed the effect of different distributions on protocol per-

formance. The fourth and final set of experiments also used synthetic distributions, but

varied the overall probability of failure so I could determine how the protocols would

respond in pathological high-failure situations.

The simulations have limits that must be understood before accepting the performance

results they provide. First, they are based upon communication traces obtained with the

ping tool, rather than from actual client-to-replica communication using a process-level

unreliable datagram mechanism. These traces cannot capture any effects that are specific

to quorum multicast protocols, such as congestion at the client or nearby gateways. Timer

precision is a further difference between the simulations and a real implementation. The

simulations provide timers accurate to a small fraction of a millisecond while many real

systems provide much coarser granularity. In the next chapter I will present measurements

of an actual implementation that confirm that these limits do not invalidate the simulation

results.

6.2 Trace-based simulation results

The first set of simulation experiments allowed me to examine the behavior of each

of the four multicast protocols (naive, reschedule, retry, and count) under different con-

ditions. In this section I will examine the probability of successfully obtaining the reply

count, as well as the number of messages and the latency required for successful, failed,

and overall operations. These experiments used measured traces of network behavior to

drive the simulation. A moving average of communication latency and failure probability

determined the order hosts would be polled and the timeout period used to detect message

failure.
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Given a randomly-selected set of hosts, the simulation of one operation for each of

the 504 sets of samples proceeded as follows. First, the n hosts were selected. These n

hosts were then ordered by their predicted response time. Some experiments used the

sample mean a

r

, which was precomputed as samples were read in. Other experiments

used an expectation based on moving averages of communication latency and failure, as

we defined in Equation 5.3 (x5.5). Next, one run of each protocol was performed for each

of 504 data sets. When the simulation of a protocol sent the ith message to replica r, the

ith sample for host r (of the 30 samples in a data set) was used to determine whether the

message was received, and if so, how long the communication took.

The iteration was repeated at least 1000 times, until the width of the 95% confidence

interval for all values being recorded was less than 5%, or until the simulator had per-

formed 10 000 iterations. The actual widths of the confidence intervals were often much

smaller than 5%, particularly for the number of messages sent. Using 125 hosts, there are

more than 234 million combinations of five hosts, so there is a reasonable probability that

each run was independent of other runs. By selecting n hosts at random, I simulated the

random placement of n replicas throughout the Internet.

Message failure events simulated detection of failed messages using timeouts, rather

than explicitly simulating the timers. The timeout period for a message to host r was

set in some experiments to be the time of the longest-latency reply from that host, which

was again precomputed while the trace data were being read. Other experiments used

a timeout period based on the moving average of communication latency, as defined in

Equation 5.1.

The four sets of experiments allowed me to explore the performance of each protocol

under different conditions and assumptions. The first set of experiments used communi-

cation traces from our Internet measurements to determine message latency and failure.

These experiments used a moving average of latency and failure to set the message failure

timeout and to order replicas from closest to farthest. The second set of experiments also

used the communication traces, but set the message failure timeout for a host to the max-
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I will first discuss in x6.1 the details of the simulators. The next several sections then

discuss the simulated results. x6.2 presents overall performance measurements of the quo-

rum multicast protocols, using simulations based on communication traces. x6.3 explores

how different timeout periods effect performance, while x6.4 considers the effect of differ-

ent distributions of communication latency and failure. Finally, x6.5 investigates the effect

of various failure probabilities.

6.1 Simulation model

All of the four simulation experiments used a common discrete-event simulator. The

simulator program was coded in theC++ programming language [Ellis90], using locally-

written simulation libraries. The functions to determine message failure and latency were

the only changes to the program required for the different simulation experiments.

Each run of the simulator produced data points for one particular setting of the num-

ber of replicas n, the reply count q, and the delay parameter d. The simulator reported the

number of completed operations, the mean communication latency, and the mean num-

ber of messages sent, for both successful and unsuccessful operations. Since there were

several hundred data points to be determined, I used more than twenty Sparcstation SLC

computers in the Baskin Center at UC Santa Cruz to compute the points in parallel. Each

simulator run required between ten and forty minutes, so an entire set of simulation runs

could be completed in a few hours, covering all four protocols for values of d from 0 to 1

in increments of 0:05 with three different reply counts.

Each simulator run consisted of repeatedly choosing n host traces at random from the

hosts in the sample sets, and simulating one operation for each of the sets of ping samples

in the trace. I ran the simulator on both sets of traces. The first, smaller, set used the 24-host

traces that contained sets of 50 pings taken over a period of 48 hours, yielding 144 sets of

samples per host. The second set used the 125-host traces that were taken over a period of

7 days, giving 504 sets of 30 ping samples per host.



76

Chapter 6

Simulated performance evaluation

In Chapter 4 I presented a family of communication protocols, which I claim can im-

prove the performance of applications that use replicated data. In this chapter and the

next I will back up this claim using simulation and measurement techniques.

In this chapter I use discrete-event simulations to analyze performance. Simulations

have the advantage of being simple to code and quick to execute. Unfortunately they

do not always provide a correct answer to performance questions, so I will back up the

simulations with direct measurement in the next chapter.

I conducted four sets of simulation experiments. Each set of experiments consisted of

simulating the performance of each multicast protocol for three, five, and nine replicas.

The first two experiments used the samples of communication latency from the traces of

the Internet. These experiments were intended to estimate relative performance informa-

tion for each protocol, given actual network performance. The third set of experiments

used distributions derived from the traces to repeat the simulations performed in the first

two experiments. The intent of these experiments was to validate that artificial distri-

butions gave accurate results when compared with measured Internet performance. The

fourth and final set of experiments also used derived performance distributions, except

that the probability of message failure varied. This experiment was intended to determine

the relative performance of the protocols under widely varying probabilities of message

failure. I used synthetic performance distributions since these conditions could not be

created on the live Internet.
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5.6 Summary

I recorded two sets of communication traces on the Internet, one using 24 hosts, the

other using 125. These traces sampled the time required for the ping utility to send an

ICMP echo packet to each host. Each trace contained several thousand samples per host.

I analyzed these traces to measure communication latency and success rates. Latency

distributions are complex – they are obviously not exponential, for example – but appear to

have a consistent shape. Message success is more complex. Message failures are definitely

not independent events: far too few messages fail singly. More than 70% of all messages

fail singly or in a run of two or three failures. If three messages in a row have failed, it is

very likely that all the messages in a data set failed, and the host is probably unavailable.

Moving averages of recent latency and failures provide a convenient and reasonably

accurate mechanism for predicting near-term future behavior. Moving averages track

changes in latency well, and can be used to derive a timeout period for detecting message

failure.
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Figure 5.19: Expected communication latency for
brake.ii.uib.no

The overall latency expectation is useful when a communication protocol is to selec-

tively communicate with the replicas most likely to respond quickly. Given that the com-

munication latency, probability of failure, and timeout period can all be estimated, the

overall expected time o

t

is the sum of the expected latency and timeout period, weighted

by failure probability:

o

t

= f

t

a95;t + (1� f

t

)
a

t

: (5:3)

Figure 5.19 shows a sample of this overall expectation for one of the sample hosts. The

latencies shown in this figure for failed messages are the timeout periods forw = 0:95. The

way the expectation responds to changing conditions is evident in the samples between

8330 and 8350, where the expectation changes from tracking actual latency in a low-failure

period to averaging actual latency and time-out period in a high-failure period.
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Table 5.4: Fraction of replies rejected because of
short timeout. 95th percentile used to set
timeout. Moving average weight w = 0:95.

Fraction rejected
No minimum 40ms minimum

sequoia.ucsc.edu 3.17% 1.20%
bromide.chem.utah.edu 0.27% 0.27%
cana.sci.kun.edu 0.54% 0.54%
brake.ii.uib.no 0.19% 0.19%

long, since a protocol must wait for that period before a message can be determined to

have failed.

I examined the the traces using the 95th percentile estimator. The fraction of replies

that were returned later than the estimated timeout period are shown in Table 5.4. It is

very small for all but the nearby site, for which it was 3.17%. As seen in Figure 5.15,

the estimated timeout period for this host often goes to zero. This occurs because the

resolution of the trace samples is only 10 milliseconds, so the actual latency was almost

always small enough to be recorded as zero. The fraction rejected dropped to 1.20% of

successful replies upon applying a minimum timeout period of 40 milliseconds. While

this is still high, from the distribution in Figure 5.7 it can be seen that the cutoff would

have to be set to several hundred milliseconds to obtain less than 0:05% rejection fractions

from this host. The average latency and variance are small enough that cutoff values more

than about 40 milliseconds make no sense.

Moving averages can also be applied to the estimation of failure probability. Given a

sequence of samples F
i

2 f0; 1g, the moving average f

t

=

P

t

i=0 w
t�i

f

i

gives an approxi-

mation of the likelihood of failure. I have found that a large weight, that is, a value of w

near one, appears to work well.
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Figure 5.14: Sample moving averages of latency
for brake.ii.uib.no.

mated for a sample using
�̂
= 1=

a

t

, the maximum likelihood estimator [Rice88, Chap. 8].

The exponential is used to estimate a reasonable upper bound for message latency by tak-

ing, say, its 95th percentile. The rth percentile a

r;t

of the exponential approximating the

predicted latency can be computed as

a

r;t

=

� ln (1� 0:01r)

�̂

= � ln (1� 0:01r)
a

t

: (5:1)

For the 95th percentile, this leads to the formula

a95;t � 2:995732
a

t

: (5:2)

Figures 5.15 through 5.18 show this curve for selected portions of four traces.

If this setting is to be useful for the timeout period, it must not be too short. When it

is, the protocol will time out before a reply is received and either send another message

or declare the host unavailable, even though the reply was on its way. The expense of

retrying or declaring failure is likely to be unacceptable, so any timeout setting must not

reject too many valid messages. On the other hand, the timeout period must not be too
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Figure 5.12: Sample moving averages of latency
for bromide.chem.utah.edu.
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Figure 5.11: Sample moving averages of latency
for sequoia.ucsc.edu.

Figure 5.11 illustrates how the moving averages behave. This figure shows 100 samples

of communication latency from a trace of communication with sequoia.ucsc.edu. Two

curves show the effects of different weighting values. As long-latency samples are ob-

served, the moving average rises, then decays back to a lower value as latency returns to

normal. Figures 5.12, 5.13, and 5.14 show similar curves for the other three hosts we con-

sidered in the last section. The moving average can be seen to track changes in behavior.

The flat sections in Figure 5.13 (for cana.sci.kun.nl) and Figure 5.14 (for brake.ii.uib.no)

represent failed samples. These are ignored when calculating moving averages.

An appropriate timeout period for determining when messages have failed can be

based on the predicted communication latency. The moving average at time t is an esti-

mate of the mean of the latency distribution for the next sample. While it is obvious from

the latency distributions for cana.sci.kun.nl (Figure 5.9) and brake.ii.uib.no (Figure 5.10)

that message latencies are not quite exponentially distributed, I treat them as if they are to

calculate a timeout period. The parameter � for the exponential distribution can be esti-
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failure rate from recent past behavior.

There are two reasons why it is useful for a protocol to predict behavior. One reason is

that it should generally communicate with the site that will respond most quickly. As

will become evident in the performance analysis in later chapters, a determination of

replica proximity can yield significant performance improvements. A protocol must also

determine how long to wait for a reply to a message before deciding that the message

has failed. Communication protocol performance is known to be sensitive to this timeout

period. Protocols should adapt these predications to changes in network topology and

load.

The performance predictions can be based on a priori information, such as the topology

of the network, or on observed behavior, such as past message latency. I have concentrated

on predictive methods based on past behavior in this thesis, though a priori methods are

also important. Cheriton [Cheriton89] claims that a source routing internetwork protocol,

unlike the IP protocol currently used in the Internet, will enable applications to accurately

predict communication behavior from performance information maintained for potential

routes.

I have chosen to use a moving average of recent behavior as the predictor of future

behavior. If there is a series of observations

a0; a1; a2; . . . ; a
n

the moving average
a

t

at sample t is

a

t

=

t

X

i=0

w

t�i

a

i

;

where 0 < w < 1 is the weighting value. This can also be written as the recurrence

a

t

= w
a

t�1 + (1� w)a

t

:

The effect of a moving average is that recent events have more weight than earlier events,

and the weight of a sample decreases exponentially with time. The larger the weighting

value w, the more slowly the moving average reacts to changes in the samples.
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latency for brake.ii.uib.no. Average latency
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The distributions for the hosts cana.sci.kun.nl (Figure 5.9), a site in the Netherlands,

and brake.ii.uib.no (Figure 5.10), a site in Norway, illustrate the range of distributions

observed for overseas connections. The distribution for the Dutch host appears not unlike

that of a host in North America, with the majority of messages having a small latency,

though the variance is quite a bit larger. The Norwegian site exhibits a much more random

distribution. I believe that the packets to this host are routed through a satellite channel,

which usually causes high variability.

5.5 Predicting expected and maximum latency

The overall average values for communication latency A

r

and failure probability F

r

may not be good predictors of actual performance. It appears from the samples that

failures cluster. Upon examining the traces it also appears that the latency of one message

is related to the latency of the next. This section examines a way to predict latency and
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I also considered how many consecutive messages succeeded. As with failures, suc-

cessful messages were classified by run length (Figure 5.5.) I found that there were many

data sets in which all messages succeeded. However, I also found that there were many

runs of a small number of successful messages. Short times between failures are further

indication that failures tend to cluster.

5.4.2 Communication latency

Communication latency was the second focus of the measurements. The values were

obtained using a Sun 4/20 workstation that has a clock resolution of approximately 10

milliseconds. (This resolution is obvious in Figures 5.11 and 5.12.) The average response

latency for hosts in the first experiment is reported in Table 5.1.

As with message failure, I was curious whether the number of gateways traversed in

communicating with a host was related to the average latency. Figure 5.6 shows the latency

against the distance in hops. It would appear that there may be some relation between the

two.

While the average latency may be of interest, its distribution is equally important.

Figures 5.7 through 5.10 present four typical distributions. These graphs show histograms

of the fraction of messages that fell into 10-millisecond ranges, starting from zero. Most

hosts showed a very few short-latency messages, with a sudden peak dropping rapidly

back to zero.

The host sequoia.ucsc.edu (Figure 5.7) is at UC Santa Cruz, in the same organization

as the host from which the measurements were taken. One gateway machine connects the

Ethernets used by either machine. Most response times were sufficiently small that the

10-millisecond sampling resolution is of some concern. This curve is typical of the results

observed for hosts on the same or nearby Ethernet segments. The latency distribution

for bromide.chem.utah.edu (Figure 5.8) is typical of the distribution observed for hosts in

North America. It is similar to that of a nearby host, but shifted toward greater latency.
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Table 5.2: Fraction of failed messages by size of
run (24-host experiment).

Length Failure fraction (%) Independent
of run All failures Communication f = 93:32%

1 50.04 67.81 87.09
2 6.87 9.31 11.63
3 1.33 1.80 1.17

11 1.99 2.70 —
12 3.47 4.70 —
13 1.52 2.07 —
17 0.77 1.04 —
50 26.22 — —

Table 5.3: Fraction of failed messages by size of
run (125-host experiment).

Length Failure fraction (%) Independent
of run All failures Communication f = 80:0%

1 7.73 20.63 64.00
2 1.03 2.74 25.60
3 0.26 0.68 7.68
4 0.11 0.29 2.05
5 0.08 0.21 0.51

30 2.09 — —
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Figure 5.5: Lengths of runs of successful
messages.
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tributed to 1% or more of the number of failed messages. The second column reports the

percentage of failed messages that were in runs of each length. I found that in more than

half the cases where a message failed, the message was part of a run of only one or two

failed messages. The only other significant run length was 30 or 50, the size of one data

set, due to hosts being down for an entire data set. The third column in Tables 5.2 and 5.3

lists the percentage of message failures that were not in runs of length 30. This number ap-

proximates the percentage of each run length that is due solely to communication failure,

such as congestion, loss of connectivity, or routing loops.

I compared this distribution to what would be obtained if all communication failures

were independent. This can be modeled as a Bernoulli trial with parameter f [Trivedi82,

Sect. 1.12]. The parameter corresponds to the probability that a message would be suc-

cessfully acknowledged. The probability p(n) that a failed message would be part of a run

of length n is

p(n) =

n(1� f)

n

f

P

1

i=1 i(1� f)

i

f

Values of this distribution are shown in the fourth column of Tables 5.2 and 5.3, for the

24-host and 125-host experiments respectively.

If message failures were independent, there would be many more single- or double-

message failures than were observed. The difference between the observed behavior and

predicted behavior for independent failure leads to the unsurprising conclusion that mes-

sage failures are not independent events.

There appear to be two behaviors for message failure: short, transient failures due to

temporary network conditions, and longer failures due to host or network failure. These

data indicate that an internetwork communication protocol would do well to retry failed

messages. Further, it appears that most of the advantage can be obtained using a small

number of retries. In the 125-host traces, when a sequence of three failures has been

observed there is about a 60% probability that the host will be unreachable for the entire

set of 30 or 50 polls.
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or four number hops to reach, would have high success fractions. Indeed this appears to

be the case. Outside of this local organization the number of hops does not appear to be a

good predictor of message success.

Messages can fail for one of two reasons: they are lost in transmission, or the remote

host is down. While host availability cannot be determined exactly, a host that does not

answer any pings for 30 seconds is likely to have failed. This is not a perfect measure for

two reasons: a gateway or link crash would appear to be a host failure, and because a very

busy host could also appear to have failed. Bearing these limitations in mind, I computed

an estimate of overall host availability as the fraction of 30-ping data sets containing at

least one response to the total number of such data sets collected for the host. Figure 5.3

shows the distribution of overall availabilities in the 125-host experiment.

Next, I examined the data sets to determine how long communication failures lasted.

Failures were classified by the length of the run of failing messages, as shown in Figure 5.4

and in Tables 5.2 and 5.3. The first column in these tables lists those run lengths that con-
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Figure 5.1: Overall message success. Average
success 80%.

represented a host that appears to have been continuously unavailable for 7 of the 48 hours

sampled. Combining this information with data on the reliability of hosts, I conclude that

communication will succeed most of the time when a host is functioning.

The data from the 125-host experiment are less encouraging. In this set, four hosts were

continuously unavailable for the entire seven days, while some hosts exhibited overall

message success rates of less than 50%. All sample hosts selected were known to exist and

function a few weeks before I recorded the traces, and it seems unlikely that these four

hosts had been deliberately taken out of service in the interval. The mean success rate was

80.0%, as compared to 93.3% for the 24-host experiment. Figure 5.1 shows the fraction of

hosts with different overall message success fractions.

I conjectured that the message success rate might be related to the number of gateways

that must pass the message. Since I had already measured the number of hops required

to reach each of the sample hosts in the 125-host experiment, I plotted overall availability

against distance (Figure 5.2.) I had expected that nearby replicas, those that require three
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from each group was proportional to the size of group, so that the resulting 125 hosts

exhibited the same distance properties as the original sample. This step helped to avoid

unrealistic clustering of hosts that would bias later results according to the policies or

hardware within one particular organization or location.

One problem with this approach is that several installations choose to shield their inter-

nal network behind a gateway; information about those subnetworks cannot be obtained

by this method. Some large organizations such as sun.com and apple.com contributed

only one data point to this study, since only the gateway machines were accessible.

I have been particularly careful in taking these measurements to limit them to those

easily obtained by ordinary programs. No measurement made use of special information,

such as direct knowledge of the topology of the Internet. In this way I believe that the re-

sults in this section can be applied to application software that has no special knowledge

of network structure. Concentrating on behavioral measurements also reduces the de-

pendence on current networking technology. As newer networking technology becomes

available, it should be possible to easily measure the new communication behavior and

re-evaluate the results in this thesis.

5.4 Communication behavior

The traces recorded two pieces of information: whether a message was successfully

sent and acknowledged; and if the message succeeded, how long the round-trip took.

This section looks in detail at message success and communication latency in these traces.

5.4.1 Message success

Message success is the simplest measure to be obtained from the traces. I first examined

the success rate for communicating with each host. The results for the 24-host experiment

are reported in Table 5.1. In the this experiment I found that most hosts would respond to

a message more than 90% of the time. The one significant exception (andreas.wr.usgs.gov)
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Table 5.1: Hosts selected for first study.

Mean response Message
Location latency (ms) success (%)

spica.ucsc.edu Santa Cruz, CA 0.59 100.00
cs.stanford.edu Palo Alto, CA 18.50 97.79
apple.com Cupertino, CA 24.50 95.96
ucbvax.berkeley.edu Berkeley, CA 24.96 96.43
andreas.wr.usgs.gov Menlo Park, CA 26.64 79.90
fermat.hpl.hp.com Palo Alto, CA 39.88 97.92
ucsd.edu San Diego, CA 51.86 91.15
june.cs.washington.edu Seattle, WA 52.56 97.11
beowulf.ucsd.edu San Diego, CA 57.68 93.33
unicorn.cc.wwu.edu Bellingham, WA 107.88 96.44
gvax.cs.cornell.edu Ithaca, NY 162.35 95.28
prep.ai.mit.edu Cambridge, MA 215.97 89.47
lcs.mit.edu Cambridge, MA 219.13 89.08
vivaldi.helios.nd.edu Notre Dame, IN 228.96 96.57
acrux.is.s.u-tokyo.ac.jp Tokyo, Japan 263.68 96.46
swbatl.sbc.com Atlanta, GA 298.57 97.06
zia.aoc.nrao.edu Virginia 353.09 97.79
sdsu.edu San Diego, CA 404.54 92.85
inria.inria.fr France 1142.99 84.63
top.cs.vu.nl Netherlands 1312.32 90.42
slice.ooc.uva.nl Netherlands 1340.40 88.97
cs.helsinki.fi Finland 1525.78 90.42
mtecv1.mty.itesm.mx Mexico 1641.70 91.33

The selection was derived from a list of several thousand Sun 4 systems that came

from a study on the reliability of hosts on the Internet [Long91]. The original list was

obtained by querying top-level domain servers for the names of hosts at each site and for

secondary domain servers, and this process was applied recursively to the entire Internet

name-tree. This resulted in over 350 000 hosts, believed to be a substantial fraction of the

total Internet. Once lists of hosts were obtained, duplicate names were consolidated and

the domain servers were again queried to determine the type and operating system of each

host. From these data I was able to obtain a list of several thousand Sun 4 systems.

Next I determined the “distance” of each host, measured as the number of gateways

traversed when communicating with it. These data were obtained using the traceroute

program, and obtaining at least three samples for each host. The hosts were grouped

by distance, and a random selection was made from each group. The number selected
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5.3 Methods

I conducted two studies of Internet messaging behavior. The two studies were quite

similar; the primary difference was that the second study involved more hosts for a longer

period of time. Throughout this thesis I will refer to these as the ‘24-host’ and ‘125-host’

samples.

These studies collected traces of message latency and success for communication with

several hosts. Trace records were obtained by polling the remote host from maple.ucsc.edu,

a Sun 4/20 workstation in the Concurrent Systems Laboratory (CSL) at UC Santa Cruz.

The measurement software was built atop the the ping program, which sends ICMP echo

messages. Hosts are expected to respond to ICMP echo messages by returning the mes-

sage as soon as possible. It polled each host 30 or 50 times (depending on the experiment)

every 20 minutes. The first experiment lasted 48 hours; the second lasted one week.

The first measurement study used 24 hosts chosen from those hosts with which CSL

systems communicated regularly. The experiment collected 50 samples at one-second

intervals every 20 minutes for each host, on a Wednesday and Thursday. This resulted

in 7200 samples for each host. The hosts, and a summary of their behaviors, are reported

in Table 5.1. One host, andreas.wr.usgs.gov, was unavailable for 7 of the 48 hours sampled;

the other hosts appear to have been available the entire time.

The second study was similar to the first, except that it involved more hosts and behav-

ior was traced over an entire week. For this study I selected 125 hosts on the Internet. One

set of polls was collected for each host every 20 minutes over a seven-day period. Each set

of polls consisted of 30 ICMP echo requests issued at one-second intervals. This resulted

in 15 120 samples for each host.

I selected the 125 hosts in a way that I believe will provide a realistic approximation of

the behavior of a distributed application on the Internet. My goal was to obtain a set

of hosts that was uniformly spread throughout the Internet, avoiding geographic and

topological clustering of hosts. I felt that this would approximate the locations where a

widely-replicated data object might be placed.
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and Sun-2 machines on 10 Mbit and 3 Mbit segments, reporting communication latencies

of less than 10 milliseconds. Their study is significant in that they considered the effects

of load on the sending and receiving hosts, and on the Ethernet. They did not explicitly

study message success or host availability.

Lantz et al. [Lantz84] report on a study of local-area distributed applications using the

V-system. While most of their performance results concern the drawing rate of a particular

graphic data protocol, some of their findings are of general use. One finding was that too

short a setting for the length of the packet-loss timeout in TCP could reduce throughput

by a factor of two or more. They also found that extremely long timeout values produced

only moderately degraded performance compared to shorter timeout values when the

receiving host was heavily loaded. They also found that the timeout value should be

sensitive to the error rate of the network, and that even on local-area networks there were

periods of heavy packet loss.

Long et al. [Long91] conducted a study of the reliability of Internet sites. They collected

up-time and availability data from several thousand hosts and then used them to derive

estimates of availability, mean time-to-failure (MTTF), and mean time-to-repair (MTTR).

MTTF is not directly available from hosts, but it can be estimated using the length of

time that hosts have been up, provided that the pattern of up-times is governed by an

exponential distribution. The data were gathered by polling hosts using Sun RPC [Sun88]

to query rpc.statd, by using the ICMP echo protocol [Postel81] to test availability, and by

polling domain servers to obtain host-specific information. Estimates of average MTTF

for various Sun 4 systems ranged between 12 and 17 days. These same systems were

found to have availabilities in the range of 93% to 97%. The MTTR estimate for Sun

4 models ordinarily used as workstations was approximately 1.2 days, while for those

models ordinarily used as servers the MTTR was approximately 0.5 days.
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5.2 Related measurement results

While there has been significant study of specific internetwork protocols, there has

been little study of measured end-to-end performance of wide-area applications. Since the

Internet is shared among many different organizations, direct manipulation of the Internet

is not possible. The hardware and software environment changes constantly, making

control yet more difficult. Further, it is not generally possible to directly instrument the

network to determine performance. Any study of Internet performance must therefore

account for the effect of measurement tools on the environment.

Pu et al. [Pu90] developed a methodology for measuring the end-to-end performance

of Internet applications while studying the response time of applications that use Mach

RPC. Their approach is to measure communication performance at as many layers as pos-

sible, while measuring end-to-end performance between sample applications. They have

measured two applications: the Webster dictionary service between Columbia Univer-

sity and the University of Washington; and the Camelot distributed transaction facility

between Columbia and Carnegie-Mellon Universities.

Their measurements used the traceroute [Jacobson90] facility to determine the route

between hosts. They found that routes do not change often during periods of several

minutes. They also used the ping program, which sends ICMP echo messages, to measure

round-trip communication times. Since both the measured applications used Mach RPC,

they constructed a simple test application that sent an empty RPC request to a server that

“reflected” the message back to the sender. They simultaneously measured performance

at the ICMP, RPC, and application layers, and correlated the results. This allowed them

to determine the cost of each layer of the system. In addition, they measured end-to-end

application performance without simultaneously measuring other layers, to establish the

degree of interference caused by the other measurements.

Cabrera et al. [Cabrera84] studied the end-to-end performance of the TCP and UDP

protocols under 4.2BSD Unix. They used a small internetwork, consisting of three Ethernet

segments connected by gateways. They measured end-to-end performance between Vax
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5.1 Measures and notation

There are three measures of network performance relevant to quorum multicast com-

munication protocols. These measures are the probability of message failure, the com-

munication latency, and the time required to detect message failure. Each is a random

variable, sampled each time a message is sent. As a result the distribution and expectation

of each of these measures must also be considered.

The probability of message failure reflects the likelihood of messages not being suc-

cessfully received and acknowledged. If either the message or its reply are lost the com-

munication is considered to have failed. Message success determines whether a replica

is considered available or not. Failures can cause a protocol to try communicating with

extra replicas, and can increase the overall communication latency. Message success is

discussed further in x5.4.1. I use the random boolean variable F

r

to indicate whether a

message to replica r has failed. The expected failure probability for replica r is f
r

= E[F
r

].

Successful send and acknowledgment takes some time A

r

, the communication latency

to replica r. The expectation of A
r

is the average communication latency a

r

= E[A
r

]. The

communication latency determines how long a multicast will take to collect a quorum of

respondents, assuming no messages fail. The distributions and expectations of communi-

cation latency for Internet hosts are considered in x5.4.2.

In practice the distributions of A
r

and F

r

vary with time. Because of this, the overall

expectations a
r

and f

r

are often not good measures of the current likely values of A
r

and

F

r

. Therefore I consider how to approximate time-varying expectations of these variables

in x5.5, and discuss how they can be used to predict future latency. For example, message

failure is detected using timeouts that can be derived from this time-varying prediction of

communication latency. The timeout period should not be too long, since that means time

is wasted detecting a failure; nor should the timeout period be too short, since this could

declare failure just before a message arrived, perhaps causing a retransmission.
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Chapter 5

Measurement of the Internet

Those who would develop and evaluate efficient communication protocols for wide-

area replication must first understand the internetwork environment where the protocols

will be used. To this end I have made a number of measurements of the Internet. This

section presents a methodology for measuring the Internet and the specific results I ob-

tained for communication failure and latency. In addition, I will consider the problem of

predicting the expected communication latency for a host.

The first section defines the measurements I have taken. The second section surveys

some related studies. This is followed by a section on the goals and the methods I used to

evaluate network behavior.

The penultimate section details the communication behavior of the Internet. To deter-

mine this behavior, I obtained measurements of the communication latency and message

failure rate between a host at UC Santa Cruz and many other hosts on the Internet, as well

as topology information for the portion of the Internet connecting the hosts.

The final section of this chapter takes up the problem of predicting communication

latency. This prediction is important for two reasons: it can be used to determine which

replicas are nearby and which are more distant; and the message failure timeout can be set

from it. If the expected communication latencies are properly determined, the “nearness”

and failure timeout periods will track network status changes.
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a few times is usually of little value, since communication failures rarely lasted more than

two or three messages. The simulator uses an arbitrary limit of l = 5.

The retry and count protocols are both parameterized on the same tuning value d as

the reschedule protocol. In addition, both protocols use a backoff function to determine

how to delay retries to a replica, and the count protocol uses a retry limit value. While this

thesis examines how each protocol behaves as d varies, I have not attempted to examine

the effects of different backoff functions and different retry limits.

Chapters 6 and 7 present performance comparisons of the four protocols described in

this chapter.
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collision-handling techniques used in the Ethernet [Metcalfe76]). The delay helps to avoid

sending vast numbers of messages to a nearby replica that has failed.

The retry protocol terminates with failure when it receives a reply or a timeout for

replica n, the most distant replica, and the reply count has not yet been met. By then

all replicas should have been tried at least once if the timeout periods are increasing by

replica, that is, if T
r

� T

r+1. If this assumption does not hold, the protocol can be modified

so that a bit is maintained for each replica, and set to ‘true’ when the first reply or failure

is observed for the replica. In that case, the terminating condition would be that all bits

are true, in place of the two tests for i = n.

This protocol has a variable persistence. Nearby replicas may be retried many times

before a distant replica can reply. In the simulator, which doubles the delay after each

message, the expected number of retries for a replica r is bounded by log2 (Tn=ar), where

a

r

is the expected communication latency of the rth replica, and T

n

is the failure timeout

period for the most distant replica. I will discuss these measures in the next chapter.

4.6 The count protocol

The count protocol is similar to retry, except that it has a fixed persistence. It maintains

a counter for each replica and stops retrying that replica when l messages have been sent

to it. The protocol terminates when all replicas have been tried l times or the reply count

is met.

This protocol improves on retry in a number of ways. First, by trying each replica a

fixed number of times, it will meet the reply count more often than retry, since distant repli-

cas will be tried more times. This bound causes the two protocols to exhibit significantly

different behaviors for communication latency and number of messages when message

failures are likely. Second, retrying a fixed number of times evens out the number of times

messages are sent to each replica, preventing the protocol from trying a dead replica a

vast number of times. The message failure measurements suggest that retrying more than



48

// retry – send additional messages at a fraction of the longest
// failure time for any outstanding message. If a message
// fails, periodically retry that replica.

retry-multicast(message m, replica set R, reply count q, delay d)

int n = jRj; // number of replicas
int succ = 0; // number of successful replies
int next = 0; // next replica to access
int delay[n]; // time to wait for retry of replica i

// send initial messages
sort R on expected communication latency;
for i = 1 to q

send m to R(i);
delay[i] = 0;

schedule delay timeout(q) in (d * T[q]) units;
next = q + 1;

// process responses
do forever

event = getevent();
select (event):

case reply(i): succ = succ + 1;
if succ >= q // reply count met

return SUCCESS;
else if i == n // all replicas have been tried, and

return FAILURE; // reply count has not been met
case failed(i): if i == n // again, all replicas have been tried

return FAILURE;
else

schedule retry(i) in delay[i] units;
case delay timeout(i): if next <= n // try another replica

send m to R(next);
delay[next] = 0;
schedule delay timeout(next) in (d * T[next]) units;
next = next + 1;

case retry(i): send m to R(i); // try replica i again
delay[i] = backoff(i,delay[i]);

Figure 4.3: Access protocol with retry for failed
messages.

of software expires, the protocol schedules a retry for that replica. The first retry occurs

immediately, but later retries are delayed according to a backoff function. The performance

simulators set each retry delay twice as long as the previous (a choice inspired by the
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the reply count. The protocol will adapt somewhat to changing network conditions, in that

it orders the replicas, and uses timeouts to observe failures. However, since the protocol

only has a persistence of one message, it cannot handle transient communication failure

well. I will discuss the performance of this protocol, in terms of messages and latency, in

Chapters 6 and 7.

4.5 The retry protocol

Neither naive nor reschedule accommodate transient failures. The experimental

results in Chapter 5 suggest that more than three-fourths of all message failures are

transient.1 The next two protocols accommodate transient failure by retrying messages to

replicas after detecting a communication failure. These protocols, called retry and count,

are similar to reschedule except that they have a higher persistence. They continually

retry failed messages in the hope that the failure was due to some transient problem and

the next message will be delivered and acknowledged. These protocols are called persistent

protocols. They differ in the conditions that they use for determining when to stop retry-

ing. Retry continues to retry messages until either the reply count has been met or until

all replicas have been tried at least once. Count, on the other hand, retries each replica at

most a fixed number of times.

The persistent protocols improve both the success latency and the probability that the

reply count will be met, though at the cost of sending more messages, and possibly at

the cost of having longer failure latencies. If so, the persistent protocols will be most

appropriate in situations where short transient failures predominate longer failures.

Figure 4.3 shows the protocol for retry. Initially, messages are sent to the q closest

replicas, where q is the reply count. When the protocol receives a reply, it increments the

count of successful replies, and, if sufficient replies have been obtained, declares the access

a success. When it finds a message has failed, presumably because a timer in lower layers

1 77:12% of all failed messages were part of a run of only one or two messages long in the 24-host sample.
See Table 5.2.
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// Reschedule – extra messages sent at the shorter of a fraction of the
// longest failure time for any outstanding message, or
// the time of the detection of an actual failure for a replica
// with a shorter failure time.

reschedule-multicast(message m, replica set R, reply count q, delay d)

int n = jRj; // number of replicas
int succ = 0; // number of successful replies
int fail = 0; // number of failed replies
int next = 0; // next replica to access

// send initial messages
sort R on expected communication latency;
for i = 1 to q

send m to R(i);
schedule delay timeout(q) in (d * T[q]) units;
next = q + 1;

// process responses
do forever

event = getevent();
select (event):

case reply(i):succ = succ + 1;
if succ >= q // reply count met

return SUCCESS;
case failed(i):fail = fail + 1;

if n - fail < q // can never meet count
return FAILURE;

else if next <= n // send extra message
send m to R(next);
reschedule delay timeout(next) in (d*T[next]) units;
next = next + 1;

case delay timeout(i): if next <= n // send extra message
send m to R(next);
reschedule delay timeout(next) in (d*T[next]) units;
next = next + 1;

Figure 4.2: Access protocol with extra messages
sent on failure.

communication failure time occurs.

This protocol meets the design goals better than the naive protocol. It sends to the clos-

est replicas first, a technique that tends to minimize message traffic if the nearest replicas

are available. It also will communicate with only as many replicas as are needed to meet
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able to identify the closest replicas, a problem I consider in the next chapter.

This approach has a problem: it will take much longer thannaive to complete an opera-

tion in the presence of failures. The network services cannot determine that a message has

failed until a timer has expired. Since timers aren’t supposed to expire before the acknowl-

edgment can arrive, the timeout period is set to a long value – one that covers more than

99% of all messages. The problem is that most replies take a lot less time than the timeout

to complete. If additional messages are sent when replies are somewhat less likely to have

arrived the operation can complete more rapidly.

To address this, the reschedule protocol sends additional messages at some fraction d

of the failure timeout. The delay parameter d can be used to tune the protocol to account

for different conditions. Since there are some situations where the protocol may be able

to detect communication failure in a shorter period than the failure timeout – perhaps

because IP reported an unreachable network – the protocol can also make use of this early

failure detection.

The complete protocol is shown in Figure 4.2. The network layer automatically sets

a failure timer for each message. When it expires it causes a message failure event. The

timer period is set to the current estimated failure timeout period T

r

, which I will discuss

in the next chapter.

The implementation orders replicas by expected communication latency to determine

the order in which messages should be sent. This will generally cause the protocol to

communicate with the closest available replicas. However, as discussed in the last chapter

some replication protocols can use other orderings to advantage.

When the delay parameter d is set to zero, reschedule is identical to naive: messages

are sent to all replicas right away because the delay timer for sending the next message

expires immediately. When d is set to one, reschedule only sends additional messages

when communication failures are detected, because the delay timer period is the same

as the failure timeout period. When d is set to one-half, messages are sent to additional

replicas either if a failure is reported, or if a timeout of one-half the longest expected
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// Naive – send to all replicas

naive-multicast(message m, replica set R, reply count q)

int n = jRj;
int i;

// send messages
for i = 1 to n

send-datagram(replica=R(i), message=m);
schedule timeout in max(fail(i),i=1..n) units;

// collect responses
do forever

event = getevent();
select (event):

case reply(i): q = q - 1;
if q == 0

return SUCCESS;
case timeout: return FAILURE;

Figure 4.1: Naive access protocol.

meet the reply count or decide that it is unobtainable. The second is that the protocol has

a persistence of one message, that is, the failure of just one message to a host causes the

protocol to treat the host as unavailable. The naive protocol neither accounts for transient

communication failures nor does it use proximity to improve performance.

4.4 The reschedule protocol

Reschedule is the first of the quorum multicast protocols, and addresses the first prob-

lem with naive. This protocol sends fewer messages than naive, though often at the ex-

pense of requiring a little more time. It still has a persistence of one message, so it does

not solve the transient communication failure problem. The reschedule protocol sends

messages to nearby replicas before sending to more distant replicas. A protocol that sends

a minimal number of messages will first send messages to the q closest replicas, and send

to additional replicas as the earlier messages are observed to fail. The protocol must be
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This is the approach taken in a naive implementation of multicast. On the other hand,

the lowest network traffic is achieved when the protocol sends messages to exactly the

minimum number of replicas that will meet the reply count, sending to additional replicas

as failures are detected. The protocol ceases to send them when either the reply count has

been met, or sufficient failures have been observed to be sure that the it cannot be met.

This is the basis for the three quorum multicast protocols.

The two extremes of sending all messages at once or sending as few messages as possi-

ble are not always appropriate for all applications. Each of the new protocols is parameter-

ized by a delay parameter 0 � d � 1 that determines how long to delay sending messages.

This mechanism allows an application to specify an intermediate position, where sending

more messages than strictly necessary is used to improve operation latency.

This section presents four protocols. The first, called naive, is a straightforward im-

plementation of multicast that sends a message to every replica. This protocol provides a

baseline to which the other protocols can be compared. The other three protocols are quo-

rum multicasts. The second, called reschedule, uses the delay parameter to send to fewer

replicas. The third and fourth, called retry and count respectively, will send to replicas

according to the delay parameter, but have a higher persistence and will retry messages

to replicas after a first message has failed.

4.3 The naive protocol

The baseline protocol in this study is a simple simulation of multicast called naive,

shown in Figure 4.1. It operates by sending one message iteratively to all replicas. Replies

from replicas are counted, and when a reply count has been obtained the protocol returns,

indicating success. The protocol schedules a timeout for the longest expected failure time.

If the timeout occurs before the protocol can obtain the reply count, it assumes that the

replicas that have not yet replied are unavailable, and declares the access a failure.

There are two problems with this protocol. The first is that it uses more messages than

are strictly necessary, though in doing so it requires the minimum possible time to either
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for several days, and measured the number of operations performed between different

registries. He found that the time to communicate with registries on different Ethernet

segments was several orders of magnitude larger than that required to communicate on

the local segment, and that most traffic was local. The sample consisted primarily of elec-

tronic mail traffic. He concluded that the locality of work groups and organizations led to

a natural clustering of hosts with shared information.

Bulk data transfer protocols provide yet another common communication protocol.

While broadcast, multicast, and RPC are usually used for small quantities of data, bulk

transfer protocols are more efficient when large amounts of data are to be transferred.

Many of these protocols use sliding-window techniques to avoid waiting for an acknowl-

edgment on every packet. Comer [Comer88, Comer91] provides a nice summary of these

techniques in his discussion of the TCP protocol [Postel80b] that is ubiquitous throughout

the Internet. Carter and Zwaenepoel [Carter89] implemented a bulk transfer protocol for

the V system that got peak bandwidth of more than 8 Mbit/sec on a 10 Mbit/sec Ethernet.

Boggs et al. [Boggs88] measured the performance of bulk transfer protocols on Ethernets,

and concluded that well-constructed protocols can generally make use of all the available

Ethernet bandwidth.

4.2 Quorum-based multicast protocols

In Chapter 2, I defined the abstract model of a quorum multicast protocol. This section

presents some designs for such protocols. The protocol designs are guided by four goals:

make use of proximity (or other orderings); communicate with subsets of the destinations;

adapt to changing network conditions; and minimize latency and message traffic. Some

of these goals conflict. For example, to provide the lowest latency, a protocol must obtain

sufficient reply messages at the earliest possible time. This implies that the protocol should

send messages to all replicas at once, since delaying any one message could delay success

or failure. Unfortunately this approach produces high message traffic, since messages are

sent to all replicas even though not all replicas need to reply to fulfill the reply count.
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Remote Procedure Call [Birrell84] is another communication model, providing a spe-

cialized communication service to higher layers that implement replication or application

policy. Simple Remote Procedure Call (RPC) provides request-response communication

between two processes, while extended versions provide one- or many-to-many commu-

nication. A process performs an RPC by making what appears to be a normal procedure

call; the procedure’s parameters are copied into an RPC request message that is sent to

the process that provides that function. When the function is to return, the return values

are copied into a reply message that is sent back to the calling process. RPC communica-

tion is essentially request-response datagram communication packaged with a convenient

interface.

Most RPC systems provide one-to-one communication. Birrell and Nelson [Birrell84]

report on one of the early and most influential RPC systems. Their RPC made use of

a custom network protocol optimized for request-response behavior. Host failure was

detected by the caller periodically polling the callee; no time limits were set on the called

computation. Many other RPC systems have been developed.

Some RPC systems provide one-to-many and many-to-many communications. These

systems provide communication semantics similar to a request-response multicast proto-

col. The Circus replicated RPC system [Cooper84] provided many-to-many communica-

tion by extending the idea of RPC to include replicated calls to a set of processes, called

a troupe; each process in the troupe was required to perform the same computation, and

issue the same RPCs in the same order. Calls were tagged in such a way that multiple calls

from a troupe could be identified as representing the same call. The Parallel Remote Pro-

cedure Call (PARPC) system [Martin87] implemented one-to-many replicated procedure

calls. The PARPC system associated a block of code with each RPC statement that was

executed once for each return message the client received. Replication protocols could be

implemented in both these system using only a few lines of code.

Terry [Terry85] measured the effect of using nearby data sources for name service op-

erations. He recorded the activity of the Xerox Grapevine [Birrell82, Schroeder84] service
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inherent broadcast capability. Boggs [Boggs83] developed directed broadcast capabilities for

internetworks, and includes a survey of broadcast techniques. A directed broadcast is de-

livered to all hosts on a network segment, even if the host sending it is not connected to

that segment. His work argues persuasively that internetworks should not be built with-

out broadcast for name and routing services. Garcia-Molina and Kogan [Garcia-Molina88]

extend internetwork broadcast algorithms with a novel mechanism that provides a reliable

multicast facility on an internetwork with unreliable multicast. Their work is especially

interesting since it deals efficiently with partitioned networks, and because it takes advan-

tage of straightforward knowledge of the topology of the internetwork. In related work,

Alon et al. [Alon87] present a broadcast-like protocol that requiresO(n logn) messages to

coordinate work among n hosts.

In contrast to this work, the Isis system [Birman87] has concentrated on providing a

distributed programming environment based on reliable atomic broadcast in a local area.

The Isis system provides specialized broadcast protocols [Birman90, Birman91] among a

group of processes, providing strong guarantees on the ordering and atomicity of delivery

and failure detection. Several different process grouping structures have been identified,

including client-server and peer relationships. Communication occurs between a process

and the other members of a process group. The system can be used to implement reli-

able communication for data replication, or for redundant computation in a fault-tolerant

system.

Many researchers have investigated multicast protocols. These protocols provide one-

to-many communication services. The multicast is usually used for request-response com-

munication. Cheriton [Cheriton84] used multicast as a primary communication mecha-

nism in the V system, a locally-distributed operating system at Stanford. The V system

used distributed process groups as the endpoints for a multicast. He also considered how

source-routing techniques could reduce the cost of multicast in an internetwork in his work

on the Sirpent system [Cheriton89]. Boggs [Boggs83] considered multicast as a part of his

Internet broadcast work.
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Chapter 4

Quorummulticast protocols

In my four-layer model of systems that use replicated data, the communication layer

defines mechanisms that are used to implement replication protocols. These mechanisms

are used to send messages to the replicas storing the shared data. The communication

layer in turn uses the primitives operations provided by the network.

This chapter examines the communication layer in detail. In previous chapters I have

introduced one possibility for this layer, the quorum multicast protocols. This chapter be-

gins with a survey of several related communication mechanisms, then proceeds to detail

four multicast protocols. One of these protocols, called naive, is a simple multicast. The

other three implement quorum multicasts, and are called reschedule, retry, and count.

Each of these three take advantage of replica locality. They differ in the ways they respond

to message failure.

4.1 The communication layer

The communication protocol is the middle layer in my replication model. It is respon-

sible for sending messages to the hosts named by the replication layer, and for detecting

and reporting host failures.

Many prior analyses have assumed that a broadcast communication protocol would

be used at this layer, and such protocols are well-researched. Several researchers have

considered the problem of providing a multicast facility on an internetwork that has no
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3.3 Summary

A great many replication protocols have been proposed. Some of them define consis-

tent semantics that mimic the behavior of a single copy of the data. These protocols are

generally synchronous. Other protocols relax this constraint, generally providing single-

copy serializability for important operations or transactions while allowing less critical

operations to observe slightly inconsistent data. Epidemic protocols take this to the ex-

treme, providing only weak, probabilistic bounds on consistency, but requiring the least

overhead to execute.

Quorum multicast communication protocols can be used profitably to implement sev-

eral replication protocols. The Majority Consensus Voting protocol can be implemented

as one or two quorum multicasts, so the effect on replication performance is nearly lin-

ear in the performance of quorum multicast. Available Copy and Dynamic Voting proto-

cols cannot be implemented entirely in terms of quorum multicasts, so their performance

improvement is somewhat less. However, quorum multicasts can still effect significant

improvements. Epidemic replication techniques do not use multicast, so they show no

performance improvement.

Even if a replication protocol does not exhibit better performance using quorum mul-

ticast, the technique is useful for its clear definition of failure detection and its fault-

tolerance. Some quorum multicast protocols declare a replica unavailable only after it

has not responded to a given number of messages. This can be used to approximate ac-

tual failure detection with high probability. The ability to retry communications makes

quorum multicasts more robust in the face of transient network problems than a simple

multicast protocol.
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operations.

In the epidemic replication model proposed by Demers et al. [Demers88, Demers89],

applications contact a nearby replica for all operations. They also define three replica-to-

replica operations to propagate information updated by the application: direct-mail, rumor

mongery, and anti-entropy. Read and update operations can use quorum multicast with the

reply count set to one as a fault-tolerant means of contacting the closest replica. A variant

on multicast that sends to all replicas but only requires a reply count of responses can be

used to implement best-effort dissemination for direct-mail operations.

Rumor mongery and anti-entropy, like an update, are one-to-one operations. These

operations can show significant performance improvement when performed with nearby

replicas more often than distant replicas. The performance analysis by Demers et al.

showed that real internetworks often contain a small number of heavily-used links con-

necting different regions, and traffic across these links should be avoided when possible.

Quorum multicast protocols can achieve this aim using a reply count of one, and an order-

ing of closest to farthest on replicas. Unfortunately, the epidemic replication algorithms do

not disseminate information properly when rumors are always propagated to the nearest

replica. Instead they work best if all replicas have some chance of being selected to receive

a rumor. The replicas can be ordered on some random function of the communication

latency which generally prefers nearby replicas but which will, from time to time, prefer

more distant replicas.

Epidemic replication is a candidate for implementing the distributed version of the

reference database. This method has some very attractive aspects: it allows heterogeneous,

batch-style transport mechanisms for connecting replicas, and it has very low overhead.

Quorum multicast protocols would connect clients to nearby replicas for querying and

updating the database. The primary benefit of using these multicast protocols within

an epidemically-replicated system is that it provides a convenient way to provide fault-

tolerant access to nearby replicas.
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Figure 3.7: Estimated performance improvement
for DV as � varied.

3.2.5 Epidemic replication protocols

Epidemic replication techniques are similar to the Available Copy protocols in that

read operations need only be performed at one replica. However, epidemic replication

protocols relax consistency requirements so that not all replicas need to participate simul-

taneously in update operations. The usual approach is for update operations to occur at

only one replica, and for other background methods to spread the update to other replicas.

This generally gives probabilistic guarantees on the currency of information retrieved on

a read.

Applications using epidemically-replicated data will not observe a performance ben-

efit from quorum multicast protocols. However, the convenience of these protocols can

be a significant aid to implementation of the replication protocols. When a process per-

forms a quorum multicast with the reply count set to one, the communication will contact

the closest available replica, providing fault-tolerant one-to-one communication. Further,

replicas can use an alternative ordering on replicas (other than proximity) in reconciliation
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that all operations operate on large amounts of data, making two-phase read operations

preferable, the cost of using quorum multicast for a read operation is

C

r;q

= C

n

+ C

q

(3:5)

while the cost of performing a read using naive multicast is

C

r;n

= 2C
n

(3:6)

Likewise the cost of an update is

C

u

= 2C
n

(3:7)

Combining these equations, the relative cost of using quorum multicast instead of

naive multicast is
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Figure 3.7 shows the effect of various values of � on the relative performance, again

assuming from the reference database example that the read-to-update ratio � = 100. The

asymptotic performance improvement is only two-thirds of that observed for the Available

Copy protocol, since the DV protocols must multicast some messages to all replicas.

This analysis does not include the effects of replica recovery. When a replica using

DV recovers from a failure, it must execute an expensive recovery protocol. The proba-

bility that an operation will observe a spurious failure is related to the persistence of the

multicast protocol, which also affects the protocol’s performance.
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imal version number, and the operation is complete. If the data being returned are large,

then it may be better to use two rounds rather than one. In the first round replicas re-

ply with only their version number and partition vector. In the second round the client

requests one of the replicas with the maximal version number to send a copy of the data.

If the read operation is being performed in one round, the only advantage the client

can obtain from quorum multicast protocols is that of convenience. All replicas must be

contacted to ensure that the most current version is obtained, so no advantage can be

obtained by using small reply counts. On the other hand, the multicast protocols provide

well-defined failure semantics which are important to the replication protocol. A replica

that is considered to have failed must execute a costly recovery protocol. Highly-persistent

quorum multicasts declare few spurious failures, thereby avoiding unneeded recovery

costs.

However, if the read operation is done in two phases, the quorum multicast protocols

can be used in the second phase. If the client performs a multicast to the set of current

replicas, with the reply count set to one, quorum multicast protocols will contact the closest

available replica to obtain the data. Since the two-phase protocol will generally be used

when the data are large, using the nearest replica can provide significant performance

improvements.

Performing an update operation in a DV protocol is more complicated, requiring two

phases to complete. In the first phase the client sends a write request to every replica,

to which each replica replies with its version number and partition vector. In the second

phase the client multicasts a commit message containing a new version number and a new

partition vector to all replicas that responded in the first phase. The new partition vector

is composed of those replicas that responded with current versions in the first phase. At

the end of the second phase the replicas respond with the results of the update operation.

This operation does not make use of quorum multicast.

To determine the performance improvement, I will once again define the read-to-

update ratio as � and the ratio of quorum multicast cost to naive cost as �. Assuming
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and a partition vector indicating which replicas participated in the last update operation.

An out-of-date replica will have a version number less than that of current replicas.

Figure 3.6 shows a possible implementation of DV using quorum multicast.

context:

R: list of replicas

read(handle) ! data

// first phase: obtain version numbers
reply list = multicast(message=‘read data version’, replica set=R);
if reply list does not contain a majority of the hosts in the latest partition vector

raise exception ‘data set unavailable’;
else

// second phase: get a copy of the data
replica set M = replicas in reply list with max version number;
data reply = quorum-multicast(message=‘read data’, replica set=M,

reply count=1);
if exception ‘reply count not met’

raise exception ‘data set unavailable’;
else

return result from message in data reply;

update(handle,data)

// first phase: send data and obtain partition vectors
replies = multicast(message=‘write data request’, replica set=R);
if reply list does not contain a majority of the hosts in the latest partition vector

multicast(message=‘abort write’, replica set=R);
raise exception ‘data set unavailable’

else
// second phase: commit write
generate new version number and partition vector from replies;
multicast(message=‘commit write’, replica set=new partition vector);

Figure 3.6: DV implementation using quorum
multicast.

To perform a read operation, the client multicasts the read request to all replicas. Ev-

ery available replica responds with their version number, their partition vector, and the

requested data value. The client picks the data value returned by a replica with the max-
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Figure 3.5: Estimated relative cost for MCV as �
is varied.

3.2.4 Dynamic Voting

Dynamic Voting (DV) protocols [Davčev85, Jajodia87, Long88] can provide higher

availability than MCV protocols. They do so by adjusting the quorum sizes required for

success as replicas fail and recover. Replicas may fail at any time, and failure removes them

from the set of replicas from which a quorum is formed. An operation must be performed

at a majority of the available replicas to complete successfully. When a failed replica recov-

ers it must execute a protocol to rejoin the set of available replicas. The number of available

replicas can be as small as two, if global ordering is maintained on the replicas to break

ties. For this discussion I will not consider versions of DV that make use of regeneration

[Long89a], but rather concentrate on DV protocols that use a fixed set of replicas.

One way to implement DV is to provide the applications using a set of replicated data

with the addresses of the set of replicas storing the data. Since the set of replicas are

assumed fixed, the application can obtain this information once at startup. Each replica

maintains the state of the shared data, a version number indicating how current its data are,
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context:

R: list of replicas

read(handle) ! data

quorum size = bjRj=2c+ 1;
reply list = quorum-multicast(message=‘read data’, replica set=R,

reply count=quorum size);
if exception ‘reply count not met’

raise exception ‘data set unavailable’
else

return result from message in reply list

update(handle,data)

quorum size = bjRj=2c+ 1;
request reply list = quorum-multicast(message=‘write data request’, replica set=R,

reply count=quorum size);
if exception ‘reply count not met’

multicast(message=‘write data abort’,
replica set=replicas in request reply list);

raise exception ‘data set unavailable’
else

multicast(message=‘write data commit’,
replica set=replicas in request reply list);

Figure 3.4: MCV implementation using quorum
multicast.

Again assuming a read-to-update ratio of � = 100, the overall relative cost is

Q

MCV

=

101� + 1

102
:

Figure 3.5 shows the sensitivity of the overall relative cost as to relative performance of

quorum multicast. For values of � near 1, the the overall cost is nearly proportional to the

cost of a quorum multicast. This linear effect makes quorum multicast protocols attractive

for implementing MCV replication protocols.
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3.2.3 Majority Consensus Voting

When the number of read operations only slightly exceeds the number of update oper-

ations, the AC replication protocol can be slower than requiring majorities of the replicas

to participate in both read and update operations. Read and update operations have about

the same cost using the Majority Consensus Voting (MCV) replication protocol [Thomas79,

Gifford79]. If the set of replicas is fixed, the multicast protocols provide the mechanism to

ensure that a majority of the replicas participate in an operation.

A read operation can proceed in one phase, with the client multicasting a request

message and available replicas replying. The client can set the reply count to a simple

majority of the replicas. An update operation, on the other hand, will usually require two

phases, one to multicast the request and another to commit the operation once a majority

has been obtained. The request can be multicast to at least a majority, and the reply count

should be set to a majority. The commit phase should be multicast to all the replicas to

which the request was sent, and the reply count must be the same as that in the request

phase. Figure 3.4 shows how this replication protocol can be implemented using quorum

multicast. An implementation using naive multicast would substitute a naive multicast

for each quorum multicast.

As in the last section, an estimate can be computed for the relative cost of using quorum

multicast. This estimate ignores the cost of recovering failed replicas. If the cost of using

quorum multicast instead of naive multicast is �, as in the last section, then the relative

cost is

Q

MCV

=

C

MCV;q

C

MCV;n

=

�C

q

+ C

q

+ C

n

(�+ 2)C
n

=

(�+ 1)�C
n

+ C

n

(�+ 2)C
n
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(3.4)
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Figure 3.3: Estimated relative cost for AC as � is
varied.

of an expensive protocol for adding new references is small. This is potentially a good

candidate for AC protocols.

I estimate the read-to-update ratio for the reference data bases at about � = 100 accesses

for every update. In the absence of a concrete implementation I rather arbitrarily estimate

that an update requires about ! = 50 times as long as a naive multicast. The expected

relative cost for communication latency is

Q

AC

=

100� + 50

150
:

Figure 3.3 shows the effect of different relative protocol performance on the overall com-

munication cost for the reference database. When quorum multicast protocols make read

operations nearly cost-free, the overall cost is about one-third the cost using naive multi-

cast. On the other hand, if a quorum multicast implementation causes read operations to

cost 80% more than a naive multicast implementation, the overall cost is about 50% greater.
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quorum multicast for reads and one atomic multicast for writes.

context:

R: list of replicas

read(handle) ! data

reply list = quorum-multicast(message=‘read data’, replica set=R,
reply count=1);

if exception ‘reply count not met’
raise exception ‘data set unavailable’

else
return result from message in reply list

update(handle,data)

atomic-multicast(message=‘write data’, replica set=R);

Figure 3.2: AC implementation using quorum
multicast.

If the cost C
a

of an atomic multicast in a particular configuration configuration is a

factor of ! more expensive than the cost C
n

of a naive multicast, the overall relative cost is
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(3.3)

The only cost not considered in this analysis is the cost of recovering a failed replica, which

is dependent on the rate of failure.

In the reference database, hundreds of reference accesses are often performed for every

reference update. Further, users can often tolerate some delay between the time they

submit a new reference and the time that the reference is available in the database. In

the current implementation at Hewlett-Packard Laboratories, new references are entered

into a log during the day and generally only added to the database at night. Since updates

are comparatively rare, and because delays do not generally directly affect users, the cost
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access is almost completely read-dominated. In such a system, update operations can be

very expensive, perhaps using a multi-phase atomic multicast protocol to achieve consen-

sus among all replicas [Cristian86, Gopal90]. These protocols can require several rounds

of messages, or may require message delivery to be delayed. This can result in order-of-

magnitude greater latency and message counts than that required by the simple (but far

less capable) quorum multicast protocols. In spite of this the combination can be efficient

if read-only operations predominate because they need only be performed at one current

replica.

In the analysis that follows, I will assume that an atomic multicast is a factor of ! more

expensive than a naive multicast. This treatment is only valid for a particular configuration

of replicas and clients, for the actual performance of an atomic multicast depends on the

number and placement of replicas.

Figure 3.1 shows an implementation of AC using simple multicast. This implementa-

tion uses one naive multicast for reads, and one atomic multicast for writes.

context:

R: list of replicas

read(handle) ! data

reply list = multicast(message=‘read data’, replica set=R);
if size of reply list < 1

raise exception ‘data set unavailable’
else

return result from message in reply list

update(handle,data)

atomic-multicast(message=‘write data’, replica set=R);

Figure 3.1: AC implementation using naive
multicast.

The quorum multicast protocols ensure that reads occur at the closest available replica

when the reply count is set to one. If the nearby replica becomes unavailable, the protocol

will switch to the next closest replica. Figure 3.2 shows an implementation. It uses one
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3.2.1 Sample application: a bibliography database

Throughout the rest of this section I will use an example of a simple replicated database

to make discussions concrete. I use the refdbms reference database [Wilkes91] for these

examples, and consider ways in which a distributed version could make use of quorum

multicast protocols.

The refdbms system is a bibliography database system developed at Hewlett-Packard

Laboratories. It provides tools to add references to the database, to search for refer-

ences using keywords, and to format references for bibliographic citations in scholarly

communications.1 Refdbms is similar to systems such as refer [Lesk78], BibTeX [Lamport85,

Patashnik88], and tib [Alexander87], but has been designed from the start to support

databases shared among groups of users.

Refdbms is an example of an application well-suited to distribution. The database

structure is simple, and activity is almost entirely read-only, consisting of searches for in-

teresting references and extraction of references for documents. The majority of operations

that update the database add new references without modifying old ones. A small fraction

of the operations modify existing references, either to correct errors or to add information.

Two models are being considered for building a distributed version of refdbms. One

model uses Epidemic replication techniques (x3.2.5) to provide nearly-consistent replica-

tion, while the other uses direct replication techniques such as the Available Copy (x3.2.2)

or voting protocols (x3.2.3, x3.2.4) for completely consistent databases.

3.2.2 Available Copy

The Available Copy (AC) replication protocol requires that update operations are per-

formed at all replicas, while read operations can be performed at any available replica.

While this protocol is generally not considered useful in an internetworked system be-

cause of its vulnerability to communication partitions, it can be useful in a system where

1The bibliographic information for this thesis was maintained using refdbms.



25

of the latency and number of messages that can be expected if quorum multicast protocols

are used instead of regular multicast to all the replicas.

In the analyses that follow I use � as the read-to-update ratio, the number of read op-

erations performed for each update operation. Many applications, including the refer-

ence database described in the next section, exhibit read-to-update ratios on the order of

� = 100. I define � as the ratio of the cost of reading data using quorum multicast to the

cost of reading them using naive multicast. If the cost metric is the number of messages

sent, the simulations in Chapter 6 show that this ratio is around � = 0:8 in some situa-

tions. For latency the ratio might be � = 0:6. If � < 1, quorum multicast techniques are

preferable.

Throughout this section I write the cost of a read operation as C
R

, and the cost of an

update operation as C
U

. When the cost is specific to one multicast protocol I add a second

subscript indicating the protocol. For example, C
R;q

is the cost of a read using quorum

multicast.

Given a read-to-update ratio �, the mean cost C over all operations for a replication

protocol P and communication protocol c is

C

P;c

=

�C

R;c

+ C

U;c

�+ 1
: (3:1)

This equation only accounts for the cost of operations directly caused by an application.

Operations such as background update and failure recovery are not considered because

they do not affect the immediate performance of an application, and can often be per-

formed in off-peak times. I will discuss the costs of such operations when appropriate.

The relative cost of using quorum multicast is given by

Q

P

=

C

P;q

C

P;n

(3:2)

for a replication protocol P . Values of Q
P

< 1 suggest that quorum multicasts will be

beneficial.
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as a hint. Hints provide good performance as long as they are usually correct and the cost

of identifying and recovering from out-of-date hints is low.

Epidemic replication and the causally-consistent techniques of lazy replication can be

combined, for example by allowing applications to specify predecessor operations and

consistency constraints [Golding91]. When applications do not specify such constraints,

the system provides probabilistic guarantees. When constraints are specified, the system

guarantees consistent execution although the delay on an operation is only probabilisti-

cally bounded.

3.1.4 Related techniques

The Regeneration Algorithm, proposed by Pu [Pu86a, Pu86b], is a technique that can

be combined with several replication protocols. The algorithm regenerates new replicas

when it detects that one or more of the replicas have become inaccessible due to site fail-

ures. While reads are allowed under this protocol so long as one current replica of the

data remains accessible, updates are disabled if fewer than the initial number of replicas

are accessible and there are not enough spares for the missing replicas to be regenerated.

No provisions are made by the algorithm for enforcing mutual exclusion or for recover-

ing from a total failure. Long and Pâris [Long89b, Long90b] extended the regeneration

algorithm to compose with Available Copy and Dynamic Voting protocols, as well as with

volatile witnesses. Long, Carroll, and Stewart analyzed the reliability of these composite

protocols [Long89a].

3.2 Implementing replication protocols

In this section I study the performance and implementation of some of the replication

protocols in the last section. The section covers Available Copy, Majority Consensus Vot-

ing, Dynamic Voting, and Epidemic replication protocols. For each of these protocols I

discuss whether it can benefit from quorum multicast protocols, and present an analysis
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Lazy replication

The lazy replication scheme [Ladin90, Ladin91] provides application-specified causal

consistency. Each operation is sent to one replica, where it is given a unique identifier.

That replica then forwards the operation to other replicas.

When the application issues an operation request, it specifies a set of operation identi-

fiers which must precede the operation. When a replica receives a request, it must delay

executing the operation until all the predecessor operations have been received and exe-

cuted. If all applications list all operations they have performed as the predecessors of a

new operation, every operations will observe causally consistent data. Operations that do

not depend on other results – such as the addition of a new datum – need not specify any

predecessors, and replicas can execute the operation immediately.

Ladin et al. reduce the cost of this technique using vector timestamps [Mattern88] to

identify operations. A set of operation identifiers can be compactly represented as a single

vector timestamp. This vector is formed from the piecewise maximum of each of the

vectors in the set.

3.1.3 Unbound-inconsistency protocols

The bound-inconsistency techniques provide hard bounds on the divergence among

replicas. Epidemic replication schemes [Alon87, Demers88], on the other hand, only pro-

vide probabilistic bounds. Applications send operation requests to one or more replicas,

which execute the operation as soon as possible. The operation is later propagated to other

replicas. Several propagation methods can be used, including direct mail, rumor mongery,

and anti-entropy. Each method propagates the update at different rates, requiring different

amounts of message traffic and providing different guarantees on eventual consistency.

Epidemic techniques have been used in internetworked name services such as Clear-

inghouse [Oppen81] and Grapevine [Schroeder84, Terry85]. Name services are a good

candidate for Epidemic replication because an application can treat location information
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mation, and execution of an update is delayed until the earlier updates have completed.

Commutative operations, on the other hand, can be executed at any replica in any order.

As long as all update messages are reliably delivered, all replicas will eventually converge

to the same value. It is not clear exactly how fast they converge.

Controlled inconsistency

The controlled inconsistency approach [Barbará90], which allows data to be annotated

with inconsistency constraints, has been proposed by Barbará and Garcia-Molina. They

discuss arithmetic and temporal constraints in some detail. Arithmetic constraints allow a

replica to diverge from another master replica by some value. For example, a datum might

vary no more than three units from the correct value. Update operations can proceed at

any replica as long as they will not cause the resulting value to exceed some constraint. If

they do, then the operation is performed at the master. Temporal constraints ensure that

a replica will not diverge from the master replica for long periods.

Escrow

The escrow methods [Kumar90] define specialized replication protocols that can be used

when performing commutative updates on aggregate data. These methods are a variation

on voting protocols. With this method, the degree by which an update can change data is

proportional to the number of votes it can collect. For example, an operation that collected

six votes might only be able to change the value of the data by six units. This technique

avoids the ‘all-or-nothing’ behavior of usual voting protocols, which either succeed or

fail. One variant of the algorithm provides serializability. Pâris [Pâris90a] has proposed a

variation intermediate between escrow and MCV protocols, where each update consumes

votes given to an application or replica.
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The replication protocol used in the Echo file system [Hisgen90, Mann89] uses a master

replica to coordinate operations for a set of slave replicas. An application forwards its

operation requests to the master, which in turn synchronously sends the request to all

slaves. When a replica recovers from a failure, or when the master replicas fails, an election

is held to determine a new master. The protocol also allows applications to cache data. An

application obtains the right to cache a datum for a limited time. The application must

write any changes back to the replicas before the time expires, and the replicas reject any

changes written after expiration.

3.1.2 Bound-inconsistency protocols

The consistent replication protocols guarantee that all replicas observe updates “at the

same time”. This can be an expensive guarantee to provide, since most of the known

protocols require synchronous operations at some or all replicas. The bound-inconsistency

protocols define slightly weaker consistency semantics, and so gain performance by per-

mitting asynchronous operations. These protocols strictly control the divergence among

replicas.

Epsilon-serializability

Pu and Leff have worked on formalizing asynchronous replication protocols. Their

epsilon-serializability [Pu91b, Pu91a] techniques define a model of serializability and trans-

actions that allow read transactions to observe transient inconsistencies between trans-

actions and between replicas. Unlike voting protocols, the replication protocols do not

perform synchronous update of a number of replicas. Update messages are propagated

asynchronously among replicas. The replicas are guaranteed to converge to a common,

serializable view of the data after all messages have been received.

They detail several kinds of updates, including commutative, ordered, and times-

tamped updates. Each kind of update requires a different implementation to ensure con-

vergence. Ordered updates are sent between replicas in messages tagged with order infor-
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One difficulty of the Majority Consensus protocols is that it uses a static assignment of

votes to replicas. Barbará et al. [Barbará86, Barbará89] examined the idea of dynamically

reassigning votes on node or link failure. They describe two policies for vote reassignment:

group consensus and autonomous assignment. In the group consensus method, sites in the

majority group decide on a global vote assignment. Sites that are not in the majority group

receive no votes under the new vote assignment. A coordinator site is elected and collects

topology information from the other sites. The coordinator then decides on a new vote

assignment and distributes the votes among the sites.

While the vote assignment protocols handle failure and recovery by reassigning votes

and maintaining quorum sizes, the Dynamic Voting (DV) protocols [Davčev85] adjust

quorum sizes while preserving vote assignment. The initial formulation of this protocol

was unrealistic in that it assumed instantaneous knowledge of the system. Jajodia and

Mutchler removed this limitation [Jajodia87], and explored the possibility of using both

DV and MCV to increase availability [Jajodia88]. Pâris and Long defined an optimistic

version of the DV protocol that can operate on out-of-date information [Long88, Pâris88].

They also considered how DV could be used when true stable storage is not available,

requiring that updates be recorded in at least two replicas [Pâris90b].

Explicit subsets of sites, known as coteries [Garcia-Molina85], have also been studied

for controlling access to replicated data. Access is allowed if a superset of the sites in one or

more of the coteries are present. For maintaining mutual consistency the only restriction

on the composition of coteries is that their intersection be non-empty. For more than six

replicas, coteries provide a greater flexibility than simple majority consensus.

Other protocols

The Virtual Partition protocol [El-Abbadi86] is a hybrid protocol based on Available

Copy and voting. A transaction is executed with a view consisting of the sites with which

it believes that it can communicate. A transaction executes by reading any replica and

updating all replicas in the view. A view is required to contain a quorum of the replicas.
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This protocol requires that some very strong assumptions be made about the operating

environment: the communication network must be reliable; it must not be susceptible to

partitions; reliable message delivery must be assured; when a site recovers from a failure

it must obtain a current copy of the data (if there is another operational site that holds a

current replica then the recovering site can request a copy of the data from that site); in the

event of a total system failure the AC protocol must determine the last site to fail since that

site held the most up-to-date copy of the data. As a result this protocol is not well suited

to internetworks, since they provide unreliable communication and can partition.

Voting

Voting protocols are conceptually quite simple. Each replica is assigned one or more

votes. Each operation collects votes from replicas, and can proceed when it has collected

a quorum of votes. The simplest approach is to assign each replica one vote, and require

each operation to collect a majority of votes. Since all operations operate at a majority, a

read operation is certain to contact at least one replica holding the results of the last update

operation. Most voting protocols also maintain a version number at each replica, so that

out-of-date information can be discarded.

Replica failure can affect voting in one of three ways: not at all, the vote assignment

can change, or the quorum requirement can change. Each of these three possibilities is the

basis for a voting replication protocol.

The Majority Consensus Voting (MCV) protocol [Thomas79, Gifford79] is one of the

simplest replication protocols. This protocol requires that each operation on the replicated

data be performed at a majority of the replicas. The size of the majority is determined

once for the set of replicas, and never thereafter changed, even if replicas fail. By using a

fixed majority, mutual exclusion between client processes is assured. The MCV protocol

requires at least three replicas to improve availability over that of a single replica. The

MCV protocol was extended by Pâris [Pâris86] with witnesses, light-weight replicas which

hold no data but which can attest to the state of the replicated data.
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bound-inconsistency protocols, and inconsistent protocols. I will also discuss techniques

that can be combined with replication protocols to improve their performance or modify

their consistency guarantees.

3.1.1 Consistent protocols

The consistent replication protocols make changes to shared data visible to all applica-

tions at the “same time”. Since all applications observe the same values at the same time,

their views of the data are consistent.

The subtlety arises in the meaning of “same time”, since time is a slippery concept in

a distributed system. The word time can mean global time, as an external observer could

measure. Time could also mean a virtual time measure that is causally consistent among all

processes but which does not correspond to global time. These distinctions are discussed

further in papers by Mattern [Mattern88], Birman [Birman87], and Lamport [Lamport78].

Consistent replication protocols can be divided into three subcategories. The Available

Copy protocols require that update operations involve all available replicas, while reads

need access only one. These protocols require strict and unrealistic assumptions about the

communication environment. The voting protocols make less stringent requirements of

the network. They assign votes to replicas, and require operations to be performed at a set

of replicas holding a quorum of votes. The third group includes hybrids between the first

two.

Available Copy

The Available Copy (AC) protocol [Bernstein84, Bernstein87] is often known as the

“write-all read-one” protocol. Update operations must be applied at all available replicas.

If all available replicas participated in the last update, an application can read from any

replica and observe the update. When a replica crashes it becomes unavailable, and must

perform a recovery protocol before it becomes available again. Pâris and Long analyzed

the availability and performance of several variants of the AC protocol [Long90a].
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Chapter 3

Replication protocols

Applications that use replicated data do so according to a replication protocol. These

protocols determine how an operation will be performed on replicated data, including the

number of replicas that must be involved in the operation. Some protocols define single-

copy semantics that ensure changes become visible to applications at the same time, while

others define looser semantics. All these protocols are implemented using the services

provided by the communication layer.

This chapter has two foci. In x3.1 I survey a number of replication protocols, covering

both consistent and inconsistent techniques. I explore ways to implement a select few

of these protocols in x3.2, and determine how their performance can benefit from the

application of quorum multicast protocols.

3.1 A short survey of replication protocols

The replication layer in my model defines the semantics of the replication. This layer

provides the application the illusion of a single data collection, and defines consistency

semantics for that collection. It also determines how data operations will be coordinated

among the replicas.

I survey several replication protocols in the next few sections. The list is not exhaustive,

since many protocols have been proposed and there are many variations on each. The

protocols are classified by the consistency guarantees they provide: consistent protocols,
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The communication layer also provides mechanisms for detecting failure, though not

for handling it. Handling failures is done in the communication, replication, and applica-

tion layers. IP will report failures in some cases, such as when it cannot find a way to route

a message to its destination. Most of the time, however, failures must be detected using

timeout. This requires that the recipient of a message acknowledge it in a timely man-

ner. The majority of replication operations involve request-response communication, so

this is not a terribly onerous requirement. Schemes that use timeout and acknowledgment

cannot distinguish between failures in the network and in the remote host. For example, a

message lost because a router is congested is indistinguishable from a message lost because

its destination crashed. The discussion in x5.4.1 presents ways to distinguish between the

two probabilistically.

2.4 Implementing replicas

Replicas maintain copies of data. They communicate amongst themselves, and receive

requests from clients. A replica can perform operations on the data just as any client can,

by issuing a request to its replication layer, which in turn uses the communication layer to

send messages to other replicas.

Replicas participate in some protocols that clients do not. For example, when a replica

fails and recovers, it may perform a recovery protocol to ensure that its copy of the data

is current. Some replicas, particularly those using epidemic replication (x3.2.5), will send

updates to other replicas from time to time. Once again these operations are performed

by issuing a request to the replication layer and so on.

Requests from clients and other replicas are different. They are received as messages

at the network layer, and propagated up through the communication layer, which ensures

that the request is from a proper client, to the replication layer, which may issue a request

to the storage layer depending on the message. Many replicated operations require several

rounds of message exchange, and the replica may need to maintain appropriate context to

determine its response. Other operations are stateless and require no context.
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be declared only after several consecutive message failures. The Internet measurements

also indicate that long transient failures are uncommon, so probable host failure can be

declared after observing only a few messages. A protocol’s persistence is the number of

messages that must fail before a host is declared failed. One of the quorum multicast

protocols described here allows the replication protocol to control this persistence.

Quorum multicast semantics allow the communication protocol to send a message to

a subset of the replicas. The protocols I have developed use an ordering on the replicas

to determine which to prefer. The simplest ordering is based on expected communication

latency, though many others are possible. As we will see in x3.2.5, orderings based on

probable currency of data and randomized orderings can also be useful.

2.3 The network layer

The Internet defines a very simple communication environment. It provides a base

Internet Protocol (IP) [Comer88] that routes datagrams through the internetwork to remote

hosts. This protocol uses 32-bit integer host identifiers that can be combined with a port

number at that host to form a communication address.

Two popular protocols are layered atop IP: a reliable byte-stream protocol (TCP)

[Postel80b], and an unreliable datagram protocol (UDP) [Postel80a]. The TCP protocol

provides virtual circuit semantics, maintaining a continuous end-to-end connection be-

tween two hosts. This protocol can require significant time to initiate a connection, and

requires both ends of the connection to maintain state for the duration of the connection.

TCP is a communication layer protocol in our model.

The UDP protocol provides a connectionless datagram service from one host to another.

No delay is incurred by making a connection and no state is required to maintain one.

However, the protocol does not provide reliable communication. Messages can be lost,

delayed, and reordered in transit by the protocol. I will examine some of the temporal

and reliability behaviors of this kind of protocol on the Internet in Chapter 5 .
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this multicast should be fault-tolerant, using more distant replicas when those nearby are

unavailable.

quorum-multicast(message,replica set,reply count) ! reply set

The message is sent to at least a reply count of the replicas.

Exceptions: reply count not met

Figure 2.3: Quorum-based multicast
communication protocol.

The quorum multicast protocols provide such semantics, as shown in Figure 2.3. These

protocols take an additional parameter: the reply count. The reply count is the minimum

number of replicas that must reply to the message. The protocol may not be able to meet

the reply count if some of the replicas are unavailable. Replicas can be unavailable due

to host failure (such as a system crash or controlled shut-down), replica failure (perhaps

due to insufficient resources or software errors), failure of the network (gateway or link

failure), or controlled failure (such as removal of a replica that is no longer needed).

Replicas may also appear to be unavailable due to congestion or partial failure, such as

when a gateway becomes overloaded. When the protocol fails to receive a reply, it cannot

determine whether that message was lost due to transient network problems or due to

host failure. If the Internet provided reliable, FIFO or bounded-latency communication

channels this determination might be possible. Unfortunately the Internet IP protocol

provides an unreliable communication channel between hosts that is neither FIFO nor

provides bounded communication latencies, so the communication layer cannot detect

replica failure with certainty.

The question of when to declare a probable replica failure can be answered by looking

at measurements of the Internet, which I will detail in Chapter 5. Those data show that

short transient failures are very common (e.g. one or two messages are not delivered by the

network or overflow buffers at the receiver). This suggests that sending only one message

is not a good way to determine whether a host has failed, and probable host failure should



13

order”. Globally-consistent data all change value at the same global time [Birman87], while

causally-consistent data can change value at different times at different replicas, but any

application will observe a change at the same virtual time [Lamport78, Mattern88].

Other replication protocols do not attempt to provide strict single-copy semantics.

Some applications, such as name services or some scientific databases, can get by with

less strict guarantees [Terry85]. These applications can obtain better performance using

epidemic or controlled inconsistency techniques, which I will discuss in more detail in Chap-

ter 3.

2.2 The communication layer

Several models can be applied to the interface between the replication and commu-

nication layers, including bulk data transfer, remote procedure call, and multicast. This

thesis concerns multicast protocols, so I will only consider them here. (See x4.1 for others.)

Simple request-response multicast protocols define an interface like that in Figure 2.2.

Replication protocols can use multicast to send a message to all available replicas, later

receiving a number of responses from some or all of them.

multicast(message,replica set) ! reply set

Sends the message to all replicas in the set.

Exceptions: none

Figure 2.2: Simple multicast communication
protocol.

There are several possible variations to this basic multicast scheme. The most signifi-

cant variation arises when only some fraction of the replicas need to respond to a message.

For example, many replication protocols require that a simple majority of the replicas per-

form an operation, while others require only one or two replicas. In this case the commu-

nication protocol might be able to send the message only to enough of the closest replicas

to satisfy the requirement, avoiding message traffic to the most distant replicas. Of course,
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2.1 The replication layer

The replication layer generally provides semantics as close to those of a single-copy

data object as possible. An application can request that an operation be performed without

regard for distribution of data replicas. Operations are usually partitioned into several

different types, such as update and read operations. The replication protocol uses this

type to determine how many replicas must participate in the operation, and forwards the

request to replicas using a multicast communication protocol.

Figure 2.1 shows an abstract view of the interface to this layer. This is a simplified

version that only provides initialization and two operations on the data, reading and

updating the entire set of data. Any real data replication would require more complex

operations, such as reading or updating some subset of the data, transaction commit and

abort, or locking. Every application using a set of data uses the same replication protocol

to access it.

open(name) ! handle

Given a name for a replicated data set, opens a session with it. Returns an abstract
handle to be used in future operations on the data.

Exceptions: no such data set

read(handle) ! data

Reads the replicated data.

Exceptions: data set unavailable

update(handle,data)

Writes new data into the replicated data.

Exceptions: data set unavailable

Figure 2.1: Minimal replication-layer interface.

This simple interface hides any consistency guarantees provided by the replication

protocol. Some replication protocols provide strict single-copy semantics. Any application

using such protocols is guaranteed to observe all changes to the data in the same time order

as any other application using the data. There are different definitions of “in the same time
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Chapter 2

Using replicated data

This chapter discusses the four-layer model of replicated data in detail. The application

provides functions that use shared data. The replication layer provides an abstract view of

the replicated data that looks much like a single copy. The replication layer uses high-level

communication mechanisms in the communication layer. The communication layer in turn

uses low-level message services in the network layer to get messages to and from replicas.

In this chapter I examine this model of building distributed applications in detail. I

will discuss the layers from top (the application) to bottom (the network) on the client

side, then from bottom to top on the replica side. This thesis is concerned with the lower

layers in the four-layer model, so I will mention the application only briefly.

The application defines the functions a user sees. It provides a user interface and

determines the semantics of the data. For example, a replicated picture database system

might provide applications to retrieve a picture into a local file, to browse through indices

of pictures, and to query the database based on tags associated with the pictures. The

applications might enforce the constraint that a picture must have an associated format

and size on record. The application is written in terms of a single collection of data, without

regard for distribution. It uses a name service [Terry85] to locate and bind to the replicated

data.
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try sending a message to a replica once, while other protocols will try several times before

giving up. This persistence is another tunable parameter in some protocols. Once a pro-

tocol has declared enough replicas unavailable, it will return a negative indication to the

replication protocol and abandon the operation.

There are several direct uses for the quorum multicast protocols developed in this

study. Federated databases that unite several separately-administered databases into one

logical database can use these protocols when operations must proceed at several compo-

nent databases. Other distributed and fault-tolerant services such as a name service can

also benefit, since translating a name may involve several name servers. Replicated file

systems providing service to a large number of users can also use these techniques to find

and use the closest replica of a file.

1.5 Organization of the thesis

The first part of this thesis is organized around the four implementation layers. I start

in Chapter 2 with a detailed look at the model and a discussion of the application layer.

Chapter 3 steps down one layer to discuss replication, surveying several replication pro-

tocols and analyzing how they can use quorum multicast protocols. Chapter 4 goes one

layer lower to discuss the communication layer, and quorum multicast protocols in de-

tail. Chapter 5 discusses the lowest layer, where we reach the network level to discuss

measurements I have taken of the Internet. The following two chapters take up different

performance evaluations of the quorum multicast protocols: Chapter 6 details the simula-

tions; and Chapter 7 covers measurements taken of a sample application. Finally, I draw

some general conclusions and future research directions for quorum multicast protocols

in Chapter 8.
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sensitive to the communication latency of replicas, and should tend to communicate with

nearby replicas rather than distant ones, providing lower access latencies and limiting

the portion of the internetwork affected by an access. The protocols should also address

the problems associated with transient failures by resending messages to replicas. In

Chapter 5 I show that this produces a significantly higher availability than can be obtained

without retry.

Quorum multicast protocols are a specialization of ordinary multicast protocols. Ordi-

nary multicast sends a message to a set of destinations in one operation. Since the message

must be delivered to all destinations, the protocol cannot just use nearby ones.

Quorum multicast protocols send a message to a subset of the destinations. The number

of destinations is a parameter to the operation. For example, replication protocols often

do not need all replicas to respond, only a majority. If the communication protocol can

obtain at least that many responses the operation will succeed. Since replication protocols

generally require request-response communication, the responses to a multicast serve as

acknowledgment that the message was received and processed.

The quorum multicast protocols maintain an expected communication latency for each

possible host. When a request is issued to communicate with q members of a set of replicas,

the communication protocol can order the set by expected latency and communicate with

the q closest replicas. If responses are not received from all q within a certain time, then

messages can be sent to more distant replicas. The time to wait before sending to distant

replicas is a tunable parameter that can be used to trade operation latency for message

traffic. The expected latency can be determined by measuring recent performance, on

the assumption that replicated operations will be performed much more often than the

structure of the network will be changed.

If the communication protocol has not received a reply from a replica after some

amount of time, the protocol assumes that the message has failed. After some number of

messages have failed, the protocol declares the replica unavailable and does not attempt

to send further messages until the next communication request. Some protocols will only
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to provide service even when several parts of the system have failed. The set of failures the

application can withstand is called the fault-tolerance of the application. Using replicated

data rather than a single copy can improve fault tolerance, though at the cost of software

complexity and extra communication.

Replicated data can provide lower latency and lower network load than a single data

copy, if a copy can be located close to where it will be used. Access requests will usually

only need to travel short distances, generally improving latency and throughput, as long

as the operation can be completed using the local copy. Operations that require the full

set of replicas will lead to longer latencies and provide lower throughput. Experience

has shown, however, that in many useful distributed applications operations requiring a

small set of replicas can dominate those that require all replicas. These applications should

benefit from properly-implemented replicated data.

1.4 Quorummulticast protocols

I have developed a family of quorum multicast communication protocols that can be

used to take advantage of good replica placement. The protocols in this family send a

multicast to a subset of a group of replicas, rather than to the entire group. These protocols

can be used to implement a replication policy to maintain consistency between replicas.

The protocols use the closest available replicas, falling back on more distant replicas when

nearby replicas are not available. They are parameterized so that the replication protocol

can provide optimization hints to further improve performance. In this way an applica-

tion can use replicated data for fault tolerance and throughput, while limiting the cost of

message traffic and using nearby replicas for low latency.

A communication protocol that is to work well in internetworks must address their

particular performance characteristics: long, variable latency and occasional high message

loss. These characteristics make some of the techniques used for replication in a local-area

network inappropriate for internetwork use. The protocols should not require broadcast,

but instead send messages to replicas in a more controlled fashion. The protocols should be
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for communications across a continent, and as long as several seconds when satellites are

used for transoceanic communication.

Throughput is the rate that operations can be completed. I have not measured through-

put in this thesis because it involves many more factors than just communication protocol

performance. Just as with latency, the overall throughput is determined by the through-

put of the components used in the distributed application: the network, processors, and

storage devices. High operation throughput does not imply low operation latency, since

several operations could proceed in parallel yielding a high rate of completion while re-

quiring long times to complete an individual operation. I expect throughput in an inter-

network to be governed by the loads on the network, determining how many messages

can be transmitted per unit time, and on the replicas, determining how many operations

can be satisfied. The scale of the Internet implies that components can become very heavily

loaded.

The amount of message traffic required for an operation governs the degree the oper-

ation will interfere with other communication in the network. The number of messages,

their size, and their destinations contribute to this effect. When a process sends a message

to another host, it takes up bandwidth on each link and at each gateway between the two

hosts. A communication protocol will cause less interference if it can send a message to

a nearby host rather than a distant host since the message will likely traverse fewer links

and gateways. Broadcast messages on a LAN allow replication protocols to send requests

to all replicas in one message, while a separate message must be sent to each replica in an

internetwork, increasing the message traffic required for replication.

The reliability of an application (or service) can be defined as the likelihood of the

application (or service) providing continuous correct service to users over a period of time

[Trivedi82]. This must be contrasted with availability, the probability at any particular time

of the application providing correct service. An application can be highly available while

having low reliability if it has a very short mean-time-to-failure (MTTF) and mean-time-

to-repair (MTTR). Highly-reliable applications must be fault-tolerant: they must continue
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protocol performance, for a protocol that performs well in a local-area network may not

scale to the world-wide Internet.

Wide-area networks contain many more systems that might share resources, implying

that the potential load on highly utilized components in an internetwork is much higher

than the load on components in a LAN. The potential users of an application at a local

site number at most a few hundred to a few thousand, and can be handled by a few fast

computer systems. The number of potential users of a wide-area application is orders of

magnitude larger – we can conservatively estimate Internet users in the millions, and they

continue to increase. While the load on many wide-area services does not scale with the

number of users, systems such as the Domain Name Service and Usenet show that there

are some applications where load is of concern.

Sending a message between any two hosts on an internetwork requires a variable

amount of time, termed the communication latency. The communication latency of a mes-

sage depends on the load on the network and the performance of the available routes

between hosts. Hosts can communicate quickly with other hosts on a local Ethernet seg-

ment, while communications with more distant hosts take longer because they must pass

through several gateways. Internetworks are unreliable, meaning they lose and duplicate

messages from time to time, and they may deliver them out of order. Hosts sending a

message can use timeouts and acknowledgments to detect with high probability that a

message has not been received. They cannot distinguish whether a message has been lost

due to network or host failure. Systems generally fail for short periods of time, returning

to service after only a few minutes or hours.

In a wide-area internetwork, communication latency can be the predominant factor

determining the latency of operations on the replicated data. Operations on replicated

data often require only a few milliseconds, involving a few disk accesses or a fairly small

amount of computation. In a local-area network the time required to communicate with

a replica is also on the order of a few milliseconds. In contrast, access times for replicas

on an internetwork are non-uniform, and are greater, often several hundred milliseconds
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scheme for identifying hosts and routing packets of data between them. More sophisti-

cated communication protocols are layered atop the unreliable datagram mechanism.

The replicas are built using a similar layered model. Within a replica, the storage layer

maintains a copy of the data. The data are modified according to requests issued by the

replication protocol layer, which contains protocols that complement those in the applica-

tion’s replication protocol layer. This layer also contains replica-specific protocols such as

failure recovery and background update. The replication protocols are once again imple-

mented in terms of communication protocols and network services.

This model is similar to many other layered application models. In particular, it can

be compared to the ISO OSI reference model [Tanenbaum81]. Figure 1.1 shows the corre-

spondence between the two.

Table 1.1: Correspondence between four-layer
and OSI models

Four-layer OSI
model model
Application Application
Replication Presentation
Communication Session
Network Transport

1.3 Performance measures

The goal of this thesis is to develop communication protocols that facilitate efficient

and convenient implementations of replication protocols in an internetwork. There are

several measures that can be used to evaluate replication performance, depending on

the environment and application. These include the latency of operations, the maximum

operation rate (throughput), the amount of message traffic caused by an operation, the

overall reliability, and the data availability. Though the ideal protocol would provide the

highest reliability, availability, and throughput with the lowest cost and latency, tradeoffs

between these measures have to be made. The scale of the Internet further complicates
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Figure 1.1: Communication layers for data
replication.

The replication protocol provides the single-copy illusion by determining the replica-

tion policy and controlling the distribution of information between systems. Many dif-

ferent algorithms have been proposed for this layer, and their performance is well under-

stood. Chapter 3 presents several of these replication protocols.

The replication protocol in turn uses the services of the communication layer to send

messages to replicas. The communication layer provides communication mechanisms,

including multicast datagrams, remote procedure call, and bulk transfer protocols. The

multicast datagram mechanism sends a short message to all available replicas efficiently.

The bulk transfer protocols are more efficient for transmitting large amounts of data from

one system to another. This layer determines whether communication is successful or

not. In this thesis I will concentrate on multicast protocols at the communication layer, as

detailed in Chapter 4.

The communication protocol is in turn dependent upon the network communication

services provided by the host. At the lowest level, hosts communicate by sending unre-

liable datagrams using a protocol such as IP [Comer88]. This protocol only provides a
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the replicas to read or update the data. Communication between the client and the replicas

is performed according to a replication protocol that provides the client with the illusion of

a single data object. This is more complex than using a single copy of the data, since

operations must be coordinated among the replicas.

Replication protocols generally provide a set of operations performed by clients and a

set performed by replicas. The operations clients can use include reading and updating the

data. Replicas can perform operations such as failure recovery, creation of new replicas,

and background information transfer.

Both the clients and the replicas reside on hosts. All hosts are connected using an

internetwork that consists of local-area networks with gateways and point-to-point links

connecting them. When a host sends a message to another host, the message might first

be transmitted on a local Ethernet to a gateway, which might forward the message across

a point-to-point link to another gateway, which might then forward the message through

several other links and gateways until it reached a network where the destination host is

connected.

1.2 A layered implementation model

Distributed applications – at least those that use replicated data – can be built using

a four-layer model of implementation. Applications and replicas use a replication layer to

manipulate shared data. The replication layer is in turn built on the communication layer.

The communication layer uses the services of the network layer to send messages between

clients and replicas. Figure 1.1 illustrates this abstract model.

The application perceives a single highly-reliable object, and does not observe the de-

tails of replication. The replication layer provides the application an abstraction of a single

copy of the data. Different replication protocols may provide different consistency guar-

antees to applications, but the interface is always of a single (albeit possibly inconsistent)

data copy. The application can issue requests to the replication layer to perform operations

on the data.
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quorum multicast mechanisms, and how well this works. The performance evaluation

is based upon measurements of the Internet, and uses simulation and direct measurement

techniques.

1.1 Background

To answer the question “how do we build a wide-area distributed application?” I must

first define what such an application is. Two distinguishing characteristics are that such

applications involve the cooperation of multiple distinct processing systems, and that

these systems share information by message-passing. If multiple systems are not applied

to the problem, or if the systems communicate through shared memory, then well-known

techniques for sharing information in a single system can be applied. If the systems are not

sharing information, then there is no difficulty because each system can act autonomously.

There are several reasons why people build distributed applications on a wide-area

internetwork. The primary reason is that the application might be used to share informa-

tion between geographically-distributed users or between users in different organizations,

where no centrally-administered system can be constructed. Several such systems already

exist, such as electronic mail, news, and name services.

When systems dispersed over a wide area are to have access to the same data, that

data can be replicated. Several sites around the connecting network maintain copies of

the replicated data. Replicated data can be more fault-tolerant than unreplicated data,

and its use can improve performance by locating copies of the data near to their use.

Many existing wide-area systems, such as airline reservation systems and library card-

catalogues, do not use replication techniques, relying instead on large central servers. This

is in part due to the apparent inconvenience of replication as compared to centralized

solutions, and to the perceived poor end-to-end performance of replicated data.

Copies of the replicated data are held at a number of replicas. A replica consists of some

storage and a process that maintains the data copy. A client process can communicate with
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Chapter 1

Introduction

Exactly how does one build a reliable distributed application on the Internet? Many

of the necessary pieces are available: replication protocols, internetwork communication

protocols, protocols to handle distributed agreement, and so on. The problem is how to

put the pieces together, and how to tell if the result is a good one.

This thesis is the result of trying to assemble some of the pieces. There are a few basic

lessons I learned doing so: that a clear definition of failure is necessary; that distributed

applications can be composed from pieces built according to a simple architectural model;

and that there are well-defined measures of performance that can be used to evaluate an

application. In addition, two principles have become clear: that a distributed operation

should use as small a portion of the Internet as possible, and that applications should

respond to changes in the Internet environment.

The concrete result of this effort is a family of what I term quorum multicast communi-

cation protocols. This family provides a communication mechanism similar to traditional

multicast protocols, which send a message in parallel to a set of destinations. Unlike other

multicast protocols, the quorum multicast protocols communicate with just a subset of the

set of destinations. The quorum multicast protocols can dynamically select this subset to

be the closest available destinations, limiting the portion of the internetwork affected by

any particular multicast.

This thesis starts with a simple layered model of replication, then examines some dis-

tributed applications. I will demonstrate how replication protocols can be built using
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abstract

Many distributed applications use replicated data to improve the availability of the

data, and to improve access latency by locating copies of the data near to their use. This

thesis presents a new family of communication protocols, called quorum multicasts, that

provide efficient communication services for replicated data. Quorum multicasts are sim-

ilar to ordinary multicasts, which deliver a message to a set of destinations. The new

protocols extend this model by allowing delivery to a subset of the destinations, selected

according to distance or expected data currency. These protocols provide well-defined

failure semantics, and can distinguish between communication failure and replica failure

with high probability.

The thesis includes a performance evaluation of three quorum multicast protocols. This

required taking several measurements of the Internet to determine distributions for com-

munication latency and failure. The results indicate that the behavior of recent messages

is a useful predictor for the performance of the next. A simulation study of quorum multi-

casts, based on the Internet measurements, shows that these protocols provide low latency

and require few messages. A second study that measured a test application running at

several sites confirmed these results.
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