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e MIN 3NON-TAUTOLOGY.

Instance: A DNF formula with 3 literals per disjunct. Every instance I of MIN
3NT is identified with a finite structure A(I) with four ternary predicates
Dy, Dy, Dy, D5, where D;(wy,ws, ws) is true if and only if the set {wy, wa, w3}
is a disjunct with wq,- -, w; appearing as negative literals and w;;1,---, w3
appearing as positive literals, 0 <z < 3.

Solution: The minimum number of disjuncts simultaneously satisfiable under
some truth assignment.

optyin 3NT(I) = ming H(wlv Wa, w3) DA |: ¢(w17 Wz, W3, S)Hv
where ¢(wy,wsq, ws, S) is the following quantifier-free formula:

(Do(w1,wq,ws) A S(w1) A S(wy) A S(ws))V
( D1(wy,wq,ws) A =S(wy) A S(wz) A S(ws))V
(D3(w1,wq,ws) A =S(wr) A =S(wz) A S(ws))V
(Ds(w1,wq,ws) A 2S(w1) A =S(wz) A =S (ws)).
e MAX SAT.

Instance: A boolean formula in conjunctive normal form. An instance I of MAX
SAT can be identified with a finite structure A(I) = (X,C, P,N), where X
is the set of variables and clauses of I, the predicate C(x) expresses that x
is a clause, and P(¢,v) and N(e¢,v) are binary predicates expressing that a
variable v occurs positively or negatively in a clause c.

Solution: The maximum number of clauses simultaneously satisfiable under
some some truth assignment.

optyax saT(A()) = maxs [{w: A(I) = (Jy)(P(w,y)AS(y)) V(N (w, y)\=S(y)) -
e MIN SET COVER.

Instance: A set X and a collection, C', of subsets of X such that X = gee S
It is encoded by a finite structure A = (A,C, M), where A = X UC is

the universe of the structure, and M(x,S) is a binary predicate expressing
membership of an element z in the set S in C'.

Solution: The cardinality of the minimum cover C’, such that " C C, and
USEC’ S — X

optyy ser cover(A) = ming{[S]: A = (Vo )(y)(~C(x) — (S(y) A M(z,y)))}.
e MIN VERTEX COVER.

Instance: A graph G = (V, E).

Solution: The cardinality of the minimum vertex cover in G.

optyy ve(G) = ming{|S]: G = (Ve )(Vy)(E(z,y) — (5(x) V 5(y)))}-
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e MIN EDGE DOMINATING SET.
Instance: A graph G = (V, E).

Solution: The cardinality of the minimum edge dominating set in G. An Edge
Dominating Set E’ is a subset of edges such that every edge in E shares at
least one endpoint with some edge in E’.

optyin ppar ps(G) = ming{|S| : A |= (Va)(Vy)(32)(E(z,y)
[(S(x, 2)NE(x, ))V(S(y, 2)ANE(y, z))]}.

!

e MIN DOMINATING SET.
Instance: A graph G = (V, E).

Solution: The cardinality of the minimum dominating set in G. A Dominating
Set is a set of vertices such that every vertex is either in the set or has a
neighbor in the set.

optyn pom. ser(G) = mins{[S|: A = (Va)(Jy)(S(x) vV S(y) A E(x,y))}-
e MIN GRAPH COLORING.
Instance: A graph G = (V, E).

Solution: The minimum number of colors used to color the vertices of G such
that adjacent vertices have a different color.

optyin cororng(G) = miner{|C]: G = (Vr)(Te) [T(x,¢) AC(c)] A
(Yv1)(Ver) (Vo) (Ve [( E(v1, va) AT (v1, ¢1)AT (02, ¢2)) — ¢1 # cal }.

e MIN HITTING SET

Instance: A collection C' of subsets of a finite set X. It is encoded by a finite
structure A = (A, C, M), where A = X U C is the universe of the structure,
and M(x,S) is a binary predicate expressing membership of an element x
in the set S in C.

Solution: The cardinality of the smallest subset X’ C X, such that X’ contains
at least one element from subset in C'.

optyy mrrTiNG ser(A) = mins{[S|: A = (Va)(y)(Clx) — (S(y) A M(y,2)))}-
¢ LONGEST-PATH-with-FORBIDDEN PAIRS.
Instance: A directed graph G = (V, E) and a collection C = {(ay,b1),- -, (an, b,)}

of pairs of vertices from V.

Solution: The longest simple path that contains at most one vertex from each
pair in C.
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which 1s a contradiction.

(2) Towards a contradiction, assume that MAX CLIQUE can be defined as a
minimization problem using a universal first-order formula (Vx )y (w, x, S) with a single
free-variable w.

Let Hy = (V4,E;) be a graph with Vi = {ay,b} and the edge relation being
empty. Assume that ST witnesses the optimum value for the graph H; and let
A =A{w e Vi : Hi E (Vx)¥(w,x,S7)}. Therefore, we have that |Aj| = 1. Let
fif = Vi — A} be the complement of A7. We may assume, without loss of generality,
that a; € A

Now let Hy = (V3, E3) be a graph isomorphic to Hy, with V3 = {az, b}, and with the
isomorphism mapping a; to ay. Let S5 be the image of ST under the same isomorphism.
Analogous to A}, we define A5 = {w € V3 : Hy | (Vx)¢(w,x,S5)} and conclude that
ay € A;, where A5 =V, — A% is the complement of AZ.

Notice that H;, E —(Vx)Y(a;,x,8F), for « = 1,2. Let G = (V,E) be the graph
with V' = {ay,as,b} and E = {{a1,a2}}. We let S* = S7 U S; and consider the set
A*={w eV : G E (¥x)(w,x,8*)}. Since Hy, a; and Hy, ay do not satisfy the univer-
sal sentences above, and since universal sentences are preserved under substructures,
we have that G = ~(Vx)¢(a;, x,8*), for i = 1,2. Therefore, ay,ay are elements of A*,
where A* = V — A* is the complement of A*. Consequently, |A*| < 1, which is a
contradiction, as the maximum clique of G is of size 2. O

We should point out that in the above proof we used in a crucial way the assumption
that the universal first-order formula had a single free variable. Indeed, we used the
fact that A* = A7 U A3, which would not be true if arity of w was greater than 1.

It remains an open problem to extend the previous result to universal first-order
formulae with more than one free variable. Preliminary investigations suggest that such
a result poses challenging combinatorial difficulties, even for the case of a universal first
order formula with exactly two free variables.

Appendix
We state here the definitions of some optimization problems used in the paper.
e MAX CLIQUE.
Instance: A graph G = (V, E).

Solution: The cardinality of the largest clique of G.
obtyax cLique(G) = maxs{|S]: G = (Vo )(Vy)(S(x)AS(y) Aw #y) — E(x,y)}
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that NP # co-NP if and only if CLIQUE (or any NP-complete decision problem) can
not be defined on finite structures by any wuniversal second-order sentence. As far as
we know, Corollary 6.1 is the only other characterization of the NP ~ ¢co-NP question
in terms of logical definability alone.

The above comments suggest that it may be possible to shed some light on the
NP vs. co-NP problem by examining subclasses of MIN II; and showing that MAX
CLIQUE is not in some of them. What makes this approach plausible is the fact
that universal first-order formulae have well-understood model theoretic properties,
such as preservation under substructures, which may be used in obtaining lower-bound
expressibility results. In what follows we begin an investigation along these lines by
considering two proper subclasses of MIN II;, namely the class MIN ¥4 (cf. Theorem 2)
and the subclass of MIN II; consisting of all NP minimization problems that are
definable using a universal first-order formula with a single free variable.

Proposition 5: Let o be a vocabulary consisting of a single binary predicate symbol
E. Then the following are true:

1. MAX CLIQUE is not in the class MIN ¥y over the vocabulary o.

2. MAX CLIQUE can not be defined as a minimization problem using a universal
first-order formula with a single free variable, i1.e., if S is a sequence of predicate
symbols and (Vx)i(w,x,S) is a universal first-order formula over o US having w
as its only free variable, then there is a graph G such that

optarax CLIQUE(G) # msin Hw: G = (Vx)¥(w,x,S)}.

Proof: (1) Towards a contradiction, assume that MAX CLIQUE is in the class
MIN ;. Let (3x)y(w,x,S) be an existential first-order formula such that for every
graph G we have

optyax CLIQUE(G) = msin H{w: G | (Ix)p(w,x,S)}].

For simplicity, in what follows we write opt(G) instead of optyax crique(G). Let G be
a graph consisting of two vertices {v1, vy} and no edges and assume that S* witnesses
opt (@), i.e., opt(G) = {w : G = (Ix)(w,x,8*)}| = 1. Let Hy be the subgraph of
G whose only vertex is vy, and let Hy be the subgraph of G whose only vertex is vs.
Let ST and S be the restrictions of S* to the sets {v;} and {vy} respectively. If b is
a tuple from H;, ¢ = 1,2, such that H; = (3Ix)y(b,x,S7), then it is also the case that
G | (Ix)(b, x,8%), because existential formulae are preserved under extensions. But,

Hw: H; = (Ix)(w,x,8")} > 1, for i =1,2.
Moreover, the sets {w : Hy = (Ix)(w,x,S7)} and {w : Hy | (Ix)p(w,x,83)} are

disjoint. Therefore,

H{w: G E (Ix)(w,x,87)}| > 2,
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(cf. definition 2.1). This problem asks: Given I € Tg and an integer k, does there exist
a feasible solution T € Fo([I) such that fo(I,T) > k? Wesay T € Fo(I)is an optimum
solutron for instance I of Q if fo(I,T) = maxg(I). Since NP = co-NP, the complement
of the above decision problem is also in NP, and, consequently, the following problem

is in NP: Given I € 7y and an integer k, is there an optimum solution T of I for the
problem Q such that fo(I,T) < k?

Let Q* = (Zg+, For, for, min) be the minimization problem with

Ig- = Iy,
For(I) = {T: T is an optimum solution of I for Q}, for all I € Zo«,
fQ*(I, T) = fQ(I, T) for all T € FQ*(I)

The associated decision problem for Q* is: Given I € 7y« and an integer k, is there a
feasible solution T' € Fg» (I) such that fo«(I,T) < k7 Note that this is in NP, because
the above decision problem is in NP. Hence, @* is an NP minimization problem.

Notice that for all feasible solutions T of I for Q it is the case that fo«(I,T) =
opto(I). As a result, minger_.(r) for(I,T) = opty(I). Therefore, ming«(I) = maxg(I)
for all instances 1. O

As mentioned earlier, Kolaitis and Thakur [KKT90] showed that the class MIN PB
of all polynomially bounded minimization problems coincides with the class MIN II; of
minimization problems definable using universal first-order formulae (cf. Theorem 2).
By combining this result with the preceding Proposition 4, we obtain the following

reformulation of the NP = co-NP question.

Corollary 6.1: The following two statements are equivalent:

1. NP # co-NP.

2. MAX CLIQUE is not in the class MIN IIy, i.e., there is no universal first-order
formula (Vx)y(w,x,S) (where ¢(w,x,S) is a quantifier-free formula) over a
vocabulary {E} U S such that for every graph G = (V, E) we have that

maxXnax CLIQUE(G) = mSiIl |{W -G |: (VX)@/)(W,X, S)}|

The preceding Corollary 6.1 holds also with any NP-hard maximization problem in
place of MAX CLIQUE. We chose to use MAX CLIQUE here, because it is in the class
MAX TII; and, thus, the result makes the difference between the classes MAX II; and
and MIN II; more striking.

Corollary 6.1 yields a machine-independent characterization of the NP Z ¢o-NP
question. Fagin [Fag74] characterized NP computability in terms of definability in
second-order logic on finite structures. From Fagin’s [Fag74] main result, it follows

19



this conjecture can be established directly using combinatorial and model theoretic
arguments, and without any complexity theoretic assumptions.

5 Maximization Problems vs. Minimization Problems

In some cases, given a maximization problem Q. one can find a minimization problem
Q* with the property that the optimum value of @ is equal to the optimum value
of @*. LINEAR PROGRAMMING provides the canonical manifestation of this
phenomenon. Indeed, duality theory makes it possible to rewrite a given maximization
linear programming problem as a minimization linear programming problem, and vice

versa (cf. [PS82]).

When it comes to NP optimization problems, a folklore result in complexity theory
asserts that, unless P = NP, it not possible to rewrite every NP maximization problem
as an NP minimization problem. We now state this result more formally and prove it,
since we were not able to pinpoint an exact reference in the literature for it.

Proposition 4: The following statements are equivalent.

1. For every NP maximization problem @, there is an NP minimization problem
Q* such that @ and @Q* have the same instances and for every instance I,
maxg(]) = ming«(I).

2. NP = co-NP.

3. For every NP minimization problem Q*, there is an NP maximization problem
Q@ such that @* and Q@ have the same instances and for every instance I,
ming«(I) = maxg(I).

Proof:  We prove here that statements (1) and (2) above are equivalent. The
remaining equivalences can be proved with a similar argument.

Assume first that every NP maximization problem can be rewritten as a
minimization problem with the same instances. Since MAX CLIQUE is an NP
maximization problem with graphs as instances, there is an NP minimization problem
Q* = (Zg+, For, for, min) on graphs such that maxmax crique(G) = ming«(G).

Consider now the NP-complete decision problem CLIQUE: Given a graph G and
an integer k, does G have a clique of size greater than or equal to k7?7 It follows
from the above that CLIQUE has a YES answer on a graph G if and only if
ming«(G) = minrer,. for(G,T) > k. Thus, CLIQUE has a YES answer on a graph
G if and only if for every feasible solution T' of Q* on G we have that fo«(G,T) > k.
Since @* is an NP minimization problem, the latter decision problem is in co-NP

(cf. definition 2.1). As a result, CLIQUE is in co-NP and, consequently, NP = co-NP.
Assume now that NP = co-NP and let Q@ = (Zg,Fo, fo,max) be an NP

maximization problem. Therefore, the decision problem, associated with @ is in NP
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Let S = (51,57,---,5;) and let ¢(S) be the formula (Vw)(Sy(w) — S1(w)) A (S*).
It follows that
opto(A) = mjn{[Si|: A |- 6(S))

Note that Sy has only positive occurrences in ¢(S) and note also that the quantifier-free
part of ¢(S), when expressed in DNF, has at most one occurrence of Sy per disjunct.
O

The preceding Proposition 2 illuminates the differences between the class MIN
F*II,(1) and the class MIN PB of all polynomially bounded minimization problems.
Indeed, it follows that it is the presence of additional predicates in the sequence S that
makes the difference between MIN PB and the MIN F*II,(1). In other words, the
optimization problems in the class MIN FTII(1) have the property that the feasible
solution is represented by only one predicate, the cardinality of which is the objective
function, while in the larger class MIN PB the feasible solution is a sequence of
predicates and the objective function is the cardinality of one of these predicates. For
both classes the quantifier complexity of the formulae and the syntactic restrictions on
the occurrences of 57 in the formulae are the same.

As mentioned earlier, there are polynomially bounded minimization problems, such
as MIN 3NON-TAUTOLOGY, that are not log-approximable, unless P = NP. Since
these problems are not in the class MIN F*TI,(1), it follows that the additional
predicates are indispensable in order to express all polynomially bounded NP
minimization problems in the logical definability framework.

So far, we focused on the approximation properties of optimization problems in the
class MIN F*1TI,(1). In the beginning of this section, we introduced also the classes MIN
F*I,(k), k > 1, containing minimization problems that are defined using formulae in

which S is allowed to have up to k occurrences (all of them positive) in every disjunct
of the quantifier-free part (in DNF). It turns out that this relaxed condition gives rise
to weaker approximation properties.

Proposition 3: Let Q be an optimization problem in the class MIN F*1I,(k), for some
k > 1. Then there is a polynomial-time approximation algorithm and a constant ¢ such
that for every instance A of Q the algorithm produces a feasible solution on which the
objective function takes value less than or equal to c(opt(A)*)log(]A]).

Proof: (Hint:) The approximation algorithm is an extension of Johnson’s greedy
algorithm [Joh74] for the MIN SET COVER problem. Details will appear in the full
paper. O

We conclude this section by conjecturing that the MIN GRAPH COLORING
problem is not in the class MIN F*II, = J, MIN F*II,(k). We believe that
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It can be seen that C* is a set cover for I if and only if {a : s € C*} covers
every element of A*. Therefore, opto(A) = optspr cover(fa)- It is clear that this
is an A-reduction. Hence, MIN SET COVER is complete for MIN F*II,(1) under

A-reductions.

We can show that MIN SET COVER <, MIN DOMINATING SET. As a result
MIN DOMINATING SET is also complete for MIN F*II,(1) under A—reductions. O

We now comment on the differences between the class MIN F+H2(1) and the class
MIN PB of all polynomially bounded NP minimization problems.

Recall the earlier Theorem 1, which asserts that MIN PB coincides with the class
MIN FII,. In other words, if @ is a polynomially bounded minimization problem with
instances finite structures A over a vocabulary o, then there is a II, sentence (S) over
the vocabulary o U S, where S = (51, -+, .5;) is a sequence of predicate symbols not in
o, such that
opt(A) = min{|Si] : A - 1(S)).

for every finite structure A over o. The following simple result shows that a
syntactically proper subclass of MIN FII; captures every polynomially bounded
minimization problem.

Proposition 2: Let @ be a polynomially bounded NP minimization problem with
instances finite structures A over a vocabulary o. Then there is a II, sentence ¢(S)
over the vocabulary o U S, where S is the sequence (Sy,---,5;) of predicate symbols
not in o, such that

1. opt(A) = ming{|S1]| : A | ¢(S)}, for every finite structure A over o;

2. the predicate symbol S; has only positive occurrences in ¢(5);

3. the quantifier-free part of the sentence ¢ (S) is equivalent to a formula in DNF
with at most one occurrence of S per disjunct.

Proof: Since Q is a polynomially bounded NP minimization theorem, Theorem 1
implies that optima on instances A over ¢ can be expressed as

opto(A) = min{[ST]: A = (ST},

where (S*) is a II; sentence with predicate symbols amongst those in o and the
sequence of predicates 8* = (S7,---,5}). Notice that at this point the predicate ST
may have negative occurrences in the formula 1/(S*). We now introduce a new predicate

Sy and insist that ST C Sy. In other words, we express the optimum value of Q as

opto(A) = min{|Si|: A b (YW)(Si(w) = Si(w)) A (S")).
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It is clear that MIN F*II; is a subclass of MIN FII,. Moreover, MIN F*II; is
contained in the class MIN FII, and, in fact, this containment is a proper one, because

MIN SET COVER witnesses the separation of the two classes.

We will be focusing on the class MIN F*1I,(1), which contains MIN SET COVER
and other natural optimization problems, such as MIN DOMINATING SET, MIN
EDGE DOMINATING SET, and MIN HITTING SET [GJ79]. Actually, it will turn
out that some of these problems are complete for the class MIN F*TI,(1), via a certain
approzimability preserving reduction.

The notion of an approximabilty preserving reduction was introduced by Papadim-
itriou and Yannakakis [PY88], who considered L-reductions between optimization prob-
lems. Panconesi and Ranjan [PR90] generalized this to the notion of A-reduction (<4).
These reductions have the property that if P and Q are optimization problems such that
P <4 Q and @ is g-approximable, for some function ¢, then P is also g-approximable.
We now establish the following result.

Theorem 6: The MIN SET COVER problem and the MIN DOMINATING SET
problem are complete for the class MIN FTII(1) under A—reductions. As a result,
every problem in the class MIN F*1I,(1) is log-approximable.

Proof: (Sketch) Let @ be a problem in the class MIN F*1I,(1). Hence, its optimum

is expressed as

opto(A) = min{|S]: A |= (Vx)(Iy)v(x,y,9)},

where S is an m-ary predicate symbol, ¢ (x,y,S) is a quantifier-free DNF formula in
which all occurrences of S are positive, and S occurs at most once in each disjunct.
Assume that the arity of x is k, the arity of y is I, and let N denote |A|'.

Given an instance A of Q. we express its optimum as

N
opto(A) =min{|S]: A = (Vx)(\/ ¥(x,¢;, 9))},
7=1
where A' = {c;, -, cn}. Wesay aset S C A™ covers a tuple b, if A |= \/;V:1 (b, c;, S).
Observe that opto(A) is the cardinality of the smallest set S C A™ such that S covers
every element of AF.

We now use the structure A to construct the following instance Iy = (X, C) of the
MIN SET COVER problem:

X=AF C={sa:ac A},

where b is an element of the set s, if and only if A | VL, (b, c;,5/{a}). In other
words a set s contains b if and only if {a} covers b.
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Proposition 1: Let o be a vocabulary consisting of a unary predicate symbol C' and
a binary predicate symbol M. The MIN SET COVER problem is not in the class
MIN FII; over o, and a fortiori, not in the class MIN F*II,.

Proof: Towards a contradiction, assume that MIN SET COVER is defined as
optsgr cover(A) = ms1n{|5| tAE8(5)}

where ¢(S) is a universal first-order sentence over o U {S}. Let I = (X,C) be the
following instance of MIN SET COVER:

X = {1’1,1}2}, C = {01702763}7

where ¢ = {a1}, o = {a2}, ¢z = {21, 22}

Assume that S* witnesses the optimum of MIN SET COVER on the encoding A(I)
of the instance I, i.e., A(I) | ¢(S*) and |S*| = opt(A(I)) = 1. Let Ay be the sub-
structure of A(I) with universe {1, 22,¢1,¢2}, and let S§ be the restriction of S* to
the universe of Ag. It is clear that opt(Ag) = 2 and, consequently, |S5| > 2. Since
A(I) = ¢(S*) and ¢(S*) is a universal sentence, it is also the case that Ag = ¢(.SF).

As a result, |[S*| > 2, which is a contradiction. O

4.2 The class MIN F*II,

We now introduce the class MIN F*II,, which is a subclass of MIN FII, containing
the MIN SET COVER problem. Observe that the optimum of the MIN SET COVER

problem on a structure A over the vocabulary {C, M} is defined as follows:
optspr cover(A) = min{[S]: A = (Va)(Fy)(=C(z) — (S(y) A M(z,y)))}
This observation motivates the following definition.

Definition 4.1: Let MIN F*II,(k), k¥ > 1, be the class of minimization problems Q
whose optimum on a structure A over a vocabulary ¢ can be expressed as:

opto(A) = min{|S]: A |= (Vx)(Iy)v(x,y,9)},

where S is a single predicate of some fixed arity, ¢ (x,y,S) is a quantifier-free DNF
formula in which all occurrences of S are positive, and S occurs at most k times in
each disjunct. We also let

MIN F*II, = UMIN F+H2(k)
k
denote the union of these classes.
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As mentioned earlier, MIN VERTEX COVER is a constant-approximable problem
(cf. [PS82]). The following result by Kolaitis and Thakur [KT90] shows that this
property is shared by every member of the class MIN F*II;.

Theorem 5: Every problem in the class MIN FT1II; is constant-approximable.

We now discuss the expressive power of MIN FII;. On the positive side, in addition
to MIN VERTEX COVER, the class MIN F*II; contains a large number of node-
deletion and edge-deletion graph problems (cf. [Yan8la,Yan81b]).

If U is a property of graphs, then the node (edge) deletion problem NODE-DELy
(EDGE-DELy) associated with ¥ is defined as follows: Given a graph G, find a set
of nodes (edges) of minimum cardinality whose deletion from G results into a graph
satisfying U [Yan8la,Yan81b].

Several well known NP-hard optimization problems, such as MIN VERTEX COVER
and MIN FEEDBACK ARC SET [GJ79], can be stated as node or edge deletion
problems by specifying the property ¥ appropriately. Assume now that ¥ is a property
of finite graphs that is definable using a universal first-order sentence. Then the node
(edge) deletion problem NODE-DELy (EDGE-DELy) associated with ¥ is contained
in the class MIN FII;. Indeed, it is easy to verify that if ¥ is definable by the universal
sentence (Vay)--- (V) (xq, -+, 2¢), then the optimum of NODE-DELy on a graph G

can be expressed as
opt(G) = min{[5|: G = (Vo) - - (Ve ) (mb(2n, -y we) = (S(ea) V-V S(0)))}

Edge Deletion problems can be formulated similarly. Yannakakis [Yan8la,Yan81b]
showed that if ¥ is one of the following properties, then the node or edge deletion
decision problem associated with ¥ is NP-complete:

1. transitive digraph (edge deletion problem).

2. without cycles of specified length [, for any fixed [ > 3 (edge deletion problem).

3. maximum degree 1 (node deletion problem).

Each of the above properties is definable by a universal first-order sentence and, thus,
the associated minimization problem is in the class MIN F*II;.

On the negative side, we will show below that the MIN SET COVER problem is
not in the class MIN F*II; (no complexity theoretic assumptions will be used in the

proof of this result). MIN SET COVER is a log-approximable problem [JohT4] and

no better approximation properties for it are known.

Recall that an instance I = (X, C) of the MIN SET COVER problem is viewed
as a finite structure A(I) = (X U C,C, M), where M is a binary relation expressing
membership of an element x € X in a set S € C.

13



where A is the structure (A* U Vy, Vo, Eo, E*) over o. Since Q, is not constant-
approximable, unless P = NP, it follows that if P # NP, then Q4 is not constant-
approximable. O

This proof can be extended to the undecidability of g-approximability for any
function ¢ for which there is an optimization problem @ that is not g-approximable,
modulo P # NP or some other complexity theory assumption. In particular, we can
show that it is undecidable if a first-order formula defines a log-approximable problem.

4 Approximation Properties of Minimization Problems

The preceding Theorem 4 implies that, unless P = NP, it is not possible to find a
“nice” necessary and sufficient condition that characterizes which first-order formulae
give rise to approximable optimization problems. In view of this, we can only hope to
isolate sufficient conditions for approximability. In this section we investigate certain
syntactically defined classes of minimization problems and study their approximation
properties.

Papadimitriou and Yannakakis [PY88] showed that every problem in the class MAX
Yy is constant-approximable. On the other hand, Kolaitis and Thakur [KT90] showed
that the class MIN ¥; contains problems, such as MIN 3NON-TAUTOLOGY, that are
not log-approximable, unless P = NP. This suggests that if one wants to isolate sufficient
conditions for approximability of minimization problems in the logical definability
framework, then one has to look for syntactic features beyond the quantifier patterns.
It turns out that certain natural subclasses of MIN FII; and MIN FII; possess good
approximation properties. The first of these is the class MIN F*II; below, which was
introduced and studied in [K'T90].

4.1 The class MIN F*II,

We define MIN F*II; to be the collection of all minimization problems Q whose optima
on finite structures A over a vocabulary o can be expressed as:

opto(A) = min{|S]: A |= (Vx)i(x, 5)},

where S is a single predicate of some fixed arity and ¢ (x, ) is a quantifier-free formula
over the vocabulary o U {S} in which all occurrences of S are positive.

It is clear that MIN F*II; is a subclass of MIN FII;. Moreover, MIN F*II; contains
MIN VERTEX COVER as a member, since the optimum of MIN VERTEX COVER
on a graph G = (V, E) is given by

optye(G) = min{|S|: & = (Ya)(Vy)(E(z,y) — S(x) V S(y))}.

12



Proof: We use Trakhtenbrot’s classical theorem [Tra50], which asserts that the set of
first-order sentences true on all finite structures over a vocabulary 7 is not recursive,
provided 7 contains at least one non-unary predicate symbol. We reduce the question
of “truth on all finite structures” to that of “constant-approximabilty”.

Let S = (51, -+, 5:) be a sequence of predicate symbols and let x(S) be a first-order
formula over the vocabulary {E*} U S such that Q, is a minimization problem that

is not constant-approximable, unless P = NP. The instances of ), are identified with
finite structures A* = (A*, E*).

Given a first-order formula ¢ ( E) over the vocabulary { E'}, we consider the following

formula ¢(S) with predicate symbols from {V, E, E*} U S:

6(8) ™ oV (B) A T(S) A (A S C T,

=1

=
[y

where V is the complement =V of V, the expression ¢V (E) denotes the formula (E)
relativized to V, the expression \" denotes the formula y relativized to V, and «; is the
arity of 5;, 1 < < t. The concept of relativization used here is from mathematical logic,
namely, if © is a formula and R is a unary predicate, then the relativized formula o is
obtained from ¢ by replacing every subformula (Va)e'(2) of ¢ by (Va)(R(x) — ¢'(x))
and by replacing every subformula (Jx)p’(2) of ¢ by (Jz)(R(x) A ¢'(x)).

We now consider the minimization problem Q, defined by ¢(S). The instances of
Q, are finite structures of the form A = (A,V, E, E*) over the vocabulary ¢ and the
optimum of Q, is given as

opto,(A) = min{|Si] : A = 4(S)}.

We will show that the truth of ¢’(E) on all finite structures is equivalent to the constant-
approximabilty of Q,, modulo P # NP.

If the sentence 1(E) is true on all finite structures, then A [~ ¢(S), for every finite
structure A over o and for every sequence of relations S on A. Hence, for all finite
structures A, we have that

optg,(A) = msin{|51| tA = 9(S)} = trivg,.

As a result, in this case Q4 is trivially constant-approximable.

For the other direction, assume that (Vj, Ey) is a finite structure over the vocabulary
{E} on which the sentence ¢)( E) is false. Then, given any finite structure A* = (A*, E*)
over the vocabulary { E*}, we have that

OthX(A*) = OPt%(A)a

11



and

MINII, < MIN FII, 44, MINX, <€ MINFIL,, n>1.

It follows that
MAXII, = MAX FII, and MINZX, = MIN FII,,,

for n > 1.

The preceeding Theorem 1 can now be restated as follows.

Theorem 3: The class MAX PB of all polynomially bounded NP maximization
problems coincides with the class MAX FTI,. Thus,

MAX PB = MAX FII, = MAX FIL,, n >2.

The class MIN PB of all polynomially bounded NP minimization problems coincides
with the class MIN FII,. Thus,

MIN PB = MIN FII; = MIN FII,,, n > 2.

3 On the Undecidability of Approximation Properties

We showed before that we can express all polynomially bounded NP optimization
problems using logic. It is natural to ask whether or not logic can be also used to
capture all g-approximable problems, for a given function ¢g. In this section we provide
a negative answer to this question by establishing that, assuming P#NP, it is an
undecidable problem to tell if a first-order formula gives rise to a constant-approximable
problem.

Let o be a vocabulary and let ¢(S) be a first-order sentence with predicate symbols
from o US. We write Q4 to denote the minimization problem whose optimum on a
structure A is expressed as

opto,(A) = min{|Si|: A F 6(S)).
We now state and prove the main theorem of this section.

Theorem 4: Let o be a vocabulary with one unary predicate symbol {V'} and two
binary predicate symbols {E, E*}. Assuming P#NP, the following is an undecidable
problem: Given a first-order sentence ¢(S) over o US, is the minimization problem Q.
constant-approximable?
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where opt € {max, min}, and ¢(S) is a first-order sentence. Let w range over tuples
with arity the same as the arity of Sy. If @ is a maximization problem, then its optimum
is expressed as

opto(A) = max (W : A | 5,(w) A 6(S))].
On the other hand, if Q is a minimization problem, then its optimum is expressed as

opto(A) = min [{w : A = 6(S) — Si(w)}.

Notice that, unlike the case of maximization problems, we cannot express the optima
of minimization problem as

opto(A) = min|(w A = Si(w) A o(S)}]

because the minimum cardinality of the above set is zero, which occurs when 5; is
empty.

From the preceding remarks, it follows that, for n > 1,

MAX FII, <€ MAXIL,, MAXFY, € MAXY, n>1

Y

and

MIN FII,, € MINY,, MIN FY, € MINIIL,, n > 1.

In the opposite direction, assume that Q is an optimization problem with optimum
on a structure A expressed as

opto(A) = opt [{w: A = ¢(w,S)},

where opt € {max, min}, and ¢(w,S) is a first-order formula. By introducing a new
predicate symbol T with arity the same as that of w, we can express the optimum as

opto(A) = ont {IT]: A = (YW)(T(w) < ¢(w,S))}.
It follows that
opto(A) = max{|T|: A f= (YW)(T(W) — ¢(w,S))}
for a maximization problem Q, while
opto(A) = min{|T] : A | (Yw)(é(w,S) — T(w))}
for a minimization problem Q. As a result, for n > 1, we have the containments

MAXII, <€ MAXFIL,, MAX?Y, € MAXFIL 41, n>1

Y



2.2 Logic and Feasible Solutions

In this section we introduce a different approach to defining optimization problems
using logic. For many natural optimization problems, a feasible solution is a collection
of relations and the objective function is the cardinality of one of these relations. For
example, a feasible solution of the MIN VERTEX COVER problem is a set of vertices
forming a vertex cover and the objective function is its cardinality. A feasible solution
of the MAX CLIQUE problem is a set of vertices forming a clique and the objective
function is the cardinality of the clique. In both the above examples, a feasible solution
consists of a single relation. On the other hand, a feasible solution in the MIN GRAPH
COLORING problem is a pair of two relations C, T, where C' is a set that contains
colors and T is a binary relation that denotes a legal assignment of colors to the vertices
of the graph. In this case, the objective function is the cardinality of C'. In what follows,
we use this observation to introduce classes of optimization problems.

Definition 2.5: For each n > 1, let MAX FII, (F stands for feasible) be the class of
maximization problems @ whose optima on finite structures A over a vocabulary o are
defined as follows:

opto(A) = { maxg {|S1|: A = ¢(S)} if there is an S such that A = ¢(S),

trivg otherwise,

where S = (S, -+, 5;) is a sequence of predicate symbols, ¢(S) is a II,, sentence (i.e., a
formula with no free variables) with predicate symbols from o US, and trivg is a trivial
value for the optimum. Similarly, for each n > 1, we define the class MAX F¥,, using
Y, sentences. We also define the classes MIN FII,, and MIN F¥,,, n > 1 analogously.

For the trivial value trivg we have that

i |A|™ if @ is a minimization problem,
rivg = ) ) L
Q 1 if @ is a maximization problem,

where m is the arity of the predicate 5j.

For the sake of brevity, we shall denote the optimum as opt {|Si|: A = ¢(S)}, where
S

opt € {max, min}, but implicitly refer to the precise definition above.

Intuitively, if @ is an optimization problem in one of the classes defined above, then
a feasible solution for an instance A of Q is a sequence S = (Sy,---,S5;) of relations
satisfying ¢(S) and the objective function is the cardinality of Sj.

We exhibit next the relationships between the classes of optimization problems
defined above and those defined in the preceding Section 2.1.

Let @ be an optimization problem with optimum on a structure A expressed as

Oth(A) = Ogt {151+ A = ¢(S)},



Recall that 3,,,n > 1, is the class of first-order formulae in prenex normal form that
have n alternations of quantifiers, starting with a block of existential quantifiers. For
example, ¥ is the collection of existential formulae, while ¥, is the class of existential-
universal formulae. Similarly, II,,, n > 1, is the class of first-order formulae in prenex
normal form with n alternations of quantifiers, starting with a block of universal
quantifiers. Thus, a II; formula has universal quantifiers only, while II; is the collection
of universal-existential formulae. The class of quantifier-free formulae is denoted by g
or Il,.

Definition 2.4: For each n > 0, let MAX II,, be the set of problems @ whose optima
on finite structures A over a vocabulary ¢ are defined as follows:

opto(A) = max |{w : A [= 6(w, S},

where ¢(w,S) is a II,, formula with predicate symbols from o U S. Similarly, for each
n > 0, we define the class MAX ¥, by using ¥, formulae. The classes MIN II,, and

MIN ¥,, n > 0 are defined analogously with min in place of max.

The relationships between the various classes of maximization and minimization
problems defined above are described in the following results, which were obtained in

[KT90].

Theorem 1: The class MAX PB of all polynomially bounded NP maximization
problems coincides with the class MAX II,. Thus,

MAXPB = MAXII, = MAXII,, n > 2.

The class MIN PB of all polynomially bounded NP minimization problems coincides
with the class MIN ¥,. Thus,

MINPB =MINY¥; =MINY,, n > 2.

Theorem 2: MAX PB is a hierarchy with four distinct levels, namely,
MAX Y, Cc MAX Y, C MAXII; C MAXII,.

MIN PB is a hierarchy with three distinct levels, namely,
MIN Y, € MINX; C MINII; = MIN X,.

In the above, C denotes proper containment.



COVER and GRAPH COLORING are problems about finite graphs, while instances of
SET COVER can be identified with finite structures as follows. An instance I = (X, C)
of the SET COVER problem consists of a set X and a collection C' of subsets of X
such that X = Ugee S. It is encoded by a finite structure A(I) = (A, C, M), where
A = X UC is the universe of the structure and M(z, 5) is a binary predicate expressing
membership of an element x € X in a set S € C.

From now on we assume that the instances of the optimization problems we consider
are given as finite structures over some vocabulary o.

Papadimitriou and Yannakakis [PY88] were the first to use logic in order to define
classes of maximization problems and study their approximation properties. They
introduced the class MAX NP of maximization problems @ whose optima on finite
structures A over a vocabulary ¢ can be defined using an existential first-order formula
as follows:

opto(A) = max | {w : A = (3x)(w, x, )},

where S is a sequence of predicate symbols that are not in o, and ) is a quantifier-free
formula with predicate symbols amongst those in cUS. MAX SAT is a typical example
of an optimization problem in MAX NP. Papadimitriou and Yannakakis [PY88] showed
that every problem in MAX NP is constant-approximable.

Panconesi and Ranjan [PR90] showed that MAX CLIQUE is not in the class MAX
NP. Moreover, they proved that certain polynomial-time optimization problems are not
in MAX NP. In an attempt to find a syntactic class of maximization problems containing
MAX CLIQUE, they introduced the class MAX II; of maximization problems @ whose
optima on finite structures A over a vocabulary ¢ can be defined using a universal
first-order formula as follows:

opt gl A) = myx [{w s A |- (vVx)(w.x, )],

where 1) 1s a quantifier-free formula with predicate symbols from ¢ U S. Panconesi
and Ranjan [PR90] showed that this class contains problems that are not constant-
approximable, unless P = NP.

Kolaitis and Thakur [KT90] introduced a general framework for studying the
logical definability of both maximization and minimization problems. More specifically,
[KT90] considered optimization problems @ whose optima on finite structures A over
a vocabulary o are defined using an arbitrary first-order a formula ¢(w,S) as follows:

opto(A) = opt [{w: A = o(w.S)]].

Various classes of optimization problems, including MAX NP and MAX II;, can be
obtained in this framework by restricting the quantifier complexity of the first-order
formulae used.



Definition 2.2: Let g(n) be a function from positive integers to positive reals. We
say that an algorithm is a g-approzimation algorithm for an optimization problem Q
if, given an instance I of Q, the algorithm produces a feasible solution 7' such that

opto (1)

coptg(])
fT)

(D) it Q is a minimization problem
g1 =

if @ is a maximization problem,

where |I| denotes the size of the instance I and ¢ is a constant that depends on
the algorithm only. We say that an optimization problem is g-approzimable if there
is a polynomial time g-approximation algorithm for it. An optimization problem is
constant-approzimable, if it is g-approximable for a constant function g(n).

In this paper we will be considering constant-approximable problems and log-
approximable problems. The Appendix contains precise definitions of various
optimization problems that will be encountered in the sequel. MAX SAT [Joh74] and
MIN VERTEX COVER (cf. [PS82]) are examples of constant-approximable problems.
MIN SET COVER and MIN DOMINATING SET are examples of log-approximable
problems [Joh74]. There are graph problems that are not constant-approximable, unless
P = NP, such as the LONGEST-PATH-with-FORBIDDEN-PAIRS [Ber89]. Also the
MIN 3NON-TAUTOLOGY problem is not log-approximable, unless P = NP [KT90].

We now restrict attention to polynomially bounded NP optimization problems.
These are NP optimization problems in which the optimal solution is bounded by
a polynomial in the length of the corresponding instance [BJY89,LM81].

Definition 2.3: An NP optimization problem @ is said to be polynomially bounded if
there is a polynomial p such that

opto(I) < p(|1|) for all I € Zo.

We denote the class of all polynomially bounded NP maximization (minimization)

problems by MAX PB (MIN PB).

Examples of polynomially bounded NP optimization problems are MAX CLIQUE,
MAX SAT, MIN VERTEX COVER, MIN SET COVER, and MIN TRAVELING
SALESMAN problem with weights 1 or 2. On the other hand, the unrestricted
version of the TRAVELING SALESMAN problem and INTEGER PROGRAMMING

are examples of NP optimization problems that are not polynomially bounded.

NP decision problems and, consequently, NP optimization problems can be viewed
as problems on finite structures over some vocabulary ¢ consisting of predicate symbols.
In most cases, either an NP problem is described directly as a problem on finite
structures, or it can be easily encoded by such a problem. For example, VERTEX



SET, and many other natural optimization problems. We show that some of these
problems are actually complete for MIN F*II,(1) under appropriate reductions. As a
result, every problem in the class MIN F*1I,(1) is log-approximable. We also consider
classes that extend MIN F*1I,(1) and have weaker approximation properties.

Finally, we compare classes of maximization problems to classes of minimization
problems by examining under what conditions a maximization problem can be
represented as a minimization problem, and vice versa. In particular, we obtain a
machine-independent characterization of the NP < co-NP question, by showing that
NP # co-NP if and only if MAX CLIQUE is not in the class MIN II; of minimization
problems definable using universal first-order formulae. We also show that MAX
CLIQUE is not in certain proper subclasses of MIN II;.

2 Logic and NP Optimization Problems
2.1 Background

This section contains the basic definitions and the necessary background material
explaining the relationship between logical definability and optimization problems.

Definition 2.1: An NP optimization problem is a tuple Q@ = (Zg, Fo, fo,opt) such
that

o 7, is the set of input instances. It is assumed that 7o can be recognized in
polynomial time.

o Fo(I) is the set of feasible solutions for the input I.

e fo is a polynomial time computable function, called the objective function. It
takes integer values and is defined on pairs (I,T), where I is an input instance
and T is a feasible solution of I.

e opt € {max, min}.
o The following decision problem is in NP : Given I € 75 and an integer k, does

there exist a feasible solution T' € Fo(Z) such that fo(I,T) < k, when opt =
min? (or, fo(I,T) > k, when opt = max)

We write opto(I) to denote the optimum value of Q, on an instance I.

The above definition is essentially due to [PR90] and is broad enough to encompass
every known optimization problem arising from the class NP. If the underlying decision
problem of an optimization problem is NP-complete, then one cannot expect to have
polynomial time algorithms to compute the optimum. In view of this, researchers have
studied approximation algorithms and approximation properties of such problems.



In view of the above, it is natural to ask: are there other syntactic properties of
formulae that may have implications on the approximation properties of the problems
they define? In this paper we introduce an alternative framework for defining and
studying optimization problems using logic. Notice that many natural NP optimization
problems. including MAX CLIQUE, MIN VERTEX COVER, MIN SET COVER, and
MIN GRAPH COLORING, have the following two properties:

(1) a feasible solution is a finite sequence of sets satisfying a first-order sentence (often,
the sequence consists of a single set);
(2) the objective function is the cardinality of one of these sets.

Motivated from the above observation, we consider the class of all optimization
problems on finite structures A whose optimum can be defined as

opt {ISi]: A= 0(S)},

where opt is either max or min, ¢(S) is an arbitrary first-order sentence and
S = (S1,---,5:) is a sequence of predicates. Intuitively, the sequence S of predicates
represents the feasible solution and the objective function is the cardinality of S;.

We study first the relationships between classes of optimization problems defined
in the new framework and those defined in [PY88,PR90,IKT90]. In particular, we show
that using universal-existential (Il ) first-order sentences in the new framework we can
capture all polynomually bounded NP maximization and NP minimization problems.

Can logic be also used to capture all optimization problems having good
approximation properties? We address this question here and provide a negative
answer to it by establishing that, assuming P # NP, it is an undecidable problem
to tell if a first-order formula gives rise to an optimization problem that is constant-
approximable. Similarly, it i1s an undecidable problem to tell if a first-order formula
gives rise to an optimization problem that is log-approximable. As a consequence of
the above result, we cannot expect to have “nice” necessary and sufficient conditions
that characterize which first-order formulae give rise to optimization problems with
good approximation properties. Thus, we can only hope to isolate and study sufficient
conditions for approximability. With this insight in mind, we consider certain syntactic
conditions on first-order sentences and investigate the approximation properties of the
minimization problems defined by such sentences in the new framework.

We reexamine here the class MIN F*II;, introduced in [KT90]. This class contains
MIN VERTEX COVER and has the property that all its members are constant-
approximable problems. We observe that MIN FTII; contains contains several node-

deletion and edge-deletion problems on graphs (cf. [Yan8la,Yan81b]), but also show
that MIN SET COVER is not in this class.

We then introduce the class MIN F*TIy(1), which is a class of NP minimization
problems that contains MIN SET COVER, MIN DOMINATING SET, MIN HITTING



CUT. Papadimitriou and Yannakakis [PY88] showed that every problem in MAX NP
is constant-approximable. Thus, perhaps for the first time, we have a structural result
that accounts for the common approximation properties of many natural optimization
problems.

After this, Panconesi and Ranjan [PR90] showed that MAX CLIQUE does not
belong to the class MAX NP. On the other hand, MAX CLIQUE belongs to the class
MAX II; of maximization problems whose optimum is definable using universal first-
order formulae, i.e., it is of the form

max H{w: A E (Vx)(w,x,9)},

where (w,x,S) is a quantifier-free formula. Panconesi and Ranjan [PR90] showed
also that MAX II; contains optimization problems for which no constant approximation
algorithm exists, unless P=NP.

Motivated by the above developments, Kolaitis and Thakur [KT90] undertook
a systematic investigation of optimization problems from the logical definability
perspective.  In particular, they became interested in understanding the exact
expressive power of this framework and in discovering other natural classes of
optimization problems that can be obtained using this perspective. For this, they
examined the class of all maximization problems on finite structures with optimum

definable as
max | {w 2 A E o(w.S)}].

where ¢(w,S) is an arbitrary first-order formula. Kolaitis and Thakur [KT90]
showed that this class coincides with the collection of all polynomially bounded NP-
maximization problems on finite structures, namely the maximization problems whose
decision problem is in NP and whose optimum value is less than or equal to a
polynomial of the input size. In the same paper, these problems were classified
according to the quantifier complexity of the formulae used in defining them, and it
was shown that the polynomially bounded NP-maximization problems form a proper
hierarchy with exactly four distinct levels. Kolaitis and Thakur [KK'T90] also examined
minimization problems and showed that logical definability has different implications
for NP-minimization problems than it has for NP-maximization problems in terms of
both expressive power and approximation properties. In particular, the polynomially
bounded NP-minimization problems form a proper hierarchy with exactly three distinct
levels. In addition, it turns out that the quantifier pattern of the formulae used to
define NP-minimization problems does not impact on the approximation properties
of the problems, unlike the case of NP-maximization problems considered in [PY88].
More specifically, unlike MAX NP, the class of minimization problems definable using
existential first-order formulae contains problems that are not constant-approximable,

if P £ NP.



1 Introduction and Summary of Results

Optimization problems had a major influence on the development of the theory of
NP-completeness. Indeed, many NP-complete problems are decision problems that
are derived from natural optimization problems by imposing a bound on the objective
function (cf. [GJ79]). Turing machines and polynomial-time reductions have provided a
robust computational model for classifying and studying decision problems. In contrast,
the absence of a robust model for optimization problems has been a serious impediment
to the development of a structural optimization theory.

Johnson [Joh74] initiated a classification of optimization problems according to their
approzimation properties. For some concrete problems, such as MAX SAT, Johnson
[JohT74] found algorithms that provide approximate solutions within a constant factor
of the optimum (constant-approzimable problems). For other concrete problems, such
as MIN SET COVER, he exhibited algorithms with the property that the ratio of
the worst case to the optimum is bounded by the logarithm of the input size (log-
approzimable problems). At the end of that paper, Johnson [JohT74] raises a number
of interesting questions, all of which have to do with the development of a structural
optimization theory that would explain the similarities and the differences between the
approximation properties of various optimization problems. In Johnson’s words: “What
18 it that makes algorithms for different problems behave the same way? Is there some
stronger kind of reducibility than the simple polynomaal reducibility that will explain
these results, or are they due to some structural similarity between the problems as we
define them? And what other types of behavior and ways of analyzing and measuring
it are possible?”

Johnson’s questions remained largely unanswered for a number of years. In 1988,
Papadimitriou and Yannakakis [PY88] brought a new insight to this area of research
by focusing on the logical definability of optimization problems. It is worth pointing
out that they were motivated by Fagin’s [Fag74] theorem, which asserts that a class of
finite structures is NP-computable if and only if it is definable by an existential second-
order sentence. Papadimitriou and Yannakakis [PY88] introduced the class MAX NP
of optimization problems on finite structures A whose optimum can be defined as

max {w A = (3x)p(w,x, S)},

where |...| denotes the cardinality of a set, ¢»(w,x,S) is a quantifier-free formula, Ix is
an existential first-order quantifier, and S is a sequence of second-order variables, i.e.,
it ranges over relations of fixed arities on the structure A. Intuitively, the second-order
variables S correspond to the existential second-order quantifiers in Fagin’s [Fag74]
characterization of NP.

The class MAX NP contains many natural optimization problems, including MAX
3SAT, MAX SAT (appropriately encoded as a problem on finite structures), and MAX
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