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In the chess application positions are represented as graphs based on attacks and defends rela-tionships between pieces and squares. A number of the generalization nodes correspond to patternswell-known to good chess players such as �anchettoed bishop, various kingside castled positions,doubled rooks and various pawn formations. Other generalization nodes are not that well-knownbut may also have domain validity.It is also worth taking a closer look at the meaning of node descriptors that have been devel-oped in Method IV for conceptual graphs. They describe neighborhoods of concept and relationnodes. Since we ignore arc direction in calculating distances, then distance-1 neighborhoods giveall relations connected to a given concept node or all concepts connected to a given relation node.Clearly, these are relevant notions. If we move to distance-2 neighborhoods of concept nodes weget the full picture of all relations that involve that concept (for example, node descriptor 5 in G3represents \an apple pie was eaten"). If a node was calculated through the iteration process thenthe information contained in a node descriptor becomes quite interesting(providing a meta-levelview of the graph): A distance-2 neighborhood of a concept node gives the relations of that nodeto immediate adjacent concept neighborhoods!It makes sense that pieces of semantic networks that occur commonly are often useful whentreated as units (chunks) in the domains in which they arise. That such units also improve retrievale�ciency is a less obvious fact, but worth studying, e.g. by cognitive scientists, knowledge engineersor philosophers of science. Langley and Wogulis [26] have recently supplied empirical evidencethat the introduction of intermediate concepts can improve the e�ciency of learning algorithms.Giving names to these pieces of semantic networks and processing these pieces as units is anapplication of \abstraction". We believe that the proper use of abstraction in semantic networkretrieval systems may be as important as the exploitation of pattern-associativity. For example,by representing propositional nodes(see above) as individual nodes with special labels (and notgraphs) much redundant computation may be avoided. We are currently exploring this avenue.9 Concluding RemarksIn summary, we have presented four methods for the associative retrieval of semantic networks(while focusing mainly on conceptual graphs) and illustrated the ideas from which these methodshave been derived. In particular we presented the principle of pattern-associativity and how itis exploited increasingly in the better methods. The �rst three methods have each been used insemantic network systems. The advantages of Method III over Methods I and II are argued bothformally and informally. Our implementation of Method IV is not yet complete but the results inchemical systems and our experimental results make this a compelling research direction. At thevery least we have shown the extent to which the principle of pattern-associativity can be taken.We shall not be surprised if there are yet one or more levels to go!10 AcknowledgementsThe paper has bene�ted from the constructive suggestions of three anonymous reviewers of thearticle and the editor. Gerard Ellis provided useful references and much encouragement. JeanMcKnight formatted several drafts and Max Copperman helped with the introduction. Many31



be extended to �rst compare the graphs (as in variation 1) while ignoring edges attached topartitions and then recursively working \inside-out" by �rst matching the most deeply-nestedpropositional nodes (graphs) and working out from there. A propositional node in the querygraph can match any proposition node in a database graph that it is more-general-than.3. Logical operators such as negation or quanti�cation are attached directly to a proposition node.In this case matching can take place as in variation 2(viewing the operator as part of the labelfor the proposition node.) except that to insure consistency in matching a canonical formsuch as CNF (Conjunctive Normal Form) should be used for all database and query graphs.As Method IV depends on re�nement testing it can be applied to all network formalisms thatuse subgraph-isomorphism as the basis for subsumption testing. Here we applied Method IV toconceptual graphs, but it can be extended in a straightforward way to graphs with labelled orundirected edges [33] to handle other semantic network formalisms. (It is not obvious how toextend re�nement and Method IV to partitioned-networks, however, but one possibility is to addto the O-type dus a \partition-distance" �eld that gives the minimal number of partitions that mustbe passed through from one node to the next and treatingthe box surrounding a partition as a nodeitself.) But more important than the particular version of Method IV that has beenpresented is the application of pattern associativity that produced the method. Oncethis is well-understood it may be possible to derive similar systems that do not dependon isomorphismtesting, but take advantage of the commonalities of subsumption tests,whatever the form.8 Domain Validity of Generalization GraphsIn each of Methods II-IV additional objects are added to the system to improve e�ciency throughindexing. In Method II screens are used. In Method III generalization graphs are created throughself-organization. Finally, in Section IV we see that node descriptors (environments) are stored. InMethods II and III these generalization graphs are used because they are common to many graphs.The most useful node environments (Method IV) are also those that occur commonly. Indeed,generalization graphs are the most tangible manifestation of the pattern-associativity principle.One then wonders whether these graphs also have semantic validity in the domain applications inwhich they arise?The domain validity of generalization graphs is one of the interesting things that has comeout of our applications of semantic memory to chemistry [27,28,30,35] and chess [31,32]. Thegeneralization graphs created through self-organization from chemical graphs have correspondedremarkably well to what chemists call \functional groups":ne great advantage of the structural theory is that it enables us to classify the vastnumber of organic compounds into a relatively small number of families based on theirstructures. The molecules of compounds in a particular family are characterized bythe presence of a certain arrangement of atoms called a functional group. A functionalgroup is the part of a molecule where most of its chemical reactions occur. It is thepart that e�ectively determines the compound's chemical properties (and many of itsphysical properties as well). [55] 30



Fido objbite objagent believeBob expr
Figure 16: Example of a propositional node with a logical operator.\Bob believes that Fido did not bite him." (adapted from [56] p. 1015)7 Extending to other semantic network formalismsThe previous development has been based on the use of conceptual graphs. An important question,then, is to what extent these techniques can be applied to other semantic network representationschemes? It is important to realize that Methods I-III assume the availability of an \oracle" (forconceptual graphs, a subgraph-isomorphism test) that could determine the subsumption relation-ship between concepts (graphs). The type hierarchies are used by the oracle and not by the retrievalalgorithm itself. Thus, the exciting conclusion is that Methods I-III can be used withany semantic network formalism as long as a subsumption operator is provided. Thiswas illustrated above when in Method IV the algorithms from Method III were used to insert nodedescriptors into the node descriptor hierarchy (using a comparison function other than subgraph-isomorphism). Although we have made no suggestions on how to improve the tractability of certainsubsumption tests [39], Method III can be used to reduce the number of such tests that are required.Some semantic network formalisms go beyond the general labelled graph framework by allowing\partitions", \spaces", or \proposition nodes" [21,52,48,57]. These are collections of nodes (andthe arcs between them) in a semantic network. We will briey look at the three main variationsof these and how subgraph-isomorphism tests can be extended to handle them (variations 2 and 3are illustrated in Figure 16):1. There are no arcs involving the partition box itself, but there may be arcs to and from nodeswithin the partition to nodes outside the partition. By viewing the sets of nodes that make upthe partition as \hyperedges" [7] the conditions for subsumption (and the corresponding test)can be extended in a straightforward manner. The Adjacency-Preservation condition (Section2) is extended to include the adjacencies de�ned by hyperedges simply by changing the word\pair" to \set": For a set of nodes that are adjacent in one structure, the corresponding setof nodes must be adjacent in the other structure, and further, the direction (if any) of theedge between the nodes must also correspond. This condition can be checked at exactly thesame place it is normally done in a subgraph-isomorphism algorithm.2. The box making up the partition and not just the nodes within the partition may have incomingand outgoing edges. For such proposition nodes the subgraph-isomorphism algorithm should29



Graph pred-count succ-count conclusionG1 3 1 generalizationG2 0 5 specializationG3 1 0 incomparableG4 1 5 specializationG5 0 1 incomparableTable 3: Results of Method IV retrieval example.2.1 Increase pred-count by 1 for each database graph that has a characteristic descriptorthat is a predecessor of q.2.3 Increase succ-count by 1 for each database graph that has a characteristic descriptorthat is a successor of q.3. Return all graphs that have a pred-count equal to their number of nodes as predecessors ofQ.4. Return all graphs that have succ-count equal to the number of nodes in Q as successors of Q.5. Graphs that are both predecessors and successors are exact matches.ENDClose matches are easily found using this system. This is done by using the succ-counts of thedatabase graphs. Those matching a higher percentage of the query nodes are returned as closematches. Much success has been achieved using this simple technique in the chemistry domains.Rau [42] suggests a similar approach for conceptual graphs but from within a Method II system.Once these close matches are identi�ed as a maximal common subgraph algorithm can be used toreturn the exact commonality if necessary.Example 6.4:Let's explore how our sample query would be processed using the node descriptor hierarchy (Figure15). Each node descriptor for the query graph is inserted: Q1 is found to be identical to 1, Q2would be inserted on the arc between 2 and 5, Q3 on the arc between 3 and 6, Q4 is identical to 7,and Q5 is identical to 8. The pred-count and succ-count of each database graph are updated givingthe results in Table 6.3.This hierarchical node descriptor method may be used with Design Method III by placing apartial order over the database graphs as before. The hierarchical node descriptor method does the�lter using the description hierarchy, then subgraph-isomorphism tests are done to ensure match(these should go fast since the graphs almost certainly match), but as in Phase II of Design MethodIII some expensive matches can be inferred for free using the hierarchy. Using Design Method IVthe HTSS researchers have reported that retrieval time grows sublinearly: moving from 150,000to 1,200,000 structures resulted in an increase in retrieval time of 50 percent [37]. Design MethodIV is even more promising when we consider that each of the node descriptor searches down thehierarchy may be done in parallel. 28
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Figure 15: A node descriptor hierarchy for G1 through G5.Ideally, any graph that has some node-descriptor in each predecessor set quali�es as a generalization,and any graph that has some node descriptor in each successor set is a specialization. However,theoretically things are more complex than this because a node may be inadvertently countedmultiple times. For example, suppose graph X has a single node that is more-general-than allnodes in the query Q. This should not imply that X is more-general-than Q, but this is what themethod would tell us. How can these di�culties be handled? One possibility is to keep trackof exactly which nodes in the query graph map to exactly which nodes in the database graph.And then for each graph that remains a candidate as a specialization or generalization determinewhether a 1-1 mapping is possible. Finding such a mapping is exactly the bipartite matchingproblem, unfortunately the complexity of solving this problem is O(ne) where n are the number ofnodes and e the number of edges in the matching problem. Relying on such an algorithm nearlydefeats the purpose of eliminating the subgraph-isomorphism tests. Fortunately, the multiple nodematches are unlikely to occur on conceptual graphs when a graph match is not present. Theresulting algorithm:BEGIN(* Retrieval in Method IV *) With each database graph maintain two �elds pred-count andsucc-count that are initialized to 0.1. Node descriptors are calculated for the query graph Q.2. For each node descriptor q:2.1 Find q's place in the hierarchy using Phase I and Phase II of Method III but with thenode-descriptor comparison test. 27



Node Descriptor Node NumberG1:f(S,person,0)(O,agent,-1)(O,eat,2)g 1f(S,agent,0)(O,person,1)(O,eat,-1)g 2f(S,eat,0)(O,person,2)(O,agent,1)g 3G2:f(S,girl,0)(O,agent,-1)(O,eat,2)g 4f(S,agent,0)(O,girl,1)(O,eat,-1)(O,manr,2)g 5f(S,eat,0)(O,girl,2)(O,agent,1)(O,manr,1)(O,quickly,2)g 6f(S,manr,0)(O,agent,2)(O,eat,-1)(O,quickly,1)g 7f(S,quickly,0)(O,manr,-1)(O,eat,2)g 8G3:f(S,Sue,0)(O,agent,-1)(O,eat,2)g 9f(S,agent,0)(O,Sue,1)(O,eat,-1)(O,obj,2)g 10f(S,eat,0)(O,Sue,2)(O,agent,1)(O,obj,1)(O,pie,2)g 11f(S,obj,0)(O,agent,2)(O,eat,-1)(O,pie,1)(O,cont,2)g 12f(S,pie,0)(O,eat,2)(O,obj,-1)(O,cont,1)(O,apples,2)g 13f(S,cont,0)(O,obj,2)(O,pie,-1)(O,apples,1)g 14f(S,apples,0)(O,pie,2)(O,cont,-1)g 15G4:f(S,Sue,0)(O,agent,-1)(O,eat,2)g 9f(S,agent,0)(O,Sue,1)(O,eat,-1)(O,obj,2)(O,manr,2)g 16f(S,eat,0)(O,Sue,2)(O,agent,1)(O,obj,1)(O,pie,2)(O,manr,1)(O,quickly,2)g 17f(S,obj,0)(O,agent,2)(O,eat,-1)(O,pie,1)(O,cont,2)(O,manr,2)g 18f(S,pie,0)(O,eat,2)(O,obj,-1)(O,cont,1)(O,apples,2)g 13f(S,manr,0)(O,agent,2)(O,eat,-1)(O,obj,2)(O,quickly,1)g 19f(S,quickly,0)(O,eat,2)(O,manr,-1)g 8G5:f(S,Sue,0)(O,agent,-1)(O,eat,2)g 9f(S,agent,0)(O,Sue,1)(O,eat,-1)g 20f(S,eat,0)(O,Sue,2)(O,agent,1)g 21Q:f(S,person,0)(O,agent,-1)(O,eat,2)g q1f(S,agent,0)(O,person,1)(O,eat,-1)(O,manr,2)g q2f(S,eat,0)(O,person,2)(O,agent,1)(O,manr,1)(O,quickly,2)g q3f(S,manr,0)(O,agent,2)(O,eat,-1)(O,quickly,1)g q4f(S,quickly,0)(O,manr,-1)(O,eat,2)g q5Table 2: Node descriptors for G1 through G5 and Q..26



Now that we know how to build node descriptors for each graph we can move to building thedesired database of node descriptors (partial order by more-general-than) and associated graphs.Initially, the database is made up of only a single node descriptor � that is de�ned to be moregeneral than any other node descriptor and thus will remain at the top of the hierarchy. All nodedescriptors to be stored in the system are given a unique number and are to occur only once in thehierarchy. Each node descriptor points directly to the graphs from which it has been derived.Comparing node descriptors: Node descriptor q is to be considered more-general-than nodedescriptor r i� there is a 1-1 mapping from dus in q to matching dus in r. (The idea is that q ismore-general-than r if they could bind in a subgraph-isomorphism test). Two S-type dus (S,v1,d1)and (S,v2,d2) match i� v1 is more-general-than v2 in the type hierarchy and d1�d2. Two O-typedus (O,l1,d1) and (O,l2,d2) match i� l1 is more-general-than l2 in the type hierarchy (if labels) orif l1 is more -general-than l2 in the node-descriptor hierarchy (if node descriptors).Note that it is only when comparing dus that the type hierarchies need be consulted. Again werecommend that the type hierarchies be compiled into tables of pairs for faster processing. Similarlywe recommend that the numbers from the descriptor hierarchy also be compiled into pairs whereone descriptor is more-general-than another.In general, determining whether one node descriptor is more-general-than another is the bipar-tite matching problem and thus is O(ne) in the worst case where n is the number of nodes in thedescriptor and e is the number of possible du matches. But in practice �nding the matching isusually trivial.BEGIN (* Insert Graph G into the method IV database *)1. Build node descriptors for each node in G as described above.2. For each label �eld of O-type dus that is itself a node descriptor call this routine recursively toinsert the node descriptor, replace the label �eld in the O-type du with the number returnedfor the descriptor.3. Insert each descriptor into the hierarchy where it belongs(if it does not already exist). Thiscan be done using Phase I and Phase II of Method III except the graph isomorphism test isreplaced with the much simpler node descriptor comparison described above.4. Add pointers from the node descriptors to G.5. Return a unique number for the node descriptor or an existing one if the descriptor hadpreviously been inserted.ENDFor example Figure 15 shows a node descriptor hierarchy where graphs G1 through G5 andtheir nodes (Table 2) have been inserted.The top-level node descriptors that come from a particular graph will be called \characteristicdescriptors" of that graph in the following algorithm. It is only the characteristic descriptors thatpoint to a given graph, though other descriptors may have paths through a characteristic descriptorto the given graph. Retrieval takes place by �rst generating all node descriptors in the query graphand then �nding predecessors and successors of each node descriptor in the descriptor hierarchy.25



O-type du can be made more speci�c by replacing it with the current node descriptorof the node from which the label has been derived.Example 6.2:The Node Descriptor for Node 1 in Example 6.1 can be made more speci�c by substituting in thenode descriptors for nodes 2 and 3 giving f(S, bread, 0), (O, f(S, betw, 0), (O, bread, -1), (O, jam,1), (O, betw, 2)g, 1), (O, f(S, jam, 0), (O, bread, 2), (O, betw, -1), (O, betw, 1), (O, bread, 2)g,2)g.6.3 Method IV: Design OrganizationBy precompiling the node descriptors for each database graph the node descriptor comparisonsbased on the query graph can in essence be done in parallel since through pattern-associativityshared node descriptors in each database structure are processed only once.Every node in every database graph(and every query graph) is to be represented as a nodedescriptor as above. But how speci�c should these descriptors be made? The following algorithmgives the necessary details: (Two nodes are in the same equivalence class if they have the same nodedescriptor. Thus, as descriptors become more speci�c, equivalence classes may become smaller andmore numerous.)BEGIN(* Generate Node Descriptors *)1. Represent each node as a set of dus as described above. Label �elds in O-type dus are theactual label from the node pointed to (a pointer to this node should be temporarily stored inthe du).2. REPEAT2.1 Record current node descriptors and equivalence classes.2.2 Replace all labels in the O-type dus with the new node descriptor for the associatednode. (This need only be done for nodes that are not currently in singleton equivalenceclasses)UNTIL equivalence classes of nodes have not changed from the previous iteration.3. Return node descriptors from the previous iteration.END Except for very unusual graphs, the resulting node descriptors are such that two nodes withthe same descriptor are truly symmetric in the given graph. For many graphs only one iteration isrequired.Example 6.3:The equivalence classes after the �rst iteration (Example 6.1) are: 1,5,2,3,4. Thus nodes 1 and 5are the only nodes that are expanded(re�ned) on the next iteration. We gave the expansion fornode 1 above. The expansion for node 5 is f(S, bread, 0), (O, f(S, betw, 0), (O, betw, 2), (O, jam,-1), (O, bread, -1)g, 1), (O, f(S, jam, 0), (O, bread, 2), (O, betw, -1), (O, betw, 1), (O, bread, 2)g,2)g. Since the descriptions for nodes 1 and 5 no longer match, each node is in its own equivalenceclass and hence the iteration process stops with each node being described with its �nal descriptor.24



betwbetw jam 54321bread breadFigure 14: Used in examples 6.1, 6.2 and 6.3.\betw" is the triadic relation \between". It is not fully speci�ed in this graph (see [56], page 72).Node Node Descriptor1 f(S,bread,0),(O,betw,1),(O,jam,2)g2 f(S,betw,0),(O,bread,-1),(O,jam,1),(O,betw,2)g3 f(S,jam,0),(O,bread,2),(O,betw,-1),(O,betw,1),(O,bread,2)g4 f(S,betw,0),(O,betw,2),(O,jam,-1),(O,bread,-1)g5 f(S,bread,0),(O,betw,1),(O,jam,2)gTable 1: Initial node descriptors for Figure 14.It is the calculation of these \self-loops" that allows the system to correctly handle theanomalous chemical queries mentioned above.2. There is one du for each other node in the graph: (O,v,d)� O = other� v = node label� d = Shortest path distance to node ignoring edge direction and thus viewing all edgesas bidirectional. This will always be a positive integer, except for nodes at distance 1,where 1 stands for the existence of a forward edge (and possibly a backward edge) tothat node and -1 for no forward edge (only a backward edge).Such descriptions can be calculated for all nodes using a single call to an all-pairs shortest pathalgorithm[2]. The descriptors can be read directly from the resulting distance matrix(that gives theshortest distance between all pairs of nodes). The distance matrix heuristic method has performedvery well in practice [46], though Corneil [12] shows that it (and many other good practical heuris-tics) are ine�ective on a theoretical (unrealistic) subclass of graphs known as c-subgraph regular.We would be very surprised indeed to �nd a realistic example of conceptual graphs in which thesedescriptions are not su�cient. In the counter examples from the graph theory literature almost allnode and edge labels are set to be the same. In fact, for most applications we suggest not storingatoms that reect distances of more than 2 or 3. Not only are the larger distances unneccesary butthey greatly increase the storage and matching requirements.Example 6.1:We calculate node descriptors for Figure 14 (before further iterations as below), reecting distancesup to length 2. The results appear in Table 1.But how can node descriptors be made more speci�c (as is required in successive iterations ofre�nement)? The key, and somewhat profound, notion is that the node label �eld of an23



In re�nement, a di�erent approach is taken based directly on applying the syntactic property-inheritance principle (see Section 4) to the nodes of graph Q: What is true of a node q in Q mustbe true \all the more so" of a node in r that it is bound to. Thus, in general, the more speci�c wemake the description of a node in Q the fewer possible bindings with nodes in R need be considered.If the descriptions are made extremely speci�c(more \re�ned") then the likelihood of eliminatingall possible bindings is increased, and if some possible bindings remain, we can be nearly, (but notabsolutely) certain that they are correct. If after making the descriptions highly-speci�c, all nodesin Q still have non-empty binding lists we can be nearly (but not absolutely) certain that Q is ageneralization of R.Success can not be guaranteed without a node-by-node comparison as in backtrack search,but in practice in the chemical domain this has never proven necessary. The technique has nevererred in real systems. However, some hypothetical anomalous queries have been presented in thechemical literature [4]. The description technique presented below also handles these. We expectthese techniques to work at least as well for conceptual graphs due to the increased label varietyin these networks that reduces the number of bindings that need be considered.It has been shown empirically that a re�nement algorithm usually solves isomorphismproblems on random graphs in O(n2) operations where n is the number of nodes in eachgraph [12].The re�nement method lends itself readily to parallelism: on each iteration the description ofa node may be updated independently of other nodes to be updated on that iteration.6.2 Method IV: Overview and Node Description SchemeInformally: Method IV maintains a hierarchical partial ordering(by more-general-than) of nodedescriptions such that descending the hierarchy(to more speci�c descriptions) is akin to iterating ina re�nement test. At the bottom of the hierarchy are stored the original database graphs(assumean arbitary at ordering of these for now). There are pointers to each database graph G fromthe most speci�c descriptions in the hierarchy that correspond to some node in G. Thus there arepaths from each description to database graphs that have a node that satisfy that description. By�nding the place of the description of each query graph node in the hierarchy it is possible to �ndall specializations and generalizations of the query. Specializations are all those graphs that can bereached by all query nodes and generalizations are all those graphs that have paths from each oftheir nodes to query nodes (if they were to be inserted in the hierarchy). <picture>Obviously, the key to Method IV processing is in the node description method. There are manysuch methods used by re�nement algorithms. The following information is usually stored, thoughany individual system uses only a subset of this information. Each node (concept) is representedas a set of description units(\dus") called a node descriptor:1. Each node descriptor has one du of the form: (S,v,d)� S = self� n = node label� d = length of the shortest non-trivial cycle node is on, 0 if none. (since conceptualgraphs are bipartite, d must be even)22



1. Applying a maximal common subgraph algorithm to the answers to close match queries.2. Taking a query graph and stripping o� parts of it until it is a subgraph of many others.3. Applying a \join" operation(take two graphs and combine them to form a more speci�c graphthat retains shared structure from the original graphs ) to general graphs in the ordering.Some systems require that generalization nodes be formed and stored between any two databasegraphs. We have found it more useful to estimate by using an information-theoretic heuristic basedon query expectancy [28,30] whether it will be useful to add the node. This heuristic estimates fora typical query whether an isomorphism test is likely and if it does occur how much informationabout other graphs in the database it is likely to provide. G. Ellis [14,15] has tried to make thehierarchy \more balanced", i.e. not giving a graph too few or too many immediate predecessors orsuccessors. In practice, we have seen that the application of our heuristic leads to such balancedorderings though the heuristic tends to �ll the general levels of the hierarchy �rst since these graphsare smaller and hence have cheaper comparison tests.5.4 Parallelization of Design Method IIIPhase I of Design Method III is easily parallelized. Each processor takes the next available objectfrom the list, compares it to Q and updates S and the list as before. The only possible ine�ciencyis that two objects may be used in comparisons such that the answer to one may eliminate theneed for the other. Thus in addition to removing objects from the list the processors should beterminated that are working on removed objects and freed for other computation. Alternatively, aprocessor could not work on an object that has a predecessor in a processor.In Phase II the upward chaining from each immediate predecessor can be done in parallel,and the breadth �rst search over the successors of the last immediate predecessor may also beparallelized.6 Method IV: Hierarchical Node Descriptor MethodDesign Methods I-III assumed that the subgraph-isomorphism tests were to be done as a unit andfurther did not depend on which technique (backtrack search or re�nement) was used to performthese tests. Design Method IV is based directly on the re�nement model of subgraph-isomorphism.Here we will go over Method IV in detail, but �rst it is helpful to have an intuitive understandingof the re�nement method.6.1 Re�nementRecall that the purpose of a subgraph-isomorphism test is to �nd bindings for the nodes in aquery graph Q and those in the database graph R that satisfy the node consistency and adjacencypreservation constraints(see Section 2). We said in Section 2 that both backtracking and re�nementtests start out by generating possible binding lists for each node in the query graph and thatthis is the only place that the type hierarchies need be consulted when performing these tests.Backtracking then goes on to e�ectively explore the space of all possible binding combinations.21



Proof:When are comparisons required by these systems? In Method III comparisons are required forthose objects X that satisfy any of the following:i.) All of X's predecessors are known to be in Q. (Phase I)ii.) All of Q's predecessors are known to be in X. (Phase II).In Method II a comparison is required for objects X that satisfy any of the following:iii.) X is a screeniv.) All of X's screens are known to be in Q. (possible generalization)v.) All of Q's screens are known to be in X. (possible specialization).Note that since screens in DB2 do not have their own screens statement iii is just a special caseof statement iv and could be omitted. Now since all screens of an object are predecessors of thatobject: statement i implies statement iv and statement ii implies statement v. Thus every methodIII comparison is also required in Method II. QED. (Above it was shown that many specializationtests required in Method II are eliminated for free in Phase II of Method III. It should also be clearthat Method III does not necessarily require comparisons on all screen objects from DB2 since theyare not necessarily on the �rst level.)This theorem is stronger than others that we have previously published. The symmetry of theproof might lead one to believe that further insight is available. This is indeed the case:1. The object relationships inferable from DB2 are a subset of those inferable from DB3.2. The algorithm used in Method III is not restricted to fully-speci�ed partial orders. Thealgorithm used in Method II is a special case of this algorithm applied to two-level orderings!Theoretically, little is known yet about the average run time of insertion into partial orders. Inempirical tests of Method II vs. Method III, retrieval of predecessors and successors in MethodIII was more than twice as fast as Method II on databases of 630 and 521 concepts respectively[28,30]. The Method II database was created by eliminating all intermediate nodes (those with bothpredecessors and successors) from the Method III hierarchy some of which were valid answers toqueries. This is impressive considering that Method III also produced 33 percent more structures asanswers per query (because of and in spite of the fact that the database contained more information).Finally, it should be noted that close matching in Method III should usually be more accuratethan in Method II since it is based on more speci�c features: immediate predecessors as opposedto screens.5.3 Self-Organization in Method III\Self-organization" is the name we give to Method III systems that add \generalization graphs" tothe database expressly to improve retrieval e�ciency (though other uses are possible, see Section8). These graphs are found by examining the database graphs for graphs that are subgraphs ofmany other database graphs but are not yet themselves in the database. There are many methodsfor coming up with these nodes including: 20
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100 200 300 400 500 600 700graph comparisonsfull graph comparisonsFigure 13: Retrieval time vs. database sizedoes comparisons on the immediate successors (and some others). Two other things point to thede�ciencies of this approach: the immediate predecessor information from Phase I is not taken intoaccount and by starting at the other end of the hierarchy the system is required to do comparisonson the most complex objects!We have explored alternative algorithms to these that do not query the partial order in abottom-up or top-down fashion but instead use an information-theoretic heuristic that attemptsto maximize the ratio of expected information gained to comparison cost and using a few levels oflookahead [44]. We've had only limited success with these algorithms: only improvements of about15-20 percent despite a large amount of o�-line pre-processing.5.2 Comparison of Design Methods II and IIIAbove, intuitive arguments have been given that Design Method III produces more e�cient asso-ciative retrieval than Design Method II. Can something more concrete be said? We shall prove thefollowing theorem:Theorem:Let DB2 be a two-level database to be used with Method II. Let DB3 be a Method III partially-ordered database made up of the objects and screens from DB2. Then on every query Q, MethodIII (on DB3) does a subset of the comparisons done by Method II (on DB2) to determine general-izations and specializations. 19



(8) For each successor X of Y in order by size (as in step (1) above) doIf X is in I and X is a successor of Q (isomorphism test) thenS := S [ fXgEliminate successors of X from the rest of the for loop.(9) Return S.In our example, S is initialized to ;. Y is taken to be G1 and I is set to the successors of G7:G2, G4. Y's (G1's) successors that are not smaller than the query are: G2, G4, G3, and G6. G2is compared to Q and is a successor (and is added to S) thus G4 is found to be a successor forfree (being a successor of G2) and is not processed further. Since G3 and G6 are not in I they areeliminated without isomorphism testing.If we actually wish to insert Q into the hierarchy, the IP and IS sets of other objects have tobe updated. This is done in Phase III (Figure 12(b)).Phase III. (update immediate predecessor and successor sets of other items)(10) For each x in IP(Q) doS(x) := IS(x) [ fQg � IS(Q)(11) For each x in IS(Q) doP(x) := IP(x) [ fQg � IP(Q)Thus, Phase II does not do an isomorphism test on a database object unless it contains eachmember of IP(Q) (the screens for Q). Note how the original database objects are being used asscreens in Phases I and II. The big savings of Method III over Method II comes from the factthat only the immediate successors of Q need to be determined using isomorphism tests. All othersuccessors (specializations) are determined for free. Since the objects eliminated in this way areusually the most complex, many expensive tests have been eliminated.Close matches can be found using this algorithm much as they are in Phase II. The approxima-tion is based on the number of immediate predecessors of Q that are contained in an object. Thiscount corresponds exactly to the count which has been calculated in Phase II. To verify such anapproximation one may of course use a maximal-common subgraph algorithm.There are other algorithms for insertion of objects into partially-ordered sets, we recommendthe one here due to its simplicity and e�ciency. In practice only a small fraction of the databaseobjects need to be compared with Q using isomorphism tests: 10 or 20 structures at the most on adatabase of 680 objects for example. Further, we have seen that as database size grows the increasein retrieval time is sublinear and quite possibly logarithmic. (See Figure 13.)KL-ONE's classi�cation algorithm [34] is somewhat di�erent: in phase I an object is comparedto the query as soon as one of its predecessors match Q (A depth-�rst approach as opposed to thebreadth-�rst approach described here). Our studies have shown that the predecessor informationgain for free by this method (usually simple comparisons) do not pay for the additional predecessortests (usually more complex) required by this method. Other variations may be feasible though,such as comparing an object as a predecessor as an IP when a certain proportion of its immediatepredecessors have succeeded. Since Phase I is not the expensive phase the di�erences here are notthat signi�cant. Some systems that maintain a partial order have Phase II work exactly as PhaseI but from the other end of the hierarchy. This is not as e�cient as the method here since at theminimum all successors of Q (and some others) must be queried, whereas the Phase II here only18



of Q in the ordering are its generalizations and its successors are its specializations. Thus theretrieval operation is essentially the same as an insertion operation. The immediate predecessorand immediate successor sets are found in two phases. Phase II makes use of the immediatepredecessors found in Phase I. Both phases attempt to use the information in the hierarchy tominimize the number of isomorphism tests.Phase I: (�nd IP(Q), the immediate predecessors of Q)(1) List all database objects from smallest to those of the same size as Q. Sets of objects thatare the same size need to be ordered to reect their relationship in the partial order (if any),that is an object cannot be succeeded by its generalization.(2) S := ;.(3) While there is a member X in the listIf X is a predecessor of Q (isomorphism test) thenS := S [ fXg � IP(X)Remove X from the list.ElseRemove X and all successors of X from the list.(4) Return S.Ordering the database objects as in step (1) produces a topologically sorted list, i.e. a totalordering that embeds the original partial ordering by more-general-than. Since all database objectswill be preceded by their predecessors in the list they only will make it to the front of the list iftheir predecessors have been found to be predecessors of Q. Thus, the proper screening is takingplace. Although we have published this algorithm in several places this is the �rst time we haveobviated the need for maintaining predecessor counts in Phase I. This simpli�cation also leads toa simple parallel implementation (see below). Now let us return to our example, Figure 12. Oneordered list for this database would be G1, G5, G7, G2. First G1 is compared to Q and succeedsas a generalization and is placed in S. G5 fails but has no successors to remove from the list. G7succeeds (and is added to S) and G2 fails, completing Phase I with S = fG1, G7g.Phase II. (�nd IS(Q), the immediate successors of Q)(5) S := ;.(6) Y := some element of IP(Q)(7) I := intersection of the successor sets of each element of IP(Q) except YWe suggest the following implementation of step 7:(7') For each z in IP(Q) except Y doFor each successor s of z doIncrement count(s)For each item s doIf count(s) = jIP(Q)j � 1 then I := I [ fsg17



(b)(a)
G1G7 G5G3G2G4 G6 G6G4G2 G3G5G7 G1Q
Figure 12: A Method III organization of Figure 10.(a) is the database before insertion of the query object Q, and (b) is after insertion.fG1, G7g is IP(Q) and fG2g is IS(Q).other and database objects with each other, but only on the relationship of screens with databaseobjects. How can this inter-screen and inter-object information be useful? Suppose for examplethat database object R is known to be a generalization of database object S. Now once we determinethat R is a specialization of Q, we know that S is also without performing further isomorphismtesting! Similar reasoning applies to screens: If screen X is a generalization of screen Y, then if Xis found not to be a generalization of Q, than clearly Y isn't either.Following this line of thought, since we are interested in the interrelationship amongst all objectsand screens, the distinctions between these become blurred and we are no longer left with separatelevels, instead we have a multi-level partial order: Design Method III. In this section we shall provethat, ignoring pointer chasing, Method III is superior query-for-query than Method II. This shouldmake sense since Method III uses a superset of the information used by Method II.5.1 Method III RetrievalIn this method all database objects are placed in a partially-ordered hierarchy by the relationmore-general-than. Because of transitivity only the immediate predecessor (generalizations) arcsand immediate successor (specialization) arcs need be stored(as in the Hasse diagram of any po-set(see Figure 12(a))). Other objects besides the original set may also be stored in the databaseto provide further indexing (see section on Self-Organization). The system's algorithms make nodistinction between \screens" and \non-screens", however. (Though it is, of course, possible to addclassi�cations to database objects so that some are �ltered from the system's answers.) In essence,an object is screened by its predecessors in the ordering and screens its successors! This is anotherapplication of the syntactic-property inheritance principle.Exactly how is this organization used for e�cient associative retrieval? First, notice that toanswer specialization/generalization queries it is su�cient to �nd where the query object Q �ts inthe partial order (i.e., Q's immediate predecessors and immediate successors). The predecessors16



G7G6G5G2G1 G3 G4Figure 11: A Method II organization of Figure 10.3. For those bottom level objects that are pointed to by each member of S, and are not smallerthan S, do a subgraph-isomorphism test to determine if they are specializations of the queryQ.4. For those bottom level objects that have all of their screens from the database in S, and arenot larger than S, do a subgraph-isomorphism test to determine if they are generalizations ofQ.5. For those bottom level objects that have many but not all of their screens in S, do a maximal-common subgraph test to determine close matches with Q. Any object that is both a gener-alization and specialization of Q is isomorphic (exact match) to Q.6. To insert an object add bidirectional pointers from(to) the object to(from) screens that itcontains.One sample Method II database based on Figure 10 is shown in Figure 11. (To illustrate thetechnique less than optimal screens have been chosen.) Retrieval proceeds as follows: �rst, screensG1, G5 and G7 are compared to Q with G1 and G7 being found to be generalizations of Q withG5 failing. Thus, S = fG1, G7g. The bottom level objects G2 and G4 are pointed to by both G1and G7 (the members of S) and hence, each is compared as specializations to Q, both succeeding.Since G2 has its only screen (G1) in S it is also compared as a generalization of Q and fails. Thusthe algorithm returns G1 and G7 as generalizations and G2 and G4 as specializations. Note thatG3 and G6 were eliminated without isomorphism tests.Method II is de�nitely an improvement over Design Method I, since the screening step (step1) is fast, and usually most of the database objects are eliminated without further subgraph-isomorphism tests. In essence, through pattern associativity the global property screen stage of thesubgraph-isomorphism tests on the top level objects are now done simultaneously.Parallelism can be added to this method in the obvious way: With k processors, in step 1each processor applies the next available screen to the query object and follows the pointers toadjust screen tallies for the main database objects. The remaining isomorphism tests work thesame way: Each available processor performs the next one. Again parallelism is possible due to theindependence of the isomorphism and property tests.5 Design Method III: Multi-level Partial OrderSo Design Method II is a great improvement over Method I, but what additional improvements arepossible? Note that Method II does not use information about the relationship of screens with each15
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Figure 10: Type hierarchy, database and query graph.This example is adapted from [56] pp.92-93. \manr" stands for \manner", \cont" stands for\contains" and \poss" stands for \possesses". G1 and G7 are generalizations of the query Q, G2and G4 are specializations of Q and G3, G5, and G6 are incomparable.14



database objects are sequentially ordered, and each processor works on the next database objectfor which a test has not yet been performed. Such parallelism is possible since the results of thesubgraph-isomorphism tests do not depend on each other.Clearly, there is more structure to be taken advantage of! In the methods that follow threedi�erent levels of pattern-associativity are used to create more e�cient associative retrieval:1. Common substructures or properties in database objects.2. More-general-than relation between database objects.3. Shared computation amongst individual subgraph-isomorphism re�nement testsDesign Method II will use 1, Method II: 1 and 2 and Method IV:1,2 and 3.Figure 10 gives a type hierarchy, database of conceptual graphs and a query graph that we willuse to illustrate Methods II-IV.4 Design Method II: Two-level OrderingIn Design Method II a new set of objects (\screens") are added to the database to provide anindexing or \screening" level to the original set of objects. The use of this set of objects is foundedon the same reasoning that supports the global property �lter that starts the subgraph-isomorphismtests: If a property is true of a graph Q, it must be true \all the more so" of a graph R it is aspecialization of. We shall call this application of pattern associativity \the syntactic property-inheritance principle". To be more technical: the properties that satisfy this principle must bepreserved by isomorphism. (That is, not depend on the way in which the nodes may have beennumbered.) For example:a. Every subgraph of Q is a subgraph of Rb. If Q has m cycles(edges, nodes, cliques), R has at least m cycles(edges, nodes, cliques).c. If nodes a and b are distance d in Q, then their isomorphic nodes are no further than distanced in R.Subgraphs (or properties) that are common to many objects are used to produce the screen levelof the two-level order. These are either found through statistical methods or are supplied to thesystem based on human knowledge of useful indexes[1,5,13,62]. Simple screen objects (1-3 edges)are best since the time to determine if they occur in an arbitrary structure is minimal comparedto more complex comparisons required by the system.For each screen object, s, bidirectional pointers are stored to all second level objects that soccurs in. Associative retrieval takes place as follows:1. Find which screen objects S occur in the query structure Q. This is usually done by applyingsubgraph-isomorphism tests on a screen vs. the query. For very simple screens (such asnumber of edges or nodes) other tests are possible. This step usually goes rapidly due to thesimplicity of the screen objects.2. For each bottom level object determine which members of S occur in them using the databasepointers. 13



a solution in a reasonable amount of time, they seem to work well in many practicalsituations. [12]Conceptual graphs are bipartite since there are no edges between pairs of concept nodes orpairs of relation nodes, but only between a concept node and a relation node (or vice versa).Unfortunately, the subgraph-isomorphism problem when restricted to bipartite graphs remainsNP-complete [18]. In some applications of conceptual graphs the set of edges out-going from eachconcept node are restricted to go to at most one relation node of a given label or certain relationsand concepts may be con�ned to connect with only certain other relations and concepts. In thesecases, the subgraph-isomorphism test may be done in polynomial-time. Still the techniques thatfollow are valuable even in this restricted case as they reduce the number of these tests that musttake place. In Section 8 we discuss how these methods may be adapted to other semantic networkformalisms including those in which the more-general-than relation (subsumption) between conceptscan not be determined with a subgraph-isomorphism algorithm.Here we will describe only those aspects of subgraph-isomorphism testing that are essentialto understanding the four design methods, the evolution of pattern associativity, and how typehierarchies are incorporated. Further details and e�cient implementation methods can be foundin [2,4,8,23,33,46].Call the two graphs being compared Q (for query) and R. The object is to determine if Qis a generalization of R. The result of a successful test is a set of bindings that satisfy the nodeconsistency and adjacency preservation conditions. There are two main methods for testing if sucha set of bindings exist: backtracking and re�nement. Both methods start out by the same. A set ofpossible bindings for nodes in Q are generated. Then compute for each node in both graphs, whatthe possible bindings are for those nodes. These bindings are determined by �rst verifying that thenode in R has arity at least that of the node in Q and then searching the type hierarchies for adirect path from two labels, where the label from Q is equal to or more-general-than the label fromR. As searching these paths may be costly (especially when no path exists), an alternative is tocompile the information directly into a hash table (for all queries) that will tell directly if two labelscorrespond. The tradeo�, of course, is a greater storage requirement, and greater computationat system start-up, insertion or compile time. The beauty is that once these \candidatebinding lists" are created the type hierarchies need never be consulted again duringan isomorphism test. The type hierarchies are maintained as a separate data structure from thestructure that organizes the database graphs and may take any desired form(e.g. lattice, tree, oracyclic graph). Methods I-III may use any correct subgraph-isomorphism algorithm(backtrackingor re�nement) since comparisons are considered independently of other processing. In Section VIwe will take a closer look at re�nement since it is essential to understanding Method IV. In MethodIV the database is compiled into a form that allows, in essence, many re�nement tests to be doneconcurrently.3 Design Method I: Arbitrary Flat OrderingThis is the simplest design possible: place no additional structure on the stored objects at all!The system simply receives the query graph Q from the user and considers for each databaseobject whether it is a specialization, generalization or close match with Q. Thus with N databaseobjects N subgraph-isomorphism tests are done regardless of the query type. With k processors the12



Sections 3-6 describe the database design methods and their use of pattern-associativity in depth.Section 7 describes how the methods can be extended to handle other semantic network formalismsin addition to conceptual graphs. Section 8 considers the domain validity of common patterns usedto index structures in these methods. Section 9 is the conclusion.2 The Comparison of Conceptual GraphsThe fundamental comparison operation needed takes two semantic networks A and B and deter-mines if A is a generalization of B. (B is a specialization of A.) Recall that we will be restrictingmost of the paper to the conceptual graph family of semantic netwroks thus we shall assume thatthe word \graph" refers to directed graphs in which nodes are labelled and edges are not. Further,the labels on the nodes (for both concepts and relations) are partially-ordered by the relation more-general-than. The structures that store this relation over labels we call type hierarchies. Nodeswithout referent �elds (used to denote speci�c individual objects) [56] should always be consideredto be more-general-than the same node with a referent. From the graph viewpoint, the compari-son operation is a subgraph-isomorphism test. Thus, A is a generalization of B i� there is a 1-1correspondence between all nodes and edges in A and a subset (possibly not proper) of the nodesand edges in B such that each of the following conditions hold:1. The labels on the nodes in A are equal to or more-general-than the label on their corre-sponding node in B. (Node-consistency)2. For a pair of nodes that are adjacent in one structure, the corresponding pair of nodes mustbe adjacent in the other structure, and further, the direction of the edge between the nodes mustalso correspond. (Adjacency-preservation)A is a specialization of B i� B is a generalization of A. A=B i� A is both a specialization andgeneralization of A. Loosely, we would like A and B be to be close matches i� there is a large graphC (not necessarily connected or existing in the database) that is a generalization of both A and B.We shall not be more formal and speci�c about close matches as determining their relevance oftenrequires domain and problem (goal)-speci�c knowledge. The retrieval methods will select a goodlist of candidates to which further criteria can then be applied.To understand the four associative retrieval design methods it is important to have knowledgeof good algorithms for determining subgraph-isomorphism. The subgraph-isomorphism problem isNP-complete. So, unless a characterization of semantic nets in a given domain can be exploited,in the worst case a calculation exponentially proportional to the number of nodes in the structuresis possible. In general, a brute force comparison of all possible node and edge bindings (mappingsfrom nodes on one graph to the other) is unfeasible. In fact, it still remains an open problem as towhether a polynomial-time algorithm for the special case, the graph-isomorphism problem exists,and whether it is NP-Complete [18]. However, there are some algorithms that generally do quitewell for both graph-isomorphism and subgraph-isomorphism:In the past decade the graph isomorphism problem has received a great deal of atten-tion in both the practical and theoretical computing literature. The development ofcomputer algorithms for the graph-isomorphism problem has been stimulated by suchdiverse applications as chemical identi�cation, scene analysis and construction and enu-meration of combinatorial con�gurations. Although these algorithms do not guarantee11
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Level 1, Index ObjectsPointers Level 2, Data ObjectsFigure 7: A two level database.retrieval system [27,28,30], a method for organizing chess patterns stored as semantic networks[31,32,61], and (since the method does not actually require the use of conceptual graphs) have alsoapplied it to the retrieval of DNA protein sequences in genetics and to radio signal classi�cation [29].This method stores all subgraph relationships that exist between the index structures and domainstructures of the two-level method, thus creating a multi-level partially-ordered hierarchy (Figure8). This additional pattern associativity information leads to signi�cant performance improvementover the two-level method. It will be shown that for every query structure, the graph comparisonsrequired by Method III are always a subset (often proper) of the graph comparisons required byMethod II. Empirical evidence also supports these conclusions [28,30].Design Method IV is based on the design of HTSS, a commercial system for chemical structureretrieval developed in Hungary. While the inspiration for the design of Method IV has comefrom this system, to our knowledge only a brief high-level discussion of it is available [37]. Thusthe discussion, details and application of this method to conceptual graphs has been developedcompletely independently and undoubtedly di�er from the details of that system. Method IV takespattern associativity one step further than Method III: The commonalities (pattern-associativity)in the potential subgraph-isomorphism tests are considered and exploited. The type of subgraph-isomorphism test used is based on \re�nement" [4,8,12,59] (some people call this \relaxation" [4]:Successively re�ne the node descriptors (based on connectivity and label information) until it isclear that one graph is or is not a subgraph of the other). HTSS stores a tree of relevant nodedescriptions in increasing speci�city and �nally connects them to the domain structures that satisfythem. (HTSS stores the descriptors in a tree, we will use a partial order to take advantage of themethods and understanding developed with Method III (as in Figure 9)). A query is then doneby tracing each node description in turn down the tree to determine which structures they occurin. Practice, has shown that this organization is more than su�cient for most applications: 15000structures on an IBM-PC/AT can be queried in 15 seconds. On an IBM mainframe (3090/150)the average retrieval time for a substructure in a database of 1,200,000 compounds is less than tenseconds. This method has not been applied to conceptual graphs or semantic networks. Here weshow how to go about doing that. An implementation of Method IV ideas is underway. Due tothe structure of conceptual graphs we expect even better performance than was achieved in thechemistry domain.Before proceeding to describe each of these methods in detail, we need to establish some back-ground information on the comparison of two conceptual graphs. This is covered in Section 2.8



Its conceptual graph:A molecule:Oxygen CarbonNitrogenbonddouble singlebond bondsingleNitrogenOxygenbondsingleNO C O N
Figure 5: A molecule expressed as a conceptual graph.Figure 6: An arbitrary, at-ordered database.at all (see Figure 6 for an example. In this introductory section for simplicity we use sets of shapesrather than graphs). Since the arbitrary at ordering uses no pattern associativity information,on a database of N items exactly N subgraph-isomorphism tests are required for each query andpossibly an additional N tests to determine close matches.Design Method II, the two-level ordering method is the method that has most often beenused in chemical retrieval systems [1,5,62]. The idea is to add a second \level" of commonlyoccurring substructures as indexes into the original group of structures (Figure 7). Because onelevel of \indexing" seems justi�ed it has been used internally in many AI knowledge representationimplementations as well. Rau has recently applied a two-level method to the retrieval of conceptualgraphs [41,42]. Database implementors have for years been using two-level schemes in a morerestricted form, known as \inverted �les" (these are �les in which a large amount of index structureis created that points into relational records. Because of the simple structure of these records, ifthe indexing is complete the records need not be stored at all) [2,23]. Method II is an increase inpattern associativity over Method I since commonalities amongst the original structures are usedto form the indexing level. For any given query, subgraph tests are only required on a subset of theoriginal structures.Design Method III, is a method based on a multi-level partially ordered hierarchy that we havedeveloped for complex object retrieval [27,28,30]. Others have also applied this approach to semanticnetworks [9,15,19,34]. In our own work we have used Method III to produce an improved chemical7



in which there is no consensus world view (e.g. crime reports, political opinions, etc.). Finally,they may even provide a useful mechanism for organizing multiple single-net knowledge bases (likeSneps), associative retrieval being used to select the most relevant ones.1.5 The Four Design MethodsIn this paper we will not focus on any domain application but will show how the principle of patternassociativity can be used as the basis for the design of systems for the associative retrieval ofsemantic networks. By associative retrieval we mean retrieval in which stored data are retrieved bycontent and not location or inference. Speci�cally, suppose we start with a database of N semanticnetworks, each corresponding to one or more facts or events in a problem-solving domain. Thengiven a new query graph Q, the problem is to determine which of the N graphs are specializations,generalizations, and close matches.The four design methods to be explored are:I. Arbitrary at ordering.II. Two-level ordering.III. Multi-level partial ordering.IV. Hierarchical node descriptor method.These design methods are purposely ordered by increasing pattern associativity. As we move fromDesign I to Design IV marked gains in e�ciency for the \speci�cations of Q" query are obtained.Also, more accurate answers to \generalization" and \close match" queries also come about at nocost to e�ciency. The only cost in moving from Designs I to IV is an increase in algorithmic andimplementation complexity. Although we will be concentrating mainly on sequential implementa-tions, we will also show that each of the design methods has a clear-cut parallel version with nearlyk-fold speedup for k processors.Our experience with these designs is based on research in chemical structure retrieval systems,in which very large databases of chemical graphs are used to support associative retrieval as de�nedabove. The analogy between chemical structures and conceptual graphs is straightforward: atomscorrespond to concept nodes in a conceptual graph, and bonds to relation nodes. For example, seeFigure 5. The major di�erence is that conceptual graphs also allow generalization (type) hierarchieson their node and edge labels. We shall see that the methods smoothly handle type hierarchies.The cost of associative queries on chemical databases is dominated by the number of graphcomparison (subgraph-isomorphism) tests that need to be carried out to answer individual queries.Thus our comparison of methods will count these and not consider the cost of tracing pointers(though this cost does increase somewhat with each method). In what follows it should be remem-bered that an individual isomorphism test compares a query structure to a single semantic net,whereas each of the four design methods compares a query structure to a database of networksand usually requires many isomorphism tests. As we move from methods I-IV the overhead due toisomorphism testing is reduced due to the increased exploitation of pattern associativity. DesignMethod I, the arbitrary at ordering method is discussed here mainly for the sake of argument.However, this is essentially the design used in the Cambridge Crystallographic Data Base [3], whichexpects queries to be done in batch mode! No additional structure is placed on the database objects6



1.3 Conceptual Graph QueriesThere are three major types of queries we would like an associative retrieval system to support:specialization queries, generalization queries and close match queries. Here we give examples ofthese. They will be formally de�ned in Section 2.1.3.1 Specialization QueriesTypically we expect the database system to return specializations of the query. An article on thee�ects of commercial �shing on dolphins is a specialization of the e�ects of commercial �shing onsea mammals, since dolphins are a specialization of mammals. The type hierarchy is consultedwhen comparing graphs.1.3.2 Generalization QueriesRequests requiring generalization are less common than requests requiring specialization. Usuallysomeone will have a subject area and want articles that fall into that area - specializations. Oc-casionally, however, someone may have a particular article and want to know how it is classi�edby the system. That will require generalizing. The article on the e�ects of commercial �shing ondolphins can be generalized in several ways in a single step: the e�ects of commerce (of any sort)on dolphins, the e�ects of �shing (of any sort) on dolphins, the e�ects of commercial �shing on seamammals. A node S in a stored graph will be a generalization of a node Q in a query graph if Qis a subtype of S.1.3.3 Close Match QueriesBoth generalization and specialization are used in generating close matches. If someone requestsclose matches to articles on the e�ects of commercial �shing on dolphins, a system might generalizedolphins to sea mammals, then specialize sea mammals to whales, and return any articles on thee�ects of commercial �shing on whales. By the same method, it would return articles on the e�ectsof perfume production on whales (perfume production being a subtype of commerce, which is asupertype of commercial �shing). The closeness of the match can vary. For example, the abovequery may be matched to an article on the relationship between crop rotation techniques andgopher population if the amount of generalization and specialization is not checked.1.4 Appropriate ApplicationsNote that since the information in the articles must retain pointers back to the articles from which ithas come and since information may be mutually contradictory across articles it is natural to treatthe graphs derived from the articles individually and not build up a \consensus reality" networkas is done in many semantic network systems in which an entire knowledge base is represented asone net (e.g. Sneps [54]).In this paper four di�erent designs of associative retrieval systems of semantic networks arepresented. In addition to bibliographic databases the methods here will be most applicable fordomain applications in which aspects of the world need to be considered individually such asdatabases of CAD designs [11], parsed-image databases [50,51], machine vision [45] and domains5



vasewindowglass thingsfragile thingswomanMaryFigure 2: A type hierarchy.objbreakwoman agent fragile thingFigure 3: Query graph: \Did a woman break something fragile".mammals and the library contains an article on the e�ects of commercial �shing on dolphins, thesystem should return it. The system must therefore \know" that dolphins are sea mammals. Thisknowledge is encoded in a type hierarchy that is separate from the conceptual graphs themselves.We shall consider a type hierarchy to be a partial order by more-general-than over concept nodesand relation nodes. In the example above , \Mary" is a subtype of \woman" and, \window" is a(not necessarily direct) subtype of \fragile things" (see Figure 2).Given the type hierarchy, conceptual graphs may be used to make certain types of inferenceswith little di�culty. If the graph given in Figure 1 is stored in the database then a system cananswer \yes" to the question \Did a woman break something fragile?" (see Figure 3, and the storedgraph, (being more speci�c) can be returned as a proof (and if necessary can be processed furtherto �nd that the woman is Mary) . If the conceptual graphs describe the content of articles, thesame specialization-�nding mechanism can be used to return a graph in the face of the query \Isthere an article on ...". For example, \is there an article on a woman breaking something fragile?"It is outside the intended scope of the paper to consider the advantages and disadvantages ofusing conceptual graphs instead of traditional keyword approaches for text retrieval, but it is worthnoting one advantage since it is an application of pattern-associativity: the ability to exploit therelationships between concepts. For example, suppose we are interested in papers on drugs thatcause diseases, with the keyword approach the query \FIND drugs AND diseases" would return alarge number of articles, most of which are irrelevant, whereas with conceptual graphs the desiredquery can be formulated easily (see Figure 4).agent causedrug diseaseobjFigure 4: Bibliographic conceputal graph query.4



instrumentbat
objbreakMary agent window

Figure 1: Conceptual graph for \Mary broke the window with the bat".\obj" stands for \object".articles, other attributes are gleaned from the request to guide the search(such as which journalsto consider, earliest date interested in, which library, etc.). Most often, the search will be forspecializations of the query, but it may be for generalizations or close matches. The graph andsearch-guiding attributes collectively are called a query. For our purposes we will assume the queryis just a graph. Extending the process to include attributes is not di�cult. Given a query, thedatabase search operations will return the article(s) that match the query. To do so, the databasewill need to be provided with a comparison function that compares the query graph to graphs inthe database. For our purposes, the comparison function will be a subgraph-isomorphism test.1.2 Conceptual GraphsIn what follows we will assume that the semantic network family we are using is Conceptual Graphs[56]. In Section 8, we discuss how the retrieval techniques may be extended to other families. Wewill take Sowa's convention that conceptual graphs are graphs in which nodes are labelled andedges are directed and unlabeled. The nodes can be divided into two classes: concept nodes andrelation nodes(which refer to relationships between concept nodes). In an equivalent formulationof conceptual graphs they are viewed as graphs in which nodes are labelled with concepts anddirected edges are labelled with relation types. We choose the �rst formulation as it simpli�es thediscussion, but these techniques can be easily adapted to the latter case [33].As an example conceptual graph (one that is based on case theory [16]) consider the sentence\Mary broke the window with the bat", the action is one of breaking, Mary is the agent, the windowis the object, and the bat is the instrument. This would be represented in Sowa's formalism asshown in Figure 1.1.2.1 The Type HierarchyIn addition to the relations between concepts that are expressed by a conceptual graph (as arepresentation of a sentence, a discourse, or facts about the world), there are implicit relationsbetween concepts. If a user is looking for articles on the e�ects of commercial �shing on sea3



Sometimes it is simplicity which is hidden under what is apparently complex; sometimeson the contrary, it is simplicity which is apparent, and which conceals extremely complexrealities... No doubt, if our means of investigation became more and more penetrating,we should discover the simple beneath the complex, and then the complex from thesimple, and then again the simple beneath the complex, and so on, without ever beingable to predict what the last term will be. | Henri Poincare [40]1 IntroductionThis paper has several thematic objectives:1. To present a practical overview of the main methods of comparing semantic networks andorganizing them for associative retrieval.2. To present the main principle that is being exploited in the evolution of these methods tohigher performance.3. To present a new organizational scheme based on further evolution of this principle.4. To outline parallel implementations of these methods.The principle of Pattern Associativity is informally stated as follows: The more that is knownabout how pieces of information relate to each other, given the ability to e�cientlyexploit this knowledge, the more e�ective is a problem-solving system. We shall notformalize this notion here. Pattern Associativity relates to the recognition, representation, andeconomical exploitation of what others have called \mutual information" or structure [24,36,43].Indeed representing and exploiting interrelationships is the principle behind the semantic net-work knowledge representation formalism. The advantages gained by the semantic network formal-ism over traditional logic representation occur at both the conceptual and implementation level. Atthe conceptual level, logically related items can be viewed as a unit. At the implementation levellogically related items are physically in close proximity and thus support faster access. Althoughlogical propositions can be structured somewhat similarly no such organizing principle is impliedby the methodology.1.1 Examples of associative retrieval: bibliographic databasesSuppose the task is to retrieve articles from a library based on their content [6]. Each article willhave an associated semantic network. The graph must describe the article and must include a con-cise description of the content of the article, the author, title, and other bibliographic information(including how to �nd the article in the library). We will not concern ourselves here with how thegraphs are created (in particular how natural language is parsed into conceptual graphs (cf.[38,53])but how these graphs should be organized to e�ciently answer typical queries.To use the database, a person may formulate a request in English describing the desired articleor articles. This request is translated into a semantic network by a similar mechanism to thatwhich derives a graph from an article. In addition to producing a graph describing the desired2



Pattern Associativity and the Retrieval of Semantic NetworksRobert LevinsonDepartment of Computer and Information SciencesUniversity of California Santa CruzSanta Cruz, CA 95064 U.S.A.(408)459-2087ARPANET:levinson%saturnucscc.ucsc.eduUUCP:ucbvax!ucsc!saturn!levinsonAbstractFour methods for the associative retrieval of semantic networks are described. These meth-ods di�er from those traditional approaches, such as SNEPS, in which an entire knowledge baseis treated as a single network. Here the knowledge base is viewed as an organized collectionof networks and is most appropriate for applications (such as bibliographic retrieval) in whichpieces of knowledge need to be treated individually. Method I is an arbitrary at ordering ofdatabase graphs, Method II a two-level ordering, and Method III is a full partial order. MethodIV is a novel method known as \hierarchical node descriptor method" that is based on the\re�nement" method of subgraph-isomorphism. A \pattern associativity" principle explainsthe development and e�ectiveness of each of these methods. Moving from Method I throughMethod IV there is a steady increase in both pattern associativity and e�ciency. A theoremis proven that establishes the superiority of Method III over Method II despite the fact thatMethod II is the method most often used. A brief discussion of how parallelism may be in-corporated also accompanies the description of each method. Most of the paper applies thesemethods to conceptual graphs and a later section shows how the techniques can be extended toother semantic-network formalisms. The paper concludes by showing how generalization graphsconstructed through pattern associativity may also have semantic validity in the domains fromwhich they have been derived.Topics: Algorithm Design, Associative Retrieval, Conceptual Graphs, Databases, GraphIsomorphism, Knowledge Representation, Parallelism, Semantic Networks.
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