
[9] Tracy Larrabee. E�cient generation of test patterns using Boolean Di�erence. In Proceedings

of International Test Conference, pages 795{801. IEEE, 1989.

[10] Kuen-Jong Lee and Melvin A Breuer. Constraints for using IDDQ testing to detect CMOS

bridging faults. In Proceedings of the IEEE VLSI Test Symposium, pages 303{308, 1991.

[11] W. Maly, P.K. Nag, and P. Nigh. Testing oriented analysis of CMOS ICs with opens. In

Proceedings of International Conference on Computer-Aided Design, pages 344{347. IEEE,

1988.

[12] W. Maly and P. Nigh. Built-in current testing - feasibility study. In Proceedings of Interna-

tional Conference on Computer-Aided Design, pages 340{343. IEEE, 1988.

[13] W. Mao, R.K. Gulati, D.K. Goel, and M.D. Ciletti. QUIETEST: A quiescent current testing

methodology for detectiong leakaage faults. In Proceedings of International Conference on

Computer-Aided Design, pages 280{283. IEEE, 1990.

[14] E.J. McCluskey and F. Buelow. IC quality and test transparancy. In Proceedings of Interna-

tional Test Conference, pages 295{301. IEEE, 1988.

[15] A.K. Pramanick and S.M. Reddy. On the detection of delay faults. In Proceedings of Interna-

tional Test Conference, pages 845{856. IEEE, 1988.

[16] J.P. Shen, W. Maly, and F.J. Ferguson. Inductive fault analysis of MOS integrated circuits.

IEEE Design and Test of Computers, 2(6):13{26, December 1985.

[17] J.M. Soden, R.K. Treece, M.R. Taylor, and C.F. Hawkins. CMOS IC stuck-open fault electrical

e�ects and design considerations. In Proceedings of International Test Conference, pages 423{

430. IEEE, 1989.

[18] R.L. Wadsack. Fault modeling and logic simulation of CMOS and MOS integrated circuits.

Bell System Technical Journal, 57(5):1449{1474, May-June 1978.

[19] H. Walker and S.W. Director. VLASIC: A yield simulator for integrated circuits. Proceedings

of International Conference on Computer-Aided Design, November 1985.

15



Modi�cation of an existing SSF ATPG system so that it generates tests for I

DDQ

faults requires

only that the fault propagation requirement be removed and the fault simulator be similarly mod-

i�ed. The resulting system generates tests using less time or memory and produces fewer vectors

with fewer untestable defects.

Acknowledgements

The authors thank Heather Trumbower and Martin Taylor for their work on our software and

Leendert Huisman for providing SSF fault simulation data.

References

[1] John M. Acken. Deriving Accurate Fault Models. PhD thesis, Stanford University, Department

of Electrical Engineering, September 1988.

[2] F. Brglez and H. Fujiwara. A neutral netlist of 10 combinational benchmark circuits and a

target translator in fortran. In Proceedings of the IEEE International Symposium on Circuits

and Systems, 1985.

[3] E. Eichelberger and T. Williams. A logic design structure for LSI testability. In Proceedings

of the 14th Design Automation Conference. IEEE, 1977.

[4] F. Joel Ferguson and John P. Shen. A CMOS fault extractor for inductive fault analysis.

IEEE Transactions on Computer-Aided Design, 7(11):1181{1194, November 1988.

[5] C.F. Hawkins and J.M. Soden. Reliability and electrical properties of gate oxide shorts in

CMOS ICs. In Proceedings of International Test Conference, pages 443{451. IEEE, 1986.

[6] Charles F Hawkins, Jerry M Soden, Ron R Fritzemeier, and Luther K Horning. Quiescent

power supply current measurement for CMOS IC defect detection. IEEE Transactions On

Industrial Electronics, May 1989.

[7] Dennis V. Heinbuch. CMOS3 Cell Library. Addison-Wesley Publishing Company, 1988.

[8] Leendert M. Huisman. The reliability of approximate testability measures. IEEE Design and

Test of Computers, 5(6):57{67, December 1988.

14



Circuit Name C880 C1355 C1908 C2670 C3540 C5315 C6288 C7552

number of vectors 36 88 110 50 71 58 32 95

number of faults 1028 1532 1566 2501 3274 5161 7216 6994

untestable faults 0 0 2 17 51 2 35 20

undetected faults 0 0 0 9 1 0 0 0

% bridge faults covered 100 100 100 100 100 100 99.9 100

processing time (secs) 2.0 20.2 34.8 125.8 25.4 23.8 11.5 90.8

Table 4: ATPG for I

DDQ

stuck-on faults

Circuit Name C880 C1355 C1908 C2670 C3540 C5315 C6288 C7552

number of vectors 21 53 38 25 39 36 29 46

number of faults 1900 1630 4385 5950 8330 11519 12064 17545

untestable faults 17 28 202 118 423 256 44 332

undetected faults 0 0 0 14 0 2 0 9

processing time (secs) 3.4 13.7 51.7 352.4 122.7 95.8 18.7 616.1

Table 5: ATPG for I

DDQ

bridge faults

likely to go undetected. In order to ensure high quality levels, these fault types should be targeted

by the test generation procedures.

With I

DDQ

testing, we can detect all non-redundant bridge and transistor stuck-on defects in

the circuit. This may not be possible with logical fault testing or delay fault testing because the

fault may not change the logical function of the circuit, and there may be no robust delay fault test

for the circuit. Since these defects may cause a loss of reliability or cause the circuit to not meet

performance or power consumption speci�cations, they should be detected. Experimental evidence

suggests that most signal-line breaks that are not detected as stuck-at faults can be detected as

I

DDQ

transistor stuck-on faults.

If a defect is detectable as an I

DDQ

fault, the requirements for detecting that defect are a subset

of the requirements for detecting that defect as a logical fault or a delay fault. That is, any vector

that detects a defect that causes excessive I

DDQ

as a logical fault or a delay fault can also be used to

detect it as an I

DDQ

fault. Since error propagation is not necessary, generating an I

DDQ

test vector

is usually much less expensive than generating a logical or delay fault test for the same defect.

13



thousands of clock cycles may be needed to �ll the scan-path with a single test vector before the

application of the system clock for the test[3]. This means that an I

DDQ

measurement, and hence

a reduced clock rate, is needed only once every time the scan-path is �lled. For this case less than

0.1% of the clocks are needed for I

DDQ

testing. Recent experiments in test pattern generation for

commercial ICs showed that the number of I

DDQ

tests was less than 1% of the number of functional

tests for the circuit and increased the testing time by less than 200 milliseconds[13].

The time that is needed for the power supply current to reach quiescent levels increases with

the size of the circuit, so another approach to help reduce the test application time is to internally

partition large circuits into smaller ones. Each low-power subcircuit in the integrated circuit would

have a Built-In Current (BIC) sensor[12]. The BIC sensor can be fabricated in with little area and

has very high sensitivity to current.

There are fewer untestable I

DDQ

stuck-on fault classes than untestable SSF fault classes for

each circuit. Since the fault equivalence collapsing techniques are more powerful for SSA faults,

there are on average more SSA faults in a SSA fault equivalence class than there are I

DDQ

faults

in an I

DDQ

fault equivalence class. This was expected since some SSF faults are untestable due to

an inability to propagate the error to a primary output and the associated I

DDQ

fault is not.

Circuit Name C880 C1355 C1908 C2670 C3540 C5315 C6288 C7552

number of vectors 72 92 128 149 202 154 45 245

number of faults 765 1444 1740 2626 3150 4909 7619 7194

untestable faults 0 8 9 106 129 59 34 131

undetected faults 0 0 0 11 0 0 0 0

processing time (secs) 37.3 22.5 71.1 361.9 269.7 74.4 147.2 739.3

Table 3: SSF ATPG

6 Conclusions

The primary purpose of ATPG is to detect enough local defects to ensure a high quality level in

the integrated circuits that have passed the test. The vast majority of local defects cause bridge,

signal-line break, and transistor stuck-on faults. Those local defects that cause logical faults may

not be detected by a given SSF test set, and those that do not cause logical faults are even more

12



5 Automatic Test Pattern Generation for I

DDQ

Faults

We generated tests for transistor stuck-on I

DDQ

faults and bridging I

DDQ

faults using the Nemesis

SSF automatic test pattern generation (ATPG) system[9]. The fault equivalence collapsing routines,

the parallel pattern and single pattern simulators, and test pattern generation portions of Nemesis

were modi�ed in order to generate tests for the new faults. The fault simulator was changed so that

transistor stuck-on faults and bridging faults are agged as detected when they are stimulated at

the fault site, and the portion of the test pattern generator that extracts formulas was also modi�ed

to exclude the necessity of error propagation. Because we did not have a set of realistic bridging

faults to test, we generated tests for each node bridged to the next �ve nodes in the TDL wirelist.

A test vector compaction phase, consisting of a reverse order fault simulation was added to both

the SSF and the I

DDQ

versions of the ATPG system to provide a more realistic ratio of the number

of required tests to detect all detectable SSFs to the number required to detect all detectable I

DDQ

faults.

Tables 3, 4, and 5, show the statistics for ATPG of single stuck-at faults, transistor stuck-on

I

DDQ

faults, and bridge I

DDQ

faults, respectively. The times given are for a Sparcstation 1

4

.

For each circuit, generation of I

DDQ

vectors is faster than generation of SSF vectors (by factors

of between 1.1 and 20), and fewer vectors were generated to detect all I

DDQ

faults than were

generated to detect all SSF faults. The range of ratios between the number of SSF test vectors to

the number of I

DDQ

test vectors is from about 1-to-1.1 to 1-to-3. The ATPG generated vectors for

I

DDQ

stuck-ons detected most of the bridges that we considered: at least 99.9% of all I

DDQ

bridges

for each of the circuits were detected by the stuck-on test sets. This means that the total number

of I

DDQ

vectors required is very close to the number of I

DDQ

stuck-on vectors.

Our conclusion is that although few vectors need to be monitored for increased I

DDQ

in order

to ensure that a circuit under test has no transistor stuck-ons and no bridges, the time to test these

circuits for I

DDQ

faults may be much greater than the time to apply SSF tests. However, most

low-power integrated circuits are much more amenable to I

DDQ

testing than the ISCAS benchmark

circuits, which were created to measure the performance of SSF ATPG systems. A fault in a

sequential circuit may require scores of vectors to propagate an error to a circuit output. This

adversely impacts both test generation and test application time for stuck-at faults but not for

I

DDQ

faults. If the sequential circuit uses a full or partial scan-path to make it more easily testable,

4

We ran the system without using the non-local clauses (learned implications) for easier comparison.

11



Table 1 shows the expected I

DDQ

fault coverage of the ISCAS benchmark circuits when up to

500,000 random vectors are applied. Similarly, Table 2 shows the SSF fault coverage of the ISCAS

benchmark circuits when up to 16,000,000 random vectors are simulated. The data for Table 2 was

generated using single vector detection probabilities presented by Leendert Huisman of IBM[8].

Circuit Name C880 C1355 C1908 C2670 C3540 C5315 C6288 C7552

number of stuck-ons 1458 2128 2996 4152 5878 8772 9600 12288

undetected stuck-ons 0 0 2 41 54 3 52 326

coverage of stuck-ons 100 100 99.9 99 99 99.9 99.5 99

number of bridges 1329 1761 2739 4278 5157 7455 7344 11157

undetected bridges 1 1 4 5 9 0 4 6

coverage of bridges 99.93 99.94 99.85 99.88 99.83 100 99.95 99.95

Table 1: I

DDQ

bridge and stuck-on detection for 500,000 random vectors

The last line of Table 2 shows the ratio of the number of stuck-at vectors required to achieve

the coverage shown and the number of stuck-on vectors required to achieve the same coverage. As

expected, a target coverage of I

DDQ

stuck-ons can be achieved with many fewer vectors than the

same coverage for SSFs. The sole exception is circuit C6288. Note that the circuits with the most

di�cult-to-test faults under random SSF test o�er the greatest improvement in testability under

random I

DDQ

test.

Circuit Name C880 C1355 C1908 C2670 C3540 C5315 C6288 C7552

number of SSFs 942 1574 1879 2746 3425 5350 7744 7550

undetected faults 0 8 9 121 134 59 34 198

number of faults

with P(j) � 0.1% 30 8 87 432 175 63 34 641

coverage 100 99.5 99.5 95.6 96.1 98.9 99.6 97.4

vector ratio for

same coverage 4 3 5 17,000 128 68 1 8,000

Table 2: SSF detection after 16,000,000 random vectors

10



The �rst disadvantage limits the types of circuits for which I

DDQ

testing is e�ective. However,

most CMOS ICs meet this requirement without changes. The second disadvantage may require

that the IC remain on the tester for longer than is economically justi�able. In the next two sections

we show that the number of tests that are needed to detect I

DDQ

faults is less than the number to

detect SSA faults, thus reducing the test time.

It appears that high coverage of bridge, break and transistor stuck-on faults requires that SSF

testing be supplemented with either I

DDQ

or delay fault testing. We next compare the costs of

I

DDQ

testing versus the cost of SSF testing. I

DDQ

tests are considered for only transistor stuck-ons

and bridges between signal lines because any I

DDQ

test set that detects all transistor stuck-ons also

detects all bridges between a signal node and power or ground, all gate oxide shorts to the channel,

source, or drain, and all signal-line breaks that are not detected by SSF test sets. The costs of

detecting signal line bridges and transistor stuck-ons are therefore the costs of detecting all I

DDQ

faults discussed in the previous section.

4 Random Test Pattern Generation for I

DDQ

Faults

We simulated the eight largest ISCAS combinational test generation benchmark circuits with up to

1=2 million pseudo-random vectors|accumulating the probability of detection by a single random

vector for each fault[2]. We counted the number of times that each fault is detected using the

criteria described in the previous section: transistor stuck-ons are considered detected when the

gate is stimulated, and bridges are considered detected when the logic values for the two bridged

lines di�er. Because the total number of potential bridges in each circuit is very large, we considered

a random subset for each node. In practice the circuit layout would be considered, and adjacent

nodes would be tested for bridges. The expected fault coverage for a given number of vectors for

each circuit was calculated using the probability of detection by a single random vector for each

fault.

Given P (j), the probability of a single random vector detecting fault j, the probability of k

random vectors not detecting fault j is (1� P (j))

k

. The sum of (1� P (j))

k

over all faults divided

by the number of faults is the average probability for the fault to remain undetected after k vectors.

This means that E(k), the expected fault coverage after k vectors, is

E(k) = 1�

2

4

P

#faults

j=1

(1� P (j))

k

#faults

3

5

:

9



of nodes. Fortunately, we can use information available about the physical locality of structures in

the circuit to produce a much reduced set of bridges to be considered[19,4].

3 Comparing Testing Methods

Detecting all non-redundant bridges, breaks and transistor stuck-ons in static CMOS circuits prob-

ably requires that either delay or I

DDQ

tests be used: each technique has its disadvantages. The

disadvantages of delay fault test generation are:

Delay testing is expensive. Generating delay fault tests is more di�cult than generating SSF

tests[15]. This is because standard delay tests require a sequence of inputs, and the sequence

must produce a glitch-free path to propagate the delay error. In addition, the cost to generate

a delay fault test for bridges may be greater than for standard delay faults (because of the

constraints mentioned in Section 2.3). Also, there are more potential bridge, break, and

transistor stuck-on faults than there are gate input delay faults.

Delay testing may not detect all defects. Detecting all defects as delay faults may be impos-

sible. The constraints for delay fault detection for bridge, break, and transistor stuck-on

defects make it di�cult to generate robust tests (those that are not potentially invalidated

by glitches[15]). Non-robust tests may not detect the delay fault. Also the size of the delay

fault may be too small to be detected given the system clock and the normal delay of the

paths connected to the gate.

A major advantage to detecting bridge, break, and transistor stuck-on defects as I

DDQ

faults is

that test generation is much less expensive than for SSFs and fewer test vectors are needed than

are needed for SSF test sets. How much easier is shown in Section 5. But before we consider the

advantages, we list the disadvantages of I

DDQ

testing:

The circuit must be designed to have low I

DDQ

. This means that multiple outputs cannot

be simultaneously driving internal busses, and the I/O pads' power supply may need to be

separated from the logic's power supply.

Measurement must occur after transients die. I

DDQ

can not be measured until after the

switching transients have died out. This reduces the test application rate.

8



and a 0 in the faulty circuit

D is a 1 in the good circuit

fault

bridging

a

b

c

w

x

y

z

0 1 1 D 0 1 1

a b c w x y z

0 0 1 1 1 1 0

0 1 0 1 1 0 0

1 0 0 1 1 0 1

1 0 1 1 1 1 1

1 1 0 0 D 1 1

1 1 1 0 0 1 1

0 0 0 1 1 0 0

Figure 2: A Wired-AND Bridging Fault that is not a Logical Fault.

as a logic fault, even if the circuit is not redundant. Consider the bridging fault in Figure 2. The

table to the right of the �gure shows the values on w, x, y, and z given the values on a, b, and

c, and assuming a wired-AND bridging fault between nodes w and x. This bridging fault causes

no logical fault even though there is no redundancy. In this case, detecting the bridge requires a

parametric test.

The detection of delay faults is considerably more di�cult than SSFs [15]. In addition to

the already considerable requirements in standard delay fault tests, the bridged nodes must have

di�erent logic values during the second (non-initializing) input.

The bridge fault shown in Figure 2 was simulated with SPICE to �nd the magnitude of the

delay and I

DDQ

faults. The NAND and inverter cells from the CMOS3 standard cell library [7]

scaled to 1.2 micron transistor length were used for the simulation. There was 0.9 nanoseconds

additional delay for the transition (abc)=010 ! 011 to be seen at x and 2.6 milliamps additional

current for when abc = 011. While the normal current through a large CMOS gate array can be

orders of magnitude less than 2.6 milliamps, the delay to be measured through a block of logic

is typically longer than 0.9 nanoseconds: the existence of the bridging defect is more de�nitively

demonstrated using I

DDQ

testing.

The number of possible bridges in a circuit is often prohibitively large to consider for test

generation or for fault simulation: theoretically we would have to consider on the order of n

2

pairs

7



have one conducting and one not conducting transistor[11]. This would behave like a SSF

3

. The

same research suggests that breaks that cause the gates of only nFET or only pFET gates to oat

in a gate, as in Figure 1-a, cause those transistors to be stuck-on. These are detected by transistor

stuck-on I

DDQ

tests.

In the remainder of this paper, we limit our discussion of break defects to those on signal lines

because signal lines are typically much longer and more likely to be bridged or broken than nodes

internal to a logic gate. We do not consider bridges or breaks on the power supply nodes or clock

nodes because they are generally detected by SSF test sets. As previously mentioned, we will

assume that single oating transistors are conducting[11].

To summarize, most signal-line breaks that do not cause SSFs can be detected as I

DDQ

faults

using transistor stuck-on tests.

2.3 Bridges

A bridge can be detected only if an input sequence is applied in which the two bridged nodes have

di�erent logic values in the non-faulty circuit. Most bridges can be detected as logical faults, delay

faults or I

DDQ

faults. For a bridge to be detected as a logical fault the two nodes must take on

di�erent values, one of the nodes must overpower the other's logic value, and a path of sensitized

gates must lead from the overpowered node to a primary output where the error can be observed.

If the path of sensitized gates leading to the primary output begins at the bridged node that has

the greater drive, it may still be detected as a delay fault during a test sequence if the logic value

changes on the overpowering node and if the overpowered node's logic value di�ers from the �nal

value of the more powerful node. In addition, there can be no glitches that invalidate the test on

the sensitized path. For a bridge to be detected as an I

DDQ

fault, the two bridged nodes must be

driven to di�erent logic values so that there is low impedance path between V

DD

and V

SS

leading

to an elevation in I

DDQ

. Note that the sensitization requirements for the detection of a bridge as

an I

DDQ

fault are a subset of the requirements of detection as either a logical fault or a delay fault.

For ECL and TTL technologies it is assumed that the bridge fault behaves as a wired-OR

or wired-AND. The logical behavior of a CMOS gate is often more complicated than this and is

a�ected by transistor sizing, topology, and manufacturing process variations[17,1]. Whatever the

logical function of the bridge fault, it may not be possible to meet the requirements for detection

3

This situation can be complicated by the existence of capacitive coupling between oating gates and adjacent

nodes [17]

6



z

break

y

x

V

SS

z

break

x

y

V

SS

DDDD

(b)(a)

V V

Figure 1: A break causing (a) a single nFET with a oating gate, and (b) nFETs and pFETs with

oating gates.

2.2 Breaks

Breaks can be divided into two categories: intra-gate breaks, those involving nodes internal to the

logic gates, and signal-line breaks, those involving signal lines. The two categories have markedly

di�erent faulty behavior.

If an intra-gate break severs all possible low impedance paths from either V

SS

or V

DD

to the

gate's output, it causes the output of the gate to be stuck at a single logic value. If the defect

breaks some, but not all, paths from either V

SS

or V

DD

to the gate's output, the gate may become

a dynamic sequential circuit [18].

Signal-line breaks in static CMOS designs result in transistors with oating gates. There are

two types of signal line breaks: those that cause oating gates in only the pFETs or only the

nFETs, like that shown in Figure 1-a, and those that cause oating gates for both pFETs and

nFETs of the logic gate like that shown in Figure 1-b.

The behavior of the logic gate a�ected by the signal-line break is determined by the state

(conducting or non-conducting) of the transistors connected to a oating node. If the transistors

with the oating gates are permanently non-conducting, the behavior of the circuit is equivalent

to the behavior of intra-gate breaks. If the transistors with the oating gates are permanently

conducting, the behavior of the gate would be the same as if it had a transistor stuck-on fault.

Recent research suggests that transistor pairs with oating gates, as in Figure 1-b, are likely to

5



2.1 Transistor Stuck-ons

A transistor stuck-on is a fault that can be modeled as a transistor that is always in the conducting

mode. Transistor stuck-ons can be caused by several defect types: common causes are source to

drain bridges and breaks in signal lines that cause a single FET in the logic gate to be oating (as

shown in Figure 1-a).

SPICE simulations were performed for the 2-input NAND gate of Figure 1-a assuming that the

gate of the oating transistor had a logic 1 and that the circuit's output fanned out to a single

inverter. The lengths and widths of the transistors in the NAND gate and the inverter are those in

the CMOS3 cell library [7] scaled to a transistor length of 1.2 microns. The transconductances and

other relevant circuit parameters were those of a recent MOSIS run. A SPICE simulation assuming

that the transistor is stuck-on at 5.0 volts resulted in a logical fault: the behavior was as if line x

was stuck-at 1. A second SPICE simulation assuming that the stuck-on transistor was at 4.0 volts

resulted in no logical fault, but it did result in an I

DDQ

fault of 2.1 milliamps when xy=01, and a

delay fault of 1.05 nanoseconds when xy changed from 00 to 01. Variations in transistor length or

width ratios, in process parameters, and in defects determine the magnitude of the delay or IDDQ

fault, as well as whether or not the transistor stuck-on can be modeled as a logical fault.

The detection of a logical fault requires that the test stimulate the fault (the logic values on

the gate's inputs cause a logical error at the gate's output) and propagate the error to the circuit's

output. The detection of an IDDQ fault requires only that the test stimulate the fault; propagation

of the error is not necessary. In general, the detection of a delay fault requires that two consecutive

inputs be given to cause a transition at the fault site and that the slow transition be propagated to

an output of the circuit. The delay fault may not be detected if there are glitches on the propagation

path or if the propagation path is too short [15].

For a static CMOS gate consisting of parallel-series nMOS and pMOS networks, any test set

that detects all SSFs also detects all I

DDQ

stuck-ons and any test set that detects all I

DDQ

stuck-ons

also detects all SSFs. This implies that any set of tests that detect all SSFs in an arbitrary circuit

also detects all I

DDQ

stuck-ons for that circuit. However, the converse is not true because of the

additional requirement for fault propagation when detecting SSFs. As we show later, I

DDQ

tests for

a circuit are usually much easier to generate than SSF tests since fault propagation is unnecessary.

4



fault. For example, an I

DDQ

test for a speci�c fault includes �rst applying appropriate inputs to

the circuit to cause excessive I

DDQ

, and then measuring I

DDQ

.)

Defect-simulation experiments show that the vast majority of all local defects in MOS tech-

nologies cause bridges, breaks, and transistor stuck-ons[16,4]. Some bridges, breaks, and transistor

stuck-ons are detectable as logical faults, although they may not be detected by speci�c complete

SSF test sets, but others are only detectable as parametric faults. Defects can be undetectable as

logical faults and still cause an IC to be unacceptable for shipment because of performance degra-

dation or loss of reliability. To detect these non-logical faults requires that non-logical testing be

employed. In a recent experiment, the addition of I

DDQ

monitoring to logical testing increased the

capture of defective chips by 1.6 and 2.8 times[6]. In this paper we compare testing strategies that

detect these common defects.

We limit our discussion to testing circuits composed solely of fully-complementary static CMOS

gates consisting of a network of pFETs' between V

DD

and the output and a network of nFETs

between the output and V

SS

. The nFET network's switching function is the complement of the

pFET network's switching function: for each input combination there is either a low impedance

connection between V

DD

and the output or between V

SS

and the output. We restrict our domain

to these circuits in order to simplify the presentation of our results

1

.

2 Defect Detection

In this section we present bridge, break, and transistor stuck-on faults and show how they may

a�ect the behavior of the circuit. For the standard cells mentioned previously, these three fault

types accounted for over 99% of all faults likely to be caused by local defects[4]. Approximately

48% were bridges, 42% breaks, and 10% were transistor stuck-ons

2

. We show later that some of

each of these three circuit-fault types may be detected as logical faults, some as delay faults, some

as I

DDQ

faults.

1

There are low-power circuits that are not composed of static gates. Examples include low-power PLAs and

domino CMOS logic. The parts of a low power circuit consisting of static gates can be tested for I

DDQ

, although

di�erent techniques may be needed to test the non-static gates[10]. I

DDQ

techniques can be used to test high-power

circuits if the high-power portions of the circuit are partitioned from the low-power portions and power is supplied

from di�erent pins. Another strategy, called Built-in Current Monitor could also be used [12].

2

Gate oxide shorts are a common fault that we do not consider. This defect is a bridge between the gate node

of a transistor and either its source, drain, or channel region and is often activated after manufacture by burn-in

procedures[5]. They can be detected using the techniques we present for detecting transistor stuck-on faults.

3



include cracks or scratches on the wafer, photolithographic mask misalignments, line dislocations,

and major fabrication process control errors. Global defects can have prominent e�ects on the

circuit's logical behavior, or they can manifest themselves as degradations in the performance of

all components of the circuit. This paper explores test pattern generation for the detection of local

defects only.

Most local defects can be modeled as a spot on a layer of the integrated circuit that changes

the electrical properties at that point. A local defect that causes a change to the logical function

of the circuit can be represented by a logic-level abstraction known as a logical fault. Similarly,

a defect that causes a change in a continuous parameter of the circuit can be represented by an

abstraction called a parametric fault. Some defects may cause only a logical fault, some may cause

only a parametric fault, and some may cause both.

Digital integrated circuits are commonly tested for local defects using tests generated to detect

single stuck-at faults. In the single stuck-at fault (SSF) model, each defect is modeled as a single

gate input or output held to a logic 0 or a logic 1. Many fabrication defects result in undesirable

circuit behavior that is not detected by tests generated using the SSF model. Local defects causing

either logical faults or parametric faults can go undetected even when tested using input sets that

cover 100% of the single stuck-at faults (such an input set is called a complete SSF test set).

In a defect-simulation experiment involving over 400,000 defects and two industrial standard

cells, greater than 40% of the defects could not be modeled as single stuck-at faults[4]. In the

same set of experiments, half of the defects (those causing electrical shorts between adjacent circuit

nodes) were fault simulated with a complete SSF test set provided by the circuits' manufacturer:

At least 10% of the bridges were not detected by the complete SSF test set.

If only the complete SSF test set was applied to the standard cells presented above, at least

4% of the defects would not be detected. This is quite signi�cant since IC manufacturers typically

claim quality levels of less than 200 defective parts per million (DPM). If the fabrication process

has a yield of 75%, then the manufacturing tests must detect 99.93% of the yield a�ecting defects

to reach this quality level[14]. Even with a manufacturing yield of 95%, 99.6% of the defects must

be detected for a 200 DPM quality level.

An increase in the time it takes for speci�c sequences of inputs to propagate through a defective

circuit is a parametric fault known as a delay fault. An increase in the quiescent power supply

current (I

DDQ

) for speci�c inputs is a parametric fault known as an I

DDQ

fault. (Note that a test

involves both the appropriate stimulus and the appropriate observation of the circuit to detect a

2



Feasibility Study on the Costs of IDDQ testing in CMOS

Circuits

F. Joel Ferguson

�

Tracy Larrabee

y

Computer Engineering Board of Studies, University of California, Santa Cruz 95064

Abstract

Many manufacturing defects in static CMOS circuits are not detected by tests generated using

the traditional single stuck-at fault model. Many of these defects may be detected as increased

propagation delay or as excessive quiescent power supply current (I

DDQ

). In this paper we compare

the costs of detecting probable manufacturing defects by the resulting excess I

DDQ

with the costs

of traditional logical testing methods.

1 Introduction

Perturbations in the fabrication process and contaminants in the environment may cause an IC to

deviate from the ideal. Deviations that cause the IC to function incorrectly, or that cause any other

undesirable change in a circuit parameter, are called defects. Defects can be broadly divided into

two groups: global defects which a�ect multiple integrated circuits across a relatively large area of

the wafer and local defects which a�ect a relatively small area of an IC. Examples of global defects

�

Current address: Baskin Center for CE and CIS, University of California, Santa Cruz, California 95064. Phone:

(408) 459-4172. Email: fjf@ce.ucsc.edu. This work was supported by the National Science Foundation under grant

MIP-8907380 and by the Semiconductor Research Corporation under Contract 91-DJ-141.

y

Current address: Baskin Center for CE and CIS, University of California, Santa Cruz, California 95064. Phone:

(408) 459-3476. Email: larrabee@ce.ucsc.edu. This work was supported by the National Science Foundation under

grant MIP-9011254.

1


