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� MIN 3NON-TAUTOLOGY.Instance: A DNF formula with 3 literals per disjunct. Every instance I of MIN3NT is identi�ed with a �nite structure A(I) with four ternary predicatesD0;D1;D2;D3, whereDi(w1; w2; w3) is true if and only if the set fw1; w2; w3gis a disjunct with w1; � � � ; wi appearing as negative literals and wi+1; � � � ; w3appearing as positive literals, 0 � i � 3:Solution: The minimum number of disjuncts simultaneously satis�able undersome truth assignment.optMIN 3NT(I) = minS jf(w1; w2; w3) : A j= �(w1; w2; w3; S)gj;where �(w1; w2; w3; S) is the following quanti�er-free formula:(D0(w1; w2; w3) ^ S(w1) ^ S(w2) ^ S(w3))_(D1(w1; w2; w3) ^ :S(w1) ^ S(w2) ^ S(w3))_(D2(w1; w2; w3) ^ :S(w1) ^ :S(w2) ^ S(w3))_(D3(w1; w2; w3) ^ :S(w1) ^ :S(w2) ^ :S(w3)):� MAX SAT.Instance: A boolean formula in conjunctive normal form. An instance I of MAXSAT can be identi�ed with a �nite structure A(I) = (X;C;P;N), where Xis the set of variables and clauses of I, the predicate C(x) expresses that xis a clause, and P (c; v) and N(c; v) are binary predicates expressing that avariable v occurs positively or negatively in a clause c.Solution: The maximum number of clauses simultaneously satis�able undersome some truth assignment.optMAX SAT(A(I)) = maxS jfw : A(I) j= (9y)(P (w; y)̂ S(y))_(N(w; y)̂ :S(y))gj:� MIN SET COVER.Instance: A set X and a collection, C, of subsets of X such that X = SS2C S:It is encoded by a �nite structure A = (A;C;M), where A = X [ C isthe universe of the structure, and M(x; S) is a binary predicate expressingmembership of an element x in the set S in C.Solution: The cardinality of the minimum cover C 0, such that C 0 � C, andSS2C0 S = X:optMIN SET COVER(A) = minSfjSj : A j= (8x)(9y)(:C(x)! (S(y) ^M(x; y)))g:� MIN VERTEX COVER.Instance: A graph G = (V;E).Solution: The cardinality of the minimum vertex cover in G.optMIN VC(G) = minSfjSj : G j= (8x)(8y)(E(x; y)! (S(x) _ S(y)))g:23



� MIN EDGE DOMINATING SET.Instance: A graph G = (V;E).Solution: The cardinality of the minimum edge dominating set in G. An EdgeDominating Set E 0 is a subset of edges such that every edge in E shares atleast one endpoint with some edge in E 0.optMIN EDGE DS(G) = minSfjSj : A j= (8x)(8y)(9z)(E(x; y) ![(S(x; z)^E(x; z))_(S(y; z)^E(y; z))]g:� MIN DOMINATING SET.Instance: A graph G = (V;E).Solution: The cardinality of the minimum dominating set in G. A DominatingSet is a set of vertices such that every vertex is either in the set or has aneighbor in the set.optMIN DOM: SET(G) = minSfjSj : A j= (8x)(9y)(S(x) _ S(y) ^E(x; y))g:� MIN GRAPH COLORING.Instance: A graph G = (V;E).Solution: The minimum number of colors used to color the vertices of G suchthat adjacent vertices have a di�erent color.optMIN COLORING(G) = minC;TfjCj : G j= (8x)(9c) [T (x; c) ^ C(c)] ^(8v1)(8c1)(8v2)(8c2)[(E(v1; v2)^T (v1; c1)^T (v2; c2))! c1 6= c2]g:� MIN HITTING SETInstance: A collection C of subsets of a �nite set X. It is encoded by a �nitestructure A = (A;C;M), where A = X [C is the universe of the structure,and M(x; S) is a binary predicate expressing membership of an element xin the set S in C.Solution: The cardinality of the smallest subset X 0 � X, such that X 0 containsat least one element from subset in C.optMIN HITTING SET(A) = minSfjSj : A j= (8x)(9y)(C(x)! (S(y) ^M(y; x)))g:� LONGEST-PATH-with-FORBIDDEN PAIRS.Instance: A directed graphG = (V;E) and a collection C = f(a1; b1); � � � ; (an; bn)gof pairs of vertices from V .Solution: The longest simple path that contains at most one vertex from eachpair in C. 22



which is a contradiction.(2) Towards a contradiction, assume that MAX CLIQUE can be de�ned as aminimization problem using a universal �rst-order formula (8x) (w;x;S) with a singlefree-variable w.Let H1 = (V1; E1) be a graph with V1 = fa1; bg and the edge relation beingempty. Assume that S�1 witnesses the optimum value for the graph H1 and letA�1 = fw 2 V1 : H1 j= (8x) (w;x;S�1)g. Therefore, we have that jA�1j = 1. Let~A�1 = V1 � A�1 be the complement of A�1. We may assume, without loss of generality,that a1 2 ~A�1.Now let H2 = (V2; E2) be a graph isomorphic to H1, with V2 = fa2; bg; and with theisomorphismmapping a1 to a2. Let S�2 be the image of S�1 under the same isomorphism.Analogous to A�1, we de�ne A�2 = fw 2 V2 : H2 j= (8x) (w;x;S�2)g and conclude thata2 2 ~A�2, where ~A�2 = V2 �A�2 is the complement of A�2.Notice that Hi j= :(8x) (ai;x;S�i ), for i = 1; 2. Let G = (V;E) be the graphwith V = fa1; a2; bg and E = ffa1; a2gg. We let S� = S�1 [ S�2 and consider the setA� = fw 2 V : G j= (8x) (w;x;S�)g. Since H1; a1 and H2; a2 do not satisfy the univer-sal sentences above, and since universal sentences are preserved under substructures,we have that G j= :(8x) (ai;x;S�), for i = 1; 2: Therefore, a1; a2 are elements of ~A�,where ~A� = V � A� is the complement of A�. Consequently, jA�j � 1, which is acontradiction, as the maximum clique of G is of size 2. 2We should point out that in the above proof we used in a crucial way the assumptionthat the universal �rst-order formula had a single free variable. Indeed, we used thefact that ~A� = ~A�1 [ ~A�2, which would not be true if arity of w was greater than 1.It remains an open problem to extend the previous result to universal �rst-orderformulae with more than one free variable. Preliminary investigations suggest that sucha result poses challenging combinatorial di�culties, even for the case of a universal �rstorder formula with exactly two free variables.AppendixWe state here the de�nitions of some optimization problems used in the paper.� MAX CLIQUE.Instance: A graph G = (V;E).Solution: The cardinality of the largest clique of G.optMAX CLIQUE(G) = maxSfjSj : G j= (8x)(8y)(S(x)^S(y)^x 6= y)! E(x; y)g:21



that NP 6= co-NP if and only if CLIQUE (or any NP-complete decision problem) cannot be de�ned on �nite structures by any universal second-order sentence. As far aswe know, Corollary 6.1 is the only other characterization of the NP ?= co-NP questionin terms of logical de�nability alone.The above comments suggest that it may be possible to shed some light on theNP vs. co-NP problem by examining subclasses of MIN �1 and showing that MAXCLIQUE is not in some of them. What makes this approach plausible is the factthat universal �rst-order formulae have well-understood model theoretic properties,such as preservation under substructures, which may be used in obtaining lower-boundexpressibility results. In what follows we begin an investigation along these lines byconsidering two proper subclasses of MIN �1, namely the class MIN �1 (cf. Theorem 2)and the subclass of MIN �1 consisting of all NP minimization problems that arede�nable using a universal �rst-order formula with a single free variable.Proposition 5: Let � be a vocabulary consisting of a single binary predicate symbolE. Then the following are true:1. MAX CLIQUE is not in the class MIN �1 over the vocabulary �.2. MAX CLIQUE can not be de�ned as a minimization problem using a universal�rst-order formula with a single free variable, i.e., if S is a sequence of predicatesymbols and (8x) (w;x;S) is a universal �rst-order formula over � [S having was its only free variable, then there is a graph G such thatoptMAX CLIQUE(G) 6= minS jfw : G j= (8x) (w;x;S)gj:Proof: (1) Towards a contradiction, assume that MAX CLIQUE is in the classMIN �1. Let (9x) (w;x;S) be an existential �rst-order formula such that for everygraph G we haveoptMAX CLIQUE(G) = minS jfw : G j= (9x) (w;x;S)gj:For simplicity, in what follows we write opt(G) instead of optMAX CLIQUE(G). Let G bea graph consisting of two vertices fv1; v2g and no edges and assume that S� witnessesopt (G), i.e., opt(G) = jfw : G j= (9x) (w;x;S�)gj = 1: Let H1 be the subgraph ofG whose only vertex is v1, and let H2 be the subgraph of G whose only vertex is v2.Let S�1 and S�2 be the restrictions of S� to the sets fv1g and fv2g respectively. If b isa tuple from Hi, i = 1; 2; such that Hi j= (9x) (b;x;S�i ), then it is also the case thatG j= (9x) (b;x;S�), because existential formulae are preserved under extensions. But,jfw : Hi j= (9x) (w;x;S�i )gj � 1; for i = 1; 2:Moreover, the sets fw : H1 j= (9x) (w;x;S�1)g and fw : H2 j= (9x) (w;x;S�2)g aredisjoint. Therefore, jfw : G j= (9x) (w;x;S�)gj � 2;20



(cf. de�nition 2.1). This problem asks: Given I 2 IQ and an integer k, does there exista feasible solution T 2 FQ(I) such that fQ(I; T ) � k? We say T 2 FQ(I) is an optimumsolution for instance I of Q if fQ(I; T ) = maxQ(I). Since NP = co-NP, the complementof the above decision problem is also in NP, and, consequently, the following problemis in NP: Given I 2 IQ and an integer k, is there an optimum solution T of I for theproblem Q such that fQ(I; T ) < k?Let Q� = (IQ�;FQ�; fQ�;min) be the minimization problem withIQ� = IQ;FQ�(I) = fT : T is an optimum solution of I for Qg; for all I 2 IQ�;fQ�(I; T ) = fQ(I; T ) for all T 2 FQ�(I):The associated decision problem for Q� is: Given I 2 IQ� and an integer k, is there afeasible solution T 2 FQ� (I) such that fQ�(I; T ) � k? Note that this is in NP, becausethe above decision problem is in NP. Hence, Q� is an NP minimization problem.Notice that for all feasible solutions T of I for Q it is the case that fQ�(I; T ) =optQ(I): As a result, minT2FQ�(I) fQ�(I; T ) = optQ(I): Therefore, minQ�(I) = maxQ(I)for all instances I. 2As mentioned earlier, Kolaitis and Thakur [KT90] showed that the class MIN PBof all polynomially bounded minimization problems coincides with the class MIN �1 ofminimization problems de�nable using universal �rst-order formulae (cf. Theorem 2).By combining this result with the preceding Proposition 4, we obtain the followingreformulation of the NP ?= co-NP question.Corollary 6.1: The following two statements are equivalent:1. NP 6= co-NP.2. MAX CLIQUE is not in the class MIN �1, i.e., there is no universal �rst-orderformula (8x) (w;x;S) (where  (w;x;S) is a quanti�er-free formula) over avocabulary fEg [ S such that for every graph G = (V;E) we have thatmaxMAX CLIQUE(G) = minS jfw : G j= (8x) (w;x;S)gj:The preceding Corollary 6.1 holds also with any NP-hard maximization problem inplace of MAX CLIQUE. We chose to use MAX CLIQUE here, because it is in the classMAX �1 and, thus, the result makes the di�erence between the classes MAX �1 andand MIN �1 more striking.Corollary 6.1 yields a machine-independent characterization of the NP ?= co-NPquestion. Fagin [Fag74] characterized NP computability in terms of de�nability insecond-order logic on �nite structures. From Fagin's [Fag74] main result, it follows19



this conjecture can be established directly using combinatorial and model theoreticarguments, and without any complexity theoretic assumptions.5 Maximization Problems vs. Minimization ProblemsIn some cases, given a maximization problem Q, one can �nd a minimization problemQ� with the property that the optimum value of Q is equal to the optimum valueof Q�. LINEAR PROGRAMMING provides the canonical manifestation of thisphenomenon. Indeed, duality theory makes it possible to rewrite a given maximizationlinear programming problem as a minimization linear programming problem, and viceversa (cf. [PS82]).When it comes to NP optimization problems, a folklore result in complexity theoryasserts that, unless P = NP, it not possible to rewrite every NP maximization problemas an NP minimization problem. We now state this result more formally and prove it,since we were not able to pinpoint an exact reference in the literature for it.Proposition 4: The following statements are equivalent.1. For every NP maximization problem Q, there is an NP minimization problemQ� such that Q and Q� have the same instances and for every instance I,maxQ(I) = minQ�(I):2. NP = co-NP.3. For every NP minimization problem Q�, there is an NP maximization problemQ such that Q� and Q have the same instances and for every instance I,minQ�(I) = maxQ(I):Proof: We prove here that statements (1) and (2) above are equivalent. Theremaining equivalences can be proved with a similar argument.Assume �rst that every NP maximization problem can be rewritten as aminimization problem with the same instances. Since MAX CLIQUE is an NPmaximization problem with graphs as instances, there is an NP minimization problemQ� = (IQ�;FQ�; fQ�;min) on graphs such that maxMAX CLIQUE(G) = minQ�(G):Consider now the NP-complete decision problem CLIQUE: Given a graph G andan integer k, does G have a clique of size greater than or equal to k? It followsfrom the above that CLIQUE has a YES answer on a graph G if and only ifminQ�(G) = minT2FQ� fQ�(G;T ) � k: Thus, CLIQUE has a YES answer on a graphG if and only if for every feasible solution T of Q� on G we have that fQ�(G;T ) � k:Since Q� is an NP minimization problem, the latter decision problem is in co-NP(cf. de�nition 2.1). As a result, CLIQUE is in co-NP and, consequently, NP = co-NP.Assume now that NP = co-NP and let Q = (IQ;FQ; fQ;max) be an NPmaximization problem. Therefore, the decision problem, associated with Q is in NP18



Let S = (S1; S�1; � � � ; S�t0) and let �(S) be the formula (8w)(S�1(w) ! S1(w)) ^  (S�).It follows that optQ(A) = minS fjS1j : A j= �(S)g:Note that S1 has only positive occurrences in �(S) and note also that the quanti�er-freepart of �(S), when expressed in DNF, has at most one occurrence of S1 per disjunct.2 The preceding Proposition 2 illuminates the di�erences between the class MINF+�2(1) and the class MIN PB of all polynomially bounded minimization problems.Indeed, it follows that it is the presence of additional predicates in the sequence S thatmakes the di�erence between MIN PB and the MIN F+�2(1). In other words, theoptimization problems in the class MIN F+�2(1) have the property that the feasiblesolution is represented by only one predicate, the cardinality of which is the objectivefunction, while in the larger class MIN PB the feasible solution is a sequence ofpredicates and the objective function is the cardinality of one of these predicates. Forboth classes the quanti�er complexity of the formulae and the syntactic restrictions onthe occurrences of S1 in the formulae are the same.As mentioned earlier, there are polynomially bounded minimization problems, suchas MIN 3NON-TAUTOLOGY, that are not log-approximable, unless P = NP. Sincethese problems are not in the class MIN F+�2(1), it follows that the additionalpredicates are indispensable in order to express all polynomially bounded NPminimization problems in the logical de�nability framework.So far, we focused on the approximation properties of optimization problems in theclass MIN F+�2(1). In the beginning of this section, we introduced also the classes MINF+�2(k), k > 1, containing minimization problems that are de�ned using formulae inwhich S1 is allowed to have up to k occurrences (all of them positive) in every disjunctof the quanti�er-free part (in DNF). It turns out that this relaxed condition gives riseto weaker approximation properties.Proposition 3: Let Q be an optimization problem in the class MIN F+�2(k), for somek > 1. Then there is a polynomial-time approximation algorithm and a constant c suchthat for every instance A of Q the algorithm produces a feasible solution on which theobjective function takes value less than or equal to c(opt(A)k) log(jAj):Proof: (Hint:) The approximation algorithm is an extension of Johnson's greedyalgorithm [Joh74] for the MIN SET COVER problem. Details will appear in the fullpaper. 2We conclude this section by conjecturing that the MIN GRAPH COLORINGproblem is not in the class MIN F+�2 = SkMIN F+�2(k). We believe that17



It can be seen that C� is a set cover for IA if and only if fa : sa 2 C�g coversevery element of Ak. Therefore, optQ(A) = optSET COVER(IA): It is clear that thisis an A-reduction. Hence, MIN SET COVER is complete for MIN F+�2(1) underA-reductions.We can show that MIN SET COVER �A MIN DOMINATING SET. As a resultMIN DOMINATING SET is also complete for MIN F+�2(1) under A�reductions. 2We now comment on the di�erences between the class MIN F+�2(1) and the classMIN PB of all polynomially bounded NP minimization problems.Recall the earlier Theorem 1, which asserts that MIN PB coincides with the classMIN F�2. In other words, if Q is a polynomially bounded minimization problem withinstances �nite structuresA over a vocabulary �, then there is a �2 sentence  (S) overthe vocabulary � [ S, where S = (S1; � � � ; St) is a sequence of predicate symbols not in�, such that opt(A) = minS fjS1j : A j=  (S)g;for every �nite structure A over �. The following simple result shows that asyntactically proper subclass of MIN F�2 captures every polynomially boundedminimization problem.Proposition 2: Let Q be a polynomially bounded NP minimization problem withinstances �nite structures A over a vocabulary �. Then there is a �2 sentence �(S)over the vocabulary � [ S, where S is the sequence (S1; � � � ; St) of predicate symbolsnot in �, such that1. opt(A) = minSfjS1j : A j= �(S)g; for every �nite structure A over �;2. the predicate symbol S1 has only positive occurrences in �(S);3. the quanti�er-free part of the sentence  (S) is equivalent to a formula in DNFwith at most one occurrence of S1 per disjunct.Proof: Since Q is a polynomially bounded NP minimization theorem, Theorem 1implies that optima on instances A over � can be expressed asoptQ(A) = minS� fjS�1j : A j=  (S�)g;where  (S�) is a �2 sentence with predicate symbols amongst those in � and thesequence of predicates S� = (S�1 ; � � � ; S�t0). Notice that at this point the predicate S�1may have negative occurrences in the formula  (S�). We now introduce a new predicateS1 and insist that S�1 � S1. In other words, we express the optimum value of Q asoptQ(A) = minS1;S�fjS1j : A j= (8w)(S�1(w)! S1(w)) ^  (S�)g:16



It is clear that MIN F+�1 is a subclass of MIN F�2. Moreover, MIN F+�1 iscontained in the class MIN F+�2 and, in fact, this containment is a proper one, becauseMIN SET COVER witnesses the separation of the two classes.We will be focusing on the class MIN F+�2(1), which contains MIN SET COVERand other natural optimization problems, such as MIN DOMINATING SET, MINEDGE DOMINATING SET, and MIN HITTING SET [GJ79]. Actually, it will turnout that some of these problems are complete for the class MIN F+�2(1), via a certainapproximability preserving reduction.The notion of an approximabilty preserving reduction was introduced by Papadim-itriou and Yannakakis [PY88], who considered L-reductions between optimization prob-lems. Panconesi and Ranjan [PR90] generalized this to the notion of A-reduction (�A).These reductions have the property that if P andQ are optimization problems such thatP �A Q and Q is g-approximable, for some function g, then P is also g-approximable.We now establish the following result.Theorem 6: The MIN SET COVER problem and the MIN DOMINATING SETproblem are complete for the class MIN F+�2(1) under A�reductions. As a result,every problem in the class MIN F+�2(1) is log-approximable.Proof: (Sketch) Let Q be a problem in the class MIN F+�2(1). Hence, its optimumis expressed as optQ(A) = minS fjSj : A j= (8x)(9y) (x;y; S)g;where S is an m-ary predicate symbol,  (x;y; S) is a quanti�er-free DNF formula inwhich all occurrences of S are positive, and S occurs at most once in each disjunct.Assume that the arity of x is k, the arity of y is l, and let N denote jAjl.Given an instance A of Q, we express its optimum asoptQ(A) = minS fjSj : A j= (8x)( N_j=1 (x; cj ; S))g;whereAl = fc1; � � � ; cNg. We say a set S � Am covers a tuple b, ifA j= WNj=1  (b; cj ; S).Observe that optQ(A) is the cardinality of the smallest set S � Am such that S coversevery element of Ak.We now use the structure A to construct the following instance IA = (X;C) of theMIN SET COVER problem:X = Ak; C = fsa : a 2 Amg;where b is an element of the set sa if and only if A j= WNj=1  (b; cj ; S=fag): In otherwords a set sa contains b if and only if fag covers b.15



Proposition 1: Let � be a vocabulary consisting of a unary predicate symbol C anda binary predicate symbol M . The MIN SET COVER problem is not in the classMIN F�1 over �, and a fortiori, not in the class MIN F+�1.Proof: Towards a contradiction, assume that MIN SET COVER is de�ned asoptSET COVER(A) = minS fjSj : A j= �(S)g;where �(S) is a universal �rst-order sentence over � [ fSg. Let I = (X;C) be thefollowing instance of MIN SET COVER:X = fx1; x2g; C = fc1; c2; c3g;where c1 = fx1g; c2 = fx2g; c3 = fx1; x2g:Assume that S� witnesses the optimum of MIN SET COVER on the encoding A(I)of the instance I, i.e., A(I) j= �(S�) and jS�j = opt(A(I)) = 1. Let A0 be the sub-structure of A(I) with universe fx1; x2; c1; c2g, and let S�0 be the restriction of S� tothe universe of A0. It is clear that opt(A0) = 2 and, consequently, jS�0j � 2: SinceA(I) j= �(S�) and �(S�) is a universal sentence, it is also the case that A0 j= �(S�0).As a result, jS�j � 2; which is a contradiction. 24.2 The class MIN F+�2We now introduce the class MIN F+�2, which is a subclass of MIN F�2 containingthe MIN SET COVER problem. Observe that the optimum of the MIN SET COVERproblem on a structure A over the vocabulary fC;Mg is de�ned as follows:optSET COVER(A) = minS fjSj : A j= (8x)(9y)(:C(x) ! (S(y) ^M(x; y)))g:This observation motivates the following de�nition.De�nition 4.1: Let MIN F+�2(k), k � 1, be the class of minimization problems Qwhose optimum on a structure A over a vocabulary � can be expressed as:optQ(A) = minS fjSj : A j= (8x)(9y) (x;y; S)g;where S is a single predicate of some �xed arity,  (x;y; S) is a quanti�er-free DNFformula in which all occurrences of S are positive, and S occurs at most k times ineach disjunct. We also let MIN F+�2 = [k MIN F+�2(k)denote the union of these classes. 14



As mentioned earlier, MIN VERTEX COVER is a constant-approximable problem(cf. [PS82]). The following result by Kolaitis and Thakur [KT90] shows that thisproperty is shared by every member of the class MIN F+�1.Theorem 5: Every problem in the class MIN F+�1 is constant-approximable.We now discuss the expressive power of MIN F+�1. On the positive side, in additionto MIN VERTEX COVER, the class MIN F+�1 contains a large number of node-deletion and edge-deletion graph problems (cf. [Yan81a,Yan81b]).If 	 is a property of graphs, then the node (edge) deletion problem NODE-DEL	(EDGE-DEL	) associated with 	 is de�ned as follows: Given a graph G, �nd a setof nodes (edges) of minimum cardinality whose deletion from G results into a graphsatisfying 	 [Yan81a,Yan81b].Several well known NP-hard optimization problems, such as MIN VERTEX COVERand MIN FEEDBACK ARC SET [GJ79], can be stated as node or edge deletionproblems by specifying the property 	 appropriately. Assume now that 	 is a propertyof �nite graphs that is de�nable using a universal �rst-order sentence. Then the node(edge) deletion problem NODE-DEL	 (EDGE-DEL	) associated with 	 is containedin the class MIN F+�1. Indeed, it is easy to verify that if 	 is de�nable by the universalsentence (8x1) � � � (8xt) (x1; � � � ; xt), then the optimum of NODE-DEL	 on a graph Gcan be expressed asopt(G) = minS fjSj : G j= (8x1) � � � (8xt)(: (x1; � � � ; xt)! (S(x1) _ � � � _ S(xt)))g:Edge Deletion problems can be formulated similarly. Yannakakis [Yan81a,Yan81b]showed that if 	 is one of the following properties, then the node or edge deletiondecision problem associated with 	 is NP-complete:1. transitive digraph (edge deletion problem).2. without cycles of speci�ed length l, for any �xed l � 3 (edge deletion problem).3. maximum degree 1 (node deletion problem).Each of the above properties is de�nable by a universal �rst-order sentence and, thus,the associated minimization problem is in the class MIN F+�1.On the negative side, we will show below that the MIN SET COVER problem isnot in the class MIN F+�1 (no complexity theoretic assumptions will be used in theproof of this result). MIN SET COVER is a log-approximable problem [Joh74] andno better approximation properties for it are known.Recall that an instance I = (X;C) of the MIN SET COVER problem is viewedas a �nite structure A(I) = (X [ C;C;M), where M is a binary relation expressingmembership of an element x 2 X in a set S 2 C.13



where A is the structure (A� [ V0; V0; E0; E�) over �. Since Q� is not constant-approximable, unless P = NP, it follows that if P 6= NP, then Q� is not constant-approximable. 2This proof can be extended to the undecidability of g-approximability for anyfunction g for which there is an optimization problem Q that is not g-approximable,modulo P 6= NP or some other complexity theory assumption. In particular, we canshow that it is undecidable if a �rst-order formula de�nes a log-approximable problem.4 Approximation Properties of Minimization ProblemsThe preceding Theorem 4 implies that, unless P = NP, it is not possible to �nd a\nice" necessary and su�cient condition that characterizes which �rst-order formulaegive rise to approximable optimization problems. In view of this, we can only hope toisolate su�cient conditions for approximability. In this section we investigate certainsyntactically de�ned classes of minimization problems and study their approximationproperties.Papadimitriou and Yannakakis [PY88] showed that every problem in the class MAX�1 is constant-approximable. On the other hand, Kolaitis and Thakur [KT90] showedthat the class MIN �1 contains problems, such as MIN 3NON-TAUTOLOGY, that arenot log-approximable, unless P = NP. This suggests that if one wants to isolate su�cientconditions for approximability of minimization problems in the logical de�nabilityframework, then one has to look for syntactic features beyond the quanti�er patterns.It turns out that certain natural subclasses of MIN F�1 and MIN F�2 possess goodapproximation properties. The �rst of these is the class MIN F+�1 below, which wasintroduced and studied in [KT90].4.1 The class MIN F+�1We de�ne MIN F+�1 to be the collection of all minimization problemsQ whose optimaon �nite structures A over a vocabulary � can be expressed as:optQ(A) = minS fjSj : A j= (8x) (x; S)g;where S is a single predicate of some �xed arity and  (x; S) is a quanti�er-free formulaover the vocabulary � [ fSg in which all occurrences of S are positive.It is clear that MIN F+�1 is a subclass of MIN F�1. Moreover, MIN F+�1 containsMIN VERTEX COVER as a member, since the optimum of MIN VERTEX COVERon a graph G = (V;E) is given byoptVC(G) = minS fjSj : G j= (8x)(8y)(E(x; y)! S(x) _ S(y))g:12



Proof: We use Trakhtenbrot's classical theorem [Tra50], which asserts that the set of�rst-order sentences true on all �nite structures over a vocabulary � is not recursive,provided � contains at least one non-unary predicate symbol. We reduce the questionof \truth on all �nite structures" to that of \constant-approximabilty".Let S = (S1; � � � ; St) be a sequence of predicate symbols and let �(S) be a �rst-orderformula over the vocabulary fE�g [ S such that Q� is a minimization problem thatis not constant-approximable, unless P = NP. The instances of Q� are identi�ed with�nite structures A� = (A�; E�).Given a �rst-order formula  (E) over the vocabulary fEg, we consider the followingformula �(S) with predicate symbols from fV;E;E�g [ S:�(S) def� : V (E) ^ �~V (S) ^ ( t̂i=1Si � ~V �i);where ~V is the complement :V of V , the expression  V (E) denotes the formula  (E)relativized to V , the expression �~V denotes the formula � relativized to ~V , and �i is thearity of Si, 1 � i � t. The concept of relativization used here is frommathematical logic,namely, if ' is a formula and R is a unary predicate, then the relativized formula 'R isobtained from ' by replacing every subformula (8x)'0(x) of ' by (8x)(R(x) ! '0(x))and by replacing every subformula (9x)'0(x) of ' by (9x)(R(x) ^ '0(x)).We now consider the minimization problem Q� de�ned by �(S). The instances ofQ� are �nite structures of the form A = (A;V;E;E�) over the vocabulary � and theoptimum of Q� is given asoptQ�(A) = minS fjS1j : A j= �(S)g:We will show that the truth of  (E) on all �nite structures is equivalent to the constant-approximabilty of Q�, modulo P 6= NP.If the sentence  (E) is true on all �nite structures, then A 6j= �(S), for every �nitestructure A over � and for every sequence of relations S on A. Hence, for all �nitestructures A, we have thatoptQ�(A) = minS fjS1j : A j= �(S)g = trivQ�:As a result, in this case Q� is trivially constant-approximable.For the other direction, assume that (V0; E0) is a �nite structure over the vocabularyfEg on which the sentence  (E) is false. Then, given any �nite structureA� = (A�; E�)over the vocabulary fE�g, we have thatoptQ�(A�) = optQ�(A);11



and MIN�n � MIN F�n+1; MIN�n � MIN F�n; n � 1:It follows that MAX�n = MAX F�n and MIN�n = MIN F�n;for n � 1.The preceeding Theorem 1 can now be restated as follows.Theorem 3: The class MAX PB of all polynomially bounded NP maximizationproblems coincides with the class MAX F�2. Thus,MAX PB = MAX F�2 = MAX F�n; n � 2:The class MIN PB of all polynomially bounded NP minimization problems coincideswith the class MIN F�2. Thus,MIN PB = MIN F�2 = MIN F�n; n � 2:3 On the Undecidability of Approximation PropertiesWe showed before that we can express all polynomially bounded NP optimizationproblems using logic. It is natural to ask whether or not logic can be also used tocapture all g-approximable problems, for a given function g. In this section we providea negative answer to this question by establishing that, assuming P6=NP, it is anundecidable problem to tell if a �rst-order formula gives rise to a constant-approximableproblem.Let � be a vocabulary and let �(S) be a �rst-order sentence with predicate symbolsfrom � [ S. We write Q� to denote the minimization problem whose optimum on astructure A is expressed asoptQ�(A) = minS fjS1j : A j= �(S)g:We now state and prove the main theorem of this section.Theorem 4: Let � be a vocabulary with one unary predicate symbol fV g and twobinary predicate symbols fE;E�g. Assuming P6=NP, the following is an undecidableproblem: Given a �rst-order sentence �(S) over � [S, is the minimization problem Q�constant-approximable? 10



where opt 2 fmax, ming, and �(S) is a �rst-order sentence. Let w range over tupleswith arity the same as the arity of S1. IfQ is a maximization problem, then its optimumis expressed as optQ(A) = maxS jfw : A j= S1(w) ^ �(S)gj:On the other hand, if Q is a minimization problem, then its optimum is expressed asoptQ(A) = minS jfw : A j= �(S)! S1(w)gj:Notice that, unlike the case of maximization problems, we cannot express the optimaof minimization problem asoptQ(A) = minS jfw : A j= S1(w) ^ �(S)gj;because the minimum cardinality of the above set is zero, which occurs when S1 isempty.From the preceding remarks, it follows that, for n � 1,MAX F�n � MAX�n; MAX F�n � MAX�n; n � 1;and MIN F�n � MIN�n; MIN F�n � MIN�n; n � 1:In the opposite direction, assume that Q is an optimization problem with optimumon a structure A expressed asoptQ(A) = optS jfw : A j= �(w;S)gj;where opt 2 fmax, ming, and �(w;S) is a �rst-order formula. By introducing a newpredicate symbol T with arity the same as that of w, we can express the optimum asoptQ(A) = optT;S fjT j : A j= (8w)(T (w)$ �(w;S))g:It follows that optQ(A) = maxT;S fjT j : A j= (8w)(T (w)! �(w;S))gfor a maximization problem Q, whileoptQ(A) = minT;S fjT j : A j= (8w)(�(w;S)! T (w))gfor a minimization problem Q. As a result, for n � 1, we have the containmentsMAX�n � MAX F�n; MAX�n � MAX F�n+1; n � 1;9



2.2 Logic and Feasible SolutionsIn this section we introduce a di�erent approach to de�ning optimization problemsusing logic. For many natural optimization problems, a feasible solution is a collectionof relations and the objective function is the cardinality of one of these relations. Forexample, a feasible solution of the MIN VERTEX COVER problem is a set of verticesforming a vertex cover and the objective function is its cardinality. A feasible solutionof the MAX CLIQUE problem is a set of vertices forming a clique and the objectivefunction is the cardinality of the clique. In both the above examples, a feasible solutionconsists of a single relation. On the other hand, a feasible solution in the MIN GRAPHCOLORING problem is a pair of two relations C; T , where C is a set that containscolors and T is a binary relation that denotes a legal assignment of colors to the verticesof the graph. In this case, the objective function is the cardinality of C. In what follows,we use this observation to introduce classes of optimization problems.De�nition 2.5: For each n � 1, let MAX F�n (F stands for feasible) be the class ofmaximization problemsQ whose optima on �nite structures A over a vocabulary � arede�ned as follows:optQ(A) = ( maxS fjS1j : A j= �(S)g if there is an S such that A j= �(S),trivQ otherwise,where S = (S1; � � � ; St) is a sequence of predicate symbols, �(S) is a �n sentence (i.e., aformula with no free variables) with predicate symbols from �[S, and trivQ is a trivialvalue for the optimum. Similarly, for each n � 1, we de�ne the class MAX F�n using�n sentences. We also de�ne the classes MIN F�n and MIN F�n, n � 1 analogously.For the trivial value trivQ we have thattrivQ = ( jAjm if Q is a minimization problem,1 if Q is a maximization problem,where m is the arity of the predicate S1.For the sake of brevity, we shall denote the optimum as optS fjS1j : A j= �(S)g, whereopt 2 fmax, ming, but implicitly refer to the precise de�nition above.Intuitively, if Q is an optimization problem in one of the classes de�ned above, thena feasible solution for an instance A of Q is a sequence S = (S1; � � � ; St) of relationssatisfying �(S) and the objective function is the cardinality of S1.We exhibit next the relationships between the classes of optimization problemsde�ned above and those de�ned in the preceding Section 2.1.Let Q be an optimization problem with optimum on a structure A expressed asoptQ(A) = optS fjS1j : A j= �(S)g;8



Recall that �n; n � 1, is the class of �rst-order formulae in prenex normal form thathave n alternations of quanti�ers, starting with a block of existential quanti�ers. Forexample, �1 is the collection of existential formulae, while �2 is the class of existential-universal formulae. Similarly, �n, n � 1, is the class of �rst-order formulae in prenexnormal form with n alternations of quanti�ers, starting with a block of universalquanti�ers. Thus, a �1 formula has universal quanti�ers only, while �2 is the collectionof universal-existential formulae. The class of quanti�er-free formulae is denoted by �0or �0.De�nition 2.4: For each n � 0, let MAX �n be the set of problems Q whose optimaon �nite structures A over a vocabulary � are de�ned as follows:optQ(A) = maxS jfw : A j= �(w;S)gj;where �(w;S) is a �n formula with predicate symbols from � [ S. Similarly, for eachn � 0, we de�ne the class MAX �n by using �n formulae. The classes MIN �n andMIN �n, n � 0 are de�ned analogously with min in place of max.The relationships between the various classes of maximization and minimizationproblems de�ned above are described in the following results, which were obtained in[KT90].Theorem 1: The class MAX PB of all polynomially bounded NP maximizationproblems coincides with the class MAX �2. Thus,MAXPB = MAX�2 = MAX�n; n � 2:The class MIN PB of all polynomially bounded NP minimization problems coincideswith the class MIN �2. Thus,MINPB = MIN�2 = MIN�n; n � 2:Theorem 2: MAX PB is a hierarchy with four distinct levels, namely,MAX�0 � MAX�1 �MAX�1 � MAX�2:MIN PB is a hierarchy with three distinct levels, namely,MIN�0 � MIN�1 � MIN�1 = MIN�2:In the above, � denotes proper containment.7



COVER and GRAPH COLORING are problems about �nite graphs, while instances ofSET COVER can be identi�ed with �nite structures as follows. An instance I = (X;C)of the SET COVER problem consists of a set X and a collection C of subsets of Xsuch that X = SS2C S: It is encoded by a �nite structure A(I) = (A;C;M), whereA = X[C is the universe of the structure andM(x; S) is a binary predicate expressingmembership of an element x 2 X in a set S 2 C.From now on we assume that the instances of the optimization problems we considerare given as �nite structures over some vocabulary �.Papadimitriou and Yannakakis [PY88] were the �rst to use logic in order to de�neclasses of maximization problems and study their approximation properties. Theyintroduced the class MAX NP of maximization problems Q whose optima on �nitestructures A over a vocabulary � can be de�ned using an existential �rst-order formulaas follows: optQ(A) = maxS jfw : A j= (9x) (w;x;S)gj;where S is a sequence of predicate symbols that are not in �, and  is a quanti�er-freeformula with predicate symbols amongst those in �[S. MAX SAT is a typical exampleof an optimization problem in MAX NP. Papadimitriou and Yannakakis [PY88] showedthat every problem in MAX NP is constant-approximable.Panconesi and Ranjan [PR90] showed that MAX CLIQUE is not in the class MAXNP. Moreover, they proved that certain polynomial-time optimization problems are notin MAXNP. In an attempt to �nd a syntactic class of maximization problems containingMAX CLIQUE, they introduced the class MAX �1 of maximization problemsQ whoseoptima on �nite structures A over a vocabulary � can be de�ned using a universal�rst-order formula as follows:optQ(A) = maxS jfw : A j= (8x) (w;x;S)gj;where  is a quanti�er-free formula with predicate symbols from � [ S. Panconesiand Ranjan [PR90] showed that this class contains problems that are not constant-approximable, unless P = NP.Kolaitis and Thakur [KT90] introduced a general framework for studying thelogical de�nability of both maximization and minimization problems. More speci�cally,[KT90] considered optimization problems Q whose optima on �nite structures A overa vocabulary � are de�ned using an arbitrary �rst-order a formula �(w;S) as follows:optQ(A) = optS jfw : A j= �(w;S)gj:Various classes of optimization problems, including MAX NP and MAX �1, can beobtained in this framework by restricting the quanti�er complexity of the �rst-orderformulae used. 6



De�nition 2.2: Let g(n) be a function from positive integers to positive reals. Wesay that an algorithm is a g-approximation algorithm for an optimization problem Qif, given an instance I of Q, the algorithm produces a feasible solution T such thatg(jIj) � 8><>: c�f(I;T )optQ(I) if Q is a minimization problemc�optQ(I)f(I;T ) if Q is a maximization problem;where jIj denotes the size of the instance I and c is a constant that depends onthe algorithm only. We say that an optimization problem is g-approximable if thereis a polynomial time g-approximation algorithm for it. An optimization problem isconstant-approximable, if it is g-approximable for a constant function g(n).In this paper we will be considering constant-approximable problems and log-approximable problems. The Appendix contains precise de�nitions of variousoptimization problems that will be encountered in the sequel. MAX SAT [Joh74] andMIN VERTEX COVER (cf. [PS82]) are examples of constant-approximable problems.MIN SET COVER and MIN DOMINATING SET are examples of log-approximableproblems [Joh74]. There are graph problems that are not constant-approximable, unlessP = NP, such as the LONGEST-PATH-with-FORBIDDEN-PAIRS [Ber89]. Also theMIN 3NON-TAUTOLOGY problem is not log-approximable, unless P = NP [KT90].We now restrict attention to polynomially bounded NP optimization problems.These are NP optimization problems in which the optimal solution is bounded bya polynomial in the length of the corresponding instance [BJY89,LM81].De�nition 2.3: An NP optimization problem Q is said to be polynomially bounded ifthere is a polynomial p such thatoptQ(I) � p(jIj) for all I 2 IQ:We denote the class of all polynomially bounded NP maximization (minimization)problems by MAX PB (MIN PB).Examples of polynomially bounded NP optimization problems are MAX CLIQUE,MAX SAT, MIN VERTEX COVER, MIN SET COVER, and MIN TRAVELINGSALESMAN problem with weights 1 or 2. On the other hand, the unrestrictedversion of the TRAVELING SALESMAN problem and INTEGER PROGRAMMINGare examples of NP optimization problems that are not polynomially bounded.NP decision problems and, consequently, NP optimization problems can be viewedas problems on �nite structures over some vocabulary � consisting of predicate symbols.In most cases, either an NP problem is described directly as a problem on �nitestructures, or it can be easily encoded by such a problem. For example, VERTEX5



SET, and many other natural optimization problems. We show that some of theseproblems are actually complete for MIN F+�2(1) under appropriate reductions. As aresult, every problem in the class MIN F+�2(1) is log-approximable. We also considerclasses that extend MIN F+�2(1) and have weaker approximation properties.Finally, we compare classes of maximization problems to classes of minimizationproblems by examining under what conditions a maximization problem can berepresented as a minimization problem, and vice versa. In particular, we obtain amachine-independent characterization of the NP ?= co-NP question, by showing thatNP 6= co-NP if and only if MAX CLIQUE is not in the class MIN �1 of minimizationproblems de�nable using universal �rst-order formulae. We also show that MAXCLIQUE is not in certain proper subclasses of MIN �1.2 Logic and NP Optimization Problems2.1 BackgroundThis section contains the basic de�nitions and the necessary background materialexplaining the relationship between logical de�nability and optimization problems.De�nition 2.1: An NP optimization problem is a tuple Q = (IQ;FQ; fQ; opt) suchthat� IQ is the set of input instances. It is assumed that IQ can be recognized inpolynomial time.� FQ(I) is the set of feasible solutions for the input I.� fQ is a polynomial time computable function, called the objective function. Ittakes integer values and is de�ned on pairs (I; T ), where I is an input instanceand T is a feasible solution of I.� opt 2 fmax; ming.� The following decision problem is in NP : Given I 2 IQ and an integer k, doesthere exist a feasible solution T 2 FQ(I) such that fQ(I; T ) � k, when opt =min? (or, fQ(I; T ) � k, when opt = max)We write optQ(I) to denote the optimum value of Q, on an instance I.The above de�nition is essentially due to [PR90] and is broad enough to encompassevery known optimization problem arising from the class NP. If the underlying decisionproblem of an optimization problem is NP-complete, then one cannot expect to havepolynomial time algorithms to compute the optimum. In view of this, researchers havestudied approximation algorithms and approximation properties of such problems.4



In view of the above, it is natural to ask: are there other syntactic properties offormulae that may have implications on the approximation properties of the problemsthey de�ne? In this paper we introduce an alternative framework for de�ning andstudying optimization problems using logic. Notice that many natural NP optimizationproblems, including MAX CLIQUE, MIN VERTEX COVER, MIN SET COVER, andMIN GRAPH COLORING, have the following two properties:(1) a feasible solution is a �nite sequence of sets satisfying a �rst-order sentence (often,the sequence consists of a single set);(2) the objective function is the cardinality of one of these sets.Motivated from the above observation, we consider the class of all optimizationproblems on �nite structures A whose optimum can be de�ned asoptS fjS1j : A j= �(S)g;where opt is either max or min, �(S) is an arbitrary �rst-order sentence andS = (S1; � � � ; St) is a sequence of predicates. Intuitively, the sequence S of predicatesrepresents the feasible solution and the objective function is the cardinality of S1.We study �rst the relationships between classes of optimization problems de�nedin the new framework and those de�ned in [PY88,PR90,KT90]. In particular, we showthat using universal-existential (�2) �rst-order sentences in the new framework we cancapture all polynomially bounded NP maximization and NP minimization problems.Can logic be also used to capture all optimization problems having goodapproximation properties? We address this question here and provide a negativeanswer to it by establishing that, assuming P 6= NP, it is an undecidable problemto tell if a �rst-order formula gives rise to an optimization problem that is constant-approximable. Similarly, it is an undecidable problem to tell if a �rst-order formulagives rise to an optimization problem that is log-approximable. As a consequence ofthe above result, we cannot expect to have \nice" necessary and su�cient conditionsthat characterize which �rst-order formulae give rise to optimization problems withgood approximation properties. Thus, we can only hope to isolate and study su�cientconditions for approximability. With this insight in mind, we consider certain syntacticconditions on �rst-order sentences and investigate the approximation properties of theminimization problems de�ned by such sentences in the new framework.We reexamine here the class MIN F+�1, introduced in [KT90]. This class containsMIN VERTEX COVER and has the property that all its members are constant-approximable problems. We observe that MIN F+�1 contains contains several node-deletion and edge-deletion problems on graphs (cf. [Yan81a,Yan81b]), but also showthat MIN SET COVER is not in this class.We then introduce the class MIN F+�2(1), which is a class of NP minimizationproblems that contains MIN SET COVER, MIN DOMINATING SET, MIN HITTING3



CUT. Papadimitriou and Yannakakis [PY88] showed that every problem in MAX NPis constant-approximable. Thus, perhaps for the �rst time, we have a structural resultthat accounts for the common approximation properties of many natural optimizationproblems.After this, Panconesi and Ranjan [PR90] showed that MAX CLIQUE does notbelong to the class MAX NP. On the other hand, MAX CLIQUE belongs to the classMAX �1 of maximization problems whose optimum is de�nable using universal �rst-order formulae, i.e., it is of the formmaxS jfw : A j= (8x) (w;x;S)gj;where  (w;x;S) is a quanti�er-free formula. Panconesi and Ranjan [PR90] showedalso that MAX �1 contains optimization problems for which no constant approximationalgorithm exists, unless P=NP.Motivated by the above developments, Kolaitis and Thakur [KT90] undertooka systematic investigation of optimization problems from the logical de�nabilityperspective. In particular, they became interested in understanding the exactexpressive power of this framework and in discovering other natural classes ofoptimization problems that can be obtained using this perspective. For this, theyexamined the class of all maximization problems on �nite structures with optimumde�nable as maxS jfw : A j= �(w;S)gj;where �(w;S) is an arbitrary �rst-order formula. Kolaitis and Thakur [KT90]showed that this class coincides with the collection of all polynomially bounded NP-maximization problems on �nite structures, namely the maximization problems whosedecision problem is in NP and whose optimum value is less than or equal to apolynomial of the input size. In the same paper, these problems were classi�edaccording to the quanti�er complexity of the formulae used in de�ning them, and itwas shown that the polynomially bounded NP-maximization problems form a properhierarchy with exactly four distinct levels. Kolaitis and Thakur [KT90] also examinedminimization problems and showed that logical de�nability has di�erent implicationsfor NP-minimization problems than it has for NP-maximization problems in terms ofboth expressive power and approximation properties. In particular, the polynomiallybounded NP-minimization problems form a proper hierarchy with exactly three distinctlevels. In addition, it turns out that the quanti�er pattern of the formulae used tode�ne NP-minimization problems does not impact on the approximation propertiesof the problems, unlike the case of NP-maximization problems considered in [PY88].More speci�cally, unlike MAX NP, the class of minimization problems de�nable usingexistential �rst-order formulae contains problems that are not constant-approximable,if P 6= NP. 2



1 Introduction and Summary of ResultsOptimization problems had a major in
uence on the development of the theory ofNP-completeness. Indeed, many NP-complete problems are decision problems thatare derived from natural optimization problems by imposing a bound on the objectivefunction (cf. [GJ79]). Turing machines and polynomial-time reductions have provided arobust computational model for classifying and studying decision problems. In contrast,the absence of a robust model for optimization problems has been a serious impedimentto the development of a structural optimization theory.Johnson [Joh74] initiated a classi�cation of optimization problems according to theirapproximation properties. For some concrete problems, such as MAX SAT, Johnson[Joh74] found algorithms that provide approximate solutions within a constant factorof the optimum (constant-approximable problems). For other concrete problems, suchas MIN SET COVER, he exhibited algorithms with the property that the ratio ofthe worst case to the optimum is bounded by the logarithm of the input size (log-approximable problems). At the end of that paper, Johnson [Joh74] raises a numberof interesting questions, all of which have to do with the development of a structuraloptimization theory that would explain the similarities and the di�erences between theapproximation properties of various optimization problems. In Johnson's words: \Whatis it that makes algorithms for di�erent problems behave the same way? Is there somestronger kind of reducibility than the simple polynomial reducibility that will explainthese results, or are they due to some structural similarity between the problems as wede�ne them? And what other types of behavior and ways of analyzing and measuringit are possible?"Johnson's questions remained largely unanswered for a number of years. In 1988,Papadimitriou and Yannakakis [PY88] brought a new insight to this area of researchby focusing on the logical de�nability of optimization problems. It is worth pointingout that they were motivated by Fagin's [Fag74] theorem, which asserts that a class of�nite structures is NP-computable if and only if it is de�nable by an existential second-order sentence. Papadimitriou and Yannakakis [PY88] introduced the class MAX NPof optimization problems on �nite structures A whose optimum can be de�ned asmaxS jfw : A j= (9x) (w;x;S)gj;where j:::j denotes the cardinality of a set,  (w;x;S) is a quanti�er-free formula, 9x isan existential �rst-order quanti�er, and S is a sequence of second-order variables, i.e.,it ranges over relations of �xed arities on the structure A. Intuitively, the second-ordervariables S correspond to the existential second-order quanti�ers in Fagin's [Fag74]characterization of NP.The class MAX NP contains many natural optimization problems, including MAX3SAT, MAX SAT (appropriately encoded as a problem on �nite structures), and MAX1
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