4. The Equivalence Between the Training and Maximum Likelihood Model Problems 19

Hence from (4.5) and (4.10), it follows that whenever m > max{q(%,log %, n,t),log %}, with
probability at least 1 — 6,

n 5(n+1)

€
Ep(l <
p(log 2T Tm—1

IN

1 1
an(y) PR Gy (1)

Hence, whenever m > max{q(i,log%,n,t), ﬂZ—Hl + 1,log %}, with probability at least
1-0,

Ep(log

1 1

a0y~ P gy < €
We have thus shown that the above algorithm trains €', which was an arbitrary constraint
in C, with sample complexity polynomial in %,log %,n,t and running time polynomial in
the same parameters. It is easy to convert such an algorithm to one whose running time is
polynomial in the total sample length and which has sample complexity still polynomial in
%, log %, n,t.
(2—1)

This is obvious from the definitions.

Thus far, we have shown that the first three statements of the theorem are equivalent.
Now we proceed to show that 3 is equivalent to 4.
(4 — 3) Suppose that algorithm A, running in random time polynomial in %,n,t,m,
approximates the sample MLM problem for C within factor 2°(")™" for some polynomial

p. Let a constraint C' € C and a sample S = (wy, ..., w,,) be given. Again, assume without
loss of generality that []"2, OPTs(w;) = maz{[[i~; P(w;) : P € PA(C)} is positive.
We then repeat the sample r = [(2(In2)p(n,t)m®)T==] times to obtain a new sample

T = (v1,...,0pp) of length rm, and feed this into A to obtain a hypothesis). Then, by
definition, ¢) must satisfy:

HZ'ET SPTT(U) < gplna)(rm)
125 Q(t:)

where we used O PTr to denote the PA in PA(C) that assigns the maximum probability
on the sample T'. Since each example of 5 is repeated exactly r times in 7T,

@

[TiZ, OPTr(w;) <
ITZ Q(w) B
< gplnmrT (4.12)

(Qp(n,t)(mr)a)%

By substituting r into the exponent in (4.12) we obtain:

o Hgl OPTT(wZ) n moz 2 n n moz ﬁ a—1
log 0o ooy = p(n,)m® [(—(In 2)p(n, t)m®)1==]
< p(n,t)ma(%(ln 2)p(n,t)ma)ﬁ)a_l, since a — 1 <0
2
= p(n,15)771“(;(111Q)p(n,t)ma)_1
= §1oge

Hence, we have:

18

Now, using the trick of shifting, rounding-off and stochastic correction as done in the proof
of Theorem 3.1, we obtain from P a member Qg of FPA(C),,, such that

L _2n+1)

n 1
Ve e X 10gQB($)—1ogP($) <

(4.4)

From (4.3) and (4.4), (4.2) follows.

Next we can show that any algorithm having the above performance indeed trains C.
This can be shown similarly to the way the algorithm exhibited in the proof of Theorem 3.1
was proved to successfully train C. Let us first recall the notation of that proof: We
denoted by ¢) the output of the training algorithm which, for the input sample 5, minimized
Eﬁs(log ﬁ) over F' € FPA(C),. The PA Opt was a member of PA with the minimum
divergence with respect to the target distribution. F™* denoted a member of FPA(C),, that

is closest to Opt. In order to prove that Ep(log %) is close to Ep(log #(.)) with high
probability (inequality (3.9)), we showed in the proof of Theorem 3.1 that:
1 2(n+1)
Ep(log ——) — Ep(l < 4.
and whenever m > q(%, %, n,t) with probability at least 1 — 4,
Ep(log ——) — Ep(log ——) < < (4.6)
D — &Lp ~ = .
Q() Fe()" 7 2

Since (4.5) always holds, we only need to show an analogue of (4.6) for any algorithm
satisfying (4.2). Recall that in the earlier proof, in order to show (3.9), we applied triangle
inequality to the inequalities (3.6), (3.7), and (3.8). (3.6) and (3.7) followed from the
uniform convergence for FPA(C),,, and (3.8) followed from the fact that the training

algorithm minimized E7 (log %) within FPA(C),,.

In this proof, the output ¢p of our training algorithm approzimately minimizes
Eﬁs(log %) within FPA(C),. More precisely, by the optimality of OPT, it follows
from (4.2) that the following holds with probability at least 1 — ($)™:

)= Ep, oz) < Pt

Ej (log (4.7)

1
@B(")

As before, for m > (](%,log %, n,t) both of the following hold with probability at least 1 — %:

1 1 €
Ep(log g) = Ep (log 5o) < § (4.8)
B (log F*L(-)) ~ Ep(log F*L(‘)) < (4.9)

By summing up the inequalities (4.7), (4.8), and (4.9), and noting that ()™ < £ when
m > log %, we obtain that the following holds with probability at least 1 — 6 whenever
m > maz{q($,log %, n,1),log 3 }:

1 1 € 3(n+1
Epllog ;) — Epllog) < £ 4 2D

4. The Equivalence Between the Training and Maximum Likelihood Model Problems 17

We thus obtain Y 7", log %%l < 5. So for € € (0,1}, we have
O PT (w; e
I OPT(wi) o5 oy
=1 Q(wl)

Since O PT is a probabilistic automaton in P.A(C') minimizing the divergence with respect
to Dg on S, by the ‘classical equivalence’ given in Lemma 2.1, it is also an optimal solution
in PA(C) of the sample MLM problem on S. Thus we have obtained a 1 + € approximation
to the sample MLM problem with probability at least a half. The running time of B is
clearly bounded by a polynomial in %, n,t,m, since m’ is polynomial in these parameters,
the time spent on generating the sample 5" using the algorithm U is polynomial in n, m
and m’, and the running time of A is polynomial in the total length of the sample 5, i.e.
polynomial in m’ and n.
(3—2)

We will use the hypothetical approximation algorithm for the MLM problem for a class
of constraints C to construct B that trains C. Let D be the target distribution over X%
and let a constraint ¢’ € C be given as input. Assume without loss of generality that
min{dgr(D,P): P € PA(C)} is finite, since otherwise the training problem is trivial. The
finiteness of min{dgr(D,P): P € PA(C)} guarantees that for each 2 € Y™ assigned a
positive probability by D, there is a path in C' labeled with z. Hence it follows that for an
arbitrary sample S generated by D, maa{[]/2; P(w;) : P € PA(C)} is positive. First we
show that any approximation algorithm (in the sense of 3 in the statement of the lemma)
can be modified so as to output a PA @ p in the finite class FPA(C),,, defined for C as in
the proof of Theorem 3.1, which with probability at least 1 — (%)m satisfies:

1 1 3(n+1)
— Fs (1 <
0s()) ~ Fp18 o)) S T
where OPT € PA(C) is an optimal solution for the sample MLM problem with input
sample 5 satisfying the input constraint C'. Second, we show that in fact such an algorithm

is a training algorithm for PAs with a slightly larger sample complexity than the training
algorithm exhibited in the proof of Theorem 3.1.

Ej_(log (4.2)

It is easy to verify the first of these two claims. First note that any algorithm which
approximates the sample MLM problem for C within factor 1+ ¢ with probability at least
a half in time polynomial in %, n,t and m can be boosted to one which achieves the same
approximation factor with probability at least 1 — é in time polynomial in log %, %, t,n and
m. This can be done by iteratively running the former algorithm [log %] times and then
selecting, from among its outputs, one that assigns the maximum likelihood on the input
sample. (Note that using dynamic programming it is easy to compute for a given sample
and PA the likelihood of that sample in time polynomial in the total length of the sample
and t.) Now set ¢ = n and § = ()™ and run this algorithm on the input sample ' and
obtain a PA P, which with probability at least 1 — (%)m approximates the sample MLM
problem for C within factor 1 + n:

o OPT(w;)
11 Plwg) —

=1

Hence we have:

1 1 1 & OPT(w;) n+1 n+1
~ _ F~ — Y= — <
Epos 5r3) = Ep Uoe o) m; e =5ty S Tm Smoi

(4.3)

16

Let € > 0, a finite sample S = (w1, ..., w,,) with |w;| = n for each w;, and a constraint
C' € C be given. We use the hypothetical training algorithm A on the empirical distribution
Dg of S, as defined in Definition 2.1. We can assume without loss of generality that
min{dxy(Ds, P): P € PA(C)}is finite, since otherwise maz{[[7%, P(w;): P € PA(C)} =
0 and the MLM problem is trivial. B then computes a sample size m' for A large enough
for accuracy 5% and confidence 1 — %. For example, m’' = [q(QTm,Zl,n,tﬂ suffices where
g(...) is an upper bound on the sample complexity of the hypothetical training algorithm
A, which by assumption is polynomially bounded. Now, B gives A a sample S’ of size
m’ obtained by sampling from S according to ﬁg, the empirical distribution of 5, or the
uniform distribution over the m elements of the sequence 5. Here note that while it is not
always possible to simulate the empirical distribution of a finite sample with a fair coin,
there exists an algorithm which generates a new sample of an arbitrary size according to the
empirical distribution of the original sample with high probability. We make this precise
below.

Lemma 4.1: There exists a randomized algorithm, U, which, given a finite sample S =
{wy, ..., wy} of size m, an integer m’, and a confidence parameter v > 0, always terminates
in time polynomial in m, m’ and % and outputs a sample S’ of size m' which with probability

at least 1 — v is drawn according to the empirical distribution Dg of 5.

Proof of Lemma 4.1 The algorithm U first calculates i = [logm] and iterates the following:
U flips a fair coin ¢ times to obtain a bit string z of length 2. If 2 < m, then U appends
w, to the end of the sequence 5’, and does nothing otherwise. It is clear that each example
of $’is drawn independently at random according to Ds. Notice that at each iteration the
length of S increases by one with probability at least a half. It is easy to see, by applying
Chernoff’s bound (c.f. [Val84]) that in p(m’, 1) many iterations, the length of 5’ becomes
m' with probability at least 1 — v, where p is a certain polynomlal If this fails to occur, i.e.
the length of 57 is shorter than m’ after p(m’) many iterations, U pads S’ with arbitrary
examples to make its length m/.

End of proof of Lemma 4.1

We tun U on §, m’, and % 5 to obtain a sample 5’, and let) be the output obtained by
running A on 5. Thus, A is run on a sample of size m’ generated with respect to Dg with
probability at least % Furthermore, when this is the case, by the performance guarantee
on A, the divergence of () with respect to ﬁg is 5= close to the divergence of the best PA
satisfying C', with probability at least %. Hence, with probability at least % . % = %, the
following holds:

OPT(x)S K (4.1)

dxr(Ds, P) — dxr(Ds,0PT) = 3 Ds(10gﬂ 5

reEX™

where OPT is a PA in PA(C) satisfying:
dKL(Ds,OPT) = min{dKL(ﬁg,P) :Pe PA(C)}
Substituting Dg(z) = Mi;_sl in (4.1) above,

“ OPT OPT(w;) _ ¢

dxr(Ds, Q) — dxr(Ds,OPT) = Zlo o) <5

4. The Equivalence Between the Training and Maximum Likelihood Model Problems 15

4 The Equivalence Between the Training and Maximum Likelihood
Model Problems

The sample complexity bounds of Theorem 3.1 can be used to establish the equivalence
between the efficient trainability of a class of constraints and the efficient approximability of
the sample MLM problem for the same class. We first define what it means for a randomized
algorithm to approzimate the sample MLM problem within a given factor.

Definition 4.1 (Approximate Sample MLM problem): A randomized algorithm A is
said to approximate the sample MLM problem for a class of constraints C within factor K,
possibly a function of various parameters of the problem, in random T(...) time, if given
a constraint C' € C, any € > 0, and an input sample S = (wy,...,w,) of X" for some
n > 0 and some finite alphabet 3, A terminates in T(...) many steps and outputs a PA
Q € PA(C), which with probability at least a half satisfies:

I[iL, OPT(wi)
1% @(wi)
where O PT is a member of PA(C) which maximizes the likelihood of S, i.e.

<K

ﬁ OPT(w;) = maw{ﬁ P(w;): P e PAC)}

=1
By convention, we let 8 =1

As before, OPT is guaranteed to exist because of the compactness of PA(C) and the
continuity of the likelihood function on a finite sample.

Theorem 4.1: For an arbitrary class of PA constraints C, the following three statements
are equivalent. Below, we let t denote the size of the input constraint C' € C to be trained,
m the sample size, and n the length of each example.

1. There exists a training algorithm for C with sample complexity polynomial in %, %, t,n

and m, running in time polynomial in the total sample length.

2. There exists a training algorithm for C with sample complexity polynomial in %, log %, t.n
and m, running in time polynomial in the total sample length.

3. The sample MLM problem for C is approximable within a factor 1 4 € in random time
polynomial in %,t, n and m.

4. The sample MLM problem for C is approzimable within factor 2™ in random

time polynomial in t,n and m, for some a < 1.

Proof of Theorem 4.1
(1 — 3) The idea of the proof is as follows. We use the hypothetical training algorithm A
for a class of constraints C to construct a randomized approximation algorithm B for the
sample MLM problem for the same class.

In order to do this, we take advantage of the robustness of the training algorithm.
In particular, the algorithm must meet its performance guarantee when it is fed examples
generated by the empirical distribution observed in the input sample 5 for the sample MLM
problem. We then appeal to the classical equivalence between minimizing the divergence
with respect to the empirical distribution and maximizing the likelihood of a given sample
(see Lemma 2.1).

14

initial state with probability at least ﬁ and each transition in the path has probability

at least 51—. Hence log ﬁ is bounded above by (n + 1)log2tm. Since FPA(C),, equals
G'(L,5), and the cardinality of G'(7,6) is at most (% In £)’, the cardinality of FPA(C),,

is at most (mIn2tm)’. Plugging in M = (n + 1)log2tm and | FPA(C),, |< (mln2tm)
into the inequality in Lemma 3.2 gives the following inequality:

n+ 1)2 log2 2tm
2

m > ((tIn(mIn2tm) + In %) (3.15)

To show that if m is at least the bound in Lemma 3.1 then (3.15) holds, we first note that
(3.15) is implied by the following two inequalities:

1)?log* 2t
% > (nt1) 20g mtln(mln 2tm) (3.16)
€
m _ (n4+1)%log?2tm . 1
— > In - 1
2~ €? a (3.17)
To get a simple argument for (3.16) we first show that
9 In? 2tm 3
log” 2tm In(mIn2tm) < Wln(tmln 2tm) < 2In” 2tm (3.18)
n

For tm > 1 the latter inequality is equivalent to Inln 2tm < (2 In%2— 1)In 2tm + In 2 which
holds for tm = 1 and only improves for larger m. We now return to the proof of (3.16):
Since (3.18) holds it suffices to show

4 1)%t
m > aln® gm, for a = M and = 2t. (3.19)
€
If m > aln® Am holds for some choice of m then it also does for all larger m. We set m
to 8aln®8af which is the first bound in the maximization clause of q(%,log %, n,t). Then
m > aln® Bm is equivalent to 8a > In®8af. Since n > 1 and t > 2, aff = ﬂn%;lﬁ - (2t)
is always at least 64. Now observe that the last inequality holds for a3 = 64 because
(In512)% &~ 242.77 < 512, and thus for all larger a3. We conclude that (3.19) and (3.16)
hold.

The proof of (3.17) is simpler. We need to show

m > alog? fm, for a = 2(716;21)2111% and g = 2t.
One can show that if m > 4alog?2a3 (which is the second bound in the maximization
clause of q(%,log %,n,t)) then m > aln? gm.
To complete the proof of Theorem 3.1 observe that q(%,log %, n,t) of Lemma 3.1 is at
least ﬂnﬁ—ﬂl + 1 and fulfills the order bound promised in the statement of the theorem. O
As an immediate corollary to the proof of Theorem 3.1, we have the following positive

result for training PAs of a fixed number of parameters.
Corollary 3.2: Any finite class of PA constraints is polynomially trainable.

Proof of Corollary 3.2
Since the sample size m required in Theorem 3.1 is polynomial in %,%,n and ¢, this

immediately follows from the observation that | FPA(C),, |< (2mlog2tm)’ is polynomial
in m when t is bounded from above by a constant. O

3. Sample Complexity Bounds for Training PAs 13

This completes the proof of (3.11). The second inequality (3.12) is straightforward to verify.

Let B be an arbitrary member of BPA(C'),,. We round off each initial probability and each

transition probability in B to a power of (1 — %) Denote the obtained PA by R and its

stochastic correction by F'. Each probability in F'is at least (1— %) times the corresponding
probability in B and this leads to two consequences. First, since B € BPA(C'),, each initial

and transition probability in F'is at least #(1 — %) > 2tlm7 since the final choice of m will

be larger than 2. This implies that the ‘nearest grid point’ R next to B lies in C(%, 7—)

m? 2tm

and the stochastic correction F lies in FPA(C),, = G'(L,5). Second, each probability

m? 2tm
in B is at most (1 + ﬁ) times the corresponding probability in F. Therefore, for any

r € Y™ we must have:

B(z) 1 ntl
< (14— < e
F(z) — (1+ m— 1) =€
and hence:)) 41
n
log —— —log —— <
CP@) ®Br) S m-1

This proves (3.12) and completes the proof of (3.2).

The next lemma shows that whenever m > q(%,log%,n,t) the inequality (3.5) holds
with probability at least 1 — 6.

Lemma 3.1: Let F(FPAC)y) = {logﬁ e FPA(C)y}. Let D be an arbitrary
distribution over ¥ for some n € N, and D™ denote the product distribution induced by D
over (X™)". If S = (wy, ..., wy,) € (X™)™ then we let Eﬁs(f) denote the empirical estimate

of the random variable f by the sample 5, i.e. Eﬁs(f) = W, and let Ep(f) denote
the expectation (according to D) of f. Then we have, for all ¢ < 1:

1 1
Vn,t € N If m > q(—,log g,n,t),
€

then D™{5 € (X")™ : 3f € F(FPA(C)m) such that | L5 (f) = Ep(f) |> €} <6,
where q(l,log %,n,t) is defined as
€

32(n + 1)%1 5 64t(n+1)% 8(n+1)%In 4
n

b

8t(n+1)%*In +
;e
€ €

}

maz{ 2 2
Proof of Lemma 3.1
We use the following lemma due to Hoeffding. (See for example [Pol84].)

Lemma 3.2 (Hoeffding): Let F be a finite class of bounded random variables on a set
X, that is for each f € F, f: X — [0, M] for some real M € R. Let D be an arbitrary
distribution over X. Then we have:

1

M2
Ifmz6—2(ln|]-"|—|—ln(S

) then D™{5 e X™:df € F | Eﬁs(f)—ED(f) |> e} <6

To apply Lemma 3.2, we compute an upper bound on the random variables in F(FPA(C).,),
and the cardinality of FPA(C),,. Since by our assumption at the beginning of the proof
min{dir(D,P): P € PA(C)} is finite, for any string = in X" assigned a positive probabil-
ity by the target distribution D, there is a path for z in the input constraint C'. Now any
path in C is produced with probability at least (ﬁ)”"’l, since any state is chosen as the

12

We next verify (3.2) in two steps (inequalities (3.11) and (3.12) below). We define
BPA(C), asubclass of PA(C) in which all transition and initial probabilities are bounded

from below by® #

1 1
BPA(C),, ={BePAC):Yi,j€S,z€ X Mg(i,j,z)> p— and Tp(7) > %}
We then show that for arbitrary P in P.A(C), there exists B € BPA(C'),, which is close to
P in the following sense:
1 n+1

P(z) < m—1

1
VP e PA(C) 3B € BPA(C),, Vx € ¥" log —— — log

e (3.11)

In addition, we show that for each member of BPA(C),, there is one in FPA(C),, that is
close to it:
1 n+1

— log e < (3.12)

VB € BPA(C),, IF € FPA(C),, Vo € ©" log F(l)
X

(3.2) clearly follows from (3.11) and (3.12). To verify the first inequality (3.11), let an
arbitrary P € PA(C) be given. We obtain P, from P by shifting each Mp(3, j, z) towards
the ‘uniform stochastic matrix’ to obtain F,, — the matrix in which each transition in G

out of any state ¢ receives the same probability t(l—i), where we let #(i) denote the number of
transitions out of state 7. Formally:

(m—1)- Mp(i,j,2) + 15

Vi,je SVzeX Mp,(i,7,2)= (3.13)
m
Similarly we shift each 7p(¢) towards the uniform distribution over I:
(m—1)-7p(i) +
Vie S rp, (i) =] (3.14)

m
Note that for all ¢,7,z, Mp, (i,7,2) > #(2) > W > # and 7p, (i) > ﬁ > #, and
hence P,, € BPA(C),,. Now since each of the initial and transition probabilities in P, is
mT_l times the corresponding probability in P, the probability assigned
by P, on any path (and hence on any string) is at least (T”T_l)”"'1 times that assigned by
P. Hence we have for any string € ¥™:

at least as much as

P(z) 1 ntl
< (14— < emt
Pm(x)_(+m—1) =€

Hence, for every € X", we have

1 < n+1
P(z) = m—

log —— -1

—_

5Note that these bounds can be made slightly smaller, which would result in a slight improvement on the
sample complexity. In particular, the bound on the transition probabilities can be =%

t*m

maximum number of transitions in GG out of any state. The bound on the initial probabilities can be

where t* denotes the

1
[Z]m

3. Sample Complexity Bounds for Training PAs 11

Suppose that m is at least ﬂne—-l'll + 1 and thus Aﬁ < . Then if we let I be a member
of FPA(C),, such that for all F' € FPA(C)y, dr(D, F*) < dgr(D, F'), then we have:

dir(D, F*) —dgr(D,0pt) < (3.4)

[NSH e

Now by the uniform convergence for the random variables F(FPA(C),,) as stated in
Lemma 3.1, for moderately large m (m > q(%,log %, n,t) where ¢ is polynomially bounded
and will be specified in Lemma 3.1), we have with probability at least 1 — é:

1 1
YE € FPAC)n | Ep (log 75) = Enllog 75) < i (3.5)
Now let @ € FPA(C),, be the output of our training algorithm, minimizing the empirical
estimate of log % over) € FPA(C),,. Then, by (3.5), we have that with probability at
least 1 — 6, both of the following hold:

1 1 €
Ep(lo — F= (log—=) < - and 3.6
E- (log ——) — Ep(log ——) < & (3.7)
D () TR) = ‘
Also by the definition of our training algorithm
= (1 ! = (1 ! <0 3.8

By summing the inequalities, (3.6), (3.7) and (3.8), we have the following with probability

at least 1 — &
1

1 €
This implies:

€
dxr(D,Q)—dgr(D, F*) < 2

Then from (3.4) and (3.10) we have with probability at least 1 — é:

(3.10)

dir(D,Q) — dir(D,0pt) < ¢

Thus any training algorithm that minimizes the empirical divergence over FPA(C),, also
approximately minimizes the actual divergence over PA(C') within accuracy ¢ with proba-
bility 1 — 6, whenever m > maav{ﬂne—-l'll + 1,q(%,log %,n,t)}.

Proof of Theorem 3.1

We need to show that (3.2) holds and that whenever m > q(%,log %,n,t) the inequality
(3.5) holds with probability at least 1 — 8, for some ¢ for which q(%,log %, n,t) is at least

ﬂnﬁ—ﬂl + 1 and which fulfills the order bound promised in statement of the theorem.

We begin by defining FPA(C),,. We define a finite subset (grid points), denoted by
G(7,8), of PA(C) as the set of all members P in PA(C), such that each of wp(i) and

Mp(i,j,z) is some power of 1 — v, and is at least 6. Let G'(7,8) be the set of stochastic
corrections of the members of G(7,8). We then define FPA(C),, as G'(L, 51).

m? 2tm

10

and show that the empirical estimates converge to their true means uniformly for the class

of random variables F(PA(C)) = {log % : P € PA(C)} for moderate sample size. The

difficulty here is the fact that F(P.A(C)) is unbounded in the sense that log % diverges
to infinity when P(x) goes to zero. This fact prohibits the direct application of certain
lemmas on the convergence of random variables, such as Hoeffding’s inequality.

It turns out, however, that we do not need to show uniform convergence for the en-
tire class. We let our training algorithm output a probabilistic automaton ¢ for which
Eﬁs(log %) is minimized when () is restricted to be in a finite subclass FPA(C),, of
PA(C). (If there is more than one member in the finite class that achieves the minimum
we make no further assumption about how our algorithm picks its hypothesis.) To de-
scribe FPA(C),,, first note that P.A(C) is nothing but the subset of the ‘parameter space’
[0,1]7 x [0, 1]% satisfying the stochastic condition. For convenience we expand P.A(C) by

relaxing the equalities in the stochastic condition to inequalities:

Vie s Z Mp(i,j,7z) < land Zﬂp(j) <1 (3.1)
JES,zEY jel

Note that any member P of the parameter space satisfying this weaker condition can easily
be converted to a probabilistic automaton P’ satisfying the strict stochastic condition which
assigns at least as large a probability on every word:

MP(iv jv Z)

. . . N) ﬂ-P(i)
S Mp: = drp(i) = 5=
Vi.jes.ze Plig:2) Yokes.rex Mp(i, k, ') and we(3) >jermp(J)

Let us say that P’ is the stochastic correction of P. Note that P’ has less divergence than

P with respect to any distribution®.

FPA(C)y, is defined for each sample size m and is the set of stochastic corrections of all
‘bounded grid points’ of P.A(C), that is, those members of PA(C') in which all transition
and initial probabilities are bounded from below by some decreasing function of m and are
powers of (1 — v) where v also is a decreasing function of m.

Now, since F(FPAC)y) = {log ﬁ : Fe FPA(C),,} is a finite class of bounded ran-
dom variables of moderate cardinality, we can show fast uniform convergence (of empirical
estimates to true means) for them. We then show that for sufficiently large m, for each P

in PA(C), there exists ' € FPA(C),, which is ‘close to” P everywhere in the domain:
L _2nt 1)

1
VP CYdF e F) Ve e X" log —— — 1 3.2
e PAC)IF € FPA(C), Va € OgF(w) OgP(x)_ o (3.2)
This immediately implies that for an arbitrary source distribution D over X", we have:
2 1
AF € FPAC)m dxr(D,F) — dir(D, P) < % (3.3)

So if we let Opt be a member of PA(C) satisfying dir(D,Opt) = min{dgr(D,P): P €
PA(C)}, then we have:

2(n+1)

m—1

JF € FPAC)m dir(D, F) — dir(D,0pt) <

®We have also implicitly extended the notion of divergence for the generalized notion of probability
distributions in which the total sum of probabilities over the domain may be less than one.

3. Sample Complexity Bounds for Training PAs 9

probability zero. For a stochastic matrix M and a word w, let M(w) be the maximum
generation probability assignable on w by M with the best initial state. Note that with this
definition, M(uv) < M(u)- M(v), in general. The single string MLM problem is defined
as the problem of finding a stochastic matriz M satisfying the input constraint, which
maximizes M (w) on the input string w.

Definition 2.6: Single-String MLM Problem for C

Input: A constraint C' € C and a string w in X*.

Output: A stochastic matriz () satisfying C' which assigns the mazimum generation proba-
bility on w among all such stochastic matrices, i.e.

Q(w) = maz{M(w): M € M(G)}

As usual let P denote the class of decision problems decidable in polynomial time
and NP the class of decision problems acceptable in non-deterministic polynomial time.
RP denotes the class of decision problems that are acceptable in random polynomial
time [Gil77]: A decision problem L is said to be accepted in random polynomial time
if and only if there exists a randomized algorithm A, that is, A has access to a fair coin,
such that A halts in polynomial time on all inputs, and A always outputs ‘no’ on a negative
instance and outputs ‘yes’ with probability at least a half on a positive instance. It is widely
conjectured that P is strictly contained in NP, and also that RP is strictly contained in
NP. All hardness results of this paper only hold modulo one of the above conjectures.

3 Sample Complexity Bounds for Training PAs

Our main positive result on the training problem is the following bound on the sample
complexity of the PA training problem.

Theorem 3.1: An arbitrary class of PA constraints C is trainable with sample complexity
O((2)%t -log® ™ - log 1 -log®log T), where t is the size of the input constraint.

€

Note that the above sample complexity bound is essentially linear in the size of the input
constraint ¢, and a low-order polynomial in n, %, and log %. As an easy corollary, the follow-
ing bound on the sample complexity of the training problem for the complete constraints
follows.

Corollary 3.1: The class of complete PA constraints is trainable with sample size:
O((2)?s*a-log” 2% . Jog 1 -log? log §), where s is the number of states and a is the alphabet
size of the complete constraint to be trained.

Outline of the proof of Theorem 3.1

Let an input constraint C' = (I,G) € C be given, and let ¢t be its size, i.e. ¢ =| [|
+ | G |. Assume that min{dgr(D,P) : P € PA(C)} is finite with respect to the
target probability distribution D, since if the minimum is infinite then by the definition
of trainability any sample complexity suffices. Our objective is to show that there exists a
training algorithm such that for any sufficiently large sample S, its output @ € PA(C) is
likely to approximately minimize d (D, Q), where D is the source distribution. Recall that
dir(D;Q) = Ep(log %) —H(D). Since the second term (the entropy of D) is independent
of @, in order to find a @ that minimizes d(D; @), it suffices to find a @ that minimizes
Ep(log %) Thus a natural attempt would be to find a ¢ that minimizes Eﬁs(log %)

when inf{dxr(D,P): P € PA(C)} is finite. Define a function {p : PA(C) — [0, 1] for an
arbitrary target distribution D by :

éo(P) = [P)?

reEX™

Then since £p is a continuous function, for an arbitrary D, mapping a compact subset of
the parameter space [0,1]%, it attains a maximum at a particular PA, say Opt':

Ep(Opt') = maz{ép(P): P € PAC)}

Hence,

1 1
Bollog gory) = 3 Dos g

1 - -
o8 Ep(Opt')
1

log maz{{p(P): P € PAC)}
:PePAC)}

= min{log

1
n(P)
1
P(:)
Noting that dx (D, P) = Ep(log %)—H(D), the inequality (2.5) implies that dir,(D, Opt’)
equals min{dxr(D,P): P € PA(C)}. Now let Opt = Opt" and we see that Opt is well-

defined.

We define two versions of the maximum likelihood model problem for PAs considered in
this paper.
Definition 2.5: Sample MLM Problem for C
Input: A constraint C' € C, a string length n and a finite sample S = (w1, ..., w,,) of strings
from X7,
Output: A probabilistic automaton ¢ satisfying C' which assigns the maximum generation
probability (or the maximum likelihood) on S among all such probabilistic automata, i.e.

= min{FEp(log): PePAC)} (2.5)

m

H Q(w;) = maw{ﬁ Plw;): PePAC)}

=1

Again note that maz{[]~, P(w;) : P € PA(C)} is well-defined because ¢ : PA(C) — [0, 1]
defined by

m
¢(P)= [T Plw:)
=1
is a continuous function mapping a compact domain P.A(C') into the range [0, 1].

The following definition is a special case of the sample maximum likelihood model
problem in which the input sample consists of a single string. Note that for a single string,
the initial probability distribution plays no significant role, because among probabilistic
automata assigning the maximum probability on a given string there is always a probabilistic
automaton in which exactly one state has initial probability one and all other states have

2. Preliminaries 7

the Kullback-Leibler divergence with respect to the source distribution also minimizes the
expected code length of the data. It is also well-known that minimizing the Kullback-
Leibler divergence with respect to the empirical distribution ﬁg observed in a sample §
= (w1, ..., wy,) (Definition 2.1) corresponds to maximizing the likelihood of the sample, as
demonstrated below. Minimizing d(Ds; Q) corresponds to minimizing Eﬁs(log %), and
the following always holds:

1
Eﬁs(log Q()) = glog 0w = Elogi:r[l 0w (2.4)

Thus, dKL(ﬁS; ()) is minimized when []/2, Q(w;) is maximized, i.e. when @ maximizes the
probability of having generated the sample. We summarize this as a lemma.

Lemma 2.1: Let P be an arbitrary class of distributions over ¥, S = (w1, ..., wy) an
arbitrary sample of ¥, and Dg the empirical distribution of 5. Then,

I 1
Eﬁs(log m) = mf{Eﬁs(log ()) : P eP}
if and only if - .
H Q(w;) = sup{H P(w;): P eP}

Below we give the definition of a training algorithm which is the central definition in this
paper. Here we assume that a randomized algorithm has access to a fair coin and can flip
it in a single time unit.

Definition 2.4 (Training PA Constraints): A training algorithm takes as input a con-
straint C', a string length n, and a finite sample S of X" for some alphabet Y., and out-
puts a probabilistic automaton which satisfies C. We say that a (possibly randomized)
training algorithm A trains a class of constraints C with sample size q(%,%,n,t), if A,
when given as input an arbitrary constraint C' € C of size t, a string length n, and a fi-
nite sample S drawn independently at random from an arbitrary unknown distribution D
over X", is such that whenever the sample size m exceeds q(%, %,n,t), then provided that
min{dir(D,P): P € PA(C)} is finite, A’s output Q) satisfies the following with probability
at least 1 — 6:

drp(D,Q) — dxr(D,0pt) < e
where Opt is a member of PA(C) satisfying:

dKL(D,Opt) = min{dKL(D,P) :Pe PA(C)}

Here the probability is taken over the product distribution of D producing the sample and
the random coin flips of A, if A is probabilistic. If there exists such an algorithm then we
say that C is trainable with sample complexity q(%, %, n,t). If there exists such an algorithm
running in time polynomial in the total sample length, then we say that C is polynomially
trainable.

Note that inf{dxr(D,P): P € PA(C)} is infinite if and only if there is a word z € X"
such that D(z) > 0 and there is no path in €' for z. In this case, dgr(D,P) = oo for
any P in PA(C). We still need to verify that Opt in the above definition is well-defined,

is a pair C' = (I, G) where [is the initial state set and G is the transition graph of C. I is
a subset of the set 5 of all states. GG is a subset of the set 5 x .5 x X of all transitions. Note
that a transition graph is a labeled directed graph with the state set 5" as the vertices, and
the alphabet X as the set of labels. We write | I | for the number of states in I, | G | for
the number of transitions in G. We then define the size of a constraint C', written | C' |,
as | C' |=| I | + | G |. Note that the size of C' corresponds to the number of probability
parameters specified by C'.

We say that there is a path in C for a string wq...w, € X7, if there is a sequence of states
o = (09, ..., 0py1) from ST guch that og € I and for all i, 0 < i < n, (04,011, wisy1) € G.
We say that a probabilistic automaton P satisfies a constraint C = (I, G), if and only if
Sp=5and Xp =X and

Vigl, mp(i) =0 and

V(i,j,Z)Q/G, MP(i,j,Z)IO (23)

Note that if a probabilistic automaton P satisfies a constraint C' then for every word on
which P assigns a positive probability, there is a path for it in C'. If P satisfies (', one can
think of 7p as a function from [into [0, 1], and Mp as a function from G into [0, 1]. We let
PA(C) denote the class of probabilistic automata satisfying the constraint C'. Note that
PA(C) C [0,1]F x [0,1]9, where we let [0,1]! denote the class of all functions from I into
[0,1], and [0,1]% from G into [0,1]. (In general, we use Y* to denote the class of functions
from domain X into range Y.) We also let M(G') denote the class of stochastic matrices
Mp satisfying (2.3).

The notion of ‘distance’ among distributions we employ in this paper is a well-known
measure in information theory called ‘Kullback-Leibler divergence,” also known as the
‘relative entropy.’

Definition 2.3 (Kullback-Leibler Divergence): Let D and @ be probability distribu-
tions over countable domain X . The ‘Kullback-Leibler divergence’ of) with respect to D,

dir(D;Q) is defined as follows.

digr(D;Q) = D(x)log ——=
ko(D;Q) ;EX: (2) & 0(e)

(Normally we think of D as the actual distribution against which a ‘candidate’ distribution
Q) is being compared. By convention, we let 0log0 = 0, and 8 =1.)

Note in the above definition that the base of logarithm is 2, following the conventions in
coding theory. (Throughout this paper we let In denote the natural logarithm and log
the logarithm base 2.) The Kullback-Leibler divergence enjoys many natural properties:
We can rewrite dir(D;Q) as Ep(log %) — H(D) where Ep(log %) is the expectation
according to D of the random variable log %, and H(D) is the ‘entropy’ of D, defined as

Yowex D(z)log ﬁ. Recall that log ﬁ is the code length for x with respect to the ideal
code for D, and H(D) is the expected code length* of that code [Ham86] for the source
distribution D. In other words, for the source distribution D, the divergence dg(D;Q)
measures the expected additional code length required when using the ideal code for ¢

instead of the ideal code for D. Thus, the ideal code of the distribution which minimizes

*In Physics, it is customary to use the natural logarithm for the definition of entropy. We use the binary
logarithm for the entropy and the Kullback-Leibler divergence as is done in information and coding theory.

2. Preliminaries 5

Note that for any y not in S, we have ﬁg(y) =0.

The probabilistic automaton is formalized as a stochastic matrix M together with an
‘initial distribution’ 7= over the set of states. Intuitively, the probabilistic automaton is much
like a non-deterministic finite state automaton except that the transitions take place with
probabilities prescribed by M. (See Figure C.1.) To start the process, the machine chooses
the initial state according to the initial distribution 7, and then at any given point after
that, the machine is in some state ¢, and at the next time step moves to another state j
outputting some letter z, with probability specified by M (¢, 7, z). If one stops the machine
at time step n the machine ends in some state having generated a string of length n. In
this way, a probabilistic automaton naturally defines a probability distribution over the set
of strings of length n, for any particular n.

Definition 2.2 (Probabilistic Automata (PA)): A probabilistic automaton P is a quadru-
ple (Sp, Yp, np, Mp) where Sp is a finite set of states, Yp is a finite alphabet,
mp: Sp — [0,1] is a probability distribution over Sp, and Mp : Sp X Sp x ¥p — [0,1] is a
stochastic matriz®, i.e.

Z mp(i) =1 and Vi € Sp Z Mp(i,j,2z)=1 (2.1)

1ESP JESp,2€X P

Fach wp(i) is called an initial probability, and each Mp(t,j,z) is called a transition prob-
ability. For any string w = wy...w, € Y}, the generation probability assigned on it by
P =(Sp,Yp,mp, Mp) is computed as follows.

n—1
P(wy...w,) = S wplio)- [] Mp(ijijr, wig) (2.2)
(305vyin)ESHT! Jj=0

Thus, for any given example length n, P defines a probability distribution over X%.

For example, the probability assigned by the probabilistic automaton P shown in Fig-
ure C.1 on the string w = aab is calculated as follows:

P(w) = wp(0)-Mp(0,0,a)- Mp(0,1,a)- Mp(1,1,b)
+rp(0) - Mp(0,1,a)- Mp(1,1,a)- Mp(1,1,b)
—|—7Tp(0) MP(O 1 a) Mp(l,?,a)-Mp(Q,O,b)
trp(1)- Mp(1,1,a)- Mp(1,1,a)- Mp(1,1,b)
trp(l)- Mp(1,1,a)- Mp(1,2,a)- Mp(2,0,b)

= 05-04-06-01405-06-0.1-0.1+0.5-06-0.8-0.6+
05-01-01-0.14+0.5-0.1-0.8-0.6
= 0.012+40.003 + 0.072 + 0.0005 + 0.024 = 0.1115

Note that for a probabilistic automaton P we use the same letter P to denote the probability
distribution defined by P on X%, where n will be clear from the context. A PA constraint

3The probabilistic automaton is often formulated as a probabilistic acceptor in the literature. Here we
view PAs as generators. Thus the stochastic condition in this definition states that, for each state, the total
probability of transitions out of that state sums to one, rather than the total probability for each state-letter
pair as is the case for PAs as acceptors. Tzeng considers the incomparable problem of learning PAs as
acceptors from queries [Tze89].

approximate (unless P = NP), and hence the class of 2-state complete constraints is not
polynomially trainable (unless RP = NP).

The hardness result for the MLM problem for 2-state complete constraints is shown via
the following non-approximability result for the single string MLM problem for the same
class — the special case of MLM in which the input sample consists of a single string. We
show that it is hard to approximate the single string MLM problem for the 2-state complete
constraints within a factor of 21*' ™ for any positive constant «, where w is the input word,
in time polynomial in the word length and alphabet size, unless P = NP. Note that it is
a very strong non-approximability result, since there is a trivial training algorithm, using
only 1-state probabilistic automata, that can guarantee approximation within a factor of
21l of the best 2-state PA. The proof of the hardness result uses as a starting point the type
of technique commonly used in the learning theory literature for showing the hardness of a
‘sample consistency’ or ‘minimum consistent concept’ problem in discrete domains such as
automata and boolean formulas [Gol78,Ang78 PWR89]. In particular, our proof makes use of
notions used in Angluin’s proof of the NP-completeness of the sample consistency problem
for 2-state DFA [Ang89]. The proof given here is, however, significantly more complex than
the proof of the discrete case, since corresponding to ‘consistency’ we have ‘probability,’
which is continuous and is thus much harder to get a hold of. For example, in our reduction
of the satisfiability problem to the MLM problem for the 2-state complete constraints, it is
already non-trivial to formalize how a truth assignment is to be simulated by a PA. We let
each truth assignment correspond conceptually to one of 2™ many deterministic PAs of a
particular kind, and for all the other (infinitely many) PAs, we quantify how ‘far’ they are
from those corresponding to truth assignments. We then show that any PA that assigns
the input word w a probability at least Mﬁ times the probability assigned on w by an
optimum PA must be ‘close’ to a deterministic PA corresponding to a satisfying assignment.

This paper is outlined as follows. We begin in Section 2 with some preliminary definitions
and give the proof of the sample size bounds for training PAs in Section 3. In Section 4
we show the equivalence between the training problem and the approximate MLM problem
for any class of constraints. In Section 5 we give the hardness result for the single string
MLM problem for 2-state complete constraints. Parts of this lengthy proof are given in
Appendices A and B. In Section 6 we discuss briefly how the results of this paper apply to
HHMs. We conclude by discussing a number of open problems inspired by this research in
Section 7.

2 Preliminaries

This paper deals with approximating a probability distribution over words over some
finite alphabet, ¥. For simplicity, we assume that all words with positive probability have
the same length, n, i.e. the distribution is over the domain %". We call an element of %"
an example. A sample 5 of ¥" is a finite sequence of examples of X", S = (wy,..., wp),
where m is the sample size. We abuse notation and write z € S to mean that x appears in
the sequence S. We let §(z,.9) denote the number of occurrences of example z in sample 5.
Using the above notation, we define the notion of the empirical distribution of a sample.

Definition 2.1: Given a sample S of size m of X7, the empirical distribution of S over
X" written Dg, is defined by:

8z, 5)

Vo € 3" Dg(x) = -

1. Introduction 3

Using this model, we show a number of results: We show that an arbitrary class of
constraints is trainable by exhibiting a training algorithm whose sample complexity is
essentially linear in the size of the constraint being trained and a low-degree polynomial in
the example length and parameters quantifying the accuracy and confidence. In addition,
the running time of our training algorithm is polynomial in the total sample length if the
size of the input constraint is bounded by a constant, thus showing that finite classes are
polynomially trainable. In particular, an arbitrary fized constraint is trainable in time
polynomial in the accuracy and confidence parameters and the example length. If the
alphabet size is variable, however, no polynomial time training algorithm exists for the
class of 2-state complete constraints?, unless RP = NP.

To the best of our knowledge, our upper bound is the first rigorous result on the sample
complexity of training PAs and HMMs, with respect to the classical measure of Kullback-
Leibler divergence. Our proof is also interesting in the sense that we manage to get around
the problem caused by the fact that the Kullback-Leibler divergence is unbounded. This
property prohibits the direct use of certain useful techniques such as Hoeffding’s inequality
for showing uniform convergence of empirical estimates of random variables to their true
means. We get around this problem roughly as follows: We bound the smallest transition
probabilities in the training algorithm’s hypotheses from below by a decreasing function of
the sample size m. We show uniform convergence for these successive classes of ‘bounded’
probabilistic automata using Hoeffding’s inequality. We then show that for sufficiently large
m, an optimum automaton in the m-th bounded class is close to an optimum one in the
entire class with high probability. Interestingly, the trick of bounding probabilities away
from zero is often used in practice in an attempt to solve what is known as the ‘finite
sample problem’ [LRS83]. Our result provides a rigorous justification for a particular way
of setting those probability bounds, from the point of view of proving bounds on the sample
complexity.

The sample complexity bound we obtain allows us to extend the classical equivalence
between the minimization of the Kullback-Leibler divergence with respect to the empirical
distribution and the maximization of the likelihood of the given data: We show that the
polynomial time trainability of a class of constraints C is equivalent to the polynomial time
approximability of the ‘maximum likelihood model’ problem (MLM) for the same class C
— the problem of setting the initial and transition probabilities in a given constraint in C
so that the probability assigned on a given finite sample is maximized. More precisely, we
show that the polynomial time trainability of a class of constraints C is equivalent to the
approximability of the MLM problem for C within a factor 1+ ¢ in random time polynomial
in % and the size ¢ of the input constraint. Furthermore, we show that this latter notion of
approximability of the MLM problem for C is also equivalent to a seemingly much weaker
notion of approximability: Approximability within factor 2°(**)™" in random polynomial
time, where m is the sample size, a is an arbitrary constant less than 1, and p(n,?) is a
polynomial in the example length n and the size of the input constraint {. We use the above
equivalence between the training and MLM problems to show our hardness result: For
variable alphabet size, the MLM problem for 2-state complete constraints, or the problem
of finding a 2-state PA assigning the maximum likelihood on the input sample, is hard to

?The existence of an algorithm for training hidden Markov models which always outputs a near local
optimum on a given sample is well-known (‘Baum-Welch’ algorithm [Bau72]) and is used extensively in
practice. Note that in applications to speech recognition, the alphabet size is determined by how precise the
acoustic signals are quantized. The alphabet size is often in the hundreds.

1 Introduction

We address the problem of approximating an arbitrary, unknown source distribution
by distributions generated by probabilistic automata. Probabilistic automata (PAs), and
hidden Markov models! (HMMs) which are closely related to PAs, are used extensively as
models for probabilistic generation of speech signals for the purpose of speech recognition
(see for example [LRS83]). The problem addressed in the present paper corresponds to that
of training a parameterized hidden Markov model for a particular spoken word with a set
of actual speech signals for that word. In particular, we are interested in the question of
whether there exists an algorithm that, when given a sample generated from an arbitrary
unknown target distribution, outputs a probabilistic automaton that approximates the
unknown distribution ‘as closely as possible,” that is, with high probability the distribution
induced by the output PA is sufficiently close to an ‘optimal’ one among all possible
probabilistic automata satisfying a certain prescribed constraint. Here a constraint is given
to the algorithm in the form of a subset of the state set specifying the legal initial states
and a labeled directed graph specifying the set of legal transitions. The training problem,
therefore, is the problem of finding a near optimal setting of the initial and transition
probabilities on the legal initial states and transitions in the input constraint. A class of
constraints is said to be trainable with sample complexity ¢(...) if there exists an algorithm
which trains every constraint in the class, and the sample size required for a given accuracy,
confidence, length of the example strings, and the size of the input constraint is bounded
above by the function ¢ of these parameters. Here the size of the input constraint translates
to the number of probability parameters being trained. A class of constraints is said to be
polynomially trainable if there is a training algorithm with polynomial sample complexity
whose running time is polynomial in the total sample length. Of particular interest to us is
the special case of this problem in which the input constraint is complete, namely all initial
states and transitions are legal. This special case translates to the problem of finding a near
optimal probabilistic automaton with a given number of states.

Our model is a natural adaptation of the PAC-learning paradigm of Valiant [Val84,
BEHW89] and is inspired by the model of efficient unsupervised learning of Laird [Lai88].
It is also related to the models for learning languages from stochastic data in the limit
proposed and studied by Angluin [Ang88]. Our formulation requires the algorithm to be
particularly robustin the sense that we do not assume anything about the target distribution
— a formulation which is closely related to the ‘robust’ generalization of the PAC paradigm
proposed by Haussler in [Hau89]. The distance measure between the distributions used in
this paper to evaluate the accuracy of a hypothesis with respect to the target distribution is
the well-known ‘Kullback-Leibler divergence.” Other commonly used measures of distance
between probability distributions are, for example, the y? distance, the variation distance,
the quadratic distance [KS90], and the Hellinger distance. The Kullback-Leibler divergence
is a standard notion of distance, which enjoys many desirable properties (see Section 2).
Furthermore, the Kullback-Leibler divergence is known to bound from above the Hellinger
distance as well as the square of the variation distance and of the quadratic distance.
These relationships for the more general case of conditional distributions are surveyed by
Yamanishi in [Yam91].

'HMMs are similar to probabilistic automata, except that outputs in an HMM are associated with the
states rather than the transitions, and thus the transitions are unlabeled state to state pairs.

ABSTRACT

We introduce a rigorous performance criterion for training algorithms for prob-
abilistic automata (PAs) and hidden Markov models (HMMs), used extensively
for speech recognition, and analyze the complexity of the training problem as
a computational problem. The PA training problem is the problem of approxi-
mating an arbitrary, unknown source distribution by distributions generated by
a PA. We investigate the following question about this important, well-studied
problem: Does there exist an efficient training algorithm such that the trained
PAs provably converge to a model close to an optimum one with high confidence,
after only a feasibly small set of training data? We model this problem in the
framework of computational learning theory and analyze the sample as well as
computational complexity. We show that the number of examples required for
training PAs is moderate — essentially linear in the number of transition prob-
abilities to be trained and a low-degree polynomial in the example length and
parameters quantifying the accuracy and confidence. Computationally, how-
ever, training PAs is quite demanding: Fixed state size PAs are trainable in
time polynomial in the accuracy and confidence parameters and example length,
but not in the alphabet size, unless RP = NP. The latter result is shown via
a strong non-approximability result for the single string maximum likelihood
model problem for 2-state PAs, which is of independent interest.

On the Computational Complexity
of Approximating Distributions by
Probabilistic Automata*

Naoki Abe
Manfred K. Warmuth

UCSC-CRL-90-63
December 28, 1990

Baskin Center for
Computer Engineering & Information Sciences
University of California, Santa Cruz

Santa Cruz, CA 95064 USA

*Supported by the Office of Naval Research, contract number N0014-86-K-0454. Part of this work was
done after the first author began employment by C & C Information Technology Research Labs, NEC, 4-1-1
Miyazaki Miyamae-ku, Kawasaki, 216 Japan, and the second author was employed by ITAS-SIS Fujitsu
Limited, Numazu, Japan. Email addresses: abe@ibl.cl.nec.co.jp and manfred@cis.ucsc.edu.

48

Figure C.3: The deterministic automaton corresponding to ‘true.’

Figure C.4: The deterministic automaton corresponding to ‘false.’

C. Figures

Figure C.2: The four boolean functions on two variables.

47

46

Figure C.1: An example probabilistic automaton.

C. Figures 45

If we divide the path set for u; into 4 and €y, defined as before, then if we let M, be an
arbitrary canonical matrix, we can show the following

M(u;) = M(ui,)+ M(ui, Q) (B.21)
< (1 _ 6(a,b,ci,di,xi,x_i,e)(M) + %/\(a,b,ci,di,xi,x_,‘,e)(M7 MT))C[M](U)

(a,b,ci,d; \zi,27,€)
(- B)

Proof of Lemma 5.6, part 7

As we observed in the proof sketch, if F' is unsatisfiable, then for any canonical stochastic
matrix M., we must have M (ws) = 0. But we have shown that §(M) < 52% In other
words, for some particular truth assignment 7, 6(M, M,) < 52% Therefore we can apply

Lemma 5.5 to each substring u = [];_; ab(l;1;2l;3)b and obtain the following.

M(u) < 682%(1 + ,/82%)60(@ (B.22)

Clearly M(u) < (3)C[M](u) holds, and thus we obtain M (ws) < (3)¥C[M](ws).

End of proof of Lemma 5.6

C Figures

Sorry, the figures are missing. If you need them please ask for full copy from

Jean McKnight
Dep. of Computer Science
225 Applied Sciences
Santa Cruz, CA 95064

44

Putting (B.16) and (B.18) together, we obtain:

M(u) = M(u,Q)+ M(u,Q4)
< (1= 8PN+ NI M) CTM ()
(a,b,f)
= - anenn)

Proof of Lemma 5.6, part 4

This part follows from an analogous argument to the proof of Lemma 5.6, part 1, except
the part that eliminates two of the four possible ‘cycles,” since that part makes use of the
fact that the frequency of @ and b in w is very close to one. First, if we define A; for
each ¢ < n, analogously to A in the earlier proof, then we can show that min;<,A; < 52%
We can also show that v(¢4)(M) < 52% by the same argument. So, it follows that if we
let A = miniSHmin{é(ci’di)(M,{ci :0—0,d; : 0 — 0}),6(0“11')(]\/[,{02' 00— 1,d; 11 —
0}), 6 (M, {e;: 1 — 0,d; : 0 — 1}), 84 (M, {e; 11 — 1,d; : 1 — 1})}}, then we have
that if M(w) > ﬂkﬂl then A < .

Proof of Lemma 5.6, part 5

There are two cases. First, suppose that for some i, (¢;,d;) pair is not either (0 — 1,1 — 0)
or (1 — 0,0 — 1). More precisely, suppose that one of the following holds:

Ap= 8N M {e;:1—1,d;:1—1}) < (B.19)

1
5210
1

Ay =6C A (M, {e;:0—0,d; 10— 0}) < i (B.20)

In this case, each of the 27 pathes for the string ws; = ¢; fe;d; fd; must contain at least two
unintended transitions, that is, two transitions other than f:0— 1, f: 1 —=0,¢:1 =1,
d; : 1 — 1 when (B.19) holds, and two transitions other than f : 0 — 1, f : 1 — 0,
¢i 10— 0,d; :0— 0, when (B.20) holds. Since all of A;; N\U)(M, M,) < §U)(M, M,), and
LD (MY < maz{A;, 6U)(M, M;)} are at most . we can bound M(ws;) from above
as follows.

M (%, %, (¢, di)))4(M(*, *, f)

Mwsi) < 27 (mas{ A A, M)P? - (140D (1)) (= ;)

IN

SO (ws,)

It follows that in fact in this case M(ws;) < (3)"?C[M](ws;). Next, we assume that each
(¢;,d;) pair is set as intended, namely (0 — 1,1 — 0) or (1 — 0,0 — 1). Given this, we
can prove the analogue of Claim B.1 in the proof of Lemma 5.6, part 3, where the string
afabfb is replaced by ¢; fe;d; fd;. The desired conclusion follows at once.

Proof of Lemma 5.6, part 6

The proof of part 6 is similar to the proof of part 3. Using the same technique of dividing
the set of pathes for each substring of the form w; = ax;bx;c;7;d;z;bzazab we can obtain
the following claim, exactly analogous to the claim in the earlier proof.

Claim B.2: Let u; = az;bz;c;T;d;T;bzazab. Then, if 6(“’b’ci’di)(M) < (%)10 then M(u;) <
§(avbvcivdi7‘ri7‘r_ive) M
(1- O ().

B. Proof of Lemma 5.6 43

one of these six places as the place for the first occurrence of two consecutive unintended
transitions, then the total probability of generating u via these pathes is less than C[M](u)
by an approximate factor of /\(“’b)(M, M) times /\(“’b’f)(M, M), accounting for the presence
of unintended transitions at two specific positions, disregarding any favorable skews that
might be present. For example, if we let ﬁ denote the set of pathes in which the first two
consecutive transitions (for @ and f) are unintended, then we can bound M(wu,Q;) from
above as follows. First, from a generalization of Lemma 5.3 to any subset of pathes, we
have:

M(u,11) = maz{M(0,0,a), M(1,+,a)} - maz;esM(i,i, f) - maz;esM(i,*,a)-
maz;esM(i,%,0) - maz;esM (i, , f)- maz;esM(i,*,b) (B.17)

Now by the definitions of leak and skew, if we let M, be an arbitrary canonical matrix, we
have:

maz{M(0,0,a), M(L,%,a)} < maz{\\""(M,M,)- M(0,*, (a,b)),
/\(“b)(MM) M(1,%,(a,b))} by (5.8)

< A@DM, ML) - mazies M+, (a,8)) by (5.9)
< AWM M:) - (L () - M(*’Z’(a’ Dy (5.11)
Similarly,
mazies{M(i.i.)} < X 01,) - (1 4 0 (ar)) - L2 S)
For an arbitrary letter z in an arbitrary letter group G,
maziesM(i, %, 2) < (1 + vG(M)) - M by (5.11)
Plugging these into (B.17), we obtain:
M) = AL e) TR ED),
A (M, M) (1 + V(f)(M))M .
(14 oD D g) M)

A(a,b)(M7 M) - /\(f)(M7 M;)- (14 l/(ﬂhb)(]\/[))‘1 (14 z/(f)(]\/[))2 .
(M(*v *, (avb)))4 . (M(*7 *7f))2
2 2
_ /\(a’b)(M, M,)- /\(a,b,f)(M7 M) -(1+ l/(‘lvb)(]\/[))‘1 (14 z/(f)(M))2 -C[M](u)

IN

Since we can derive the same inequality for each of the six possible places for the first two
consecutive positions of unintended transitions, we obtain the following.

M (u, Q1) < 6A@O (M, MANEED (M, M) (1 + v @ (M) 1+ oD (M))2C[M)(w)
Now since we have §(**)(M, M;) = maz{\@Y(M, M), v @D(M))?} < ($)!°, and 1 +
(M) < 2 by (5.12), we obtain:
<6 ()04 ()7 PPN, MCIM ()

L @b
< §A PI(M, MA)C[M](u) (B.18)

M (u, Q)

42

Proof of Claim B.1 What we wish to show is roughly as follows: Given that ¢ and b go
essentially as intended, that is ¢ mostly goes from 0 to 1, and b mostly goes from 1 to 0, then
f must also go essentially as intended, that is f must go mostly from 0 to 1, and 1 to 0. (In
the mirror image of a canonical matrix, the roles of ¢ and b are flipped, but here we assume
without loss of generality that a goes from 0 to 1, and not the other way round.) We call
these four transitions intended transitions, and all others unintended transitions. Note that
| w |= 6, and so the length of each path (state sequence) for u is of length | u | +1 = 7. Let
) denote the set of all pathes” possibly generating u, or Q = S7. We then let ; denote the
set of those pathes in € containing only intended transitions (for u), except possibly at the
two ends. For example, | =1 —0—1—0— 1— 1isin £ because the only unintended
transitions in it are the first 1 — 1, labeled with a, and the last 1 — 1, labeled with 4. On
the other hand, 0 = 1 —-1—=1—=0 — 1 — 0 is not in) because the second transition,
1 — 1 labeled with f, and the third, 1 — 1 labeled with @ are unintended. Let Q denote
Q\ Q. Let M(z,7T), in general, denote the probability that the string z is generated by
one of the pathes in T. Then note the following.

M(u) = M(u, Q)+ M(u, Q) (B.15)
) fro

m

Given that 6(+(M) < (1)1° and that §()(M) > 6D (M), we will bound M(u
above as in the statement of the claim, by bounding from above the two terms M (u,)
and M(u,) in (B.15) separately. In computing M (u,), recall from Example 5.1 that:

M(*,%,(a, b)),

M(0,1,a)M(1,0,b) < (1= 61 (M) (=)
Similarly we can also show
MO0, 1)2101,0,7) < (1 - ey LDy

Using these, we can bound M (u,€2y) as follows:

M(u,) < M(+,1a)M(L,0, f)M(0,1,a)M(1,0,6)M(0,1, [)M(L,+,b)
< M{sea)M (5 0.b)- M(O La)M(1.0.5)- (0.1, YM(1.0.f)
< Mm@y <M>><—((80 1 - sty Ly
< (- - “(NI
< (1= SO CM) (8.16)

Now we bound from above the rest of M(u), i.e. M(u, ;). First note that by definition
every path, say 7, in € contains at least one unintended transition which is at neither
end of u. The crucial observation is that because such an unintended transition has a
transition before and after it, there must be at least two consecutive unintended transitions
in 7. Now since u = afabfb, this implies that there must be at least one unintended
a, b-transition, and another unintended transition in 7. Now note that there are at most
6 possible places for two consecutive unintended transitions in a path in Q. If one fixes

"Each path for the string « can be formalized as a length 6 sequence from S x S x %, where each i-th
member has the i-th symbol in u as its third component (its label) and consecutive transitions end and start
in the same state. Here we simplify our notation by viewing a path simply as a sequence of states,; leaving
the labelings by w implicit.

B. Proof of Lemma 5.6 41

ﬁabw

M(w) < (M(iq,*,a)M(ip,*,b)) H M(*,*,z)ﬁ(z’w), by Lemma 5.3, part 1
z€Xn\{a,b}
< (Lystepen Mele s (@0 oy opye@iion . T (Mrlet Dy
2 2 GeTn\{a,b} 2
by (B.10) and (B.13)
= (;) Ea (20) (@9 (), by definition of C(w)
[= a,b),w : TN
< ((5) 2 Qh)ﬁ((A)C(w)v sice ﬁ((avb)vw) = (h - 1)ﬁ((a7b)7w)
< ()T EDNC)
< (HHEINC(w),
since (%)%Lh < % because clearly S—‘IW— > 1 given h > 5211
< %C(w), since #((a,b), w) > log K (B.14)

Thus, we have verified that o, and o, are either 0 — 1 and 1 — 0, or 1 — 0 and
0 — 1. By (B.6) and (B.7), and the definition of A*"(M,{a : 0 — 1,b: 1 — 0}) and
/\(“’b)(M, {a:1—0,b:0— 1}), we conclude that one of the following must hold:

1
/\(ab(M{a 0—1,b:1—0})< —=, or

S
/\(a7b)(M7{a;1—>0,b:0—>1})§@

Assume without loss of generality that the first of these two holds. Note that most of a’s
share is out of 0 and most of b’s share is out of 1. Then, again by Lemma 5.3, part 1, we
must have:

M (wo)

IN

(M(0,%,a)M(1, >0<,b))k0

M b
< (1- V(“’b)(M)z)ko(W)%o, as shown in Example 5.1

By an argument which is by now familiar, this implies that 1/(‘7‘75)(]\/[)2 < 52% Hence,

together with the earlier assumption that A(*(M,{a : 0 — 1,b: 1 — 0}) < 52%, this
implies that

6O = miner,mac{ACD(M, M), (M)}

< maz{ A (M, {a:0—1,b:1— 0}),r*D(M)?%}
1
= an

Proof of Lemma 5.6, part 2
This part follows directly from Lemma 5.3.
Proof of Lemma 5.6, part 3

This part follows at once if we establish the following claim.

Claim B.1: Letu = afabfb. Then, if 64" (M) < (1)!° then M(u) < (1—%)C[M](u)

40

Now let f((a,b), w) be the number of all letters other than @ and b in w and let h denote

the inverse of the frequency of these letters in w, that is, h = T |7~Zl 2 Note that
a,o), w
B> — el o1l halds by the way w is defined. Also note that (Ma_vbll) _
[w1wpwsws ws | -
M%M =1- +. Using (B.9), we can derive:

M (ig,*,a)+ M(ip, *,b)
2

M (i, %, @) M (ip, %,b) < ()2, since ay < (123)?

1

< (50 by (BY)

< (1 1 . MT(*7*7(a7b)))27 because (M‘Lbn)) =1- %
21— 7 2
1 1 M (%, %, (a,b))

- I 2 s T\ Uy 2

< % : (wf noting that h > s211. (B.10)

Note that the above quantifies how much M loses on the letters a and b in w, as compared
to a canonical matrix M,: M loses by at least a factor of % per each pair of a and b, if
we have option 2. Next, we will bound how much M could possibly gain on the remaining
letters as compared to a canonical matrix, by the fact that option 2 gives a and b less share.
This will again be quantified in terms of A. From Lemma 5.3, part 1, we know that the total
generation probability assigned on these letters is at most [],ex \ (o) M (%, %, 2)i(Ew)
this quantity is maximized when M (x, *, z)’s are set proportionally to their frequencies in w
within their total share, i.e. subject to [.ex, \fapy M (*¥,%,2) = 2= 3 .cqapy M(*,%,2) < 2.
Hence,

and

ZEE"\{avb} ZEEn\{aJ)} ji((a7b)7fu'])

But, by the definition of M, we have that :

I Moo= 1 (FE e (B.12)

263, \{a,b} 2€Xn\{a,b}

from (B.11) and (B.12), it follows that :

H M(*,*,z)ﬁ(sz) < H (| w |] Qﬁ(sz))ﬁ(ZﬂU)
2€Xn\{a,b} z€Xn\{a,b} ﬁ((a,b),w) | w |
ol i) H(Gw)
< II P T Melr,x, GO
2€Xn\{a,b} ﬁ((avb)vw) Gern\{(a,b)}
. M, (%,%,G)
< #((a,b)sw) . MUV)G w) .
< (2h) I (=) (B.13)

Geln\{(a,0)}

Here, the second to last inequality follows from the observation that by (5.3) for any
partial letter z in letter group G, M, (*,*,G) = 4% and by (5.4) for any total letter

2 M(, 0. {z}) = 254280 Now recalling that C(w) = [Toer, (M5O, we can

|l
use (B.10) and (B.13) to bound M(w) from above by +C(w), again contradicting our
assumption.

B. Proof of Lemma 5.6 39

This contradicts our assumption, so we must conclude that A < 211 Intuitively, we have
shown that both the out-share and in-share of each of @ and b must be highly concentrated
on one of the two states, and hence that for each of @ and b, there is exactly one transition
in M which has almost all of the letter’s share. Let o, = (i4,j,) and o, = (i,7) these
two dominating transitions for ¢ and b, respectlvely Formally we can derive the following,

. (3,%,a)+ M (*,5,a)+ M (*,7,b
recalling that A, = Loigia M ice (%:bl)#)l cand Ay, = 2 s#ia (M](*) (%:g)?;ﬂb (3:0)

oo M(iyja) <> M(ika)+ Y M(x,j,a)

(4:0)#(tassa) i#la J#ia

< AoutM(*v*v(avb))‘l'AinM(*v*v(avb))

< QAM(*,*,(a b))

< —pM(x, %, (a,h) (B.6)
Similarly, for the letter b, we can show:

(4,3)7#(iv:00)

Next we will show that o, and o, must form a cycle, that is, j, = i and j, = 2,. For
suppose otherwise, then each of the 2° possible pathes for the substring abab contains at
least one transition other than o, and o, which by (B.6) and (B.7) has probability at most
52%M’(*, *,(a,b)). Thus, each of the 25 pathes has probability at most 52%M’(*, *, (a,b))-

max{ M (*,*,a), M(*, *,b)}3 and

1
M(abab) < 2°- @M(* %, (a,b)) - max{M(*,*,a), M(x,*,0)}>

4
< EM(*v*v(avb))

1, M(x,*,(a,b))

<
_2(2

1
)= §C[M](abab) (B.8)
Recalling that wg = (ab)™, the above implies that M (wo) < (3)"™C[M](wo). As before, by
the choice of kg, this implies that M(w) < 7C(w). We have thus shown that o, and oy
must form a cycle. More precisely, we must have one of the following four possibilities.

Next, we will show that in fact only options 1 and 4 are possible, given the assumption
that M(w) > +C(w): if we had either option 2 or 3, then we would have M(w) < +C(w).
Assume without loss of generality that we have option 2, that is, (o4,04) = (0 — 0,0 — 0).
Then, note that ¢, = 0 and ¢, = 0. Hence we conclude:

M(ig,*,a)+ M(ip,+,b) = M(0,%,a)+ M(0,*,0) < 1 (B.9)

38

B Proof of Lemma 5.6

In this appendix we prove Lemma 5.6, the key lemma used in the proof of the Lemma 5.1,
part 2. The proof uses the technical lemmas 5.2 through 5.5.
Proof of Lemma 5.6, part 1
Assume that M(w) > £#C(w). For an arbitrary letter z, let ¢, be the state ¢ € S with the
maximum out-share for z (Let i, = 0, if M(0,*,z) = M(1,%,2).) Similarly let 7. be the
state with the maximum in-share for z. Then by Lemma 5.3, part 1, we have:

M (wo)

IN

M (g, %, a) - M(iy,*,b)~
M (g, *,a)+ M(tp,*,b)

< .

)R because zy < (242 va,y e R (B.1)

Let A,y denote the fraction of the total (a,b)-share not given to the states with maximum
D igig MUma)+30,,, M(ixb)

out-shares for a and b, that is, A,y = M (ad) . Alternatively, we
can write A,y as 1 — M(i‘;\?(’:):ggéb)’*’b). Noting that M(i4,*,a) + M, %,0) = (1 —
Aout) M (%, %,(a,b)), we obtain from (B.1):

M (x,*,(a,b))
2
= (1= Apu)*C[M](wo), by definition of C[M] and noting we = (ab)*
M (*,5,a)+ M (*,7,b . .
Similarly, if we define A;;, to be st (M](*)* (%:bﬂ)?;ﬂb) =1- M(*}\J/}z(v:):gl(;)dbvb)v we
obtain the following from Lemma 5.3, part 2.

M(wo) < (1= Auu)o(

)Qko

M(wo) < (1= Ajy)**C[M](wp) (B.2)
So if we now let A = max{A,u, Air}, then we have:
M (wg) < (1 — AR C[M](wo) (B.3)

Suppose for contradiction that A > 52% Then by the choice of kg = s2!1 (log K+
| wwywswaws |), we must have

1

Mwo) < (1=) CM](wo) o
< em s log Kturuzuawrus) 01y ()
11
. 2y lwrwrwzwaws |
7 G ClAM](wo) >

Thus an argument of the style that was used frequently in the proof of Lemma 5.6 shows:

M(w) < M(wo)M(wiwawswsws)

< %(%)|w1w2w3w4w5|C[M](wo) . 2|w1u}2u13w4w5|C[]M](w1w2w3u]4w5)7 by Lemma 5.4
1

< EC[M](wo)C[M](w1w2w3w4w5)
1

= —(CM
—C[M](w)

< %C(w), by Lemma 5.2

A. Proofs of Technical Lemmas 37

But by Lemma 5.3, part 1, we have:

So it follows:

End of proof of Lemma 5.4
Proof of Lemma 5.5

Since M,(xz) = 0, in every path for & there must be at least one transition assigned zero
probability by M. Now since §(M, M,) = A, we have:

M, 9,2
/\(M, Mq—) = MaTGeT, €S Z ﬁ < 5(M, MT) = A
2€G,j€S, M (i,j,2)=0 » %

Hence, in every path for z, there must be at least one transition, say the k-th one, with
probability not exceeding A - maz;esM(7,*,G(2)), where we wrote G(zy) for the letter
group to which xj belongs. But since v(M,M;) = marger,.es 2 | 37 M{ixG) 2 |<

6(M7MT):\/Z M (x,%,G)

A -mazies{M(i,*,G(xr)} < A1+ \/Z)M

2
Let I' = S be the set of all pathes of length [= |z|. Partition I' into I'y, 'y, ..., I'; accord-

ing to the first occurrence k of a transition probability not exceeding A(1 —|—\/K)M%ﬂll
Notice that I' = Uizlfk and I'y’s are mutually disjoint. Therefore if we define M(z,I'y) =

ZO’EFk Héﬂ:l M(Uk_170k7$k)7 then we ha‘ve M(x) = ZL:l(ZaeFk M($7U)) Applylng a
similar argument as in the proof of Lemma 5.3, part 1, on each 'y, we obtain:

M(e. Ty < (] maa{M(0 5.2, M(1,.2)}) - A1+ VAL Gl

2
J#k
< (JJa+ \/K)W) CA(L+ \/Z)w
J#k
< A+ VA) - CM)
Hence we have:
M(z) <IA(L+ VA) - C[M](x) (A.3)

End of proof of Lemma 5.5

36

A Proofs of Technical Lemmas

In this appendix we prove the technical lemmas 5.2 through 5.5.
Proof of Lemma 5.2

Recall that C[M](w) = ZGan(M)ﬁ(G) with the constraint that > oGer, J—ZM G

By Lemma 4.2, the function of the form f(aq,...,2,) = ' - 3% - ... - zf» subject to the
constraint #; + 23 + ... + z,, = ¢ attains its maximum when z; = (—ffl—a) -c. Thus the
=1 "

maximum of C[M](w) is obtained when the share M*z’*—’Gl of each letter group G is set to

its frequency in w, as it is done in any canonical stochastic matrix. That is, for any M.,
M (*,%,G) = 2% for all letter groups G.
End of proof of Lemma 5.2
Proof of Lemma 5.3

Let M € M,, be an arbitrary stochastic matrix and = = zq2s...2; € Efl be an arbitrary
string, as in the statement of lemma. For any k, 1 <k <, let p; ; denote the conditional
probability that the machine M is in state j, given that it has just generated xqz5...25_1.
Note that pyo + pg1 = 1 for any k. We can write M(zq...2x) as follows:

IN

M(zy..xp-1) pro- M0, %, 21) + M(2q...25-1) - pea - M(1, %, 2)
= M(xy..2p—1)(pro- M0, %, 25) 4+ pra - M(L, %, 2))
< M(zq..xp—1)max{M(0,*,zg), M(1,*,25)}, since pgo+ pr1 = 1.

Hence it follows that:

||
M(z) < Hmax{M(O,*,xi),M(l,*,xi)} (A.1)

=1

Part 2 of the lemma follows from a similar argument. First, analogously to py ;, let ¢ ;
denote the conditional probability that the machine M was in state j at time step k, given
that it generated x4 22...2; after step k. Note that g, 0+ gi1 = 1 for any k. We can write
M (zy...x;) as follows:

M(wkxl) < M(*,O,xk) “qro - M(wk+1...x1) + M(*, 1,$k) Gk M(wk+1...x1)
= (qro- M(%,0,28) + qr1 - M(x,1,24)) M(2pq1...21)
< max{M(*,0,zx), M(*,1,25)} M (2g41...27), since gro+ g1 = 1.

Hence it follows that:

||
M(z) < Hmax{M(*,O,xi),M(*,l,xi)} (A.2)
=1
End of proof of Lemma 5.3
Proof of Lemma 5.4

This lemma follows straightforwardly from Lemma 5.3. By the definition of C[M](2),

n< I1¢

Gel'n

,,G) ()

7. Concluding Remarks 35

References

[Ang78]
[Ang88]
[Ang89]

[Bau72]

[BEHWS9]

[Gil77]
[Gol78]
[Ham8&6]

[Hau89]

[KS90]

[Lai88]

[LRS83]

[Pol84]
[PWS9]

[Tze89]

[Val84]

[Yam91]

Dana Angluin. On the complexity of minimal inference of regular sets. Infor-
mation and Control, 39:337-350, 1978.

Dana Angluin. Identifying languages from stochastic examples. Technical

Report YALEU/DCS/RR-614, Yale University, March 1988.

Dana Angluin. Minimum consistent 2-state DFA problem is NP-complete.
Unpublished manuscript, 1989.

L. E. Baum. An inequality and associated maximization technique in statistical
estimation for probabilistic functions of a markov process. Inequalities, 3:1 — 8,
1972.

A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Learnability and
the Vapnik-Chervonenkis dimension. Journal of the ACM, 36(4):929 — 965,
October 1989.

J. Gill. Computational complexity of probabilistic Turing machines. STAM J.
Comput., 6(4):675 — 695, 1977.

E. Mark Gold. Complexity of automaton identification from given data. Infor-
mation and Control, 37:302-320, 1978.

Richard W. Hamming. Coding and Information Theory, Second FEdition.
Prentice-Hall, 1986.

David Haussler. Generalizing the PAC model for neural net and other learning
applications. Technical Report UCSC CRI-89-30, University of California at
Santa Cruz, September 1989. Extended abstract appeared in the Proceedings
of FOCS ’89.

Michael Kearns and Robert Schapire. Efficient distribution-free learning of
probabilistic concepts. Proceedings of IEEE Symposium on Foundations of
Computer Science, October, 1990.

Philip D. Laird. Efficient unsupervised learning. In Proceedings of the 1988
Workshop on Computational Learning Theory, 1988.

S. E. Levinson, L. R. Rabiner, and M. M. Sondhi. An introduction to the
application of the theory of probabilistic functions of a markov process to
automatic speech recognition. The Bell System Technical Journal, 62(4), April
1983.

David Pollard. Convergence of Stochastic Processes. Springer-Verlag, 1984.

Leonard Pitt and Manfred Warmuth. The minimum consistent DFA problem
cannot be approximated within any polynomial. In Proc. 19th ACM Symp. on
Theory of Computation, 1989. To appear in JACM.

Wen-Guey Tzeng. The equivalence and learning of probabilistic automata. In
Proceedings of the 30th Annual Symposium on the Foundations of Computer
Science, October 1989.

Leslie G. Valiant. A theory of the learnable. Communications of A.C. M.,
27:1134-1142, 1984.

Kenji Yamanishi. A learning criterion for stochastic rules. Machine Learning,
the same issue.

34

Third, we would like to know whether the single string MLM problem for the complete 2-
state HMM constraints (with variable alphabet size) is approximable in polynomial time or
whether there are similar hardness results for this problem as the one proven in Theorem 5.1
for the single string MLM problem for 2-state PAs with variable alphabet size?

Fourth, can the latter hardness result on the single string MLM problem be strengthened
from a factor of 21“I'™ from the optimum (for any a > 0) to a factor of 2(:=2) 1l from the
optimum (for any a > 0)?

Fifth, recall that we have shown in Theorem 4.1 that for an arbitrary class of constraints
the approximability of the sample MLM problem for it within a factor gm! =" (for any a > 0)
where m is the sample size, would imply polynomial trainability of the same class. Could
this be strengthened so that polynomial approximability within a factor o(1-a)m (for some
a > 0) would already imply polynomial trainability of the class in question? Could we
perhaps show that polynomial approximability of the single string MLM problem within a
factor of 21wF ™ op 2(1—a)-|ul (for some o > 0) would imply polynomial trainability?

Finally, we emphasize that even though the hardness results may be disappointing they
can serve as guidance in the search for constructive results. Perhaps the most significant
open problem inspired by the results of the present paper is to determine practically relevant
classes of PAs and HMMs that are provably polynomially trainable. For example, the class
of HMM constraints used in speech recognition [LRS83] consist of chains of states in which
only transitions that go forward in the chain or stay stationary in the chain are legal.
What is the lowest sample complexity required for training this important class of HMM
constraints 7 Is this class polynomially trainable or is training this class hard modulo some
weak assumption such as RP # NP ?

Acknowledgements

We thank David Haussler for teaching us many of the tools applied in this paper. In
particular, he suggested the idea of bounding transition probabilities from below for showing
sample complexity bounds. We thank Dana Angluin for showing us her hardness proof for
the 2-state DFA consistency problem [Ang89] which served as a starting point for the non-
approximability result for the single string MLM problem for the 2-state PA constraints.
Thanks to Ron Rivest for bringing the single string MLM problem to our attention. Thanks
to Nicolo Cesa-Bianchi, Yoav Freund, Phil Long, Aleksandar Milosavljevic, Dirk Van Com-
pernolle, and Osamu Watanabe for fruitful discussions.

7. Concluding Remarks 33

For an arbitrary HMM constraint ¢ = (I,G, L), let HMM(C') denote the class of
HMMs satisfying C'. We can think of HMM(C) as the subset of [0, 1] x [0,1]% x [0,1]F
satisfying the stochastic condition (6.1). The training problem for a class C of HMM
constraints is defined analogously to the training problem for a class of PA constraints
(see Definition 2.4). We can show the same sample complexity bound (up to a constant
factor) for training a class of HMM constraints as we did for PAs in Theorem 3.1. We only
sketch how this is shown, since the proofis almost identical to the proof of Theorem 3.1. We
define BHMM(C'),, by bounding the initial, transition and letter generation probabilities
from below by #, where ¢ is the size of the input constraint. We define FHMM(C),, by
quantizing all the probabilities in the same way as before. The rest of the proof is essentially
the same. The analogues of inequalities (3.11) and (3.12) for HMM(C'), BHMM(C'),, and
FHMM(C),, can be shown the same way, noting the fact that the probability assigned
on a string of length n by an HMM is a product of 2n 4+ 1 probabilities, as opposed to n+ 1
for PAs.

Corollary 6.1: An arbitrary class of HMM constraints C can be trained with sample com-
plexity O((2)%t - log? 2t -log% -log? log %), where t is the size of the input constraint.

€

Corollary 6.2: Any finite class of HMM constraints is polynomially trainable.

7 Concluding Remarks

We were able to show that training an arbitrary class of PAs and HMMs can be done
with polynomial sample complexity when computational efficiency is ignored. The sample
complexity bounds given in Theorem 3.1 for training a class of PAs and in Corollary 6.1 for
training a class of HMMs may perhaps be improved significantly. Lower bounds for these
training problems should be investigated.

It would be interesting to establish sample complexity bounds for the training problems
discussed in this paper with respect to the other measures of distance mentioned in the
introduction. All our sample complexity bounds with respect to the Kullback-Leibler
divergence rely on Hoeffding’s inequality and thus grow with }2 Is the }2 growth in the
sample complexity really necessary? Training with respect to other notions of distance may
require only % growth in the sample complexity.

We showed in Section 5 that s-state HMMs can easily be simulated by s-state PAs. How
can HMMs be used to simulate PAs?

There are many open problems related to the hardness results of Section 5. First, we
would like to know whether the following decision problem is in NP.

Input: two numbers s and a encoded in unary, a string w € ¥* where | ¥ |= a, a probability
q € [0,1] encoded in binary.
Question: Does there exist an s-state PA P with alphabet size a such that P(w) > ¢?

It would also be interesting to determine the precise computational comlexity of various
formulations of the approximate MLM problem as a kind of decision problem.

Second, Osamu Watanabe has brought to our attention that the reduction we exhibit in
the proof of Theorem 5.1 can probably be modified so as to strengthen our result and show
that the approximate single string MLM problem, perhaps with a more strict requirement
of approximation, is in fact Ab-complete.

32

Y ap(i)=1and Vi€ Sp > Mp(i,j)=1 and Vi€ Sp > Lp(i,a)=1 (6.1)
’iESp]ESP aezp

For any string w = wy..w, € X%, the generation probability assigned on it by P =
(Sp,Yp,mp, Mp, Lp) is computed as follows.

n—1

P(wy..w,) = > wp(io) - [] Lr(ij wjs1)Mp(ij,ij41) (6.2)

(305wyin)ESPH! Jj=0
As before, for any given example length n, P defines a probability distribution over ¥'b.

Any hidden Markov model can be simulated by a probabilistic automaton of the same
number of states. For an arbitrary hidden Markov model P = (Sp,Xp,7p, Mp, Lp), define
a probabilistic automaton @ = (5S¢, Xq,7g, Mg) by letting So = Sp, Xg = Xp, 19 = 7p,
and

Vi,j € SqgVz e Xg Mg(i,j,z)= Lp(t,z)- Mp(¢,7) (6.3)

Then, P and @) define the same distribution over ¥% for any n, as demonstrated below.

n—1
Q(wy..w,) = > melio) [T Mo(ij ij1,wipr) by (2:2)
(io,...,in)esg“ j=0
n—1
= Y. wplio) [T Le(ijwir)Mp(ij ij) by (6.3)
(305wyin)ESPH! j=0
= P(w;i..w,) by (6.2)
Note that the ratio]\]\4%% equals % and is independent of j. In other words, the
class of s state hidden Markov models is equivalent to the class of s state probabilistic
automata satisfying the following condition:

o Mo(i,j,2) Mg(i k.=
Vi, j, k€ Sp¥z,2 € Bp — L = i
DINESPYEE €SP A (65,2 Moli k, ')

~—

We define the training problem for hidden Markov models exactly analogously to the
training problem for probabilistic automata (c.f. Definition 2.4). The only difference is that
the input constraint that an HMM training algorithm receives is an HMM constraint, in
place of a PA constraint. Here, an HMM constraint is a triple C' = (I, G, L), specifying
respectively the legal initial states, legal transitions and legal letter generations. Formally,
ICS GCSxSand L CSxY, where X is a finite alphabet, and 5 is a finite set of states.
As before, we measure the size of the input constraint by the total number of probability
parametersin it, | [| + | G| + | L |, and denote this by . We say that an HMM P satisfies
C=(,G,L)if and only if Sp = 5 and ¥p = ¥ and

Vig I, mp(i)
V(lvj) g Gv MP(ivj)
V(i,2)¢€ L, Lp(t,z)

0
0
0 (6.4)

6. Application to Training Hidden Markov Models 31

Now again using Lemma 5.6, parts 2 through 6, and the fact that k5 = log K, we can show
that M(w) < +C(w), contradicting our assumption. Hence we conclude that F must be
satisfiable.
End of proof of Lemma 5.1 and proof of Theorem 5.1
Proof of Theorem 5.2
First note that 1-state PAs are deterministic. Thus, by Corollary 4.2, it is clear that the
MLM problem for the 1-state constraints is solvable in polynomial time. We then show that
if we use the optimal 1-state PA for the MLM problem for s-state complete constraints,
then it achieves the guaranteed approximation factor of sl*l. The optimal 1-state PA sets
the transition probability of each letter proportionally to the frequency of that letter in the
input string w. More precisely, the optimal matrix, denoted M™, is defined as follows: For
each letter z € X, we set

8z, w)

| w |

M*(0,0,2) =

where we let 0 be the unique state in the 1-state PA. Hence, the probability M™ assigns on
w is easily computed as follows:

ZEY

Now, using Lemma 5.3, we can compute the following upper bound on M (w) for any s-state
stochastic matrix M.
M(w) < J](maziesM(i,*, 2))* =) (5.20)
ZEN
Here we have the constraint that)~ v max;esM(i,*,2) < s. Hence, by Lemma 4.2, we
have:

IA
—

V)
E=
—_
\f\l

g
~—
=
B
£

M(w)

End of proof of Theorem 5.2

6 Application to Training Hidden Markov Models

Hidden Markov models are used extensively as probabilistic models for generation of
speech signals for the purpose of speech recognition. See [LRS83] for an excellent tutorial
on this material. Hidden Markov models are defined similarly to probabilistic automata,
except that the generation of letters is associated with the states rather than with the
transitions. We briefly review the definition below.

Definition 6.1 (Hidden Markov Models(tHMM)): A hidden Markov model P is a
quintuple (Sp, Xp, 7p, Mp, Lp) where Sp is a finite set of states, Xp is a finite alphabet,
mp : Sp — [0,1] is the initial probability distribution over Sp, Mp : Sp x Sp — [0,1] is a
stochastic matriz, and Lp : Sp x ¥p — [0, 1] specifies the letter generation distribution at
each state, i.e.

30

Substituting &y = s2'(log K+ | wawswsws |) into the above gives us:

f
M(wl) < _ 6()Q(M))5211(10g](+|w2w3w4w5|) C[M](wl)
S 6_%.5211(10g[{-|—|u}2w31,U4w5|) . C[M](wl)
11
< E(§)|w2w3w4w5| . C[M](wl) (515)

Lemma 5.4 provides us with an upper bound on how large M (wywswaws) could possibly
be in comparison to C[M|(wawswaws), that is,

M(w1w2w3w4w5) S 2|w1w2w3w4w5 |C[M](w1w2w3w4w5)

We can use this bound and (5.15) to bound M(w) above by +C(w) as follows:

M(w) < M(wo)M (wy)M(wywswyws)
< CIM](wo) M(w)M(wywswyws), by Lemma 5.6, part 2
< CIMY(wo) - (I s CTM)(w) - M (wywsngws), by (5.15)
< CIMY o) - CIM () - (5)12 = M (wywsunguns), by rearranging terms
< %-C[M](wo)-C[M](wl)-C[M](w2w3w4w5), by Lemma 5.4
< = CM)(w), by definition of C[M](x)
< %-C(w), by Lemma 5.2 (5.16)

This contradicts our assumption, and hence together with (5.14), we conclude:

0@ I(M) = maz {8\ (M), s D(M)} < —. (5.17)

Since by assumption, M(w) > ﬂKﬂl’ A as defined in the statement of Lemma 5.6, part 4,
does not exceed 52% Suppose now for contradiction that 6(C’d)(M) > 52% Then, since
6@(M), A and 6()(M) are now known not to exceed . it follows from Lemma 5.6,
parts 2 through 5, and a similar argument as before, that this would imply M(w) < #C(w).

Thus, we conclude:

a C 1
slabed (M < =% (5.18)

Given the above, it follows from Lemma 5.6, parts 2 through 6, by an analogous argument
as before, that the distortion of M with respect to all letters is small, that is,

§(M) < 52% (5.19)

Finally, suppose that I is unsatisfiable. Then by Lemma 5.6, part 7, we must have

Mws) < ()" CLM](ws)

5. Computational Complexity of Training Probabilistic Automata 29

The following technical lemmas are useful for proving Lemma 5.1, part 2. Their proofs are
deferred to Appendix A.

Lemma 5.2: For an arbitrary stochastic matriz M € M,,, we have:
C(w) 2 C[M](w)
Lemma 5.3: For arbitrary M € M,, and x € X}, we have:
1. M(z) <Tles, (maz{M(0,%,z2), M(1, %, 2)})il=2),
2. M(z) < lex, (max{M(*,0,2), M(*, 172)})ﬁ(271’),

Lemma 5.4: For an arbitrary stochastic matriz M € M, and an arbitrary string x € X7,
we have:

M(z) < 2M1C[M](2)

Lemma 5.5: Let M € M, be an arbitrary stochastic matriz. Let 6(M) = A and let M, be
a canonical stochastic matriz to which M is closest, namely 6(M,M;) = A. If M.(z) =0
then we have for an arbitrary string x:

M(z) < |z - A(1+ VAo M) ()

Using the above technical lemmas, we are now ready to prove Lemma 5.1, part 2. The
following lemma summarizes the key steps of this proof. Its proof also uses the above
technical lemmas and is relegated to Appendix B.

Lemma 5.6: For an arbitrary stochastic matriz M € M, all of the following hold.
1. If M(w) > +C(w), then §(P)(M) < -
2. M(wg) < C[M](wp).
3. 1f 8@D(M) < Ly then M(wy) < (1— Z22OD)k (a1 (wy).
4

.Foreachz<nletAZ_mm{éc“’(M{cz.0—>0d 0— 0}),6 C“’(M'{CZ.O—>
Ld; : 1 — 0}),6Cd) (M, {e; 0 1 — 0,d; : 0 — 1}),60d)(M { 1= 1,d; 11 —
1})}. and let A = max;<,A;. Then, if M(w) > ﬂhﬂl then A <

5. IfAL 52%, where A is as defined above, and 6(f)(M) < 52%,
then M(ws) < (1 — 22220 ks 011 (w3).
(a,b,c,d, f,z,Z)
6. If 6beb (M) > L then M(wy) < (1 -2 QD) ks LM (w4).
7. Af §lebedf e (M) < Lo and Fois unsatisfiable, then M(ws) < (3)%C[M](ws).

Proof of Lemma 5.1, part 2, given lemmas 5.2, 5.4 and 5.6

Assume that M*(w) > QKHZ, and let a particular M witness this fact. We will show
that this will imply that F is satisfiable. First, the following follows immediately from
Lemma 5.6, part 1.

a 1
s (M) < 75" (5.14)

Next, suppose for contradiction that 6()(M) > —w- Then, §@b (M) = 6U)(M), since
(M) > 6D M). Tt follows from Lemma 5.6, part 3:

5(f)(M)

M(wr) < (1= =) C[M](w1)

28

The distortion of M is then defined as the distortion of M with respect to the closest
canonical stochastic matrix, including their ‘mirror images.’

(M) =min-er,min{é6(M, M), 6(M, M)}

For each of leak, skew and distortion, we define the restriction of it to an arbitrary subset
¥ of the letter groups by maximizing over ¥ instead of I';, in the above definitions.
We use readable names such as (a,b) and (a,b,c,d) to refer to subsets of I', such as
{{a,b}} and {{a,b}} U {{c;,d;} : i = 1,....,n}. We then let symbols such as A(*?) p{/),
and §(@2¢4) denote the corresponding restrictions of A, v and é§. Note that the only
information in M, that was used to define A(M, M) is the transition function associated
with M., and to define A9(M, M,), only the restriction of it to . Thus, for any transition
function f : § X UG — 5, restricted to a letter group G, we define /\G(M, f) to be
MATeS,GEN D ozeG,jeS,f(i,:)4] MM(%%, and define §%(M, f) accordingly. For readability,
we use notation such as A@?)(M,{a: 0 — 1,b: 1 — 0}) and 6@>4)(M,{a:0 — 1,b :
1—=0,¢,:0—1,d;:1— 0}).

The notion of distortion just defined quantifies how bad an arbitrary stochastic matrix
is in comparison to canonical stochastic matrices which are near optimal, from the point
of view of maximizing the generation probability on the unique path on the substring
wow wawswy, which is assigned a positive generation probability by canonical stochastic
matrices. Any leak causes a loss of probability on this path as is obvious from its definition.
Any skew also causes a loss of probability on the path, essentially because the path in
question for the string wowywowswy is almost perfectly symmetric in the following sense:
For each letter group (except the dummy letters v;) there are exactly the same number of
transitions out of state 0 as there are out of state 1. We demonstrate this via an example.

Example 5.1: Let M be an arbitrary stochastic matriz, and M, a canonical stochastic
matriz. Consider the string ab and the path for ab which is assigned a positive probability
by M., namely, 0 — 1 — 0. We will show that the probability assigned by M on this path,
M(0,1,a) - M(1,0,b) is at most (1 — 6(D)(M))(MrzlebDy2 - Nopice thar (Mlzdabi)y2
is the maximum probability assignable on ab by any matriz M such that]\7(*, *, (a,b)) =
M (x,%,(a,b)). To show the above inequality first observe that

(1= MG (M, M) M0, %, (a,0)) - (1= A" (M, M) M(1, %, (a,b))
(1 — maz{AS (M, ML), AP (ML ML) 1) M0, %, (a,6) M (L, %, (a,b)

M(0,1,0)- M(1,0,b) <
<

By (5.9) the above mazimization clause can be replaced by N@(M, M,). Also assume
without loss of generality that M(0,*,(a,b)) > M(1,%,(a,b)). From the definition of
) in (5.11), it follows that M(0,x,(a,b)) = (1 + V(“’b))w which implies that
M(1,*,(a,b))=(1- V(“’b))w and we continue as follows:

M(0,1,a)- M(1,0,6) < (1 — A@D(a, M) (1 + @D (M))(1 - V(M)(M))(w)z
S S TR T R P T M E A L
< (1= maz{AD(M, M), p D (M)} - (w)z
= (1 sen) (S, g5y

2

5. Computational Complexity of Training Probabilistic Automata 27

It can be shown that C'(u) is the probability that any satisfying canonical stochastic matrix
assigns on u, but in this proof we only use the above definition for C'(u). We also introduce
a version of C'(u) which is relativized to the letter group shares of an arbitrary stochastic
matrix M. That is, for an arbitrary string u we define the quantity C[M](u) as follows:

ety = T Dy (57)

Gel'n

Again there is an interpretation of C[M](u) as the probability assigned on u, when 7
satisfies F, by a variant M,.[M] of the canonical stochastic matrix M, which is defined
exactly analogously to M, except the letter group shares of M, [M] are the same as those
of M. Note that C[M](uv) = C[M](u)C[M](v)

We now formalize the notion of distance between an arbitrary stochastic matrix M and
any canonical stochastic matrix M,. The G-leak of an arbitrary stochastic matrix M with
respect to M, at state ¢, written /\ZG(M, M), is the fraction of G’s share out of ¢ which is
assigned by M to transitions assigned zero probability by M.:

M(i, j,2)
AG(M, M) > e (5.8)
z€G, j€S, M, (3,7,4)=0

Also,
A (M, M) = mazies S (M, M) (5.9)

We then define the leak of M with respect to M, as the maximum A¥'(M, M,) over all states
and letter groups.

A M, M,) = mazger, \% (M, M,) (5.10)
The skew, written v(M), is twice the maximum ratio at which the ratio % deviates
from a half for some letter group G.

M@0,*,G) 1
G » T
M) = 2| ——FX— = d
V(M) |M(*,*,G) 2|an
v(M) = mazger,v“(M) (5.11)

Note that since 0 < %% < 1, we have, for an arbitrary letter group G:
0<v9(M)<1 (5.12)

Recall that % = % and thus for motivational purposes the skew of M for a letter

group G' can be expressed as the ratio at which the ratio %% deviates from %:
M(0,%,G) M- (0,%,G)
| M (x,%,G) - M (,%,G) |
M- (0,%,G)

M- (*,%,G)

v (M) =

We then define the distortion of M with respect to any deterministic stochastic matrix M,
written 6(M, M), as follows:

§(M, M,) = maz{\(M, M,),v(M)*} (5.13)

26

M (%, %, z) Z M(i,j,2)

1€S,JES
M (i, %, 2) ZM 1,7, 2
JES
(4,5,2)=>_ M(i,].z
€S

We call M(1,%,z) the out-share of z at 7 in M, M(x,j,z) the in-share of z at j in M, and
M (%, %, z) the share of zin M. We partition our alphabet X,, into letter groups, in which the
pairs of partial letters (a, b) and (¢;,d;)’s are grouped together and all total letters form their
own group. Let I', denote the set of these letter groups, that is, I, = {{a,b}} U {{¢;, d;} :
i=1,..,ntU{{z} : =z total}. We then define the share of a letter group GG in a stochastic
matrix M, written M (x,*,G), to be the total sum of the probabilities of all transitions in
M labeled with a letter in . That is,

M@+, +,G)= > M(i,j,2)
i€S,j€S,2€G
The out-share and in-share of a letter group are defined analogously to those of a letter
and §(G,w) = 3 .cq8(2,w). Recall that in a canonical stochastic matrix, there is one
transition out of each state for each total letter whose probability is the frequency of that
letter, and there is exactly one transition for each partial letter, whose probability is twice
the frequency of that letter. This implies that the share of each letter group in M., is set
according to twice the total frequency of the letters from that letter group:

HG,w)

| w |

VG e Ty Mo(x,%,G) =25 (5.2)

For example, for the letter group consisting of a single total letter f, we have the following
from the definition of M.

8/, w)
|w|

For a letter group consisting of two partial letters, for example (a,b), we can derive the
following also from the definition of M.

M(x,%, f) = Mo(0, %, f) + Mo (1,5, f) = 2() (5.3)

My (e (,5)) = M (@) - M (r,,b) = 228000 (@ D)0))
|w] |w]
For each letter group the share is split evenly to the two states, and hence M (0,%,G) =
M. (1,%,G) = lﬁu—]ﬂl By summing over all letter groups it follows that M, (0, *,*)
M. (1,%,+%) = 1 and thus M, of Definition 5.1 is stochastic. The generation probability
C(w) can now be rewritten as follows, by plugging (5.2) into (5.1).

11 ﬁG w) _ I (Ml @)). (5.5)

Gel'y | Gel'y 2

Note that we can straightforwardly generalize C'(w) to an arbitrary substring u of w:

We define C'(u) by replacing each occurrence of §(G, w) by $(G, u):

C(u) = H (M)ﬁ(au) (5.6)

5. Computational Complexity of Training Probabilistic Automata 25

3. For each variable X;,

(civdi) =pm, (1 —=0,0—=1)ef 7(X;)=T
=m, (0—1,1—=0) if 7(X;)=F.
v = flip i r(X0) = T.
=m, id ifT(Xy)=F
(aci,fi) =M, (1,id) if T(XZ) =T.
=, (id, 1) ifr(X;)=F.

4. Fach non-zero transition probability in M, is either equal to or twice the frequency in
w of the letter z labeling the transition where this frequency is defined as the number
of occurrences of z in w, written §(z,w), divided by |w|. (Notice that a and b, and all
¢; and d; are partial letters and all other letters are total.)

(i) For any partial letter z, M. (i,7,2) = 2% if and only if M-(t,j,2)# 0.
(ii) For any total letter z, M.(1,j,z) = Mﬁl if and only if M-(t,j,2)# 0.

We still need to show that M is stochastic. For convenience we will defer this proof to later
after we have developed some more notation for stochastic matrices. Note that in the above
definition we have arbitrarily chosen a to go from 0 to 1 and b to go from 1 to 0. Given a
canonical stochastic matrix M,, we let M! denote its mirror image, obtained by reversing
the states 0 and 1 in M;. M,(w) can be calculated easily because canonical stochastic
matrices are deterministic: M, (w) is zero, if 7 does not satisfy F, and otherwise is just the
product of the probabilities assigned on all the transitions occurring in the unique path for
w that is assigned a positive probability by M. If we define C'(w) as follows, regardless of
whether F' is satisfiable or not,

Ctoy= [T @Ayt [T e (51)

z partial z total

then we have M, (w) = C(w) just in case 7 satisfies F', and M,(w) = 0 otherwise. We are
now ready to state the key lemma in the proof of Theorem 5.1.

Lemma 5.1: Let w, be as defined earlier, and let M*(w) denote the mazimum probability
assignable on w by any 2-state PA, i.e. M*(w) = maxpyem, M(w). Then for any CNF

formula F and K = 2|w|1_a, we have:
1. If F is satisfiable, then M*(w,(F)) > C(wa(F)).
2. If F is unsatisfiable, then M*(w,(F)) < M.

Proof of Lemma 5.1

The proof of part 1 is immediate: If F is satisfiable then let 7 satisfy /7 and we have
M. (w) = C(wy(F')). The other direction is more involved and requires more definitions.
The key is to find a useful way of quantifying the distance é between an arbitrary stochastic
matrix M and canonical stochastic matrices such that the generation probability assigned
on w by M can be shown to degrade rapidly as a function of min e, 6(M, M;). We can
then use it to carry out the dilemma argument described in the proof sketch. We need some
preliminary definitions.

Recall that for a given stochastic matrix M, M(4, j,) denotes the transition probability
from state ¢ to 7 labeled with letter z. We introduce the following notation for sums of
transition probabilities of various forms:

24

of 2" many deterministic stochastic matrices corresponding to truth assignments, and w, =
ws distinguishes those corresponding to satisfying assignments from those corresponding to
non-satisfying assignments. Below we describe how this is intended to be achieved at a high
level, leaving the exact nature of how the notion of ‘closeness’ among stochastic matrices
to be specified later. The intended function of the first part wg of the string w is to force
the two ‘control letters’ @ and b to go from 0 to 1, and 1 to 0, respectively or vice-versa.
The intuitive reason why (ab)* forces these settings is as follows: Any stochastic matrix
which has two transitions for either a or b will lose probability, and hence there can be only
one transition for each of @ and b. Furthermore, to be able to generate (ab)®, the single
transition for ¢ and the single transition for b must form a cycle. So, we must have (i)
(a,b) = (0 — 0,0 — 0), (ii) (a,b) = (1 — 1,1 — 1), (iii) (a,b) = (1 — 0,0 — 1), or (iv)
(a,b) = (0 — 1,1 — 0). But because the length of wg is almost the entire length of w,
approximately optimal stochastic matrices must let these two transitions have very large
probabilities (close to one). This is impossible if both of these transitions are out of the
same state, so the options (i) and (ii) are eliminated, leaving (iii) and (iv). We assume
without loss of generality that we have (iv), that is, (¢,b) = (0 — 1,1 — 0). It is easy to
see that with these particular settings of a and b, wq forces f to be a flip. wq performs
the analogous function for each (¢;,d;) pair as wg did for (a,b), but since wy is not the
overwhelming majority (and there are n such pairs), at this point all four (i - iv) options
are possible for each (¢;,d;) pair. ws uses f, which has been set to flip by w1, to eliminate
(i) and (ii), and forces each (¢;,d;) pair to be either (1 — 0,0 — 1) or (0 — 1,1 — 0). The
crucial observation is that for each i, the direction of (¢;, d;) in relationship to the direction
of (a,b) is left unspecified. Utilizing this degree of freedom, w4 sets the literal letters z;,
Z; in a particular way: For each ¢, (2;, ;) is forced to be either (1,id) (see Figure C.3) or
(id, 1) (see Figure C.4), corresponding respectively to the assignment of ‘true’ and ‘false’
to the variable ;. In this way, stochastic matrices assigning a near optimal generation
probability on wowiwswszw, are forced to be close to one of these deterministic stochastic
matrices, which we called earlier ‘canonical stochastic matrices.” Observe that there are 27
of these, corresponding to the 2" truth assignments on n variables. Finally, ws is designed so
that any canonical matrix ‘satisfying’ F will assign it a probability exceeding some bound,
whereas any canonical matrix not satisfying F' will assign it probability zero. Here we use
a trick related to that used by Angluin in [Ang89]. For a given clause C; in F', (21, 24, 22)
for example, wy ; is ab(z12422)b. Since each wy ; is preceded by an ‘ab’ and followed by a
‘b, (z12422) is forced to map 0 to 1. Now the crucial observation is that if all three letters
x1,%4, and x are set id (or the corresponding truth assingment assigns all three literals
‘false’) then so is (@1, %4, 22), and hence it must map 0 to 0. Since for any non-satisfying
truth assignment there is a clause not satisfied by it, any canonical matrix corresponding to
a non-satisfying assignment assigns the string w probability zero. Hence if F'is unsatisfiable
then any canonical matrix must assign zero probability on w = w,(F).

Proof of Theorem 5.1

Now we make our argument precise. We begin by defining the notion of canonical (deter-
ministic) stochastic matrices.

Definition 5.1 (Canonical Stochastic Matrices): Let T, denote the set of truth as-
signments on n variables, each mapping {X; | 1 <i < n} to {T,F}. For each 7 € T}, we
define the ‘canonical stochastic matriz for 7,7 written M, as follows.

1. M. is deterministic.
2. (a,b)=p, (0—1,1—=0), f =pn, flip, and e =p;, 0.

5. Computational Complexity of Training Probabilistic Automata 23

over Y,. We begin by describing the alphabet X,,. The letters in 3, can be classified into
the following categories: global control letters a and b, fized function letters f and e, and for
each variable z;, literal letters x;, ¥;, control letters ¢;, d;, and a dummy letter v;. The literal
letters directly correspond to the literals in the formula F, whereas the remaining letters
play a support role. We refer to the two states as state 0 and state 1, and let S denote the
state set {0,1}. We now give the string w,(#'), or w for short.

w = W1 WaaW3tW4Ws
wy = (ab)ko

wy = (afabfb)™

wy = [Ty vi(eid;) 2 v;
ws = [Ty (e ferd: fds)

wy = [(azbr;ciz;d;z;beaecab)r
ws = H; 1(ab(lj1l;20;, S)b)]%
(where [; ; denotes the k-th literal in the j-th clause of F.)
ks 10g K
ky = s2M(log K+ | ws |)
ks = s2M(log K+ | waws |)
ky = s2M(log K+ | wawyws |)
k1 = s2M(log K+ | wowzwaws |)
ko = s2M(log K+ | wywowswaws |)

The k;’s were chosen as moderately growing functions of K, the intended gap, so that
|w| < p(n,s)log ' for some polynomial p. If @ > 1 then reset it to 1. Now w,, is obtained
by setting log K = p(n,s)l?Ta which makes | w | less than or equal to p(n,s)i and hence
log K >| w |17 as desired. We may assume without loss of generality that log K as set

above is an integer because if p(n, 5)177& was not an integer then by at most halving a one

could find a smaller o’ such that p(n, 5)1;—'& is an integer.

To explain the intent of the transformation given above, we need to introduce some ter-
minology concerning stochastic matrices. A deterministic stochastic matrix is a stochastic
matrix in which for each state s and each letter z, there is at most one transition with
a positive probability out of s labeled with z. Thus any deterministic stochastic matrix
M, induces for each letter z a (possibly partial) transition function from states to states.
Since for this proof the number of states is 2, these transition functions are Boolean. If
the letter has transitions out of each of the two states, then the associated function must
be one of the four possible total boolean functions over one variable. Borrowing Angluin’s
terminology [Ang89], these are: O-reset (0), 1-reset (1), identity (id) and flip (flip), and
are defined as follows: (i) 0(0) = 0(1) = 0, (ii) 1(0) = 1(1) = 1, (iii) id(0) = 0,id(1) =1
and (iv) flip(0) = 1,flip(1) = 0. (See Figure C.2.) With a letter that has a transition out of
only one of the two states we associate one of the four possible partial one-variable boolean
functions: (v) 0 — 0, (vi) 0 — 1, (vii) 1 — 0, and (viii) 1 — 1. We refer to letters with
a total (partial) transition function as total (respectively partial) letters. If in a stochastic
matrix M a letter z is associated with flip, for example, we write z =7 flip. If a pair of
letters # and y are id and flip respectively, then we write (z,y) = (id,flip). (When M is
clear from the context, we will drop M and write (z,y) = (id, flip).)

As explained in the high level description at the beginning of this section, the idea of our
proof is that w, = wowywowsw, forces any near-optimal stochastic matrix to be close to one

22

Proof of Corollary 5.1 given Theorem 5.1
Suppose that a training algorithm A trains 2-state PA constraints in time polynomial in
%, %,n and a. Then, by Theorem 4.1, it follows that there exists an algorithm B which
approximates the MLM problem within factor 1 + ¢ in random time polynomial in n, m,
and a. We can then use B to solve 3-SAT in random polynomial time, using the reduction
of Theorem 5.1. Thus 3-SAT, which is NP-complete, would be shown to be in RP, which

would imply that RP = NP. O

The proof of Theorem 5.1 is lengthy, so we will begin by giving a very high level
description of the proof. We will then give a proof sketch, introducing some key definitions
and then give the formal proof. We reduce 3-SAT, the satisfiability problem for 3-CNF
formulas, to the approximation problem for the single string MLM problem for the 2-state
complete constraints with a guaranteed approximation ratio of 21wl ™ for any fixed a > 1.
For an arbitrary @ > 0, we exhibit a polynomial time reduction which maps any CNF
formula F to a string w such that the maximum probability assignable by a 2-state stochastic
matrix on the string w is at least C'(F") if the formula is satisfiable, and less than M%C(F)
otherwise, where C'(F') is easily computable. Thus any approximation algorithm for the
single string MLM for this class with a guaranteed approximation ratio of 21wl can be
used to solve 3-SAT, and hence the problem is NP-hard. The rough idea of the reduction
is as follows: Let us imagine that an agent (the hypothetical approximation algorithm) is
attempting to find a stochastic matrix which assigns an approximately maximum probability
to the string. The string w is conceptually divided into two parts: w = w,w,. We
design the first half of the string in such a way that if the agent is to maximize the
probability on it, it will have to ‘lean towards’ one of 2" deterministic stochastic matrices
of a particular kind, which we call ‘canonical stochastic matrices.” These correspond to
the 2™ truth assignments for the n variables in F'. More precisely, we define a notion of
distance between stochastic matrices and show that if the matrix in question is A-far from
the closest canonical stochastic matrix, then the probability assigned on the first half is
less than the optimal by roughly a factor of (1 — A)'w“|. Now the second half of the string
‘tests’ whether any of these canonical matrices corresponds to a satisfying assignment for the
formula F. For any canonical stochastic matrix, or one that is A-close to one, the generation
probability assigned on the second half of the string will be high if the corresponding truth
assignment satisfies F' and otherwise will be less by roughly a multiplicative factor of Alwel,
Thus the agent faces the following dilemma: (i) If it tries to be near-optimal on the first
half and chooses a small value of A, that is, its stochastic matrix is in fact close to one
of the canonical matrices, then it would have to in effect solve 3-SAT to determine an
approximately maximum generation probability assignable on the second part. (ii) If it
tries to avoid solving 3-SAT on the second part and chooses a large enough value of A, that
is, its stochastic matrix is sufficiently far from any of the canonical matrices, then it loses
so much probability on the first half that it cannot guarantee an approximately optimal
generation probability.

Proof Sketch of Theorem 5.1

We now give a fuller proof sketch, defining key notions used in the proof in so doing.
For each a > 0, we exhibit a transformation w, mapping any 3-CNF-formula F to a
string over an alphabet that depends on the number of variables, for which a gap of factor
K = 2™ ig forced in the optimal solution depending on the satisfiability of the
formula. Let n be the number of variables in F’, and s the number of clauses in F'. We let
Y, denote the alphabet used for w,(F'), and M,, the set of all 2-state stochastic matrices

5. Computational Complexity of Training Probabilistic Automata 21

We wish to maximize the above expression, subject to the constraints:

Vies > Mp(ij.z)=1
JES,ZEL

Z mp(i)=1

1€S
We can show that this is maximized when we define P as follows, using the following
well-known technical lemma, which we state without proof.

8,219

Vi, j € SVz € X Mp(i,j,2)= 0

Vie Smp(i) = ﬁ(;fj)

Lemma 4.2: A function of the form f(xq,...,2,) = 7' -252- ...z subject to the constraint
21+ z2 + ... + 2, = ¢ attains its mazimum when x; = (—fl”—a) - c.

=1 "¢
JFrom the above observation and Theorem 4.1, it follows that the class of deterministic
constraints is polynomially trainable. The sample complexity obtained in this way can
probably be improved significantly for this restricted case.

Corollary 4.2: The class of deterministic PA constraints is polynomially trainable.

5 Computational Complexity of Training Probabilistic Automata

The hardness of training the 2-state complete PA constraints is shown via a strong non-
approximability result for the single string MLM problem for the same class. We emphasize
again that the training problem for the class of s-state complete constraints is the natural
problem of finding a near optimal probabilistic automaton of a given number of states. It
should be noted that showing that the class of complete constraints is hard to train is much
more significant and also more difficult than constructing an artificial class of constraints
that is hard to train.

Theorem 5.1: For any a > 0, the single string ML{W problem for the class of 2-state com-
plete PA constraints is not approzimable within 2™ in time polynomial in the alphabet
size a and | w |, where w is the input word, unless P = NP.

As we noted in Section 1, Theorem 5.1 is a strong non-approximability result, since guaran-
teed approximation ratio of 2! for the MLM problem for 2-state PAs is trivially achievable.

Theorem 5.2: For arbitrary s € N, the single string MLM problem for the s-state complete
constraints is approzimable within s1*! in time polynomial in the alphabet size a and | w,
where w is the input word.

The proof of Theorem 5.2 is simple but uses one of the technical lemmas to be stated and
used in the proof of Theorem 5.1, so we defer the proof of Theorem 5.2 till after the proof
of Theorem 5.1.

Corollary 5.1: The class of 2-state complete PA constraints is not polynomially trainable,
unless RP = NP.

20

HZZImOPTT(wl) 2§loge
Hi:l Q(wl)
= 3
< 1+4e foree(0,1]. (4.13)

But then O PTs and O PTr assign the same likelihood on 5 as shown below.
H OPTs(w;) = maw{H P(w;): P e PAC)}
=1 =1

= (maw{ﬁ P(v;): P € PAC)})

- (ﬁ OPTr(v;))7

=1
[T OPTr(w:) (4.14)
=1
By plugging (4.14) in (4.13), we finally obtain:
[1i2, OPTs(wi)
[T, Q(wi)
(3 — 4) This is obvious from the definitions. O

JFrom Theorem 4.1 and Corollary 3.2, the following positive result on the approximation
problem for the sample MLM problem follows at once.

<l+4c¢

Corollary 4.1: The sample MLM problem for any finite class of PA constraints is approz-
wmable within a factor of 1 4 € for any € > 0, in time polynomial in % and the total length
of the sample.

Note that this does not give rise to a practical training algorithm, since the running
time of the algorithm we exhibit is exponential in the number of probability parameters
specified by the input constraint, which may grow quite large in practical applications.

We mention a simple class of constraints which can be trained efficiently. A constraint
C = (I,G) is said to be deterministic, if for a given state ¢ and a given letter a, there
is at most one transition from 2 labeled with a, in G. It is well known in the literature
that the MLM problem for the class of deterministic constraints is solvable in polynomial
time. We repeat the proof of this fact briefly, as it makes use of a lemma that will be used
again in the hardness proof in Section 5. Let a deterministic constraint C' and a sample
S = (w1, ..., wy) be given. For each wy € 9, let o” be the unique path in C labeled with
wy, (if one exists). Here, note that since C' is deterministic, there is at most one path for
each word, and if there is a word in § for which there is no path in €', then the maximum
probability assignable on S is zero and the problem is trivial. Let §(j, 2 | i) denote the total
number of times the transition to state j outputting letter z was taken from state ¢ in all
of pathes 0%, and #(4) denote the number of times a transition was taken from state i in all
of pathes o*. Let fo(i) denote the total number of times state i was entered as the initial
state in all paths o*. Clearly Y cq.ex #(4,2 | ©) = §(1) and Y ;5 f0(7) = m. Now note that
for any probabilistic automaton P, we can calculate P(S) =], P(w;) as follows.

PS)=[Ixe(*® I Mp(,j,2)

ies i€8,jES,ZEX

	ucsc-crl-90-63.part1
	ucsc-crl-90-63.part2

