[64] W. A. Woods, What’s in a link: Foundations for semantic networks. D. G. Bobrow and A.
M. Collins, ed., Representation and Understanding: Studies in Cognitive Science, p. 35-82,
Academic Press, New York, N.Y., 1975.

37

[48] L. Schubert, R. Goebel, and N. Cercone, The Structure and Organization of a Semantic
Network for Comprehension and Inference. In N. Findler (Ed.), Associative Networks: The
Representation and Use of Knowledge by Machine, New York: Academic Press, 1979.

[49] C. E. Shannon, A mathematical theory of information. Bell Systems Technical Journal, 27,
379-423, 623-656.

[50] A. C. Shaw, A formal picture description scheme as a basis for picture processing systems,
Information and Control, 14,pp.9-51. 1969.

[51] A. C. Shaw, Parsing of graph-representable pictures, Journal of ACM, 17(3), pp453-481. 1970.

[52] The MIND System: A Data Structure for Semantic Information Processing. Tech Report No.
R-837-PR, The Rand Corporation, 1971.

[63] S. C. Shapiro, Generalized Augmented Transition Network Grammars for Generation from
Semantic Networks, American Journal of Computational Linguistics, vol 8, no. 1, pp. 12-25,
1982.

[54] S.C. Shapiro and W.J. Rappaport SNEPS Considered as a Fully Intensional Propositional
Semantic Network pp. 262-315 in Knowledge Frontier, Nick Cercone and Gordon McCalla
(ed.), Springer-Verlag 1983.

[55] T. W. Graham Solomons, Organic Chemistry, 2nd Edition, Wiley & Sons (1980).

[56] J. F. Sowa, Conceptual Structures: Information Processing in Mind and Machine. Addison
Wesley, Reading, Mass. (1984).

[57] J. F. Sowa, Semantic networks. S. C. Shapiro, ed., Encyclopedia of Artificial Intelligence, p.
1011-1024, Wiley, New York, 1987.

[58] C. Stanfill and D. Waltz, Toward memory-based reasoning. Comm. of the ACM, 29(12), 1213-
1228 (December 1986).

[59] E. H. Sussenguth Jr., A graph-theoretic algorithm for matching chemical structures. J. Chem.
Doc., 5, 36-43 (1965).

[60] A. Turing, Computing machinery and intelligence. E. A. Feigenbaum and J. Feldman, eds.,
Computers and Thought, New York: McGraw-Hill (1963).

[61] C.S. Wilcox and R. A. Levinson, A self-organized knowledge base for recall, design, and dis-
covery in organic chemistry. Artificial Intelligence Applications in Chemistry. ACS Symposium
Series, 306 (1986).

[62] P. Willett, The evaluation of an automatically indexed, machine readable chemical reactions
file. Journal of Chemical information and Computer Sciences, 20, 93-96 (1980).

[63] W.T. Wipke, H. Braun, G. Smith, F. Choplin, W. Sieber, Computer assisted organic synthesis.
W. T. Wipke and W. J. Howe, eds, ACS Symposium Series, 61, 97-125 (1977).

36

[32] R. A. Levinson, A self-learning, pattern-oriented, chess program. In Proceedings of Workshop
on New Directions in Game-Tree Search, T.A. Marsland (ed.), International Computer Chess
Association (1989). Also in International Computer Chess Association Journal, Edmonton
(January 1990).

[33] R. A. Levinson, Pattern Associativity and the Retrieval of Semantic Networks, Technical
Report 90-30 available from the Baskin Center of Computer Science, Univ. of California,
Santa Cruz(1990).

[34] T. Lipkis, A KL-ONE classifier. J. G. Schmolze and R.J. Brachman, ed., Proceedings of the
1981 KL-ONE Workshop, pp 128-145, Cambridge, Mass., 1982. The Proceedings have been
published as BBN Report No. 4842 and Fairchild Technical Report No. 618.

[35] E. H. Lum, An implementation of the key reaction approach in computer chemical synthesis.
M.S. Thesis, University of California, Santa Cruz (1990).

[36] M. Mansuripur, Introduction to Information Theory, Prentice-Hall (1987).

[37] M. Z. Nagy, S. Kozics, T. Veszpremi, and P. Bruck, Substructure search on very large files using
tree structured data bases. Chemical Structures: The International Language of Chemistry,

Wendy Warr, ed., Springer-Verlag (1988).

[38] J. G. Neal, A Knowledge-Based Approach to Natural Language Understanding, Technical
Report 85-06, SUNY Buffalo Department of Computer Science, 1985.

[39] B. Nebel, Terminological reasoning is inherently intractable. Artificial INtelligence, 43:235-249,
1990.

[40] H. Poincare, Science and Hypothesis, Dover, New York (1952).

[41] A. S. Rao and N. Y. Foo, CONGRES: conceptual graph reasoning system. Proc. of the 3rd
IFEE Conference on Artificial Intelligence Applications, Orlando, Florida, 87-92 (1987).

[42] L. F. Rau, Exploiting the semantics of conceptual graphs for efficient graph matching. Proc. of
the 3rd Annual Workshop on Conceptual Graphs, John W. Esch, ed., pp. 3.2.4-1 to 3.2.4-10,
(Aug 1988).

[43] F. Reza, An Introduction to Information Theory, McGraw-Hill (1961).

[44] B. Riff, Searching a partially-ordered knowledge base of complex objects. Master’s Thesis,
University of California at Santa Cruz (1988).

[45] R. J. Schalkoff, Digital Image Processing and Computer Vision, Wiley, p. 286. 1989.

[46] D. C. Schmidt and L. E. Druffel, A fast backtracking algorithm to test directed graphs for
isomorphism using distance matrices. J. Assoc. Comput. Mach., 23, 433-445 (1976).

[47] J. G. Schmolze and T. A. Lipkis, Classification in the KL-ONE knowledge representation
system. In Proc. IJCAI-83, 330-332 (1983).

35

[16] C. J. Fillmore, The Case for Case, in Universals in Linguistic Theory, Bach, E. and Harris, R.
T., editors, Holt Rinehart and Winston, New York, 1968

[17] N. V. Findler, ed., Associative Networks: Representation and Use of Knowledge by Computers,
Academic Press, New York, N.Y., 1979.

[18] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, Freeman (1979).

[19] B. J. Garner and E. Tsui, A self-organizing dictionary for conceptual structures. Proceedings
of Applications of Artificial Intelligence V, John F. Gilmore, ed., SPIE Proc. 784, 356-363 May
18-20 (1987).

[20] F. Hayes-Roth and D. J. Mostow, An automatically compilable network recognition network
for structured patterns. Proc. IJCAI-75, 246-251 (1975).

[21] G. Hendrix, Encoding knowledge in partitioned networks. Associative Networks: The Repre-
sentation and Use of Knowledge by Machine, Academic Press, New York (1979).

[22] G. E. Hinton and J.A. Anderson, eds., Parallel Models of Associative Memory, L. Erlbaum
(1989).

[23] E. Horowitz and S. Sahni, Fundamentals of Data Structures, Computer Science Press (1976).
[24] G. J. Klir, Architecture of Systems Problem-Solving, Plenum Press, New York (1985).

[25] J. L. Kolodner, Retrieval and Organizational Strategies in Conceptual Memory: a Computer
Model, L. Erlbaum and Associates (1984).

[26] P. Langley and J. Wogulis, Improving efficiency by learning intermediate concepts. Proc.
LJCAI-89.

[27] R. A. Levinson, A self-organizing pattern retrieval system for graphs. In Proc. AAAI-84(1984).

[28] R. A. Levinson, A self-organizing retrieval system for graphs. PhD Dissertation, Univ. of Texas
at Austin (1985).

[29] R. A. Levinson, D. Helman, E. Oswalt, Intelligent signal analysis and recognition. In Proc. Ist
Int’l Conference on Industrial and Engineering Applications of Artificial Intelligence, ACM
(1988).

[30] R. A. Levinson, A self-organizing pattern retrieval system and its applications. Technical Re-
port UCSC-CRIL-89-21, University of California at Santa Cruz (1989). (To be published in
International Journal of Intelligent Systems.)

[31] R. A. Levinson, Pattern formation, associative recall and search: a proposal. Technical Report
UCSC-CRIL-89-22, University of California at Santa Cruz (1989).

34

References

[1] G. W. Adamson, J. Cowell, M. F. Lynch, H. W. McLure, W. G. Town, M. A. Yapp. Strate-
gic Considerations in the design of a screening system for substructure searches of chemical
structure files. J. Chem. Doc., 13, 153-157 (1973).

[2] A. Aho, A. Hopcroft, J. Ullman, Data Structures and Algorithms, Addison-Wesley (1983).

[3] F. H. Allen, S. Bellard, et al, The Cambridge crystallographic data centre: computer based—
search, retrieval, analysis and display of information. Acta Crystallogr., B35, 2331-2330.

[4] J. M. Barnard, Problems of substructure search and their solution. Chemical Structures: The
International Language of Chemistry, Wendy Warr, ed., Springer-Verlag (1988).

[5] D.J. Bawden, Computerized chemical structure-handling techniques in structure-activity stud-
ies and molecular property prediction. Chem. Inf. Comp. Sci., 23, 14-22 (1983).

[6] N. J. Belkin and C. J. van Rijsbergen, ed. Proceedings of the Twelfth Annual International
ACMSIGIR Conference on Research and Development in Information Retrieval, ACM Press,
1989.

[7] C. Berge, Graphs and Hypergraphs, 2nd Edition, North-Holland, 1976.

[8] K. V. S. Bhat, Refined vertex codes and vertex partitioning methodology for graph isomor-
phism testing. IEEFE Trans. on Systems, Man, and Cybernetics, 10(10), 610-615 (Oct 1980).

[9] R. Brachman and J. Schmolze, An Overview of the KL-One Knowledge Representation System,
Cognitive Science, vol 9, no. 2, pp. 171-216, 1985.

[10] R. Brachman and H. J. Levesque, ed., Readings in Knowledge Representation, Morgan Kauf-
mann, Los Altos, California, 1985.

[11] N. Cercone, On Representational Aspects of VLSI-CADT Systems Hassan Reghbati and pp.
451-470 in Knowledge Frontier, Nick Cercone and Gordon McCalla (ed.), Springer-Verlag 1983.

[12] D. G. Corneil and D. G. Kirkpatrick, A theoretical analysis of various heuristics for the graph
isomorphism problem. Siam J. Computing, 9:2 (May 1980).

[13] P.G. Dittmar, N. A. Farmer, W. Fisanick, R. C. Haines, J. Mockus. The CAS online search
system—general system design and selection, generation of search screens. Journal of Chemical
Information and Computer Sciences, 23, 93-102 (1983).

[14] G. Ellis, Deterministic all-solutions retrieval from the generalization hierarchy. Technical Re-
port, Dept. of Computer Science, University of Queensland, Australia (August 1989).

[15] G. Ellis, Efficient retrieval from the generalization hierarchy. Proceedings of the 1st Australian
Knowledge Fngineering Program, presented at the ATl and Creativity Workshop ’89, Melbourne,
March 14-15th, 1989. Also available as Technical Report No. 114, Dept. of Computer Science,
University of Queensland, Australia (May 1989).

33

thanks to Richard Snyder who has produced the pictures for the article and provided critical
comments throughout the final revision.

32

In the chess application positions are represented as graphs based on attacks and defends rela-
tionships between pieces and squares. A number of the generalization nodes correspond to patterns
well-known to good chess players such as fianchettoed bishop, various kingside castled positions,
doubled rooks and various pawn formations. Other generalization nodes are not that well-known
but may also have domain validity.

It is also worth taking a closer look at the meaning of node descriptors that have been devel-
oped in Method IV for conceptual graphs. They describe neighborhoods of concept and relation
nodes. Since we ignore arc direction in calculating distances, then distance-1 neighborhoods give
all relations connected to a given concept node or all concepts connected to a given relation node.
Clearly, these are relevant notions. If we move to distance-2 neighborhoods of concept nodes we
get the full picture of all relations that involve that concept (for example, node descriptor 5 in G5
represents “an apple pie was eaten”). If a node was calculated through the iteration process then
the information contained in a node descriptor becomes quite interesting(providing a meta-level
view of the graph): A distance-2 neighborhood of a concept node gives the relations of that node
to immediate adjacent concept neighborhoods!

It makes sense that pieces of semantic networks that occur commonly are often useful when
treated as units (chunks) in the domains in which they arise. That such units also improve retrieval
efficiency is a less obvious fact, but worth studying, e.g. by cognitive scientists, knowledge engineers
or philosophers of science. Langley and Wogulis [26] have recently supplied empirical evidence
that the introduction of intermediate concepts can improve the effliciency of learning algorithms.
Giving names to these pieces of semantic networks and processing these pieces as units is an
application of “abstraction”. We believe that the proper use of abstraction in semantic network
retrieval systems may be as important as the exploitation of pattern-associativity. For example,
by representing propositional nodes(see above) as individual nodes with special labels (and not
graphs) much redundant computation may be avoided. We are currently exploring this avenue.

9 Concluding Remarks

In summary, we have presented four methods for the associative retrieval of semantic networks
(while focusing mainly on conceptual graphs) and illustrated the ideas from which these methods
have been derived. In particular we presented the principle of pattern-associativity and how it
is exploited increasingly in the better methods. The first three methods have each been used in
semantic network systems. The advantages of Method III over Methods I and II are argued both
formally and informally. Our implementation of Method IV is not yet complete but the results in
chemical systems and our experimental results make this a compelling research direction. At the
very least we have shown the extent to which the principle of pattern-associativity can be taken.
We shall not be surprised if there are yet one or more levels to go!

10 Acknowledgements

The paper has benefited from the constructive suggestions of three anonymous reviewers of the
article and the editor. Gerard Ellis provided useful references and much encouragement. Jean
McKnight formatted several drafts and Max Copperman helped with the introduction. Many

31

be extended to first compare the graphs (as in variation 1) while ignoring edges attached to
partitions and then recursively working “inside-out” by first matching the most deeply-nested
propositional nodes (graphs) and working out from there. A propositional node in the query
graph can match any proposition node in a database graph that it is more-general-than.

3. Logical operators such as negation or quantification are attached directly to a proposition node.
In this case matching can take place as in variation 2(viewing the operator as part of the label
for the proposition node.) except that to insure consistency in matching a canonical form
such as CNF (Conjunctive Normal Form) should be used for all database and query graphs.

As Method IV depends on refinement testing it can be applied to all network formalisms that
use subgraph-isomorphism as the basis for subsumption testing. Here we applied Method IV to
conceptual graphs, but it can be extended in a straightforward way to graphs with labelled or
undirected edges [33] to handle other semantic network formalisms. (It is not obvious how to
extend refinement and Method IV to partitioned-networks, however, but one possibility is to add
to the O-type dus a “partition-distance” field that gives the minimal number of partitions that must
be passed through from one node to the next and treatingthe box surrounding a partition as a node
itself.) But more important than the particular version of Method IV that has been
presented is the application of pattern associativity that produced the method. Once
this is well-understood it may be possible to derive similar systems that do not depend
on isomorphism testing, but take advantage of the commonalities of subsumption tests,
whatever the form.

8 Domain Validity of Generalization Graphs

In each of Methods II-IV additional objects are added to the system to improve efficiency through
indexing. In Method II screens are used. In Method III generalization graphs are created through
self-organization. Finally, in Section IV we see that node descriptors (environments) are stored. In
Methods IT and IIT these generalization graphs are used because they are common to many graphs.
The most useful node environments (Method IV) are also those that occur commonly. Indeed,
generalization graphs are the most tangible manifestation of the pattern-associativity principle.
One then wonders whether these graphs also have semantic validity in the domain applications in
which they arise?

The domain validity of generalization graphs is one of the interesting things that has come
out of our applications of semantic memory to chemistry [27,28,30,35] and chess [31,32]. The
generalization graphs created through self-organization from chemical graphs have corresponded
remarkably well to what chemists call “functional groups”:

ne great advantage of the structural theory is that it enables us to classify the vast
number of organic compounds into a relatively small number of families based on their
structures. The molecules of compounds in a particular family are characterized by
the presence of a certain arrangement of atoms called a functional group. A functional
group is the part of a molecule where most of its chemical reactions occur. It is the
part that effectively determines the compound’s chemical properties (and many of its
physical properties as well). [55]

30

Bob - <—| believe |— ‘

ettty Mttt A
|
I
|
1 : Fido = - : =
|
|
|

Figure 16: Example of a propositional node with a logical operator.

“Bob believes that Fido did not bite him.” (adapted from [56] p. 1015)

7 Extending to other semantic network formalisms

The previous development has been based on the use of conceptual graphs. An important question,
then, is to what extent these techniques can be applied to other semantic network representation
schemes? It is important to realize that Methods I-III assume the availability of an “oracle” (for
conceptual graphs, a subgraph-isomorphism test) that could determine the subsumption relation-
ship between concepts (graphs). The type hierarchies are used by the oracle and not by the retrieval
algorithm itself. Thus, the exciting conclusion is that Methods I-TIT can be used with
any semantic network formalism as long as a subsumption operator is provided. This
was illustrated above when in Method IV the algorithms from Method III were used to insert node
descriptors into the node descriptor hierarchy (using a comparison function other than subgraph-
isomorphism). Although we have made no suggestions on how to improve the tractability of certain
subsumption tests [39], Method III can be used to reduce the number of such tests that are required.

Some semantic network formalisms go beyond the general labelled graph framework by allowing
“partitions”, “spaces”, or “proposition nodes” [21,52,48,57]. These are collections of nodes (and
the arcs between them) in a semantic network. We will briefly look at the three main variations
of these and how subgraph-isomorphism tests can be extended to handle them (variations 2 and 3
are illustrated in Figure 16):

1. There are no arcs involving the partition box itself, but there may be arcs to and from nodes
within the partition to nodes outside the partition. By viewing the sets of nodes that make up
the partition as “hyperedges” [7] the conditions for subsumption (and the corresponding test)
can be extended in a straightforward manner. The Adjacency-Preservation condition (Section
2) is extended to include the adjacencies defined by hyperedges simply by changing the word
“pair” to “set”: For a set of nodes that are adjacent in one structure, the corresponding set
of nodes must be adjacent in the other structure, and further, the direction (if any) of the
edge between the nodes must also correspond. This condition can be checked at exactly the
same place it is normally done in a subgraph-isomorphism algorithm.

2. The box making up the partition and not just the nodes within the partition may have incoming
and outgoing edges. For such proposition nodes the subgraph-isomorphism algorithm should

29

Graph | pred-count | succ-count conclusion
G 3 1 generalization
Gy 0 5 specialization
G 1 0 incomparable
Gy 1 5 specialization
G 0 1 incomparable

Table 3: Results of Method IV retrieval example.

2.1 Increase pred-count by 1 for each database graph that has a characteristic descriptor
that is a predecessor of q.

2.3 Increase succ-count by 1 for each database graph that has a characteristic descriptor
that is a successor of q.

3. Return all graphs that have a pred-count equal to their number of nodes as predecessors of

Q.
4. Return all graphs that have succ-count equal to the number of nodes in Q as successors of Q.

5. Graphs that are both predecessors and successors are exact matches.

END

Close matches are easily found using this system. This is done by using the succ-counts of the
database graphs. Those matching a higher percentage of the query nodes are returned as close
matches. Much success has been achieved using this simple technique in the chemistry domains.
Rau [42] suggests a similar approach for conceptual graphs but from within a Method II system.
Once these close matches are identified as a maximal common subgraph algorithm can be used to
return the exact commonality if necessary.

FErample 6.4:

Let’s explore how our sample query would be processed using the node descriptor hierarchy (Figure
15). Each node descriptor for the query graph is inserted: @1 is found to be identical to 1, Q3
would be inserted on the arc between 2 and 5, ()3 on the arc between 3 and 6, ()4 is identical to 7,
and)5 is identical to 8. The pred-count and succ-count of each database graph are updated giving
the results in Table 6.3.

This hierarchical node descriptor method may be used with Design Method III by placing a
partial order over the database graphs as before. The hierarchical node descriptor method does the
filter using the description hierarchy, then subgraph-isomorphism tests are done to ensure match
(these should go fast since the graphs almost certainly match), but as in Phase II of Design Method
IIT some expensive matches can be inferred for free using the hierarchy. Using Design Method IV
the HTSS researchers have reported that retrieval time grows sublinearly: moving from 150,000
to 1,200,000 structures resulted in an increase in retrieval time of 50 percent [37]. Design Method
1V is even more promising when we consider that each of the node descriptor searches down the
hierarchy may be done in parallel.

28

Gl G2 © G3 © G4 GS
Figure 15: A node descriptor hierarchy for Gy through Gs.

Ideally, any graph that has some node-descriptor in each predecessor set qualifies as a generalization,
and any graph that has some node descriptor in each successor set is a specialization. However,
theoretically things are more complex than this because a node may be inadvertently counted
multiple times. For example, suppose graph X has a single node that is more-general-than all
nodes in the query Q. This should not imply that X is more-general-than @, but this is what the
method would tell us. How can these difficulties be handled? Omne possibility is to keep track
of exactly which nodes in the query graph map to exactly which nodes in the database graph.
And then for each graph that remains a candidate as a specialization or generalization determine
whether a 1-1 mapping is possible. Finding such a mapping is exactly the bipartite matching
problem, unfortunately the complexity of solving this problem is O(ne) where n are the number of
nodes and e the number of edges in the matching problem. Relying on such an algorithm nearly
defeats the purpose of eliminating the subgraph-isomorphism tests. Fortunately, the multiple node
matches are unlikely to occur on conceptual graphs when a graph match is not present. The

resulting algorithm:

BEGIN(* Retrieval in Method IV *) With each database graph maintain two fields pred-count and
succ-count that are initialized to 0.

1. Node descriptors are calculated for the query graph Q.
2. For each node descriptor q:

2.1 Find ¢’s place in the hierarchy using Phase I and Phase II of Method III but with the
node-descriptor comparison test.

Node Descriptor

Node Number

Gli
{(S,person,0)(0,agent,-1)(O,eat,2)}
{(S,agent,0)(O,person,1)(O,eat,-1)}
{(S,eat,0)(O,person,2)(0,agent,1)}

Gz:

{(S,gir,0)(O,agent,-1)(O,eat,2)}
{(S,agent,0)(0O,girl,1)(O,eat,-1)(O,manr,2) }
{(S,eat,0)(0,girl,2)(0,agent,1)(O,manr,1)(O,quickly,2)}
{(S,manr,0)(0,agent,2)(0,eat,-1)(O,quickly,1)}
{(S,quickly,0)(O,manr,-1)(O,eat,2) }

G31

{(S,5ue,0)(0,agent,-1)(O,eat,2)}
{(S,agent,0)(0,Sue,1)(O,eat,-1)(0,0bj,2) }
{(S,eat,0)(0,Sue,2)(0,agent,1)(0,0bj,1)(O,pie,2) }
{(S,0bj,0)(0,agent,2)(O,eat,-1)(O,pie,1)(O,cont,2) }
{(S,pie,0)(0,eat,2)(O,0bj,-)(O cont,1)(O,apples,2)}
{(S,cont,0)(0,0bj,2)(O,pie,-1)(O,apples,1)}
{(S,apples,0)(O,pie,2)(O,cont,-1)}

G4Z

{(S,5ue,0)(0,agent,-1)(O,eat,2)}
{(S,agent,0)(0,Sue,1)(O,eat,-1)(0,0bj,2)(O,manr,2) }
{(S,eat,0)(0,Sue,2)(0,agent,1)(0,0bj,1)(0,pie,2)(O,manr,1)(O,quickly,2)}
{(S,0bj,0)(0,agent,2)(0,eat,-1)(O,pie,1)(O,cont,2)(O,manr,2) }
{(S,pie,0)(0,eat,2)(0,0bj,-1)(O,cont,1)(O,apples,2) }
{(S,manr,0)(0,agent,2)(0,eat,-1)(0,0bj,2)(O,quickly,1)}
{(S,quickly,0)(O,eat,2)(O,manr,-1)}

G5'

{(S,5ue,0)(0,agent,-1)(O,eat,2)}
{(S,agent,0)(0,Sue,1)(O,eat,-1)}
{(S,eat,0)(O,Sue,2)(0,agent,1)}

Q:

{(S,person,0)(0,agent,-1)(O,eat,2)}
{(S,agent,0)(O,person,1)(0,eat,-1)(O,manr,2) }
{(S,eat,0)(O,person,2)(0,agent,1)(O,manr,1)(O,quickly,2) }
{(S,manr,0)(0,agent,2)(0,eat,-1)(O,quickly,1)}
{(S,quickly,0)(O,manr,-1)(O,eat,2) }

o —

Table 2: Node descriptors for GGy through G5 and Q).

26

o

00 ~1 O OV s

10
11
12
13
14
15

16
17
18
13
19

20
21

q1
q2
qs
q4
qs

Now that we know how to build node descriptors for each graph we can move to building the
desired database of node descriptors (partial order by more-general-than) and associated graphs.
Initially, the database is made up of only a single node descriptor ¢ that is defined to be more
general than any other node descriptor and thus will remain at the top of the hierarchy. All node
descriptors to be stored in the system are given a unique number and are to occur only once in the
hierarchy. Each node descriptor points directly to the graphs from which it has been derived.

Comparing node descriptors: Node descriptor q is to be considered more-general-than node
descriptor r iff there is a 1-1 mapping from dus in q to matching dus in r. (The idea is that q is
more-general-than r if they could bind in a subgraph-isomorphism test). Two S-type dus (S,v1,d1)
and (S,v2,d2) match iff v1 is more-general-than v2 in the type hierarchy and d1>d2. Two O-type
dus (0,11,d1) and (0,12,d2) match iff 11 is more-general-than 12 in the type hierarchy (if labels) or
if 11 is more -general-than 12 in the node-descriptor hierarchy (if node descriptors).

Note that it is only when comparing dus that the type hierarchies need be consulted. Again we
recommend that the type hierarchies be compiled into tables of pairs for faster processing. Similarly
we recommend that the numbers from the descriptor hierarchy also be compiled into pairs where
one descriptor is more-general-than another.

In general, determining whether one node descriptor is more-general-than another is the bipar-
tite matching problem and thus is O(ne) in the worst case where n is the number of nodes in the
descriptor and e is the number of possible du matches. But in practice finding the matching is
usually trivial.

BEGIN (* Insert Graph G into the method IV database *)
1. Build node descriptors for each node in G as described above.

2. For each label field of O-type dus that is itself a node descriptor call this routine recursively to
insert the node descriptor, replace the label field in the O-type du with the number returned
for the descriptor.

3. Insert each descriptor into the hierarchy where it belongs(if it does not already exist). This
can be done using Phase I and Phase II of Method III except the graph isomorphism test is
replaced with the much simpler node descriptor comparison described above.

4. Add pointers from the node descriptors to G.

5. Return a unique number for the node descriptor or an existing one if the descriptor had
previously been inserted.

END

For example Figure 15 shows a node descriptor hierarchy where graphs Gy through G5 and
their nodes (Table 2) have been inserted.

The top-level node descriptors that come from a particular graph will be called “characteristic
descriptors” of that graph in the following algorithm. It is only the characteristic descriptors that
point to a given graph, though other descriptors may have paths through a characteristic descriptor
to the given graph. Retrieval takes place by first generating all node descriptors in the query graph
and then finding predecessors and successors of each node descriptor in the descriptor hierarchy.

25

O-type du can be made more specific by replacing it with the current node descriptor
of the node from which the label has been derived.

FErample 6.2:
The Node Descriptor for Node 1 in Example 6.1 can be made more specific by substituting in the
node descriptors for nodes 2 and 3 giving {(S, bread, 0), (O, {(S, betw, 0), (O, bread, -1), (O, jam,
1), (O, betw, 2)}, 1), (O, {(S, jam, 0), (O, bread, 2), (O, betw, -1), (O, betw, 1), (O, bread, 2)},
2)}.

6.3 Method IV: Design Organization

By precompiling the node descriptors for each database graph the node descriptor comparisons
based on the query graph can in essence be done in parallel since through pattern-associativity
shared node descriptors in each database structure are processed only once.

Every node in every database graph(and every query graph) is to be represented as a node
descriptor as above. But how specific should these descriptors be made? The following algorithm
gives the necessary details: (Two nodes are in the same equivalence class if they have the same node
descriptor. Thus, as descriptors become more specific, equivalence classes may become smaller and
more numerous.)

BEGIN(* Generate Node Descriptors *)

1. Represent each node as a set of dus as described above. Label fields in O-type dus are the
actual label from the node pointed to (a pointer to this node should be temporarily stored in

the du).
2. REPEAT

2.1 Record current node descriptors and equivalence classes.

2.2 Replace all labels in the O-type dus with the new node descriptor for the associated
node. (This need only be done for nodes that are not currently in singleton equivalence
classes)

UNTIL equivalence classes of nodes have not changed from the previous iteration.
3. Return node descriptors from the previous iteration.

END Except for very unusual graphs, the resulting node descriptors are such that two nodes with

the same descriptor are truly symmetric in the given graph. For many graphs only one iteration is
required.
FErample 6.3:

The equivalence classes after the first iteration (Example 6.1) are: 1,5,2,3,4. Thus nodes 1 and 5
are the only nodes that are expanded(refined) on the next iteration. We gave the expansion for
node 1 above. The expansion for node 5 is {(S, bread, 0), (O, {(S, betw, 0), (O, betw, 2), (O, jam,
-1), (O, bread, -1)}, 1), (O, {(S, jam, 0), (O, bread, 2), (O, betw, -1), (O, betw, 1), (O, bread, 2)},
2)}. Since the descriptions for nodes 1 and 5 no longer match, each node is in its own equivalence
class and hence the iteration process stops with each node being described with its final descriptor.

24

bread %% jam %é bread

1 2 3 4 5
Figure 14: Used in examples 6.1, 6.2 and 6.3.

“betw” is the triadic relation “between”. It is not fully specified in this graph (see [56], page 72).

Node | Node Descriptor

1 {(S,bread,0),(0,betw,1),(0,jam,2)}
{(S,betw,0),(0,bread,-1),(0,jam,1),(O,betw,2)}
{(S,jam,0),(0,bread,2),(0,betw,-1),(O,betw,1),(O,bread,2)}
{(
{(

S,betw,0),(0,betw,2),(0,jam,-1),(O,bread,-1)}
S,bread,0),(0,betw,1),(0,jam,2)}

U = W N

Table 1: Initial node descriptors for Figure 14

It is the calculation of these “self-loops” that allows the system to correctly handle the
anomalous chemical queries mentioned above.

2. There is one du for each other node in the graph: (O,v,d)

e O = other
e v = node label

o d = Shortest path distance to node ignoring edge direction and thus viewing all edges
as bidirectional. This will always be a positive integer, except for nodes at distance 1,
where 1 stands for the existence of a forward edge (and possibly a backward edge) to
that node and -1 for no forward edge (only a backward edge).

Such descriptions can be calculated for all nodes using a single call to an all-pairs shortest path
algorithm[2]. The descriptors can be read directly from the resulting distance matrix(that gives the
shortest distance between all pairs of nodes). The distance matrix heuristic method has performed
very well in practice [46], though Corneil [12] shows that it (and many other good practical heuris-
tics) are ineffective on a theoretical (unrealistic) subclass of graphs known as c-subgraph regular.
We would be very surprised indeed to find a realistic example of conceptual graphs in which these
descriptions are not sufficient. In the counter examples from the graph theory literature almost all
node and edge labels are set to be the same. In fact, for most applications we suggest not storing
atoms that reflect distances of more than 2 or 3. Not only are the larger distances unneccesary but
they greatly increase the storage and matching requirements.
FErample 6.1:

We calculate node descriptors for Figure 14 (before further iterations as below), reflecting distances
up to length 2. The results appear in Table 1.

But how can node descriptors be made more specific (as is required in successive iterations of
refinement)? The key, and somewhat profound, notion is that the node label field of an

23

In refinement, a different approach is taken based directly on applying the syntactic property-
inheritance principle (see Section 4) to the nodes of graph Q: What is true of a node q in Q must
be true “all the more so0” of a node in r that it is bound to. Thus, in general, the more specific we
make the description of a node in Q the fewer possible bindings with nodes in R need be considered.
If the descriptions are made extremely specific(more “refined”) then the likelihood of eliminating
all possible bindings is increased, and if some possible bindings remain, we can be nearly, (but not
absolutely) certain that they are correct. If after making the descriptions highly-specific, all nodes
in Q still have non-empty binding lists we can be nearly (but not absolutely) certain that Q is a
generalization of R.

Success can not be guaranteed without a node-by-node comparison as in backtrack search,
but in practice in the chemical domain this has never proven necessary. The technique has never
erred in real systems. However, some hypothetical anomalous queries have been presented in the
chemical literature [4]. The description technique presented below also handles these. We expect
these techniques to work at least as well for conceptual graphs due to the increased label variety
in these networks that reduces the number of bindings that need be considered.

It has been shown empirically that a refinement algorithm usually solves isomorphism
problems on random graphs in O(n?) operations where n is the number of nodes in each
graph [12].

The refinement method lends itself readily to parallelism: on each iteration the description of
a node may be updated independently of other nodes to be updated on that iteration.

6.2 Method I'V: Overview and Node Description Scheme

Informally: Method IV maintains a hierarchical partial ordering(by more-general-than) of node
descriptions such that descending the hierarchy(to more specific descriptions) is akin to iterating in
a refinement test. At the bottom of the hierarchy are stored the original database graphs(assume
an arbitary flat ordering of these for now). There are pointers to each database graph G from
the most specific descriptions in the hierarchy that correspond to some node in G. Thus there are
paths from each description to database graphs that have a node that satisfy that description. By
finding the place of the description of each query graph node in the hierarchy it is possible to find
all specializations and generalizations of the query. Specializations are all those graphs that can be
reached by all query nodes and generalizations are all those graphs that have paths from each of
their nodes to query nodes (if they were to be inserted in the hierarchy). jpicture;

Obviously, the key to Method IV processing is in the node description method. There are many
such methods used by refinement algorithms. The following information is usually stored, though
any individual system uses only a subset of this information. Each node (concept) is represented
as a set of description units(“dus”) called a node descriptor:

1. Each node descriptor has one du of the form: (S,v,d)
o 5 = self

e n = node label

e d = length of the shortest non-trivial cycle node is on, 0 if none. (since conceptual
graphs are bipartite, d must be even)

22

1. Applying a maximal common subgraph algorithm to the answers to close match queries.
2. Taking a query graph and stripping off parts of it until it is a subgraph of many others.

3. Applying a “join” operation(take two graphs and combine them to form a more specific graph
that retains shared structure from the original graphs) to general graphs in the ordering.

Some systems require that generalization nodes be formed and stored between any two database
graphs. We have found it more useful to estimate by using an information-theoretic heuristic based
on query expectancy [28,30] whether it will be useful to add the node. This heuristic estimates for
a typical query whether an isomorphism test is likely and if it does occur how much information
about other graphs in the database it is likely to provide. G. Ellis [14,15] has tried to make the
hierarchy “more balanced”, i.e. not giving a graph too few or too many immediate predecessors or
successors. In practice, we have seen that the application of our heuristic leads to such balanced
orderings though the heuristic tends to fill the general levels of the hierarchy first since these graphs
are smaller and hence have cheaper comparison tests.

5.4 Parallelization of Design Method III

Phase I of Design Method III is easily parallelized. Fach processor takes the next available object
from the list, compares it to Q and updates S and the list as before. The only possible inefficiency
is that two objects may be used in comparisons such that the answer to one may eliminate the
need for the other. Thus in addition to removing objects from the list the processors should be
terminated that are working on removed objects and freed for other computation. Alternatively, a
processor could not work on an object that has a predecessor in a processor.

In Phase II the upward chaining from each immediate predecessor can be done in parallel,
and the breadth first search over the successors of the last immediate predecessor may also be
parallelized.

6 Method IV: Hierarchical Node Descriptor Method

Design Methods I-III assumed that the subgraph-isomorphism tests were to be done as a unit and
further did not depend on which technique (backtrack search or refinement) was used to perform
these tests. Design Method IV is based directly on the refinement model of subgraph-isomorphism.
Here we will go over Method IV in detail, but first it is helpful to have an intuitive understanding
of the refinement method.

6.1 Refinement

Recall that the purpose of a subgraph-isomorphism test is to find bindings for the nodes in a
query graph Q and those in the database graph R that satisfy the node consistency and adjacency
preservation constraints(see Section 2). We said in Section 2 that both backtracking and refinement
tests start out by generating possible binding lists for each node in the query graph and that
this is the only place that the type hierarchies need be consulted when performing these tests.
Backtracking then goes on to effectively explore the space of all possible binding combinations.

21

Proof:
When are comparisons required by these systems? In Method III comparisons are required for
those objects X that satisfy any of the following:

i.) All of X’s predecessors are known to be in Q. (Phase I)
ii.) All of Q’s predecessors are known to be in X. (Phase II).
In Method II a comparison is required for objects X that satisfy any of the following:
iii.) X is a screen
iv.) All of X’s screens are known to be in Q. (possible generalization)
v.) All of Q’s screens are known to be in X. (possible specialization).

Note that since screens in DB2 do not have their own screens statement iii is just a special case
of statement iv and could be omitted. Now since all screens of an object are predecessors of that
object: statement i implies statement iv and statement ii implies statement v. Thus every method
III comparison is also required in Method II. QED. (Above it was shown that many specialization
tests required in Method II are eliminated for free in Phase II of Method III. It should also be clear
that Method III does not necessarily require comparisons on all screen objects from DB2 since they
are not necessarily on the first level.)

This theorem is stronger than others that we have previously published. The symmetry of the
proof might lead one to believe that further insight is available. This is indeed the case:

1. The object relationships inferable from DB2 are a subset of those inferable from DB3.

2. The algorithm used in Method III is not restricted to fully-specified partial orders. The
algorithm used in Method II is a special case of this algorithm applied to two-level orderings!

Theoretically, little is known yet about the average run time of insertion into partial orders. In
empirical tests of Method II vs. Method III, retrieval of predecessors and successors in Method
IIT was more than twice as fast as Method II on databases of 630 and 521 concepts respectively
[28,30]. The Method II database was created by eliminating all intermediate nodes (those with both
predecessors and successors) from the Method III hierarchy some of which were valid answers to
queries. This is impressive considering that Method III also produced 33 percent more structures as
answers per query (because of and in spite of the fact that the database contained more information).

Finally, it should be noted that close matching in Method III should usually be more accurate
than in Method II since it is based on more specific features: immediate predecessors as opposed
to screens.

5.3 Self-Organization in Method II1

“Self-organization” is the name we give to Method III systems that add “generalization graphs” to
the database expressly to improve retrieval efficiency (though other uses are possible, see Section
8). These graphs are found by examining the database graphs for graphs that are subgraphs of
many other database graphs but are not yet themselves in the database. There are many methods
for coming up with these nodes including;:

20

number of comparisons for 10 queries

1501~

1001~

50 [~

| | | | | | |
100 200 300 400 500 600 700

Database size (number of concepts)

graph comparisons

------- full graph comparisons
Figure 13: Retrieval time vs. database size

does comparisons on the immediate successors (and some others). Two other things point to the
deficiencies of this approach: the immediate predecessor information from Phase I is not taken into
account and by starting at the other end of the hierarchy the system is required to do comparisons
on the most complex objects!

We have explored alternative algorithms to these that do not query the partial order in a
bottom-up or top-down fashion but instead use an information-theoretic heuristic that attempts
to maximize the ratio of expected information gained to comparison cost and using a few levels of
lookahead [44]. We’ve had only limited success with these algorithms: only improvements of about
15-20 percent despite a large amount of off-line pre-processing.

5.2 Comparison of Design Methods IT and III

Above, intuitive arguments have been given that Design Method III produces more efficient asso-
ciative retrieval than Design Method II. Can something more concrete be said? We shall prove the
following theorem:

Theorem:

Let DB2 be a two-level database to be used with Method II. Let DB3 be a Method III partially-
ordered database made up of the objects and screens from DB2. Then on every query Q, Method
III (on DB3) does a subset of the comparisons done by Method II (on DB2) to determine general-
izations and specializations.

19

(8) For each successor X of Y in order by size (as in step (1) above) do
If X'is in I and X is a successor of Q (isomorphism test) then
S:=S uU{X}

Eliminate successors of X from the rest of the for loop.
(9) Return S.

In our example, S is initialized to (. Y is taken to be G and I is set to the successors of G'r:
Glg, G4. Y’s (G1’s) successors that are not smaller than the query are: Gy, Gy, G, and Gg. G
is compared to () and is a successor (and is added to S) thus G4 is found to be a successor for
free (being a successor of (G3) and is not processed further. Since G'3 and G are not in I they are
eliminated without isomorphism testing.

If we actually wish to insert Q into the hierarchy, the IP and IS sets of other objects have to
be updated. This is done in Phase III (Figure 12(b)).

Phase III. (update immediate predecessor and successor sets of other items)

(10) For each x in IP(Q) do
S(x) == I5(x) U {Q} - I3(Q)

(11) For each x in IS(Q) do
P(x) := IP(x) U {Q} - IP(Q)

Thus, Phase II does not do an isomorphism test on a database object unless it contains each
member of IP(Q) (the screens for Q). Note how the original database objects are being used as
screens in Phases 1 and II. The big savings of Method III over Method II comes from the fact
that only the immediate successors of) need to be determined using isomorphism tests. All other
successors (specializations) are determined for free. Since the objects eliminated in this way are
usually the most complex, many expensive tests have been eliminated.

Close matches can be found using this algorithm much as they are in Phase II. The approxima-
tion is based on the number of immediate predecessors of Q that are contained in an object. This
count corresponds exactly to the count which has been calculated in Phase II. To verify such an
approximation one may of course use a maximal-common subgraph algorithm.

There are other algorithms for insertion of objects into partially-ordered sets, we recommend
the one here due to its simplicity and efficiency. In practice only a small fraction of the database
objects need to be compared with Q using isomorphism tests: 10 or 20 structures at the most on a
database of 680 objects for example. Further, we have seen that as database size grows the increase
in retrieval time is sublinear and quite possibly logarithmic. (See Figure 13.)

KL-ONE’s classification algorithm [34] is somewhat different: in phase I an object is compared
to the query as soon as one of its predecessors match Q (A depth-first approach as opposed to the
breadth-first approach described here). Our studies have shown that the predecessor information
gain for free by this method (usually simple comparisons) do not pay for the additional predecessor
tests (usually more complex) required by this method. Other variations may be feasible though,
such as comparing an object as a predecessor as an IP when a certain proportion of its immediate
predecessors have succeeded. Since Phase I is not the expensive phase the differences here are not
that significant. Some systems that maintain a partial order have Phase II work exactly as Phase
I but from the other end of the hierarchy. This is not as efficient as the method here since at the
minimum all successors of Q (and some others) must be queried, whereas the Phase II here only

18

of Q in the ordering are its generalizations and its successors are its specializations. Thus the
retrieval operation is essentially the same as an insertion operation. The immediate predecessor
and immediate successor sets are found in two phases. Phase II makes use of the immediate
predecessors found in Phase I. Both phases attempt to use the information in the hierarchy to
minimize the number of isomorphism tests.

Phase I: (find IP(Q), the immediate predecessors of Q)

(1) List all database objects from smallest to those of the same size as Q. Sets of objects that
are the same size need to be ordered to reflect their relationship in the partial order (if any),
that is an object cannot be succeeded by its generalization.

(2) S:=0.

(3) While there is a member X in the list
If X is a predecessor of Q (isomorphism test) then
S:=S UA{X} - IP(X)
Remove X from the list.
Else
Remove X and all successors of X from the list.

(4) Return S.

Ordering the database objects as in step (1) produces a topologically sorted list, i.e. a total
ordering that embeds the original partial ordering by more-general-than. Since all database objects
will be preceded by their predecessors in the list they only will make it to the front of the list if
their predecessors have been found to be predecessors of Q. Thus, the proper screening is taking
place. Although we have published this algorithm in several places this is the first time we have
obviated the need for maintaining predecessor counts in Phase I. This simplification also leads to
a simple parallel implementation (see below). Now let us return to our example, Figure 12. One
ordered list for this database would be Gy, G5, G7, G5. First G is compared to ¢ and succeeds
as a generalization and is placed in S. G5 fails but has no successors to remove from the list. G'r
succeeds (and is added to S) and Gy fails, completing Phase I with S = {G'1, G7}.

Phase II. (find IS(Q), the immediate successors of Q)

(5) S :=10.

(6) Y := some element of IP(Q)

(7) I := intersection of the successor sets of each element of IP(Q) except Y
We suggest the following implementation of step 7:

(7) For each z in IP(Q) except Y do
For each successor s of z do
Increment count(s)
For each item s do

If count(s) = [IP(Q)| — 1 then I := 1 U {s}

17

Gy Gy o
(@) (@) ~
| Q ///
\l/ \;/ //
Gy © / 1 G GQI Gs l’ Gg
(@]
Gy G Gy Gis

(a) (b)
Figure 12: A Method III organization of Figure 10.

(a) is the database before insertion of the query object (), and (b) is after insertion.

{G1, Gz} is IP(Q) and {G2} is 1S(Q).

other and database objects with each other, but only on the relationship of screens with database
objects. How can this inter-screen and inter-object information be useful? Suppose for example
that database object R is known to be a generalization of database object S. Now once we determine
that R is a specialization of Q, we know that S is also without performing further isomorphism
testing! Similar reasoning applies to screens: If screen X is a generalization of screen Y, then if X
is found not to be a generalization of Q, than clearly Y isn’t either.

Following this line of thought, since we are interested in the interrelationship amongst all objects
and screens, the distinctions between these become blurred and we are no longer left with separate
levels, instead we have a multi-level partial order: Design Method III. In this section we shall prove
that, ignoring pointer chasing, Method III is superior query-for-query than Method II. This should
make sense since Method III uses a superset of the information used by Method II.

5.1 Method IIT Retrieval

In this method all database objects are placed in a partially-ordered hierarchy by the relation
more-general-than. Because of transitivity only the immediate predecessor (generalizations) arcs
and immediate successor (specialization) arcs need be stored(as in the Hasse diagram of any po-set
(see Figure 12(a))). Other objects besides the original set may also be stored in the database
to provide further indexing (see section on Self-Organization). The system’s algorithms make no
distinction between “screens” and “non-screens”, however. (Though it is, of course, possible to add
classifications to database objects so that some are filtered from the system’s answers.) In essence,
an object is screened by its predecessors in the ordering and screens its successors! This is another
application of the syntactic-property inheritance principle.

Exactly how is this organization used for efficient associative retrieval? First, notice that to
answer specialization/generalization queries it is sufficient to find where the query object Q fits in
the partial order (i.e., Q’s immediate predecessors and immediate successors). The predecessors

16

hval

G Gs Gr
o o o o
G2 G3 G4 C7Y6
Figure 11: A Method II organization of Figure 10.

3. For those bottom level objects that are pointed to by each member of S, and are not smaller
than S, do a subgraph-isomorphism test to determine if they are specializations of the query

Q.

4. For those bottom level objects that have all of their screens from the database in S, and are
not larger than S, do a subgraph-isomorphism test to determine if they are generalizations of

Q.

5. For those bottom level objects that have many but not all of their screens in 5, do a maximal-
common subgraph test to determine close matches with Q. Any object that is both a gener-
alization and specialization of Q is isomorphic (exact match) to Q.

6. To insert an object add bidirectional pointers from(to) the object to(from) screens that it
contains.

One sample Method II database based on Figure 10 is shown in Figure 11. (To illustrate the
technique less than optimal screens have been chosen.) Retrieval proceeds as follows: first, screens
G1, G5 and G7 are compared to () with G; and G7 being found to be generalizations of @) with
G5 failing. Thus, S = {Gy, G7}. The bottom level objects G5 and G4 are pointed to by both G
and G'7 (the members of S) and hence, each is compared as specializations to ¢, both succeeding.
Since G5 has its only screen (G) in S it is also compared as a generalization of Q and fails. Thus
the algorithm returns Gy and G; as generalizations and G5 and G4 as specializations. Note that
(3 and (Gg were eliminated without isomorphism tests.

Method II is definitely an improvement over Design Method I, since the screening step (step
1) is fast, and usually most of the database objects are eliminated without further subgraph-
isomorphism tests. In essence, through pattern associativity the global property screen stage of the
subgraph-isomorphism tests on the top level objects are now done simultaneously.

Parallelism can be added to this method in the obvious way: With k processors, in step 1
each processor applies the next available screen to the query object and follows the pointers to
adjust screen tallies for the main database objects. The remaining isomorphism tests work the
same way: Each available processor performs the next one. Again parallelism is possible due to the
independence of the isomorphism and property tests.

5 Design Method III: Multi-level Partial Order

So Design Method 11 is a great improvement over Method I, but what additional improvements are
possible? Note that Method II does not use information about the relationship of screens with each

15

Type Hierarchy:

person
man girl
/NN
Dan Frank Sue
Database Graphs
G person agent J=<—| eat

Gy girl <—\ agent eat >9 quickly
Gs: Sue |<—(agent eat 99 pie 99 apples

Gy Sue |=<-| agent eat 99 pie

G's: Sue [=| agent eat

Gg: Dan |=<— agent eat 99 pie 9 apples
G7: ecat = — quickly

Query Graph

Q: person [<—\ agent eat >+ quickly

Figure 10: Type hierarchy, database and query graph.
This example is adapted from [56] pp.92-93. “manr” stands for “manner”, “cont” stands for
“contains” and “poss” stands for “possesses”. G and G7 are generalizations of the query @, Gs
and G4 are specializations of ¢) and G, G, andg are incomparable.

database objects are sequentially ordered, and each processor works on the next database object
for which a test has not yet been performed. Such parallelism is possible since the results of the
subgraph-isomorphism tests do not depend on each other.

Clearly, there is more structure to be taken advantage of! In the methods that follow three
different levels of pattern-associativity are used to create more efficient associative retrieval:

1. Common substructures or properties in database objects.
2. More-general-than relation between database objects.

3. Shared computation amongst individual subgraph-isomorphism refinement tests

Design Method II will use 1, Method II: 1 and 2 and Method IV:1,2 and 3.
Figure 10 gives a type hierarchy, database of conceptual graphs and a query graph that we will
use to illustrate Methods II-1V.

4 Design Method II: Two-level Ordering

In Design Method II a new set of objects (“screens”) are added to the database to provide an
indexing or “screening” level to the original set of objects. The use of this set of objects is founded
on the same reasoning that supports the global property filter that starts the subgraph-isomorphism
tests: If a property is true of a graph Q, it must be true “all the more so” of a graph R it is a
specialization of. We shall call this application of pattern associativity “the syntactic property-
inheritance principle”. To be more technical: the properties that satisfy this principle must be
preserved by isomorphism. (That is, not depend on the way in which the nodes may have been
numbered.) For example:

a. Every subgraph of Q is a subgraph of R
b. If Q has m cycles(edges, nodes, cliques), R has at least m cycles(edges, nodes, cliques).

c. If nodes a and b are distance d in @, then their isomorphic nodes are no further than distance

din R.

Subgraphs (or properties) that are common to many objects are used to produce the screen level
of the two-level order. These are either found through statistical methods or are supplied to the
system based on human knowledge of useful indexes[1,5,13,62]. Simple screen objects (1-3 edges)
are best since the time to determine if they occur in an arbitrary structure is minimal compared
to more complex comparisons required by the system.

For each screen object, s, bidirectional pointers are stored to all second level objects that s
occurs in. Associative retrieval takes place as follows:

1. Find which screen objects S occur in the query structure Q. This is usually done by applying
subgraph-isomorphism tests on a screen vs. the query. For very simple screens (such as
number of edges or nodes) other tests are possible. This step usually goes rapidly due to the
simplicity of the screen objects.

2. For each bottom level object determine which members of S occur in them using the database
pointers.

13

a solution in a reasonable amount of time, they seem to work well in many practical
situations. [12]

Conceptual graphs are bipartite since there are no edges between pairs of concept nodes or
pairs of relation nodes, but only between a concept node and a relation node (or vice versa).
Unfortunately, the subgraph-isomorphism problem when restricted to bipartite graphs remains
NP-complete [18]. In some applications of conceptual graphs the set of edges out-going from each
concept node are restricted to go to at most one relation node of a given label or certain relations
and concepts may be confined to connect with only certain other relations and concepts. In these
cases, the subgraph-isomorphism test may be done in polynomial-time. Still the techniques that
follow are valuable even in this restricted case as they reduce the number of these tests that must
take place. In Section 8 we discuss how these methods may be adapted to other semantic network
formalisms including those in which the more-general-than relation (subsumption) between concepts
can not be determined with a subgraph-isomorphism algorithm.

Here we will describe only those aspects of subgraph-isomorphism testing that are essential
to understanding the four design methods, the evolution of pattern associativity, and how type
hierarchies are incorporated. Further details and efficient implementation methods can be found
in [2,4,8,23,33,46].

Call the two graphs being compared Q (for query) and R. The object is to determine if Q
is a generalization of R. The result of a successful test is a set of bindings that satisfy the node
consistency and adjacency preservation conditions. There are two main methods for testing if such
a set of bindings exist: backtracking and refinement. Both methods start out by the same. A set of
possible bindings for nodes in Q) are generated. Then compute for each node in both graphs, what
the possible bindings are for those nodes. These bindings are determined by first verifying that the
node in R has arity at least that of the node in Q and then searching the type hierarchies for a
direct path from two labels, where the label from Q is equal to or more-general-than the label from
R. As searching these paths may be costly (especially when no path exists), an alternative is to
compile the information directly into a hash table (for all queries) that will tell directly if two labels
correspond. The tradeoff, of course, is a greater storage requirement, and greater computation
at system start-up, insertion or compile time. The beauty is that once these “candidate
binding lists” are created the type hierarchies need never be consulted again during
an isomorphism test. The type hierarchies are maintained as a separate data structure from the
structure that organizes the database graphs and may take any desired form(e.g. lattice, tree, or
acyclic graph). Methods I-III may use any correct subgraph-isomorphism algorithm(backtracking
or refinement) since comparisons are considered independently of other processing. In Section VI
we will take a closer look at refinement since it is essential to understanding Method IV. In Method
IV the database is compiled into a form that allows, in essence, many refinement tests to be done
concurrently.

3 Design Method I: Arbitrary Flat Ordering

This is the simplest design possible: place no additional structure on the stored objects at all!
The system simply receives the query graph Q from the user and considers for each database
object whether it is a specialization, generalization or close match with Q. Thus with N database
objects N subgraph-isomorphism tests are done regardless of the query type. With k processors the

12

Sections 3-6 describe the database design methods and their use of pattern-associativity in depth.
Section 7 describes how the methods can be extended to handle other semantic network formalisms
in addition to conceptual graphs. Section 8 considers the domain validity of common patterns used
to index structures in these methods. Section 9 is the conclusion.

2 The Comparison of Conceptual Graphs

The fundamental comparison operation needed takes two semantic networks A and B and deter-
mines if A is a generalization of B. (B is a specialization of A.) Recall that we will be restricting
most of the paper to the conceptual graph family of semantic netwroks thus we shall assume that
the word “graph” refers to directed graphs in which nodes are labelled and edges are not. Further,
the labels on the nodes (for both concepts and relations) are partially-ordered by the relation more-
general-than. The structures that store this relation over labels we call type hierarchies. Nodes
without referent fields (used to denote specific individual objects) [56] should always be considered
to be more-general-than the same node with a referent. From the graph viewpoint, the compari-
son operation is a subgraph-isomorphism test. Thus, A is a generalization of B iff there is a 1-1
correspondence between all nodes and edges in A and a subset (possibly not proper) of the nodes
and edges in B such that each of the following conditions hold:

1. The labels on the nodes in A are equal to or more-general-than the label on their corre-
sponding node in B. (Node-consistency)

2. For a pair of nodes that are adjacent in one structure, the corresponding pair of nodes must
be adjacent in the other structure, and further, the direction of the edge between the nodes must
also correspond. (Adjacency-preservation)

A is a specialization of B iff B is a generalization of A. A=B iff A is both a specialization and
generalization of A. Loosely, we would like A and B be to be close matches iff there is a large graph
C (not necessarily connected or existing in the database) that is a generalization of both A and B.
We shall not be more formal and specific about close matches as determining their relevance often
requires domain and problem (goal)-specific knowledge. The retrieval methods will select a good
list of candidates to which further criteria can then be applied.

To understand the four associative retrieval design methods it is important to have knowledge
of good algorithms for determining subgraph-isomorphism. The subgraph-isomorphism problem is
NP-complete. So, unless a characterization of semantic nets in a given domain can be exploited,
in the worst case a calculation exponentially proportional to the number of nodes in the structures
is possible. In general, a brute force comparison of all possible node and edge bindings (mappings
from nodes on one graph to the other) is unfeasible. In fact, it still remains an open problem as to
whether a polynomial-time algorithm for the special case, the graph-isomorphism problem exists,
and whether it is NP-Complete [18]. However, there are some algorithms that generally do quite
well for both graph-isomorphism and subgraph-isomorphism:

In the past decade the graph isomorphism problem has received a great deal of atten-
tion in both the practical and theoretical computing literature. The development of
computer algorithms for the graph-isomorphism problem has been stimulated by such
diverse applications as chemical identification, scene analysis and construction and enu-
meration of combinatorial configurations. Although these algorithms do not guarantee

11

w
=
Q
+—
=
-
=
O
|99)
<)
!
O
=
Q
Z
(-
Qo
i
[
=
=
@)
—
<
.—
=
—
<
A

Database Graphs

Gy Gs
Figure 9: A Method IV hierarchy.

G

G

10

Q A i\(W& C\)J Q Most General Objects

QLN D

bt

/ Most Specific Objects

Figure 8: A multi-level partially-ordered hierarchy.

ik Q A w& O Q <= -~ Level 1, Index Objects

<- — Pointers

Q Q O ﬁ Level 2, Data Objects

Figure 7: A two level database.

retrieval system [27,28,30], a method for organizing chess patterns stored as semantic networks
[31,32,61], and (since the method does not actually require the use of conceptual graphs) have also
applied it to the retrieval of DN A protein sequences in genetics and to radio signal classification [29].
This method stores all subgraph relationships that exist between the index structures and domain
structures of the two-level method, thus creating a multi-level partially-ordered hierarchy (Figure
8). This additional pattern associativity information leads to significant performance improvement
over the two-level method. It will be shown that for every query structure, the graph comparisons
required by Method III are always a subset (often proper) of the graph comparisons required by
Method II. Empirical evidence also supports these conclusions [28,30].

Design Method IV is based on the design of HTSS, a commercial system for chemical structure
retrieval developed in Hungary. While the inspiration for the design of Method IV has come
from this system, to our knowledge only a brief high-level discussion of it is available [37]. Thus
the discussion, details and application of this method to conceptual graphs has been developed
completely independently and undoubtedly differ from the details of that system. Method IV takes
pattern associativity one step further than Method III: The commonalities (pattern-associativity)
in the potential subgraph-isomorphism tests are considered and exploited. The type of subgraph-
isomorphism test used is based on “refinement” [4,8,12,59] (some people call this “relaxation” [4]:
Successively refine the node descriptors (based on connectivity and label information) until it is
clear that one graph is or is not a subgraph of the other). HTSS stores a tree of relevant node
descriptions in increasing specificity and finally connects them to the domain structures that satisfy
them. (HTSS stores the descriptors in a tree, we will use a partial order to take advantage of the
methods and understanding developed with Method III (as in Figure 9)). A query is then done
by tracing each node description in turn down the tree to determine which structures they occur
in. Practice, has shown that this organization is more than sufflicient for most applications: 15000
structures on an IBM-PC/AT can be queried in 15 seconds. On an IBM mainframe (3090/150)
the average retrieval time for a substructure in a database of 1,200,000 compounds is less than ten
seconds. This method has not been applied to conceptual graphs or semantic networks. Here we
show how to go about doing that. An implementation of Method 1V ideas is underway. Due to
the structure of conceptual graphs we expect even better performance than was achieved in the
chemistry domain.

Before proceeding to describe each of these methods in detail, we need to establish some back-
ground information on the comparison of two conceptual graphs. This is covered in Section 2.

A molecule:

0=C—0— N
|
N

Its conceptual graph:

Oxygen —=| double)< Carbon single

—=
bond bond

V !
@ @
bond bond
! }

Figure 5: A molecule expressed as a conceptual graph.

0 OO OO ATO

Figure 6: An arbitrary, flat-ordered database.

<—| Oxygen

at all (see Figure 6 for an example. In this introductory section for simplicity we use sets of shapes
rather than graphs). Since the arbitrary flat ordering uses no pattern associativity information,
on a database of N items exactly N subgraph-isomorphism tests are required for each query and
possibly an additional N tests to determine close matches.

Design Method II, the two-level ordering method is the method that has most often been
used in chemical retrieval systems [1,5,62]. The idea is to add a second “level” of commonly
occurring substructures as indexes into the original group of structures (Figure 7). Because one
level of “indexing” seems justified it has been used internally in many Al knowledge representation
implementations as well. Rau has recently applied a two-level method to the retrieval of conceptual
graphs [41,42]. Database implementors have for years been using two-level schemes in a more
restricted form, known as “inverted files” (these are files in which a large amount of index structure
is created that points into relational records. Because of the simple structure of these records, if
the indexing is complete the records need not be stored at all) [2,23]. Method II is an increase in
pattern associativity over Method I since commonalities amongst the original structures are used
to form the indexing level. For any given query, subgraph tests are only required on a subset of the
original structures.

Design Method III, is a method based on a multi-level partially ordered hierarchy that we have
developed for complex object retrieval [27,28,30]. Others have also applied this approach to semantic
networks [9,15,19,34]. In our own work we have used Method III to produce an improved chemical

in which there is no consensus world view (e.g. crime reports, political opinions, etc.). Finally,
they may even provide a useful mechanism for organizing multiple single-net knowledge bases (like
Sneps), associative retrieval being used to select the most relevant ones.

1.5 The Four Design Methods

In this paper we will not focus on any domain application but will show how the principle of pattern
associativity can be used as the basis for the design of systems for the associative retrieval of
semantic networks. By associative retrieval we mean retrieval in which stored data are retrieved by
content and not location or inference. Specifically, suppose we start with a database of N semantic
networks, each corresponding to one or more facts or events in a problem-solving domain. Then
given a new query graph Q, the problem is to determine which of the N graphs are specializations,
generalizations, and close matches.
The four design methods to be explored are:

I. Arbitrary flat ordering.
II. Two-level ordering.
III. Multi-level partial ordering.
IV. Hierarchical node descriptor method.

These design methods are purposely ordered by increasing pattern associativity. As we move from
Design I to Design IV marked gains in efficiency for the “specifications of QQ” query are obtained.
Also, more accurate answers to “generalization” and “close match” queries also come about at no
cost to efficiency. The only cost in moving from Designs [to IV is an increase in algorithmic and
implementation complexity. Although we will be concentrating mainly on sequential implementa-
tions, we will also show that each of the design methods has a clear-cut parallel version with nearly
k-fold speedup for k processors.

Our experience with these designs is based on research in chemical structure retrieval systems,
in which very large databases of chemical graphs are used to support associative retrieval as defined
above. The analogy between chemical structures and conceptual graphs is straightforward: atoms
correspond to concept nodes in a conceptual graph, and bonds to relation nodes. For example, see
Figure 5. The major difference is that conceptual graphs also allow generalization (type) hierarchies
on their node and edge labels. We shall see that the methods smoothly handle type hierarchies.

The cost of associative queries on chemical databases is dominated by the number of graph
comparison (subgraph-isomorphism) tests that need to be carried out to answer individual queries.
Thus our comparison of methods will count these and not consider the cost of tracing pointers
(though this cost does increase somewhat with each method). In what follows it should be remem-
bered that an individual isomorphism test compares a query structure to a single semantic net,
whereas each of the four design methods compares a query structure to a database of networks
and usually requires many isomorphism tests. As we move from methods I-IV the overhead due to
isomorphism testing is reduced due to the increased exploitation of pattern associativity. Design
Method I, the arbitrary flat ordering method is discussed here mainly for the sake of argument.
However, this is essentially the design used in the Cambridge Crystallographic Data Base [3], which
expects queries to be done in batch mode! No additional structure is placed on the database objects

1.3 Conceptual Graph Queries

There are three major types of queries we would like an associative retrieval system to support:
specialization queries, generalization queries and close match queries. Here we give examples of
these. They will be formally defined in Section 2.

1.3.1 Specialization Queries

Typically we expect the database system to return specializations of the query. An article on the
effects of commercial fishing on dolphins is a specialization of the effects of commercial fishing on
sea mammals, since dolphins are a specialization of mammals. The type hierarchy is consulted
when comparing graphs.

1.3.2 Generalization Queries

Requests requiring generalization are less common than requests requiring specialization. Usually
someone will have a subject area and want articles that fall into that area - specializations. Oc-
casionally, however, someone may have a particular article and want to know how it is classified
by the system. That will require generalizing. The article on the effects of commercial fishing on
dolphins can be generalized in several ways in a single step: the effects of commerce (of any sort)
on dolphins, the effects of fishing (of any sort) on dolphins, the effects of commercial fishing on sea
mammals. A node S in a stored graph will be a generalization of a node Q in a query graph if Q
is a subtype of S.

1.3.3 Close Match Queries

Both generalization and specialization are used in generating close matches. If someone requests
close matches to articles on the effects of commercial fishing on dolphins, a system might generalize
dolphins to sea mammals, then specialize sea mammals to whales, and return any articles on the
effects of commercial fishing on whales. By the same method, it would return articles on the effects
of perfume production on whales (perfume production being a subtype of commerce, which is a
supertype of commercial fishing). The closeness of the match can vary. For example, the above
query may be matched to an article on the relationship between crop rotation techniques and
gopher population if the amount of generalization and specialization is not checked.

1.4 Appropriate Applications

Note that since the information in the articles must retain pointers back to the articles from which it
has come and since information may be mutually contradictory across articles it is natural to treat
the graphs derived from the articles individually and not build up a “consensus reality” network
as is done in many semantic network systems in which an entire knowledge base is represented as
one net (e.g. Sneps [54]).

In this paper four different designs of associative retrieval systems of semantic networks are
presented. In addition to bibliographic databases the methods here will be most applicable for
domain applications in which aspects of the world need to be considered individually such as
databases of CAD designs [11], parsed-image databases [50,51], machine vision [45] and domains

woman fragile things

i |

Mary glass things

/N

window vase
Figure 2: A type hierarchy.

woman |[—| agent |—| break é% fragile thing

Figure 3: Query graph: “Did a woman break something fragile”.

mammals and the library contains an article on the effects of commercial fishing on dolphins, the
system should return it. The system must therefore “know” that dolphins are sea mammals. This
knowledge is encoded in a type hierarchy that is separate from the conceptual graphs themselves.
We shall consider a type hierarchy to be a partial order by more-general-than over concept nodes
and relation nodes. In the example above , “Mary” is a subtype of “woman” and, “window” is a
(not necessarily direct) subtype of “fragile things” (see Figure 2).

Given the type hierarchy, conceptual graphs may be used to make certain types of inferences
with little difficulty. If the graph given in Figure 1 is stored in the database then a system can
answer “yes” to the question “Did a woman break something fragile?” (see Figure 3, and the stored
graph, (being more specific) can be returned as a proof (and if necessary can be processed further
to find that the woman is Mary) . If the conceptual graphs describe the content of articles, the
same specialization-finding mechanism can be used to return a graph in the face of the query “Is
there an article on ...”. For example, “is there an article on a woman breaking something fragile?”

It is outside the intended scope of the paper to consider the advantages and disadvantages of
using conceptual graphs instead of traditional keyword approaches for text retrieval, but it is worth
noting one advantage since it is an application of pattern-associativity: the ability to exploit the
relationships between concepts. For example, suppose we are interested in papers on drugs that
cause diseases, with the keyword approach the query “FIND drugs AND diseases” would return a
large number of articles, most of which are irrelevant, whereas with conceptual graphs the desired
query can be formulated easily (see Figure 4).

drug >| agent |—| cause %‘% disease

Figure 4: Bibliographic conceputal graph query.

Mary [(——= agent |—=| break %% window

bat

Figure 1: Conceptual graph for “Mary broke the window with the bat”.

“obj” stands for “object”.

articles, other attributes are gleaned from the request to guide the search(such as which journals
to consider, earliest date interested in, which library, etc.). Most often, the search will be for
specializations of the query, but it may be for generalizations or close matches. The graph and
search-guiding attributes collectively are called a query. For our purposes we will assume the query
is just a graph. Extending the process to include attributes is not difficult. Given a query, the
database search operations will return the article(s) that match the query. To do so, the database
will need to be provided with a comparison function that compares the query graph to graphs in
the database. For our purposes, the comparison function will be a subgraph-isomorphism test.

1.2 Conceptual Graphs

In what follows we will assume that the semantic network family we are using is Conceptual Graphs
[56]. In Section 8, we discuss how the retrieval techniques may be extended to other families. We
will take Sowa’s convention that conceptual graphs are graphs in which nodes are labelled and
edges are directed and unlabeled. The nodes can be divided into two classes: concept nodes and
relation nodes(which refer to relationships between concept nodes). In an equivalent formulation
of conceptual graphs they are viewed as graphs in which nodes are labelled with concepts and
directed edges are labelled with relation types. We choose the first formulation as it simplifies the
discussion, but these techniques can be easily adapted to the latter case [33].

As an example conceptual graph (one that is based on case theory [16]) consider the sentence
“Mary broke the window with the bat”, the action is one of breaking, Mary is the agent, the window
is the object, and the bat is the instrument. This would be represented in Sowa’s formalism as
shown in Figure 1.

1.2.1 The Type Hierarchy

In addition to the relations between concepts that are expressed by a conceptual graph (as a
representation of a sentence, a discourse, or facts about the world), there are implicit relations
between concepts. If a user is looking for articles on the effects of commercial fishing on sea

Sometimes it is simplicity which is hidden under what is apparently complex; sometimes
on the contrary, it is simplicity which is apparent, and which conceals extremely complex
realities... No doubt, if our means of investigation became more and more penetrating,
we should discover the simple beneath the complex, and then the complex from the
simple, and then again the simple beneath the complex, and so on, without ever being
able to predict what the last term will be.

— Henri Poincare [40]

1 Introduction

This paper has several thematic objectives:

1. To present a practical overview of the main methods of comparing semantic networks and
organizing them for associative retrieval.

2. To present the main principle that is being exploited in the evolution of these methods to
higher performance.

3. To present a new organizational scheme based on further evolution of this principle.
4. To outline parallel implementations of these methods.

The principle of Pattern Associativity is informally stated as follows: The more that is known
about how pieces of information relate to each other, given the ability to efficiently
exploit this knowledge, the more effective is a problem-solving system. We shall not
formalize this notion here. Pattern Associativity relates to the recognition, representation, and
economical exploitation of what others have called “mutual information” or structure [24,36,43].

Indeed representing and exploiting interrelationships is the principle behind the semantic net-
work knowledge representation formalism. The advantages gained by the semantic network formal-
ism over traditional logic representation occur at both the conceptual and implementation level. At
the conceptual level, logically related items can be viewed as a unit. At the implementation level
logically related items are physically in close proximity and thus support faster access. Although
logical propositions can be structured somewhat similarly no such organizing principle is implied
by the methodology.

1.1 Examples of associative retrieval: bibliographic databases

Suppose the task is to retrieve articles from a library based on their content [6]. Each article will
have an associated semantic network. The graph must describe the article and must include a con-
cise description of the content of the article, the author, title, and other bibliographic information
(including how to find the article in the library). We will not concern ourselves here with how the
graphs are created (in particular how natural language is parsed into conceptual graphs (cf.[38,53])
but how these graphs should be organized to efficiently answer typical queries.

To use the database, a person may formulate a request in English describing the desired article
or articles. This request is translated into a semantic network by a similar mechanism to that
which derives a graph from an article. In addition to producing a graph describing the desired

Pattern Associativity and the Retrieval of Semantic Networks

Robert Levinson
Department of Computer and Information Sciences
University of California Santa Cruz
Santa Cruz, CA 95064 U.S.A.
(408)459-2087
ARPANET:levinson%saturnucscc.ucsc.edu
UUCP:ucbvax!ucsc!saturn!levinson

Abstract

Four methods for the associative retrieval of semantic networks are described. These meth-
ods differ from those traditional approaches, such as SNEPS, in which an entire knowledge base
is treated as a single network. Here the knowledge base is viewed as an organized collection
of networks and is most appropriate for applications (such as bibliographic retrieval) in which
pieces of knowledge need to be treated individually. Method I is an arbitrary flat ordering of
database graphs, Method II a two-level ordering, and Method III is a full partial order. Method
IV is a novel method known as “hierarchical node descriptor method” that is based on the
“refinement” method of subgraph-isomorphism. A “pattern associativity” principle explains
the development and effectiveness of each of these methods. Moving from Method I through
Method IV there is a steady increase in both pattern associativity and efficiency. A theorem
i1s proven that establishes the superiority of Method III over Method II despite the fact that
Method II is the method most often used. A brief discussion of how parallelism may be in-
corporated also accompanies the description of each method. Most of the paper applies these
methods to conceptual graphs and a later section shows how the techniques can be extended to
other semantic-network formalisms. The paper concludes by showing how generalization graphs
constructed through pattern associativity may also have semantic validity in the domains from
which they have been derived.

Topics: Algorithm Design, Associative Retrieval, Conceptual Graphs, Databases, Graph
Isomorphism, Knowledge Representation, Parallelism, Semantic Networks.

