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will improve the performance of some algorithms, since failures will likely be detected sooner thanthey are in our current simulations. Shorter failure time-outs may, however, increase the number ofmessages sent by algorithms which retry messages. Second, the retry and count algorithms requirea function to determine the delay between retries to a replica. We arbitrarily selected a geometricprogression. Other series, including arithmetic and exponential series, are worthy of considerationand may a�ect performance. Lastly, we arbitrarily chose a retry limit of 5 for the count algorithm,which performed well, but we feel that exploring di�erent retry limit values is worthwhile.All our access algorithms depend on knowing the expected communication latency when com-municating with each replica. In our simulations we computed these values a priori, which is notreasonable in a real system, since network behavior changes over time. We are examining di�erentmechanisms for computing an expected latency from the data available on the Internet. We areevaluating the use of weighted averages of the communication time with each replica. These mech-anisms should allow the algorithms to adapt quickly and gracefully to changes in network topologyand to the addition and removal of replicas.8 ConclusionsWe have presented three new algorithms for accessing replicated data. These algorithms form alow-level transport which can be used by replication protocols which need to establish some quorumof a number of replicas to perform an operation. The three algorithms, which we call reschedule,retry, and count, all send messages to nearby replicas before attempting to contact more distantreplicas.In evaluating the performance of these algorithms, we have measured the communication per-formance of the Internet. Our most signi�cant �nding was that a signi�cant fraction of failedmessages in long-distance communication are likely due to transient problems, and that we cangain a signi�cant degree of availability by retrying messages only a few times.There are three criteria which can be used to select between our algorithms, and which can beused to tune them as needed for an application: availability is the fraction of operations which suc-cessfully obtain a quorum of replicas; communication latency is the amount of time spent obtainingthe quorum; and number of messages determines the amount of load placed on the network.The count algorithm provides the highest availability, especially as the probability of messagefailure increases. The naive approach of sending messages to all replicas always obtains the lowestlatency. Each of our algorithms can be tuned to do this, by setting the tuning parameter p to zero.Count generally provides the lowest latency of our three new algorithms. However, it sends moremessages than retry, particularly when message failure is likely. For values of p > 0:2 and withlow probability of failure, the number of messages sent is only slightly greater than the minimumrequired to establish a quorum. This suggests that the range 0 � p � 0:2 is a useful range ofparameters, in which increasing the number of messages sent decreases the access latency.9 AcknowledgmentsWe would like to thank John Wilkes and the members of the Concurrent Systems Project atHewlett-Packard Laboratories for their comments on an earlier version of this paper. We would20
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Figure 10: Total messages, and total time, varying f , p = 0:5of message failure suggest that the relative latency and message performances of the algorithms areall similar when the message failure probability is f � :35. However, under pathological conditionsthe algorithms behave di�erently. Count can send many messages and take quite a bit of time|50seconds in our simulations|when no replicas are available. Retry is perhaps a more reasonablechoice under pathological conditions, succeeding less often than count but taking between half andone-�fth as much time. If availability is not of great importance, reschedule and naive bothperform much better than the other two algorithms under high-failure conditions, since they donot retry messages for extended periods of time.7 Future WorkThere are a number of limitations and assumptions in the models and performance evaluation wehave performed. We intend to explore these limitations in the near future. The most signi�cantlimitation is the number and geographic distribution of hosts used to collect communication latencytraces, and the lengths of the traces collected. We intend to repeat these experiments using a muchlarger sample of hosts on the Internet. In addition, we intend to validate the simulation resultsby constructing a test application which will be run on several sites around the Internet. We alsointend to collect traces over much longer periods of time. Doing so, however, requires placing moreload on the Internet for a longer period of time, and thus constitutes more of a disturbance formore people than did our current set of measurements.The model of message failure used in the second and third sets of simulations only modeledindependent single-message communication failures occurring at uniformly distributed intervals.We feel this is an acceptable limitation, given that we considered host failure to be a rare event andgiven that we were only interested in performance estimates. We intend to improve our simulationto model both host failure and multiple-message communication failure, which will in turn requireadditional measurements of the Internet to better determine distributions for each of these kindsof failure.There are three parameters in our algorithms which have not been explored. First, we believethat a more carefully-chosen method of selecting the failure time-out for detecting message failure19
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Figure 8: Communication latency and messages for all operations.highest latency of the three. This is the reverse of their positions for successful operations.We conclude from the performance measures that one can choose between the algorithms,and tune the algorithms, depending on whether the probability of success, operation latency, ormessage count are more important. If success is the overriding concern, then count should be used.Otherwise, if the probability of message failure is low, then naive provides the fastest response,though it sends the greatest number of messages. The other algorithms use fewer messages, at thecost of somewhat greater latency. It appears that the tuning parameter p is best set somewhere inthe range 0.1{0.2, which gives nearly the lowest possible number of messages these algorithms use,while requiring less than twice the latency of naive.6.2 E�ect of Failure ProbabilityOur second simulation experiment was intended to validate the use of exponential distributionsfor communication latency, rather than measured latency traces, so that we could simulate failureprobabilities we could not reproduce on the Internet. We derived the distributions as described inx5, and ran simulations for each of the values of p sampled in the �rst experiment.While the results of the second set of experiments were not identical to those of the �rst, theywere su�ciently close to those of our trace-based simulations to warrant our con�dence that wecould proceed with the third set of experiments. The most signi�cant abstraction we made inthis set of experiments was to assume that message failures were independent events, even thoughwe have shown that this is not the case in the real Internet. By assuming independent messagefailure, we increased the probability that each algorithm would obtain a quorum. Furthermore,this assumption made it less likely that the retry and count algorithms would have to retry manytimes before successfully sending a message, which decreased both the number of messages andamount of time required for these algorithms to complete an operation. Nonetheless, we found thatthe results all showed the same relative performance among the algorithms we evaluated, and theresults for all operations were within about 20% of the expected values for latency and messages.Previous work based [Carroll89] has shown that simulation of various replication protocols wasrelatively insensitive to the distribution of failures, so we were willing to accept these simulationsas a preliminary look at the relative behavior of our algorithms.17
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Figure 7: Communication latency and messages for failed operations.other three algorithms exhibit similar communication latencies, with count taking very slightlylonger than retry, which in turn takes very slightly longer than reschedule. Reschedule takesless time than the other two because of the rare cases where the retry and count algorithms mustsend more than one message to distant replicas to gather a quorum. It also uses the least messagesin establishing a quorum for the same reason. Retry and count each use almost identical numbersof messages, slightly more than the number of messages sent by reschedule. We believe that thelow probability of failure means that few retries actually occur, so the di�erences between the twoalgorithms are not apparent. The number of messages drops to a nearly steady value of about 3.2for delay parameter p � 0:2. This value is the number of messages required to communicate witha quorum q of replicas, plus a fraction of a message on the average to handle the uncommon casewhere one of the q nearest replicas is unavailable.The performance of the four algorithms is quite di�erent when a quorum cannot be established,as is shown in �gure 7. The baseline measure is naive, which requires about 10 seconds to determinethat a quorum cannot be formed, which is more than an order of magnitude longer than wasgenerally required for success. Reschedule requires more time than naive, since it must detectjust as many failed messages as naive, but it may have delayed sending some of those messages. Thetime required to declare failure increases roughly linearly as p increases. On the other hand, retryand count require fewer messages than naive for low values of p. Naive must always send n = 5messages, but surprisingly, reschedule, despite its ability to declare failure before receiving a replyfrom all replicas, sends only very slightly fewer than n messages on failure. We believe that this isdue to the long values selected for E[fail(r)], which is used to detect failure, and that a shorter ormore intelligent value for the failure latency would improve the performance of reschedule. Retryand count both require more than n messages to establish failure, since both algorithms may try tosend multiple messages to a host if the �rst message fails. Count tends to send signi�cantly fewermessages than retry, as well as requiring less time.Figure 8 shows the overall performance of each algorithm. Since the probability of obtaining aquorum is quite high|in excess of 99%|the values for successful operations predominate in thesegraphs. However, it is worth noting that even with a high probability of success, the low failurelatency of count makes it the fastest of our three new algorithms, and that reschedule has the16
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Figure 6: Communication latency and messages for successful operations.15



access(r). We found that the exponential �t well for most of the hosts, but failed quite badly forsome, particularly the sites in Finland and France. We believe that this failure is due to the natureof the transoceanic connections through which these messages were routed. We were encouragedby previous work on the e�ect of di�erent distributions on the validity of this kind of simulation[Carroll89] and so decided to proceed with exponentials.The third set of experiments examined the performance of our algorithms under di�erent failureconditions. Our measurements suggest that the probability of failure is low under normal circum-stances, so failure probabilities less than about 0.4 are of interest. However, when a host becomespartitioned from the rest of the network, or there is a pathological condition in the Internet, theprobability of a message failing to reach its destination become essentially 1. This allows us toevaluate the performance of our algorithms under worst-case conditions.In this third set of experiments we �xed the delay parameter p at 0:5, and the probability offailure for each replica was set to some value f . The performance of each access algorithm wasmeasured as f varied from 0:05 (that is, 95% probability of a message being successful) to 1:0(complete message failure). Since it was not possible to e�ect particular failure rates on our liveinternetwork to obtain communication traces, we instead used the exponential �ts for each hostwhich were derived for the second set of experiments.6 Simulation ResultsOur three simulation experiments allowed us to examine the behavior of each of the four replicaaccess algorithms (naive, reschedule, retry, and count) under di�erent conditions. The perfor-mance measures we gathered were the probability of successfully gathering a quorum, the numberof messages and the latency required for successful operations, the number of messages and thelatency for failed operations, and the total messages and latency for all operations.6.1 Trace-based SimulationsOur �rst experiment used the measured samples of network behavior to drive the simulation. Theresults of this experiment for �ve replicas are summarized in the graphs in �gures 5{8. The resultsfor three and nine replicas are similar.Figure 5 shows the fraction of all access operations which were successful in gathering a quorumof replicas. The naive and reschedule algorithms each exhibited an approximately constantsuccess fraction, at about 99.2% of all accesses. Since these two algorithms each attempt to sendat most one message to each replica, the delay fraction has no e�ect on the probability of success.The retry algorithm, however, retries nearby replicas more times when the delay parameter p islarger, since there is more time for retries. Retry succeeds in approximately 99.8% of all caseswhen p � 0:5, while count performs even better. In all, count is most likely to succeed, withlikelihood in excess of 99.9%; retry succeeds somewhat less often, but substantially more oftenthan reschedule and naive.In all, count is most likely to succeed, with likelihood in excess of 99.9%; retry succeedssomewhat less often, but substantially more often than reschedule and naive.Figure 6 shows the communication latency and number of messages sent for successful opera-tions. We �nd that naive is the fastest of the four algorithms, but it always sends 5 messages. The14



intended to determine the relative performance of the access algorithms under widely varying prob-abilities of message failure. Since these conditions could not be created on our live internetwork,we used synthetic performance distributions instead.The �rst experiment used a trace-driven discrete event simulation. The simulation programwas coded in C, using locally-written simulation libraries. The program was parameterized onthe number of replicas n, the quorum size q, the delay parameter p, and the set of host data setsto be traced, and reported the communication latency and number of messages required for bothsuccessful operations and failed operations. Each run of the simulator performed 5,000 iterations,where each iteration consisted of choosing n hosts at random from 24 hosts sampled, essentiallysimulating a random placement of n replicas throughout the Internet. Using our 24 hosts, thereare 42,504 possible selections of �ve hosts, which gives a reasonable probability of each of the 5,000iterations being independent. Each algorithm was run once for each of the 144 data sets sampledfor each of the hosts, yielding approximately 720,000 samples of the performance of each algorithm.The results have a 95% con�dence interval with a width of less than 5% for the reported values,and typically ranging from 1% to 3%. The performance of each algorithm was sampled at valuesof p = 0:05; 0:1; 0:15; . . . ; 1:0. We did not include p = 0, since all algorithms are equivalent at thatvalue of the tuning parameter.The simulation of 144 operations for a randomly-selected set of hosts proceeded as follows. First,the n hosts were selected. These n hosts were then ordered by E[access(r)], which was computed asthe data sets were read in. Then one run of each algorithm was performed for each of 144 data sets.When the simulation of an algorithm sent the i th message to replica r, the i th sample for hostr (of the 50 samples in a data set) was used to determine whether the message was received, andif so, how long the communication took. Detection of failed messages using timers was simulatedby introducing a message failure event, rather than explicitly simulating the timers. The timerduration for host r was set to be the time of the longest-latency reply from that host. This numberwas determined when the host's data sets were read in. Most implementations of reliable protocolssuch as tcp use di�erent methods for selecting the failure time-out. A common technique is tobase the time-out on a moving average latency of the last several messages [Comer88].The second simulation experiments duplicated the �rst, sampling the same performance mea-sures. The performance of each replica access algorithm was sampled at values of p ranging from0:05 to 1:0 in steps of 0:05, for 3, 5, and 9 replicas. The only di�erence between the two sets ofexperiments was that in each simulated run in the second set, the probability of message failureand the latency probability distribution were used to determine the behavior of each message. Thesole purpose of this experiment was to validate the accuracy of using derived distributions ratherthan traces to drive the simulation.To construct the simulations for the second set of experiments, we constructed distributions forthe communication latency and message failure for each host. For message failure, we assumed eachmessage was independent, and had a uniform probability of being received, equal to the overallavailability measured in our samples (see table 1). While we have shown that message failure isnot independent, we elected to make this simplifying assumption in order to obtain quick results.We intend to repeat these simulations again using more accurate failure distributions. For com-munication latency, we �t exponential curves to the observed communication latency distributions,such as is shown in �gure 4. To �t the exponential, we found the minimum latency xmin, andused the estimator �̂ = E[X � xmin]�1 to de�ne an exponential probability density function for13



Table 2: Fraction of failed messages by size of run.Length Failure fraction (%) Independentof run All failures Communication1 50.04 67.81 87.092 6.87 9.31 11.633 1.33 1.80 1.1711 1.99 2.70 |12 3.47 4.70 |13 1.52 2.07 |17 0.77 1.04 |50 26.22 | |These values are shown in the fourth column of table 2. Those values less than 10�8 are shownas dashes. If message failures were independent, they would generally exhibit many more single-message failures than we observe. The di�erence between the observed behavior and independentbehavior leads us to conclude that message failure is in fact not an independent event, which comesas no surprise.Our conclusion is that there are two behaviors for message failure: short, transient failures dueto temporary network conditions, and longer failures due to host or network failure. These datacon�rm our suspicion that retrying messages can signi�cantly improve performance or availability.We also believe that retrying more than two or three times likely of little value, since most (61%)of all failures of longer than two messages appear to be due to long-term failure.We make use of the data collected in our experiment in several ways in determining the perfor-mance of our access algorithms. For one set of simulations, we used the poll samples directly in atrace-driven simulation of each algorithm. In addition, we used the message failure and communi-cation latency measurements to derive arti�cial distributions of f(r) and access(r) for each host,and constructed simulations from these distributions. We discuss this further in the next section.5 Simulation ModelWe studied the performance of our replica-accessing algorithms using discrete-event simulations.In this section we will detail the structure of these simulations.We conducted three sets of simulation experiments. Each set of experiments consisted of sim-ulating the performance of each of our algorithms when applying the Majority Consensus Votingprotocol [Gi�ord79,Thomas79] for three, �ve, and nine replicas. The �rst experiments used thesamples of communication latency from our measurements of the Internet. These experiments wereintended to provide relative performance information for each access algorithm, given the actualperformance of the Internet. The second set of experiments used distributions derived from ourmeasurements to repeat the simulations performed in the �rst experiments. The intent of theseexperiments was to validate that arti�cial distributions gave accurate results when compared withmeasured Internet performance. The third and �nal set of experiments also used derived perfor-mance distributions, except that we varied the probability of message failure. This experiment was12
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Communication latency (msec)Figure 4: Communication latency for host lcs.mit.edu from host maple.ucsc.edu.we sampled. Combining this information with our data on the reliability of hosts, we conclude thatcommunication will succeed most of the time when a host is functioning.The second focus of our measurements was to determine the time required to communicate withhosts. The single most important measure, the average response latency, is also reported in table 1.These values were obtained on a Sun 4/20 (maple.ucsc.edu), which has a clock resolution of 10milliseconds. The host spica.ucsc.edu is on the same network segment as the host from whichsamples were taken, so the value for spica is not particularly reliable. We found that almost allhosts exhibited a curve similar to that shown in �gure 4, which shows a histogram of the fraction ofmessages which fell into each 10-millisecond range, starting from zero, when communicating withthe host lcs.mit.edu. Most hosts were similar to this host, showing a very few short-latencymessages, with a sudden peak dropping rapidly back to zero.Finally, we examined the data sets to determine how long communication failures lasted. Weclassi�ed failed polls by the length of the run of failed messages of which they were a member. The�rst column in table 2 lists those run lengths which contributed to 1% or more of the number offailed messages. The second column reports the percentage of failed messages which were in runsof each length. We found that in more than half the cases where a message failed, the messagewas part of a run of only one or two failed messages. The only other signi�cant run length was 50,the size of one data set. This large fraction was due to one host being down for some hours. Thethird column in table 2 lists the percentage of message failures which were not in runs of length 50.We believe that this number approximates the percentage of each run length which is due solely tocommunication failure, such as congestion, loss of connectivity, or routing loops.We next compared this distribution to that which would be obtained if all communicationfailures were independent. This can be modeled as a Bernoulli trial. Given an average messagefailure probability of f = 93:32%, we computed the probability that a failed message would be partof a run of length n as p(n) = n(1� f)nfP1i=1 i(1� f)if :11



Table 1: Hosts selected for traces.Host Location Ave. Response Availabilitylatency (msec) (%)acrux.is.s.u-tokyo.ac.jp Tokyo, Japan 263.68 96.46andreas.wr.usgs.gov Menlo Park, CA 26.64 79.90apple.com Cupertino, CA 24.50 95.96beowulf.ucsd.edu San Diego, CA 57.68 93.33cs.helsinki.� Finland 1525.78 90.42cs.stanford.edu Palo Alto, CA 18.50 97.79fermat.hpl.hp.com Palo Alto, CA 39.88 97.92gvax.cs.cornell.edu Ithaca, NY 162.35 95.28inria.inria.fr France 1142.99 84.63june.cs.washington.edu Seattle, WA 52.56 97.11lcs.mit.edu Cambridge, MA 219.13 89.08mtecv1.mty.itesm.mx Mexico 1641.70 91.33prep.ai.mit.edu Cambridge, MA 215.97 89.47sdsu.edu San Diego, CA 404.54 92.85slice.ooc.uva.nl Netherlands 1340.40 88.97spica.ucsc.edu Santa Cruz, CA 0.59 100.00swbatl.sbc.com Atlanta, GA 298.57 97.06top.cs.vu.nl Netherlands 1312.32 90.42ucbvax.berkeley.edu Berkeley, CA 24.96 96.43ucsd.edu San Diego, CA 51.86 91.15unicorn.cc.wwu.edu Bellingham, WA 107.88 96.44vivaldi.helios.nd.edu Notre Dame, IN 228.96 96.57zia.aoc.nrao.edu Virginia 353.09 97.79time that hosts have been up, provided that the pattern of up-times is governed by an exponentialdistribution. The data were gathered by polling hosts using Sun Rpc [Sun88] to query rpc.statd,the icmp echo protocol [Postel81] to test availability, and by polling domain servers to obtain host-speci�c information. Estimates of average mttf for various Sun 4 systems ranged between 12 and17 days. These same systems were found to have availabilities in the range of 93% to 97%. Themttr estimate for Sun 4 models ordinarily used as workstations was approximately 1.2 days, whilethose models ordinarily used as servers was approximately 0.5 days.The second study was conducted to obtain data speci�cally for evaluating the performance ofour replica access algorithms. Our measurement methodology was inspired by the techniques usedby Pu et al. [Pu90]. For this study we selected 24 hosts on the Internet, and polled each of themusing the icmp echo protocol. Each poll consisted of a single datagram message sent from the hostmaple.ucsc.edu to the destination, and one reply datagram. One set of polls was collected foreach host every 20 minutes over a 48-hour period, on a Wednesday and Thursday of a normal workweek. Each set of polls consisted of 50 icmp echo requests issued at one-second intervals. Thisresulted in 7,200 samples for each host. The results of these studies are summarized in table 1.We �rst examined the availability of each host, which is reported in table 1. We found thatmost hosts would respond to a message more than 90% of the time. The one signi�cant exception(andreas.wr.usgs.gov) represents a host which was continuously unavailable for 7 of the 48 hours10



incremented, and if su�cient have been obtained, the access is declared a success and the algorithmreturns. When a message is found to have failed, presumably because a timer in lower layers ofsoftware expires, the algorithm schedules a retry for that replica. The �rst retry occurs immediately,but later retries can be delayed, as determined by the function backoff. In our simulations wemade each retry delay twice as long as the previous, but we emphasize that this is an arbitrarychoice and should be explored further. The delay helps to avoid sending vast numbers of messagesto a nearby replica which has failed. The idea of progressively delaying messages was inspired bythe collision-handling techniques used in the Ethernet [Metcalfe76].The retry algorithm terminates with failure when either a reply or a communication failureis detected for replica n. At this time, all replicas should have been tried at least once, given ourassumption that E[fail(r)] � E[fail(r+ 1)]. If this assumption does not hold, the algorithm can bemodi�ed so that a bit is maintained for each replica, and set to true when the �rst reply or failureis observed for the replica. In that case, the terminating condition would be that all bits are true,in place of the two tests for i = n.The count algorithm is similar to retry, except that a counter l is maintained for each replicaand the algorithm stops retrying a replica when it has been retried l times. The terminatingcondition for the count algorithm is thus that all replicas have been tried l times. We expect thisalgorithm to improve on retry in a number of ways. First, by trying each replica a �xed number oftimes, it should obtain a quorum more often than retry, since more distant replicas will be triedmore times. We expect that this bound would cause the two algorithms to exhibit signi�cantlydi�erent behaviors for communication latency and number of messages when the probability ofmessage failure was high. Second, retrying a �xed number of times evens out the number of timesmessages are sent to each replica, and our message failure measurements suggest that retrying morethan a small number of times is probably of little value, since few communication failures lastedmore than two or three messages in our samples. In our simulations we arbitrarily chose a limitl = 5. In future experiments we intend to investigate the e�ect of di�erent limits on algorithmperformance.The retry and count algorithms are both parameterized on the same tuning value p as thereschedule algorithm. In addition, both algorithms use a backoff function to determine how todelay retries to a replica, and the count algorithm uses a retry limit value. While we have examinedhow each algorithm behaves as p varies, we have not attempted to examine the e�ects of di�erentbackoff functions and di�erent retry limits.4 Internet MeasurementsWe have made two separate sets of measurements of the Internet which are relevant to the perfor-mance evaluation of the replica access algorithms. The �rst set of measurements are for a long-termstudy of the reliability of Internet sites, which are detailed elsewhere [Long90] and briey summa-rized here. The second set of measurements were taken speci�cally for evaluating these algorithms,and are detailed here.The study of the reliability of Internet sites was conducted by collecting up-time and availabilitydata from several thousand hosts. Data were collected from as many hosts as was practical andthen used to derive estimates of availability, mean time-to-failure (mttf), and mean time-to-repair(mttr). Mttf is not directly available from hosts, but it can be estimated using the length of9



// retry -- send additional messages at a fraction of the longest// failure time for any outstanding message. If a message// fails, periodically retry that replica.retry(int q, site_list R, float p){ int n = |R|; // number of replicasint delay[|R|]; // time wait for retry of replica iint succ = 0; // number of successful repliesint next = 0; // next replica to accessfor i = 1 to q {send to R(i);delay[i] = 0;}schedule time-out(q) in (p*E[fail(q)]) units;next = q + 1;for each event {if event is reply(i) {succ = succ+1;if succ >= qreturn SUCCESS;else if i == n // all replicas have been tried, andreturn FAILURE; // a quorum has not been obtained} else if event is failed(i) {if i == n // again, all replicas have been triedreturn FAILURE;elseschedule retry(i) in delay[i] units;} else if (event is time-out(i)) and (next <= r) }send to R(next);delay[next] = 0;schedule time-out(next) in (p*E[fail(next)]) units;next = next + 1;} else if event is retry(i) {send to R(i);delay[i] = backoff(i,delay[i]);}}} Figure 3: Access algorithm with retry for failed queries.8



// reschedule -- extra messages sent at the shorter of a fraction of the// longest failure time for any outstanding message, or// the time of the detection of an actual failure for a replica// with a shorter failure time.reschedule(int q, site_list R, float p){ int n = |R|; // number of replicasint succ = 0; // number of successful repliesint fail = 0; // number of failed repliesint next = 0; // next replica to accessint extra = 0; // number of extra replicas queriedfor i = 1 to qsend to R(i);schedule time-out(q) in (p*E[fail(q)]) units;next = q + 1;for each event {if event is reply(i) {succ = succ+1;if succ >= qreturn SUCCESS;} else if event is failed(i) {fail = fail + 1;if n-fail < qreturn FAILURE;else if (next <= n) and (i > extra) {send to R(next);reschedule time-out(next) in (p*E[fail(next)]) units;next = next + 1;extra = extra + 1;}} else if (event is time-out(i)) and (next <= n) and (i > extra) {send to R(next);schedule time-out(next) in (p*E[fail(next)]) units;next = next + 1;extra = extra + 1;}}} Figure 2: Access algorithm with extra queries sent on failure.7



// Naive -- send to all replicasnaive(int q, site_list R){ int n = |R|;int i;for (i=1; i<=n; i++)send to R(i);schedule time-out in max(fail(i),i=1..n) units;for each event {if event is reply(i) {q = q-1;if q == 0return SUCCESS;} else if event is time-out {return FAILURE;}}} Figure 1: Naive access algorithm.sent to all replicas right away, since the time-out for sending the next message is always set to zero.When p is set to one, reschedule only sends additional messages when communication failures aredetected. When p is set to one-half, additional replicas are queried either if a failure is reported, orif a time-out of one-half the longest expected communication failure time occurs and no additionalaccess has already been sent due to a failure.As noted earlier, neither naive nor reschedule accommodate transient failures. Since ourexperimental results suggest that more than three-fourths of all message failures are transient,1 ournext two algorithms accommodate transient failure by retrying messages to replicas after detectinga communication failure. These two algorithms, which we call retry and count, are similar toreschedule except that they will continue to retry failed messages, in the hope that the failurewas due to some transient problem and the next message will be delivered successfully. They di�erin the conditions that they use for determining when to stop retrying. Retry continues to retrymessages until either a quorum has been obtained or until all replicas have been tried at least once.Count, on the other hand, retries each replica at most a �xed number of times.We expect the retry algorithms to improve both the success latency and the probability thata quorum will be obtained, though at the cost of sending more messages, and possibly at thecost of having longer failure latencies. We therefore expect that the retry algorithms will be mostappropriate in situations where short transient failures predominate longer failures, such as arecaused by host failure.Figure 3 shows the algorithm for retry. Initially, messages are sent to the q closest replicas,where q is the minimum quorum. When a reply is received, the count of successful replies is177:12% of all failed messages were part of a run one or two messages long in our samples. See table 2 in x4.6



quorum of replicas at the earliest possible time. This implies sending queries to all replicas at once,since delaying any one message could slow down the response. Of course, this approach produceshigh message tra�c, since all replicas are queried even though not all replicas need to be queriedto establish a quorum. This is the approach taken in a naive simulation of broadcast. We observethat the lowest network tra�c can be achieved by sending queries one at a time, and ceasing tosend queries when we have either established a quorum or have observed su�cient failures to besure that a quorum cannot be established. Since we must access at least q replicas, we can startby sending q queries and sending additional queries as failures are reported. This is the basis forall of our algorithms except naive.As we have noted, the two extremes of sending all messages at once or sending as few messagesas possible are not always appropriate for all applications. Each of our algorithms are parameterizedby 0 � p � 1, which determines how long to delay sending messages. This mechanism allows anapplication to specify an intermediate position, where more messages than are sent than are strictlynecessary with some improvement in the operation latency.We will compare four algorithms. The �rst, which we call naive, is a straightforward simulationof broadcast, and is shown in �gure 1. It operates by sending a message to all replicas. Repliesfrom replicas are counted, and when a quorum has been obtained the algorithm returns, indicatingsuccess. The algorithm schedules a time-out for the longest expected reply time. If the time-out occurs before a quorum is obtained, the algorithm assumes that the replicas which have notyet replied are unavailable, and declares the access a failure. There are two problems with thisalgorithm. The �rst is that it uses more messages than are strictly necessary, though in doing so itrequires the minimum possible time to either obtain a quorum or decide that one is unobtainable.The second is that the algorithm does not account for transient communication failures, thusproviding lower availability.Reschedule is the �rst of our new algorithms, and addresses the �rst problem with naive. Thisalgorithm sends fewer messages than naive, though at the expense of requiring more time. It doesnot attempt to solve the problem of ignoring transient communication failures.The reschedule algorithm sends messages to nearby replicas before sending to more distantreplicas. We can create an algorithm which sends the minimal number of messages by initiallysending messages to the q replicas with the least expected access time E[access(r)], and sendingmessages to additional replicas as the earlier messages are observed to fail. However, this approachwill require much longer than naive to complete an access in the presence of failures. To amelioratethis problem, the reschedule algorithm does not delay sending additional messages until failure isdeclared. Since message failure is detected by a time-out, additional messages can be sent at somefraction p of the failure time-out. In this way p can be used to tune the reschedule algorithmto account for di�erent conditions. Since there are some situations where we may be able todetect communication failure in a shorter period than the designated time-out|perhaps becausea negative acknowledgment message has been sent|we also account for early failure detection inour algorithm.The complete reschedule algorithm is shown in �gure 2. For clarity, we do not include thecode to set a timer for each message sent, but instead assume that it is included as part of sendinga message. We assume that when a message time-out occurs, a failure event is reported to thealgorithm.When the tuning parameter p is set to zero, this algorithm is identical to naive: messages are5



of the host holding the replica, and failure of any network gateways between the host performingthe access and the host holding the replica. We model failure by assigning each replica a booleanfunction avail(r). In some of our simulations avail(r) is de�ned in terms of a failure probabilitydistribution f(r). Rather than model an internetwork in detail, we have based our analyses onempirical measurements of the Internet, as discussed in x4.We are interested in six measures of performance: the number of messages required for successfuland failed operations; the communication latency of successful and failed operations (success latencyand failure latency, respectively), and the overall number of messages and overall communicationlatency. We consider our algorithms successful if they require fewer messages or lower latency thana naive simulation of broadcast.We assume that replicas are ordered by expected access time, so that E[access(r)] � E[access(r+1)] for 1 � r < n. We also assume that E[access(r)] < E[fail(r)], so that messages which aresuccessfully delivered to their destinations are generally not reported as having failed because theytook longer than some time-out value. Further, we also assume that E[fail(r)] � E[fail(r + 1)] for1 � r < n. By assuming a monotonic ordering on expected access time, we can send messagesto those replicas we expect will respond most rapidly. These assumptions are not necessary forcorrect operation of these algorithms, but are needed for optimal performance. The assumption ofmonotonicity of expected failure time in particular is not important, but simpli�es the presentationof our algorithms.As we have mentioned, the access algorithms are providing a transport mechanism which repli-cation protocols can use to communicate with replicas. Our algorithms �ll a niche similar to Rpccommunication protocols, in that they provide a specialized communication service with particularproperties (in this case, communication with q other hosts). In systems which use an RPC protocolsimilar to the Birrell and Nelson protocol [Birrell84] an operation request is sent to a host in a singlemessage on an unreliable datagram channel, and the reply message is taken as acknowledgment ofthe original request. If the sender does not receive a reply before a time-out occurs, the senderpolls the receiver to determine whether the receiving host is available or not. If we assume thatnormal messages and polls have the same transmission time, then the time to detect a failure isthe time for a normal request message plus one or more polls.Previous investigations into the performance of replication algorithms [Paris86,Long88] havegenerally assumed reliable communication channels. Our work extends this, by modeling an un-reliable network which can both lose and reorder messages. An unreliable network forces us toexamine the question of how to determine when a replica is unavailable. Since we can only detectwhen a message has failed, not when a host itself has failed, our algorithms must base their deter-mination of replica availability solely on whether they receive a reply from the replica or not. Sincecommunication channels can drop messages, algorithms which only send one message to a replicawill report many failures which could have been avoided by sending the same message a secondtime. We are interested in the performance of algorithms which try to contact a replica more thanonce, as compared to algorithms which only send one message.3 Access AlgorithmsOur algorithms for accessing replicas balance the latency of a request against the number of mes-sages required to complete the access. To provide the lowest latency, and algorithm must obtain a4



implement a lower-level transport mechanism for multiple-site access, much as TCP [Postel80b]provides a reliable byte-stream connection between two sites.The remainder of this paper is organized as follows. In x2 we present a generalized model ofreplication in internetworks. In x3 we describe our methods for accessing such replicated objects.We then describe in x4 the set of measurements we have taken of the Internet, and follow this in x5and x6 with a set of simulations based on these measurements. Finally, we report our future plansin x7 and our conclusions in x8.2 Replication ModelIn this section we will de�ne our model of replication, and establish notation for later sections. Wewill also discuss how this model compares to other similar systems, and mention the simplifyingassumptions we have made.A replicated object is composed of a number of replicas, each of which stores a copy of theobject being replicated. A client can access the replicas to read or write information in the object.Both the client and the replicas reside on hosts. All hosts are connected using an internetwork,which consists of local-area networks with gateways and point-to-point links connecting them. Hostscommunicate by sending unreliable datagrams, using a protocol such as UDP [Postel80a]. Sendinga message between any two hosts on the internetwork requires a variable amount of time, thecommunication latency. The communication latency depends on the load on the network at thetime and the available routes between hosts. By assuming that the internetwork is unreliable, weassume it will lose messages, and will deliver them out of order. Hosts sending a message canuse time-outs and acknowledgments to detect with high probability that a message has not beenreceived. Hosts cannot, however, distinguish whether a message has been lost due to network orhost failure.Replicas are either available or unavailable. Replicas can be unavailable due to host failure(such as a system crash or controlled shutdown), replication software failure, failure of the network(gateway or link failure), or controlled failure (such as removal of a replica which is no longerneeded). Replicas may also appear to be unavailable due to congestion or partial failure, such aswhen a gateway becomes overloaded. We do not attempt to distinguish between these di�erentsources of failure.A replication protocol is used to control the accesses. The replication protocol speci�es whichmessages must be sent, and to which replicas, for each kind of access. For each kind of access theprotocol also determines a quorum of replicas which must be involved in the operation. Dependingon the protocol an operation, this might be one replica, all replicas, or some fraction, and may varybetween accesses as replicas fail or become available. If a client is unable to gather enough replicasto form a quorum, then an access is said to fail; otherwise it is said to succeed.In our study, we assume there are n replicas of the data, numbered 1 through n. For any accessto complete successfully, a quorum of q replicas must respond to an access request message. If fewerthan q replicas respond, the access fails. We associated two functions with each replica r: access(r)is the time-varying communication latency of the operation for replica r, and fail(r) is the lengthof the time-out used to determine when a message has failed. The latency distributions includeall communications delays, including transmission time and queueing delay at forwarding sites. Areplica is treated as failed if it is unreachable for any reason; this includes corrupted data, failure3



point of connection increases the possibility of partitioning the local segment from the rest of theinternetwork. Internetworks thus exhibit higher partial failure rates than local-area networks, andpartitions are both possible and common. Many of the failures are transient, caused by networkcongestion, remote host unavailability, or gateway failure.Replication on an internetwork presents di�erent problems than replication on a local-areanetwork (LAN), due to the di�erences in the structure and uses of each kind of network. All thereplicas on a local-area network have very similar access times, usually less than ten milliseconds. Incontrast, access times for replicas on an internetwork are non-uniform, and are greater, often severalhundred milliseconds for connections across a continent. Most LANs use 10{100 megabit/secondnetworks, while many long-distance networks use 56 kilobit/second to 45 megabit/second links. Thelong-distance links also exhibit much higher communication latency than local network segments,especially when satellites are used for transoceanic communication. Broadcast messages on a LANallow replication protocols to send requests to all replicas in one message, while a message must besent to each replica in an internetwork, increasing the message tra�c required for replication.An internetwork is shared among more systems than is a local-area network, and the linkswhich connect LANs are often much slower than those of the LANs, so tra�c must be consideredmore expensive in an internetwork than in a LAN. Few local-area networks have more than ahundred systems on a single network segment, while internetworks are used to connect hundredsof thousands of systems together. This di�erence in scale between local- and wide-area networksmeans that more systems may share resources, implying that the potential load on resources whichare widely shared in an internetwork will be higher than the load on resources in a LAN.Our algorithms for replica access address the di�erences between LANs and internetworks whichmake the techniques used for replication in a local-area network inappropriate for internetwork use.The algorithms do not require broadcast, nor do they work by simulating broadcast, but insteadsend messages to replicas in a more controlled fashion. The algorithms can be tuned to minimizeeither network tra�c or access latency, while taking advantage of the quorum requirement of thereplication protocol. The algorithms are sensitive to the communication latency of replicas andwill tend to communicate with nearby replicas rather than distant ones, providing lower accesslatencies and limiting the portion of the internetwork a�ected by an access. Two of the algorithmsalso address the problems associated with transient failures by resending messages to replicas, whichproduces a signi�cantly higher availability than can be obtained without retry.These algorithms are not speci�c to any one replication protocol. Replication protocols maintainsome form of consistency between a set of replicas of data. Many protocols require that each oper-ation on the data be performed by some fraction of the replicas, though this number may vary de-pending on the kind of operation. For example, the Available Copy protocol [Bernstein84] requiresall available replicas to participate in a write operation, but any one current replica is su�cientfor a read operation. Other protocols, such as Majority Consensus Voting [Gi�ord79,Thomas79]or Dynamic Voting [Davcev85,Jajodia87] require some quorum of the replicas to participate. Formany operations it is preferable to involve as many replicas as possible, but in some cases operationsgain no advantage from involving more than a minimum number of replicas. Epidemic replicationschemes [Demers88], which do not guarantee complete consistency between replicas, can bene�tfrom seeding some fraction of the replicas with an update, before using epidemic techniques topropagate the change to the remaining replicas. Each of these protocols|available copies, voting,and epidemic replication|can be implemented using our access algorithms. The access algorithms2



Accessing Replicated Data in a Large-Scale DistributedSystemRichard GoldingDarrell D. E. LongConcurrent Systems LaboratoryBaskin Center for Computer Engineering & Information SciencesUniversity of California, Santa CruzJanuary 10, 1991AbstractReplicating a data object improves the availability of the data, and can improve access la-tency by locating copies of the object near to their use. When accessing replicated objects acrossan internetwork, the time to access di�erent replicas is non-uniform. Further, the probabilitythat a particular replica is inaccessible is much higher in an internetwork than in a local-areanetwork (LAN) because of partitions and the many intermediate hosts and networks that canfail. We report three replica-accessing algorithms which can be tuned to minimize either accesslatency or the number of messages sent. These algorithms assume only an unreliable datagrammechanism for communicating with replicas. Our work extends previous investigations into theperformance of replication algorithms by assuming unreliable communication.We have investigated the performance of these algorithms by measuring the communicationbehavior of the Internet, and by building discrete-event simulations based on our measurements.We �nd that almost all message failures are either transient or due to long-term host failure, sothat retrying messages a few times adds only a small amount to the overall message tra�c whileimproving both access latency as long as the probability of message failure is small. Moreover,the algorithms which retry messages on failure provide signi�cantly improved availability overthose which do not.1 IntroductionOur goal is to identify e�cient techniques for accessing a data object replicated on an internetwork.Replicated data are used to increase availability, to decrease the chances that data will be lost, andto improve performance by locating replicas near where data will be used.An internetwork consists of a set of local networks, connected by point-to-point links andgateways or routers. Hosts can communicate quickly with other hosts on the local segment, whilecommunications with more distant hosts must pass through several gateways. As the numberof systems involved in transmitting a message increases, the latency of communication and theprobability that some component will fail both increase. On the Internet, an internetwork whichincludes many university and industrial local networks throughout the world, many local networksegments are connected to the rest of the internetwork by a single gateway. Having a single1


