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When a second Ethernet path was added between the client and the storage agents,the data-rates measured demonstrated that the Swift architecture can make immediate useof a faster interconnection medium. The data-rates for write almost doubled. For read,the improvements were only on the order of 25% because the client could not absorbe theincreased network load.Second, simulations show how Swift can exploit more powerful components in the future,and where components limiting I/O performance will be. The simulations show that data-rates under Swift scale proportionally to the size of the transfer unit and the number ofstorage agents when su�cient interconnection capacity is available.Even though Swift was designed with very large objects in mind, it can also handlesmall objects, such as those encountered in normal �le systems. The penalties incurred areone round trip time for a short network message, and the cost of computing the parity code.Swift is also well suited as a swapping device for high performance work stations if no dataredundancy is used.The distributed nature of Swift leads us to believe that it will be able to exploit all thecurrent hardware trends well into the future: increases in processor speed and network ca-pacity, decreases in volatile memory cost, and secondary storage becoming very inexpensivebut not much faster. The Swift architecture also has the 
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Swift incorporates data management techniques long present in centralized computingsystems into a distributed environment. In particular, it can be viewed as a generalizationto distributed systems of I/O channel architectures found in mainframe computers [21].6.1 Future WorkThere are two areas that we intend to address in the future: enhancing our current prototypeand simulator, and extending the architecture.6.1.1 Enhancements to the Prototype and the SimulatorBoth the current prototype and the simulator need to address data redundancy. The pro-totype will be enhanced with code that computes the check data, and both the read andwrite operations will have to be modi�ed accordingly. The simulator needs additional pa-rameters to incorporate the cost of computing this derived data. With these enhancementsin place we plan to study the impact that computing the check data has on data-rates.We also plan to incorporate mechanisms to do resource preallocation and to build trans-fer plans. With these mechanisms in place we plan to study di�erent resource allocationpolicies, with the goal of understanding how to handle variable loads.6.1.2 Enhancements to the ArchitectureWe intend to extend the architecture with techniques for providing data-rate guaranteesfor magnetic disk devices. While the problem of real-time processor scheduling has beenextensively studied, and the problem of providing guaranteed communication capacity isalso an area of active research, the problem of scheduling real-time disk transfers has receivedconsiderably less attention.A second area of extensions is in the co-scheduling of services. In the past, only ana-log storage and transmission techniques have been able to meet the stringent demands ofmultimedia audio and video applications. To support integrated continuous multimedia,resources such as the central processor, peripheral processors (audio, video), and communi-cation network capacity must be allocated and scheduled together to provide the necessarydata-rate guarantees.7 ConclusionsThis paper presents two studies conducted to validate Swift, a scalable distributed I/Oarchitecture that achieves high data-rates by striping data across several storage devicesand driving them concurrently. The prototype validates the concept of distributed diskstriping in a local-area network.A prototype of Swift was built using Unix and an Ethernet-based local-area network.It demonstrated that the Swift architecture can achieve high data-rates on a local-areanetwork by aggregating data-rates from slower data servers. The prototype achieved upto three times faster data-rates than the data-rate to access the local SCSI disk, and itachieved eight times the NFS data-rate for writes and almost twice the NFS data-rate forreads. The performance of our local-area network Swift prototype was limited by the speedof the Ethernet-based local-area network. 15
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interarrival times. The client requests are di�erentiated according to a read-to-write ratio.In each of the following �gures, this ratio has been conservatively estimated to be 4:1,motivated by the Berkeley study [16] and by our belief that for continuous media readaccess will strongly dominate write access.In our simulation of Swift, to read, a small request packet is multicast to the storageagents. The client then waits for the data to be transmitted by the storage agents. Awrite request transmits the data to each of the storage agents. Once the blocks have beentransmitted the client awaits an acknowledgement from the storage agents that the datahave been written to disk.The disk devices are modeled as a shared resource. Multiblock requests are allowedto complete before the resource is relinquished. The time to transfer a block consists ofthe seek time, the rotational delay and the time to transfer the data from disk. The seektime and rotational latency are assumed to be independent uniform random variables, apessimistic assumption when advanced layout policies are used [17]. Once a block has beenread from disk it is scheduled for transmission over the network.Our model of the disk access time is conservative in that advanced layout policies arenot considered, no attempt was made to order requests to schedule the disk arm, and cacheswere not modeled. Staging data in the cache and sequential preallocation of storage wouldgreatly reduce the number of seeks and signi�cantly improve performance. As it is, ourmodel provides a lower bound on the data-rates that could be achieved.Transmitting a message on the network requires protocol processing, time to acquirethe token, and transmission time. The protocol cost for all packets has been estimated at1,500 instructions [18] plus one instruction per byte in the packet. The time to transmitthe packet is based on the network transfer rate.5.2 Simulation ResultsThe simulator gave us the ability to determine what data-rates were possible given a con�gu-ration of processors, interconnection medium and storage devices. The modeling parametersvaried were the type and number of disk devices, representing storage agents, and the sizeof the transfer unit.The clear conclusion is that when su�cient interconnection capacity is available thedata-rate is almost linearly related to both the number of storage agents and to the sizeof the transfer unit. The reason the transfer unit impacts so much the data-rates achievedby the system is that seek time and rotational latency are enormous when compared tothe speed of the processors and the network transfer rate. This also shows the value ofcareful data placement and indicates that resource preallocation may be very bene�cial toperformance.In Figure 3, the amount of time required to satisfy a 1-megabyte client request wasplotted against the number of requests issued per second. The base storage device consideredwas a Fujitsu M2372K, which is typical for 1990 �le servers.The load that could be carried depended both on the number of disks used and the blocksize. The delay was dominated by the disk, with an average seek time of 16 milliseconds,an average rotational delay of 8:3 milliseconds and a transfer rate of 2:5 megabytes persecond. The result was that transferring 32 kilobytes required about 37 milliseconds on theaverage. As the block size was increased, seek time and rotational delay were mitigated andthe transfer time became more dependent on the amount of data transferred.10



client and a lack of bu�er space. It can also be attributed to the increased complexity ofthe read protocol which requires many more packets to be sent than does the write protocol.The measurements for the Swift prototype using both the dedicated laboratory networkand the shared departmental network are summarized in Table 4. These measurementsdemonstrate that the Swift architecture can make immediate use of a faster interconnectionmedium and that its data-rates scale accordingly.Table 4: Swift read and write data-rates on two Ethernets in kilobytes/second.Operation �x � min max 90% Con�denceLow HighRead 3 MB 1120 36.8 1040 1150 1093 1143Read 6 MB 1150 8.5 1140 1170 1145 1156Read 9 MB 1130 11.0 1120 1150 1126 1140Write 3 MB 1660 10.1 1640 1670 1650 1663Write 6 MB 1670 3.0 1660 1670 1665 1669Write 9 MB 1660 14.3 1630 1680 1652 16715 Simulation-based Performance StudyTo evaluate the scaling properties of the architecture we modeled a hypothetical implemen-tation on a high-speed local-area token-ring network. The main goal of the simulation wasto show how the architecture could exploit network and processor advances. A second goalwas to demonstrate that distributed disk striping is a viable technique that can provide thedata-rates required by applications such as multimedia.Since we did not have the necessary network technology available to us, a simulationwas the appropriate exploration vehicle. The token-ring local-area network was assumed tohave a transfer rate of 1 gigabit/second. The clients were modeled as diskless hosts with a100 million instructions/second processor and a single network interface connected to thetoken-ring. The storage agents were modeled as hosts with a 100 million instructions/secondprocessor and a single disk device. In our simulation runs no more than 22% of the networkcapacity was ever used, and so our data-rates were never limited by lack of network capacity.5.1 Structure of the SimulatorThe simulator was used to locate the components that were the limiting factors for a givenlevel of performance. The simulator did not model caching, did not model computing dataparity blocks, did not model any preallocation of resources, nor did it attempt to provideperformance guarantees. Traces of �le system activity would have been required in order tomodel these e�ectively and such traces were unavailable to us. In addition, the simulatordid not model the storage mediator as it is not in the path of the data transmitted to andfrom clients, but is consulted only at the start of an I/O session.Components of the system are modeled by client requests and storage agent processes.A generator process creates client requests using an exponential distribution for request9



taken under SunOS 4.1 where the Swift prototype performed about 250% better than lo-cal SCSI read access. This change is attributable to the availability of synchronous SCSImode under SunOS 4.1.1 and it supports the assertion that the performance of the Swiftprototype is limited primarily by the Ethernet-based local-area network.In contrast to its read performance, when writes are considered, the Swift prototypeshows between a 274% and a 280% increase over that of the local SCSI disk. The idealperformance improvement would have been 300% if the interconnection medium were notlimiting performance. Since the performance of the Swift prototype is less than 300% ofthe local SCSI performance, this again supports the assertion that factor most limiting theperformance of the Swift prototype is the Ethernet-based local-area network.When the Swift prototype is compared with the high-performance NFS �le server, itsperformance is between 180% and 197% better in the case of reads. This shows that Swiftcan successfully provide increased I/O performance by aggregating several low-speed storageagents and driving them in parallel.In the case of writes, the Swift prototype performs between 767% and 809% better thanthe high-performance NFS �le server. When interpreting the measurements one shouldalso keep in mind that the write data-rate measurements in NFS re
ect the write-throughpolicy of the server. This makes data-rates for write somewhat di�cult to compare withthose of Swift.While the Swift write performance was measured using asynchronous writes, the valuesobtained are not unfair to the NFS server for two reasons. First, the local SCSI measure-ments were obtained using synchronous writes and are clearly more than one third thespeed of the Swift performance numbers. Second, the Ethernet-based local-area networkis clearly the limiting factor in the performance of the prototype. Third, the speed of theIPI disk drives (rated at more than 3 megabytes/second) should not so severely impact theperformance when compared with the SCSI drives. Thus, the way in which writes are donein the Swift prototype is not the dominant performance factor.The Swift prototype demonstrates that the Swift architecture can achieve high data-rates on a local-area network by aggregating data-rates from slower data servers. Theprototype also validates the concept of distributed disk striping in a local-area network.This is demonstrated by the Swift prototype providing data-rates higher than both thelocal SCSI disk and the NFS �le server.4.1 E�ect of Adding a Second EthernetTo determine the e�ect of doubling the data-rate capacity of the interconnection, we added asecond Ethernet-based local-area network segment between the client and additional storageagents. This second network segment is shared by several groups in the department. Duringthe measurement period its load was seldom more than 5% of its capacity.The interface for the second network sement was placed on the S-bus of the client. Asthe S-bus interface is known to achieve lower data-rates than the on-board interface, we didnot expect to obtain data-rates twice as great as those using only the dedicated laboratorynetwork. We also expected to see the network subsystem of the client to be highly stressed.To our surprise, our measurements show that for write operations the Swift prototypealmost doubled its data-rate.In the case of reads, the increase in performance of the Swift prototype is less pro-nounced. This can be attributed to several factors including the increased load on the8



IPI disk drives under SunOS 4.1 as a server, and a Sun 4/75 (sparcstation 2) as theclient are summarized in Table 3. The NFS measurements were run over a lightly-loadedshared departmental Ethernet-based local-area network, not over the dedicated laboratorynetwork. The tra�c present in this shared network when the measurements were made wasless than 5% of its capacity. This level of network tra�c load should not signi�cantly a�ectthe measured data-rates.Table 2: SCSI read and write data-rates in kilobytes/second.Operation �x � min max 90% Con�denceLow HighRead 3 MB 654 10.3 641 668 647 661Read 6 MB 671 6.4 662 682 666 674Read 9 MB 682 2.4 679 685 680 683Write 3 MB 314 1.3 312 316 313 315Write 6 MB 316 0.6 315 316 315 316Write 9 MB 315 2.1 310 316 313 316Table 3: NFS read and write data-rates in kilobytes/second.Operation �x � min max 90% Con�denceLow HighRead 3 MB 462 56.0 375 531 424 491Read 6 MB 456 30.4 406 490 435 476Read 9 MB 488 22.1 444 516 473 502Write 3 MB 112 4.1 107 117 109 114Write 6 MB 109 5.2 98 114 105 112Write 9 MB 111 1.9 108 114 109 112The measurements shown in Table 1 through Table 3 indicate that the Swift prototypeachieves signi�cantly higher data-rates than either the local SCSI disk or the NFS �lesystem, even when NFS uses a high-performance server with the best IPI disk drives Sunhad available3 at the time. The Swift data-rates were up to three times better than thoseachieved accessing the local SCSI disk. The di�erence was even more accentuated a fewmonths ago when only asynchronous SCSI mode was available. In the case of read, thedata-rates of the Swift prototype were nearly double those of NFS, while in the case ofwrite the data-rates were more than eight times those of NFS. As mentioned before, thecomparison of Swift write data-rates with NFS write data-rates is not completely straight-forward since NFS does synchronous writes to the disk.When compared with the local SCSI disk performance, the Swift prototype only per-forms between 29% and 36% better. This contrasts sharply with previous measurements3These drives were purchased Autumn 1990. 7



4 Measurements of the Swift ImplementationTo measure the performance of the Swift prototype, three, six, and nine megabytes wereread from and written to a Swift object. In order to calculate con�dence intervals, eightsamples of each measurement were taken. Analogous tests were performed using the localSCSI disk and the NFS �le service. All data-rate measurements in this paper are givenin kilobytes per second. Maintaining cold caches was achieved by using /etc/umount to
ush the caches as a side e�ect. Other methods such as creating a large virtual addressspace to reclaim pages were also tried with similar results.Table 1: Swift read and write data-rates on a single Ethernet in kilobytes/second.Operation �x � min max 90% Con�denceLow HighRead 3 MB 893 18.6 847 904 880 905Read 6 MB 897 3.4 891 900 894 899Read 9 MB 876 16.6 848 892 865 887Write 3 MB 860 44.6 767 890 830 890Write 6 MB 882 5.00 875 889 879 885Write 9 MB 881 1.01 857 889 874 888The measurement data for read andwrite with Swift were obtained using a single clientand three storage agents. The client was a Sun 4/75 (Sparcstation 2) with 16 megabytes ofmemory and a local 207 megabyte local SCSI disk under SunOS2 4.1.1. The three storageagents were Sun 4/20s with 16 megabytes of memory and a local 104 megabyte local SCSIdisk also under SunOS 4.1.1. These hosts were placed on a 10 megabit/second dedicatedEthernet-based local-area network. Aside from the standard system processes, each of theservers was dedicated to run exclusively the Swift storage agent software. The results aresummarized in Table 1.Measurements of synchronous write operations with the Swift prototype have not beenobtained at this time. We encountered a problem with SunOS that would not allow us tohave the storage agents write synchronously to disk due to insu�cient bu�er space.For Swift, the limiting performance factor was the Ethernet-based local-area network.Using three Swift storage agents, the utilization of the network ranged from 77% to 80%of its measured maximum capacity of 1:12 megabytes/second. Including a fourth storageagent would only saturate the network while not signi�cantly increasing performance.The measurements for a local SCSI disk connected to a Sun 4/20 (SLC) with 16megabytes of memory under SunOS 4.1.1 are given in Table 2. All measurements weretaken with a cold cache. The e�ect of the synchronous mode SCSI are most apparent forthe read data-rates which are twice as fast as those that we obtained with version 4.1 ofSunOS, which provided only asynchronous SCSI mode. All write operations to the SCSIdisk were done synchronously.The NFS measurements made using a Sun 4/390 with 32 megabytes of memory and2The version of the operating system is signi�cant since SunOS 4.1.1 allowed the use of synchronousmode on the SCSI drives. This doubled the read data-rate.6



built on the tcp [15] network protocol proved to be unacceptable. The current prototypewas built using a light-weight data transfer protocol on top of the udp [15] network protocol.To avoid unnecessary data copying, scatter-gather I/O was used to have the kernel depositthe message directly into the user bu�er.In our �rst prototype a tcp connection was established between the client and eachserver. These connections were multiplexed using select. Since tcp delivers data in astream with no message boundaries, a signi�cant amount of data copying was necessary.The data-rates achieved were never more than 45% of the capacity of the Ethernet-basedlocal-area network. At �rst select seemed to be the performance limiting factor. A closerinspection revealed that using tcp was not appropriate as bu�er management problemsprevented the prototype from achieving high data-rates.In the current prototype the client is a Sun 4/75 (sparcstation 2). It has a list ofthe hosts that act as storage agents. All storage agents were placed on Sun 4/20s (SLC).Both the client and the storage agents use dedicated udp ports to transfer data and havea dedicated server process to handle the user requests.3.1 The Data Transfer ProtocolEach Swift storage agent waits for open requests on a well-known ip [15] port. When anopen request is received, a new (secondary) thread of control is established along with aprivate port for further communication about that �le with the client. This thread remainsactive and the communications channel remains open until the �le is closed by the client;the primary thread always continues to await new open requests.When a secondary thread receives a read or write request it also receives additionalinformation about the type and size of the request that is being made. Using this additionalinformation the thread can calculate which packets are expected to be sent or received.In the handling of a read operation, packet loss rates caused by lack of bu�er space inthe SunOS kernel necessitated that the client maintain only one outstanding packet requestper storage agent, while the storage agents ful�lled the packet requests as soon as they werereceived. As the measurements will show, this had a negative e�ect on the performance ofthe prototype. No acknowledgments are necessary with read, since the client keeps su�cientstate to determine what packets have been received and thus can resubmit requests whenpackets are lost.With awrite operation, the client sends out the data to be written as fast as it can. Eachstorage agent checks the packets it receives against the packets it was expecting and eitheracknowledges receipt of all packets or sends requests for packets lost. The client requiresexplicit acknowledgements from the storage agents to determine that a write operation issuccessful. On receipt of a close operation, the client expires the �le handle and the storageagents release the ports and extinguish the threads dedicated to handling requests on that�le.Several problems were encountered by our current prototype with SunOS. For both readand write, we often ran out of bu�er space on the client. When writing at full speed, thekernel would drop packets and claim that they had been sent. Because of this, the prototypecould not write as fast as possible; we had to incorporate a small wait loop between writeoperations. 5
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Figure 1: Components of the Swift ArchitectureSwift is a distributed architecture made up of independently replaceable components.The advantage of this modular approach is that any component that limits the performancecan either be replaced by a faster component when it becomes available or can be replicatedand used in parallel. In this paper we concentrate on a prototype implementation and asimulation of the Swift architecture. A more detailed description of the architecture and itsrationale can be found elsewhere [12, 13].Swift assumes that objects are managed by storage agents. The system operates asfollows: when a client issues a request to store or retrieve an object, a storage mediatorreserves resources from all the necessary storage agents and from the communication sub-system in a session-oriented manner. The storage mediator then presents a distributionagent with a transfer plan. Swift assumes that su�cient storage and data transmissioncapacity will be available, and that negotiations among the client (that can behave as adata producer or a data consumer) and the storage mediator will allow the preallocationof these resources. Resource preallocation implies that storage mediators will reject anyrequest with requirements it is unable to satisfy. To then transmit the object to or fromthe client, the distribution agent stores or retrieves the data at the storage agents followingthe transfer plan with no further intervention by the storage mediator. Figure 1 depicts thecomponents of the Swift architecture.In Swift, the storage mediator selects the striping unit (the amount of data allocated toeach storage agent per stripe) according to the data-rate requirements of the client. If therequired transfer rate is low, then the striping unit can be large and Swift can spread thedata over only a few storage agents. If the required data-rate is high, then the striping unitwill be chosen small enough to exploit all the parallelism needed to satisfy the request.Partial failures are an important concern in a distributed architecture such as Swift. Ifno precautions are taken, then the failure of a single component, in particular a storageagent, could hinder the operation of the entire system. For example, any object whichhas data in a failed storage agent would become unavailable, and any object that has databeing written into the failed storage agent could be damaged. The accepted solution forthis problem is to use redundant data, including the multiple copy [14] and computed copy3



vary from 1:2 megabytes/second for DVI compressed video and 1:4 megabits/second forCD-quality audio [1], to more than 20 megabytes/second for full-frame color video.Advances in VLSI, data compression, processors, communication networks, and storagecapacity mean that systems capable of integrating continuous multimedia will soon emerge.In particular, the emerging ANSI �ber channel standard will provide data-rates in excessof 1 gigabit/second over a switched network. In contrast to these advances, neither thepositioning time (seek-time and rotational latency) nor the transfer rate of magnetic diskshave kept pace.The architecture we present, called Swift, solves the problem of storing and retrievingvery large data objects from slow secondary storage at very high data-rates. The goalof Swift is to support integrated continuous multimedia in a general purpose distributedstorage system. Swift uses disk striping [2], much like Raid [3], driving the disks in parallelto provide the required data-rate. Since Swift, unlike Raid, was designed for distributedsystems it provides the advantages of easy expansion and load sharing. Swift also providesbetter resource utilization since it will use only those resources that are necessary to satisfythe request. In addition, Swift has the 
exibility to use any appropriate storage technology,including a Raid or an array of digital audio tapes.Two studies have been conducted to validate the Swift architecture. The �rst was aproof-of-concept prototype of a simpli�ed version of Swift implemented on an Ethernet-based local-area network using the Unix1 operating system. This prototype provides a�le system with Unix semantics. It uses distributed disk striping over multiple serversto achieve high data-rates. On a single Ethernet-based local-area network, the prototypeachieves data-rates up to three times as fast as the data-rate to access the local SCSI diskin the case of writes. When compared to a high-performance NFS �le server, the Swiftprototype exceeds the NFS data-rate for writes by eight times, and provides almost doublethe NFS data-rate for reads.The second study is a discrete-event simulation of a simpli�ed local-area instance of theSwift architecture. This was constructed to evaluate the e�ects of technological advanceson the scalability of the architecture. The simulation model shows how Swift can exploit ahigh-speed (gigabit/second) local-area network and faster processors than those currentlyavailable, and is used to locate the components that will limit I/O performance.The remainder of this paper is organized as follows: a brief description of the Swiftarchitecture is described in x2 and our Ethernet-based local-area prototype in x3. Measure-ments of the prototype are presented in x4. Our simulation model is then presented in x5.In x6 we consider related work and present our conclusions in x7.2 Description of the Swift ArchitectureSwift builds on the idea of striping data over multiple storage devices and driving them inparallel. The principle behind our architecture is simple: aggregate arbitrarily many (slow)storage devices into a faster logical service, making all applications unaware of this aggre-gation. Several concurrent I/O architectures, such as Imprimis ArrayMaster [4], DataVault[5], CFS [6, 7] and Raid [3, 8], are based on this observation. Mainframes [9, 10] and supercomputers [11] have also exploited this approach.1Unix is a trademark of AT&T Bell Laboratories 2



Exploiting Multiple I/O Streams to Provide High Data-RatesLuis-Felipe CabreraIBM Almaden Research CenterComputer Science DepartmentInternet: cabrera@ibm.com Darrell D. E. LongComputer & Information SciencesUniversity of California at Santa CruzInternet: darrell@sequoia.ucsc.eduAbstractWe present an I/O architecture, called Swift, that addresses the problem of data-ratemismatches between the requirements of an application, the maximumdata-rate of thestorage devices, and the data-rate of the interconnection medium. The goal of Swift isto support integrated continuous multimedia in general purpose distributed systems.In installations with a high-speed interconnection medium, Swift will provide highdata-rate transfers by using multiple slower storage devices in parallel. The data-ratesobtained with this approach scale well when using multiple storage devices and multipleinterconnections. Swift has the 
exibility to use any appropriate storage technology,including disk arrays. The ability to adapt to technological advances will allow Swiftto provide for ever increasing I/O demands. To address the problem of partial failures,Swift stores data redundantly.Using the Unix operating system, we have constructed a simpli�ed prototype of theSwift architecture. Using a single Ethernet-based local-area network and three servers,the prototype provides data-rates that are almost three times as fast as access to thelocal SCSI disk in the case of writes. When compared with NFS, the Swift prototypeprovides double the data-rate for reads and eight times the data-rate for writes. Thedata-rate of our prototype scales almost linearly in the number of servers and thenumber of network segments. Its performance is shown to be limited by the speed ofthe Ethernet-based local-area network.We also constructed a simulation model to show how the Swift architecture canexploit storage, communication, and processor advances, and to locate the componentsthat will limit I/O performance. In a simulated gigabit/second token ring local-areanetwork the data-rates are seen to scale proportionally to the size of the transfer unitand to the number of storage agents.Keywords: Swift architecture, high-performance storage systems, distributed �le sys-tems, distributed disk striping, high-speed networks, high data-rate I/O, client-servermodel, object server, video server, multimedia, data redundancy, resiliency.1 IntroductionThe current generation of distributed computing systems are incapable of integrating high-quality video with other data in a general purpose environment. Multimedia applicationsthat require this level of service include scienti�c visualization, image processing, and record-ing and play-back of color video. The data-rates required by some of these applications1


