
Computing Reachable States of

Parallel Programs

David P� Helmbold

Charles E� McDowell

July �� ����

Board of Studies in Computer and Information Sciences
University of California at Santa Cruz

Santa Cruz� CA �����

abstract

A concurrency history graph is a representation of the reachable states of a parallel
program� A new abstraction for representing the state of a parallel program is presented�
This new abstraction is more general than previous work by the authors� At the same
time� the new abstraction makes it possible to produce concurrency history graphs that
require much less storage than that suggested by a simple worst case complexity analysis�
Concurrency history graphs based on this new abstraction form the foundation upon which
a static analysis tool capable of detecting race conditions in parallel programs is being built�

keywords	 parallel processing� debugging� static program analysis



�� Introduction 


� Introduction

The need to identify access races in parallel programs is a well recognized problem� Current
approaches to solving this di�cult problem include compile time analysis �CKS��� McD
�� YT

��
run time detection �HL
�� DS��� and post mortem trace analysis �HMW��� EP

� EGP
�� NM
���
No single approach has yet been developed that is clearly superior under all conditions� Further�
more� it is our belief that a program development system will include aspects of all three applying
them in combination and separately as dictated by the application �and further research��

In this paper we describe a method for detecting races at compile time� The analysis is
based on enumerating all possible program states with su�cient resolution to determine which
program statements might execute concurrently� These program states are called concurrency
states� primarily because the resolution of the �program counter� for each of the concurrent tasks
represented in a concurrency state is often an explicit synchronization statement in the program
�i�e�� the program counter will appear to jump from synchronization statement to synchronization
statement��

Each concurrency state includes some task speci�c state information for each concurrent task
�or process�� and possibly some global information� The granularity of the information contained
in a concurrency state will a�ect the number of possible concurrency states �and the accuracy
of error reports derived from the concurrency states�� For example� we could ignore the global
information and limit the task speci�c information to two attributes	 an identifying name and one
of the actions not�started� running� or completed� A concurrency state would then consist of one
entry for each task indicating its name and which of the three possible actions it was in� If the tasks
were completely unsynchronized� they could be in any of the �t �where t is the number of tasks�
di�erent combinations of actions� In general� when there is no global information and the each
task can be doing any of n di�erent actions� the number of possible concurrency states is O�nt�� In
practice the actual number of concurrency states will be less than nt because task synchronization
prevents some combinations of task speci�c values from occurring�

The brute force enumeration of all possible concurrency states is too expensive to be a practical
approach to compile time detection of race conditions� In this paper we will describe how it is
possible to avoid enumerating each individual concurrency state and instead enumerate compressed
concurrency states where each compressed concurrency state represents many of the individual
concurrency states�

The �uncompressed� concurrency states can be organized into a graph called a Concurrency
History Graph �CHG�� The nodes in a CHG are the concurrency states� The edges in a CHG
represent the task transitions� A task transition corresponds to one task proceeding sequentially
according to its speci�cation �program� until the task speci�c action and�or some global state
stored in the concurrency state has changed� These task transitions are closely related to the
resolution of the concurrency states� In the above example� each task makes two transitions � task�
not�started � task�running� followed by task�running � task�completed�� Using this simple �i�e��
low resolution� concurrency state� the entire CHG for a program with two unsynchronized tasks is
given in Figure 
�
�

Access races can be divided into two groups� concurrent races and order races� In a concurrent
race� the two accesses might execute concurrently �i�e�� at the same time�� whereas in an order race�
the two accesses are prevented from executing concurrently but the order in which they execute is



� �� Introduction

t�	 running

t�	 not started
t�	 not started

t�	 completed

t�	 completed

t�	 completed

t�	 running

t�	 running

t�	 running

t�	 completed

t�	 completed

t�	 completed

t�	 running

t�	 running
t�	 not started

t�	 not started

t�	 not started

t�	 not started

Figure 
�
	 Complete CHG for two unsynchronized tasks�

not constrained� By associating shared data accesses with task transitions �edges in the CHG� it
is possible to identify both concurrent and order races in the CHG �or the program it represents��

The problem with a low resolution CHG like the one in Figure 
�
 is that it may contain task
transitions and concurrency states that cannot occur in any actual execution of the program� This
could result in races being reported that could never occur in the program being analyzed� In our
simple example� it appears that any pair of accesses by the two tasks could potentially execute
concurrently� Therefore� a race will be reported on each access to a shared variable� It might
instead be the case that there is additional synchronization� not represented by this low resolution
CHG� which prevents the races from occurring�

At the other extreme we can imagine a very high resolution concurrency state where a task
transition is the execution of a single machine instruction and the global information includes the
entire contents of memory� This would result in huge concurrency states �each concurrency state



�� Representing Concurrency States �

task attributes

attribute value range

last synchronization operation completed program statement
program task variable indicating this task any task variable

event attributes

attribute value range

wait count integer
post count integer
posted or waited on count integer

lock attributes

attribute value range

status set or clear
Table ��
	 Some attributes and their value ranges

would be a snapshot of the entire program state� and a CHG with far too many nodes� However�
if we could create such a CHG we could accurately report exactly those races that occur in some
execution of the program� A major problem is �nding a good compromise between the detail in a
concurrency state and the accuracy of the generated race warnings� Being very careful about how
resolution is given up is the key to solving this problem� �For example� consider a TV image� One
way to give up resolution is to use fewer pixels� another is to use fewer colors��

In Section � we describe the basic representations of a concurrency history graph� In Section �
we present a variation of the basic concurrency history graph that requires signi�cantly �possibly
orders of magnitude� less storage for the concurrency history graph� Finally in Section � we present
an extended example that demonstrates the techniques described in Section ��

� Representing Concurrency States

A concurrency state is a snapshot of the execution of a parallel program� Di�erent representa�
tions of concurrency states may store the information from the snapshot at di�erent resolutions� We
will represent a concurrency state as a set of attribute lists composed of attribute�value pairs� Each
attribute list will represent a di�erent program object� These objects could include tasks� events�
and locks� Some possible attributes and their value ranges are shown in table ��
� We will refer to
this representation of a concurrency state as a concrete concurrency state �to distinguish it from
the other representations introduced below�� A CHG in which the nodes are concrete concurrency
states is called a concrete CHG�

A more general representation of a concurrency state is as a collection of attribute�value pairs�
a �possibly implicit� set of objects� and a set of functions mapping the attribute�value pairs to
objects� If there is only one function in the set� then each of these more general concurrency
states represents a single concrete concurrency state� When multiple functions are present a single
generalized concurrency state represents several concrete concurrency states� Therefore a CHG
built from generalized concurrency states may contain fewer nodes than one built from concrete
concurrency states� If the set of mapping functions can be e�ciently described� then the total
storage for the CHG may be reduced� The main result of this paper is a general concurrency state



� �� The task�map

representation which facilitates the construction of the CHG� The primary objective is to minimize
the total storage required for CHGs built out of generalized concurrency states�

As much as possible the semantics of task transitions and speci�c attributes will be left unspec�
i�ed� thereby maintaining as much language independence as possible� One attribute that will be
found in all representations of concurrency states is the action�set attribute for task objects� The
value of an action�set attribute is a set of actions� where each action in the set identi�es some point
in the program that can be reached by a single task �thread�� The meaning of the attribute is that
the associated task object can be in any of the actions in the set��

One additional attribute that will be used frequently in examples in this paper is the task�id
attribute� The value of a task�id attribute is the name of a program variable that currently �points�
to the associated task� For example if an attribute list for a task object contains a task�id attribute
with value TV� then the program variable TV currently points to the task de�ned by that attribute
list�

To build a concrete CHG� an initial concrete concurrency state is speci�ed and then new
concurrency states �nodes� are added to the CHG by ��ring� task transitions that are �enabled��
The set of nodes in the �nal concrete CHG is the smallest set of concurrency states which contains
the initial concrete concurrency state and is closed under the ��re�enabled�transition� operation�

To build a task�compressed CHG� an initial task�compressed concurrency state is speci�ed and
then new concurrency states �nodes� are added to the CHG by �ring task transitions that are
enabled� The set of nodes in the �nal task�compressed CHG is the smallest set of concurrency
states which contains the initial task�compressed concurrency state and is closed under the ��re�
enabled�transition� operation�

De�nition �� A task transition ai � aj is enabled for a task object t in concurrency state C if�

�� task object t has an action�set attribute containing ai�

�� there is a possible transition in the program from action ai to action aj� and

�� any preconditions necessary for the task to execute sequentially from action ai to action aj
are satis	ed by the other information in C�

We also say that task t is enabled when these conditions are satis	ed�

De�nition �� An enabled task transition is �red� resulting in a new concurrency state by adding�
deleting or modifying the attribute�value pairs� the set of objects and
or the mapping functions of
the concurrency state containing the enabled task transition� as speci	ed by the semantics of the
operations in the task transition�

� The task�map

In this section we describe a generalized concurrency state representation called a task com�
pressed concurrency state or TC concurrency state� A TC concurrency state usually contains
several ways of mapping the task attribute�value pairs to the task objects as indicated by a labeled
DAG called the task�map �described below�� As in concrete concurrency states� there is only one
way to form the attribute lists corresponding to the non�task objects� Formally a TC concurrency
state� C� is represented as a pair �M�O� where	

�For concrete concurrency states these sets always have cardinality one�



�� The task�map �

M is a task�map indicating the possible grouping of attribute�value pairs into attribute lists
corresponding to task objects� and

O is an association of attribute�value pairs into attribute lists corresponding to the non�task
objects�

An arbitrary task�map will generally be written M � �V�E� L� where V is the set of nodes in
the DAG� E is the set of arcs in the DAG� and L is a labeling function on the nodes� indicating
the attribute value �or set of attribute values� labeling each node�

De�nition �� A full path in a task�map is a path from a source node �indegree zero� to a sink
node �outdegree zero��

A complete set of paths in a task�map is a set of node�disjoint full paths where every source is
on one of the paths�

Any path in a task�map can be viewed as an attribute list by concatenating the labels on the
path� The method of associating attributes with objects in a TC concurrency state C � �M�O�
is to use the associations in O for the non�task objects plus� for any complete set of paths in the
task�map� the task attribute lists corresponding to the paths in the set� Note that this mapping
is highly nondeterministic and that di�erent complete sets of paths will generally yield di�erent
concrete concurrency states� We use the following de�nition to denote the relationship between
concrete concurrency states and TC concurrency states�

De�nition �� Given a task compressed concurrency state C� the expansion of C �often written
ExpandTC�C�� is the set of all concrete concurrency states represented by C�

Algorithm �� ExpandTC�C
�M�O�� is computed by the following�

for each complete set of paths in M do
let S be the set of attribute lists associated with the paths�
for each way of selecting one action from each of the action�set attributes do

form C� from S �O by deleting all but the selected action from each action�set�
add the concrete concurrency state C� to ExpandTC�C��

end for�
end for�

The following de�nition is used to determine what are meaningful TC concurrency states�

De�nition �� A TC concurrency state� C is valid if every concrete concurrency state in ExpandTC�C�
is also in the program�s concrete CHG�

As an example� the concrete CHG in Figure 
�
 can be represented by a task compressed CHG
containing only a single node �concurrency state�� The task�map for this one task compressed
concurrency state is shown in Figure ��
� The task compressed CHG is valid because every concrete
concurrency state in its expansion is also in the CHG in Figure 
�
�

In a task�map� the number of sources �nodes of indegree zero� equals the number sinks �nodes
of outdegree zero� which equals the number of task objects represented� Since each task has exactly
one action�set attribute� we adopt the convention that every source node is labeled with an action�
set attribute and non�source nodes never contain action�set attributes� This makes it possible to
establish a correspondence between the source nodes and the task objects represented by the task�
map� It also emphasizes the special nature of the action�set attributes�



� �� The task�map

�action�set�fnot started� running� completedg�

�action�set�fnot started� running� completedg�

�task�id� tj�

�task�id� ti�

Figure ��
	 Task�map for the only node in the TC CHG corresponding to example from
Figure 
�
�

The following de�nition is motivated by the intent that a well�formed task�map indicates how
the attributes can be partitioned among the tasks�

De�nition 	� A task�map M is legal if whenever S is a maximal set of node�disjoint full paths in
M � then every node in M is on one of the paths in S�

In a legal task�map� every node �and hence every label� is used once in every maximal set of
node�disjoint full paths� Legal task�maps also have a structure that simpli�es their analysis�

Lemma �� If M is a legal task�map then every full path in M is in some complete set of paths for
M �

Lemma �� If M is a legal task�map then a complete set of paths in M can be constructed in time
proportional to the number of arcs in M �

From the practical point of view� the race conditions in a task compressed concurrency state
described by a legal task�map can be easily detected �in either O�v � l� or O�l log l� time where v
is the number of variables in the program and l is the total length of the read�write lists for that
compressed concurrency state�� Furthermore� given a task compressed concurrency state described
by a legal task�map� it is easy to compute the successor task compressed concurrency states� In
the remainder of this paper� we assume that all task�maps are legal�

Before describing how task transition �ring transforms task�compressed concurrency states we
�rst need some more de�nitions�

Recall that M � �V�E� L� is a task�map where	

V � the set of nodes in M �

E � the set of arcs in M �

L � the labeling function such that for x � V�

L�x� � the set of attribute�value pairs associated with x

For any node x � V � when the task�map is clear from context� we let



�� The task�map �

� pred�x� be the immediate predecessors of x� i�e� the set fv 	 �v� x� � Eg�

� succ�x� be the immediate successors of x� i�e� the set fv 	 �x� v� � Eg�

Our compression techniques revolve around symmetries between the tasks� Therefore it is
important to identify those portions of the task�map graph that are similar�

De�nition 
� Two task�map nodes x� and x� are weakly equivalent if

�� pred�x�� � pred�x�� and

�� succ�x�� � succ�x���

De�nition �� Two task�map nodes x� and x� are strongly equivalent if

�� they are weakly equivalent and

�� L�x�� � L�x���

De�nition �� A weak cluster is an equivalence class with respect to the relation weakly equivalent
for task�map nodes�

De�nition �
� A strong cluster is an equivalence class with respect to the relation strongly equiv�
alent for task�map nodes�

Strong clusters are very important� as it often su�ces to consider a single representative of
a strong cluster when transforming the task�map �see Section ����� This saves the work �and
additional CHG states� that would result from transforming each node of the strong cluster in
turn�

De�nition ��� A weak component in a task map consists of two weak clusters S� and S� with the
property that for each x� � S� and x� � S�� the edge �x�� x�� is in E�

De�nition ��� A strong component in a task map consists of two strong clusters S� and S� with
the property that for each x� � S� and x� � S�� the edge �x�� x�� is in E�

��� Generating Task Compressed Concurrency States

To build a task�compressed CHG� an initial task�compressed concurrency state is speci�ed and
then new concurrency states �nodes� are added to the CHG by �ring task transitions that are
enabled� The set of nodes in the �nal task�compressed CHG is the smallest set of concurrency
states which contains the initial task�compressed concurrency state and is closed under the ��re�
enabled�transition� operation�

When a transition is �red� certain transformations must be applied to the TC concurrency state
in order to generate the new TC concurrency state� The choice of transformations depends on the
semantics of the enabled task transition�




 �� The task�map

Adding an action to the action�set

If an enabled task transition a� � a� does not change any attributes and does not depend upon
any task attributes� then the new task action� a�� can be added to the action�set attribute for
every source node labeled with an action�set containing a�� This is speci�ed by the transformation
AddAction�

Transformation �� �AddAction� Given a task�map M � �V�E� L�� a source node x � V and an
action a� AddAction�M �x�a� returns the a task�map with action a added to the action�set of every
node in the strong cluster containing x�

Changing the action�set attribute

If the enabled task transition a� � a� modi�es some attribute �in addition to the the action�
set attribute� and is not dependent upon any task attributes� then the new concurrency state is
created by taking a source node whose action�set attribute contains a� and replacing its action�set
attribute with the set containing only the new action� a�� This is speci�ed by the transformation
ChangeAction�

Transformation �� �ChangeAction� Given a task�map M � a source node x and an action a�
ChangeAction�M �x�a� returns a new task�map where fag is the action�set labeling x�

Constraining the task�map

The idea behind task�maps is to represent many concrete concurrency states with a single TC
concurrency state� However� this means that we will occasionally encounter a TC concurrency
state C� where a task transition is enabled in only some of the concrete concurrency states in
ExpandTC�C�� When �ring these task transitions we must ensure that the resulting TC concurrency
states are valid� This means that we must �rst create a restricted TC concurrency state �or set
of states� whose expansion is the subset of ExpandTC�C� where the transition is enabled� The
Constrain transformation is designed to create task�maps for these restricted TC concurrency states�

The Constrain transformation is applied when a transition is enabled only if some task has a
certain combination of attributes� For example� the operation �wait for task t� can only complete
when task t is idle� In a TC concurrency state� task t can be idle if and only if there is a path in
the task�map containing nodes� x� and x� �labeled with l� and l� respectively� where	

� l� includes an action�set attribute containing the action �idle�� and

� l� includes the attribute�value pair �task�id�t��
Furthermore� task t must be idle in this TC concurrency state if every full path containing a node
labeled with an attribute�value pair �task�id�t� also contains a node labeled with the action�set
fidleg�

�All task transitions cause �at least potentially� the action�set attribute of one task object to be modi�ed� I�e�
the action�set containing the tail of the enabled task transition� In the following discussion this will be assumed so
that the statement �no attributes are modi�ed� should be read as �no attributes other than the action�set attribute
containing the head of the enabled transition are modi�ed��

�It might be the case that x� 	 x��



�� The task�map �

Our goal when simulating the successful completion of the �wait for task t� operation is to
ensure that task t must be idle� If x� and x� are the nodes as above� and if P is a path from x� to
x� then the goal is accomplished by	

� deleting all edges into P except for edges into x��

� deleting all edges out of P except for edges out of x�� and

� removing all non�idle actions from l��
If there are several di�erent paths from x� to x�� or several pairs of nodes that satisfy the conditions
on nodes x� and x�� then a new task�map is created for each path� and the one task transition can
lead to several successor CHG states�

Given a path� the Psplit transformation eliminates all edges incident to�from the nodes on the
path except for	 the edges on the path� the edges into the �rst node of the path� and the edges out
of the last node of the path� This transformation ensures that the labels on di�erent path nodes
are always mapped to the same task�

Transformation �� �Psplit�
Given a task�map M � �V�E�L� and a path P � x�� x�� � � �xn in M � the transformation
Psplit�M �P � yields a new task�map M � � �V�E��L� where

E� � E �
�

��i�n

f�v� xi� j v �� xi��g �
�

��i�n��

f�xi� v� j v �� xi��g

Psplit is used by the transformation Constrain� which is given only a task�map and two labels
which must be mapped to the same task� The Constrain transformation outputs the set of task�
maps produced by calling Psplit�M �P � for each path P whose end points contain the labels l� and
l��

Transformation �� �Constrain� Given a task�map M and a pair of labels l�� l�� the constrain
transformation and produces a set of task�maps�

for each pair x�� x� � V where l� � L�x�� and l� � L�x�� do
for each path P from x� to x� in M do

add the result of Psplit�M �P � to the set of task�maps�
end for�

end for�

Changing non�action attributes

If the semantics of the enabled task transition cause an attribute to be added or changed then
the following two transformations can be used to re�ect this in the task�map� It will in general be
necessary to combine these transformations with one or more of the previous transformations �i�e��
AddAction� ChangeAction and Constrain�� Section ��� below summarizes how the transformations
are combined under various conditions�

Transformation �� �AddAttribute� Given a task�map M � a node x and an attribute�value pair
�� AddAttribute�M �x��� returns a new task�map with � added to the label for x�

Transformation 	� �RemoveAttribute� Given a task�map M � a node x and an attribute�value
pair �� RemoveAttribute�M �x��� returns a new task�map with � removed from the label for x�




� �� The task�map

Creating new tasks �source nodes in the task�map�

In many parallel programming languages� it is possible to dynamically create tasks� If the
enabled task transition invokes the action of creating a new task� then the following transformation
is used to re�ect this in the task�map� The AddTask transformation will always be used in
conjuction with one or more other transformations to re�ect the complete semantics of the �task
creation� operation �see Section �����

Transformation 
� �AddTask� Given a task�map M � �V�E� L� and a node x �� V � AddTask�M �x�
returns a new task�map M � � �V � fxg� E� L�� where L��v� � L�v� for all v � V and L��x� � �
action�set� fidleg ��

��� Reshaping the task�map

The following transformations can be applied to any legal task�map and the result will be a
legal task�map� Furthermore� applying the following four transformations to a TC concurrency
state does not a�ect the expansion of that TC concurrency state�

The MakeCluster transformation enhances the symmetry in a task�map by adding edges as
shown in Figure ���� The SplitNode transformation creates symmetry by moving labels o� of nodes
�see Figure ����� The Reduce transformation is illustrated in Figure ���� This is used to simplify
a task�map by eliminating an unnecessary level of unlabeled nodes in the DAG� The SwapLabels
transformation is illustrated in Figure ���� This is used to change the location of labels in the
task�map� Its primary use is in preparing the task�map for a constrain transformation�

Transformation �� �MakeCluster� Given a task�map M � �V�E�L� and a set of nodes S � V

such that the nodes in S have the same immediate predecessors and labels� and

j
�

v�S

succ�v�j � jSj

MakeCluster�M �S� yields a new task�map M � � �V�E��L� where

E� � E � f�x�� x�� j x� � S and x� �
�

v�S

succ�v�g

Transformation �� �SplitNode� Given a task�map M � �V�E�L�� a node x� � V � and a new
node x� �� V � SplitNode�M �x��x�� yields a new task�map M � � �V �� E��L�� where

V � � V � fx�g

E � � E � f�x�� v� j �x�� v� � Eg� f�x�� v� j �x�� v� � Eg� f�x�� x��g

L��v� �

���
��

actions in L�v� if v � x�
non�actions in L�v� if v � x�
L�v� otherwise



�� The task�map ��

Complete bipartite graph

AFTER MakeCluster

the xi may have di�erent sucessors

x� x� xn

y� y� yn

all xi have the same predecessors

but ���i�nsucc�xi� � ���i�nfyig

BEFORE MakeCluster

all xi have the same predecessors

xnx�x�

yny�y�

Figure ���	 A portion of a task
map before and after application of MakeCluster

Transformation ��� �Reduce� Given a task�map M � �V�E�L� and two weak clusters S� � V �
S� � V � such that for all nodes v � S�� L�v� � �� and together S� and S� form a weak component�
Reduce�M �S��S�� yields a new task�map M � � �V �� E��L�� where

V � � V � S�

E� � E � f�x�� x�� j x� � S�� x� � S�g

�f�v� x�� j x� � S�� v � V g

�f�v� x�� j �v� x�� � E� x� � S�� x� � S�� v � V g

L� � LjV � �

Transformation ��� �SwapLabels� Given a task�map M � �V�E�L�� two weak clusters S� � V �
S� � V of the same size that together form a weak component� and a ��� correspondence f from



�� �� The task�map

action
set attribute remains here

non
action attributes from x

y has whatever successors x had before

y

x

x

BEFORE SplitNode

AFTER SplitNode

Figure ���	 A portion of a task
map before and after application of SplitNode

the nodes of S� onto the nodes of S� SwapLabels�M �S��S��f � yields a new task�map M � � �V�E�L��
where

L��v� �

���
��

L�v� if v �� S� � S�
L�f�v�� if v � S�
L�f��v� if v � S�

L��x�� � L�x�� and L��x�� � L�x���

��� Further compressing the task�map

Cluster optimization

Given an initial valid TC concurrency state the complete TC CHG is constructed by repeatedly
�nding an enabled task transition and applying the necessary transformations to �re the transition�
An important observation is that if a set of source nodes form a strong cluster
 then only one of
them needs to be considered as a candidate for making a task transition that will result in a new TC
concurrency state� Any attempt to generate successor concurrency states from another member of
the strong cluster results in the same successor concurrency state that has already been generated�
This is formalized in the following property�



�� The task�map ��

BEFORE Reduce

AFTER Reduce

no labels on any xi

all yi have predecessors that xis had before

Complete bipartite graph

all xi have the same predecessors

xnx�x�

y� y� yn

yny�y�

Figure ���	 A portion of a task
map before and after application of Reduce

Property �� Let C � �M�O� be a TC concurrency state and x� and x� be source nodes in the same
strong cluster of M � The set of successor TC concurrency states generated as a result of enabled
task transitions for the task object represented by source node x is equal� to the set of successor TC
concurrency states generated as a result of enabled task transitions for the task object represented
by x��

Replacing speci�c TC CHG nodes with more general nodes

A signi�cant reduction in the number of nodes in a TC CHG can be obtained by utilizing the
following property when applying the AddAction transformation� The implication of the property
is that when building a TC CHG
 whenever a �successor� concurrency state is obtained using
AddAction
 instead of adding the new node as a successor to the node from which it was generated

the new node replaces the node from which it was generated� See Section ��� for an example�

Property �� If there exist two TC concurrency states C and C� where
C� 	 AddAction�C�x��a� for some x� and action a then ExpandTC�C� � ExpandTC�C���

�It is important to note that the nodes in a task�map do not have names� Nodes are distinguished only by their
labels �which need not be unique� and their connections to other nodes� We apply names to the nodes in the �gures
only for expository purposes�



�� �� The task�map

all yi have predecessors that xis had before

xnx�x�

yny�y�

AFTER SwapLabels

BEFORE SwapLabels

Complete bipartite graph

all xi have the same predecessors

xnx�x�

yny�y�

Complete bipartite graph

Figure ���	 A portion of a task
map before and after application of SwapLabels

��� Transformation Summary

Each task transition
 a� � a�
 requires a slightly di�erent sequence of transformations to the
task
map based on the operation�s� represented by the transition� This section describes some of
the task transitions that can occur in an IBM parallel fortran program
 and how the successor TC
concurrency states for these transitions are created� We start by giving a general set of guidelines
for generating successor TC concurrency states based on the semantics of operations involved in
the task transition�

A Basic task transition requires one source node to have an action
set attribute containing the
action corresponding to the enabled transition� In addition
 a basic task transition may depend on
the non
task portion
 O
 of the TC concurrency state� In this case the successor TC concurrency
states are created by applying the AddAction transformation to each cluster labeled with the
appropriate action�



�� The task�map ��

More complicated transitions may have one or more of the following characteristics	
Modify� The synchronization operation modi�es an attribute �in addition to the action
set at


tribute of the task making the transition��

T	Read� The synchronization operation depends on a task object having a particular combination
of attributes�

Create� The synchronization operation creates a new task object�
The characteristics of the transition determine what transformations on the task
map should be

performed to avoid invalid successor TC concurrency states� Transitions having the Modify char

acteristic should be implemented with ChangeAction rather than AddAction
 and the Constrain
transformation should be used when the transformation has the T�Read characteristic� The Ad

dTask task
map transformation is designed for those transitions creating new tasks� Although the
characteristics of a transition give an idea of which transformations to the task
map are required

the exact sequence of transformations depends on the precise semantics of the synchronization
operations involved�

IBM Synchronization Operations

We now describe in detail how the successor TC concurrency states can be generated for a task
transition
 a� � a�
 involving some of the IBM parallel fortran synchronization operations� As
noted in Section ��� it often su�ces to consider one arbitrary representative of a strong cluster
rather than treating each source node in the strong cluster individually� Throughout this section
Ssc is used to denote a set of source nodes containing one representative of each strong cluster
whose nodes are labeled with an action
set containing a��

Post an event

An example of an operation that modi�es an attribute of a non
task object is the �post�
operation� When an enabled task transition a� � a� that posts an event is �red in some TC
concurrency state C � �M�O�
 a set of successor TC concurrency states is created� �If several
strong clusters are labeled with action sets containing a�
 then the set Ssc will have more than one
member and �ring the transition results in several successor TC concurrency states�� First
 let O�

be the non
task portion of C updated to re�ect the posting of the event� Now the set of successor
concurrency states is	

f�ChangeAction�M� v� a��� O
�� j v � Sscg�

Originate a task

In a program
 the �originate t� operation creates a new task pointed to by task variable t�
Assume that the enabled transition from a� to a� in the TC concurrency state C � �M�O� involves
an originate t operation� The successor concurrency states are created by a series of transformations
on M � For each x� in Ssc
 we do the following� First
 if some node x� has a label containing the
attribute
value pair �task
id
t�
 then that that attribute value pair must be removed from the
label on x�� Then a new task node x� not in M must be created and given the label �task
id
t��
Finally
 node x� has its action
set attribute value replaced with fa�g� Formally
 the set of successor
concurrency states is	



�� �� The task�map

f ChangeAction�
AddAttribute�

AddTask�
RemoveAttribute�M�x�� �task
id� t��

x��


x�� �task
id� t��

x�� a��

j x� � Sscg � fOg�

Wait for a task

In a program
 the �wait for t� operation can complete only when the task pointed to by task
variable t is idle� This operation has the T�Read characteristic� When task transition a� � a�
represents a �wait for t� operation and is �red in TC concurrency state C � �M�O�
 the Constrain
transformation on M must be called when generating the successor concurrency states� The set of
successor states generated by �ring this transition is

fChangeAction�M ��� x�� a�� j x� � Ssc and M �� � Constrain�M� idle� t�g � fOg�

Dispatch a task

The �dispatch any t� operation is an example of task transition which changes the action
set of
two source nodes� In addition to changing the action
set for the task executing the dispatch
 the
action
set of the dispatched task must also be changed and there may also be a new task variable
pointing to the dispatched task� Let C � �M�O� be a TC concurrency state where the transition
a� � a� for a �dispatch any t� operation is enabled� Let as be the �rst action in the subroutine to
which the task is dispatched
 Sidle be a set of representatives for the source node clusters containing
the action �idle�
 and x be the node in M with a label containing �task
id
t� �if such a node exists��
The set of successor concurrency states is

f ChangeAction�
ChangeAction�

AddAttribute�
RemoveAttribute�M�x� t�

x�� t�


x�� as�

x�� a��

j x� � Ssc� x� � Sidleg � fOg�

A dispatch speci�c task transition is similar
 however it also has the T�Read characteristic
since the named task must be idle� Therefore the Constrain transformation is applied instead of
RemoveAttribute and AddAttribute�

These examples should serve to convince the reader that the transformations on task
maps
are general enough to implement the semantics of most �if not all� reasonable synchronization
operations�



�� Extended Example ��

Main Subroutine P Subroutine Q
MB	 Begin PB	 Begin QB	 Begin

OA	 Originate Task A 	 	 	 	 	 	
OB	 Originate Task B PX	 Post X WX	 Wait X
OC	 Originate Task C 	 	 	 	 	 	
D�	 Dispatch Any Task D Calling Sub� End End
D�	 Dispatch Any Task E Calling Sub�

End

Figure ���	 Skeletal Program for Extended Example

� Extended Example

In this section we present an extended example that uses most of the transformations described
previously� The example is shown in Figure ��� in a skeletal syntax based on operations found
in IBM Parallel Fortran� Short labels are included to allow for concise reference to the program�s
actions in Figure ���� The main task �rst creates three tasks pointed to by task variables A
 B

C respectively� The main task then dispatches two �of the three� tasks to execute subroutines P
and Q� The two subroutines synchronize through the use of event X� Once posted
 event X remains
posted until cleared�

For this example there are two program objects that must be represented
 task objects and
event objects� For task objects there are two di�erent attributes
 the action
set and the task
id as
described in Section �� For event objects there are also two attributes
 the name of the event and
whether the event is posted or clear�

The two parts of Figure ��� show the entire task compressed CHG for the program in Figure ����
The outer rectangles correspond to nodes in the TC CHG
 and the inner circles correspond to nodes
in the task
maps for the corresponding concurrency states� The top half of the inner circles contains
the value of the action
set attribute and the bottom half contains the value of the handle attribute�
The string �X Posted� in a large box means the event X has been posted� If it is not present
 then
the event X has not yet been posted�

��� The three Originate operations

CHG node � in Figure ��� shows only one task �source node� in the task
map and the action of
the task is �MB� for Main Begin� The �rst three concurrency state transitions result from Create
type task transitions ��originate task� has the Create characteristic�� In each case the action of
Main is changed
 a new task
map source node is added and the new node is labeled as being in
task action �idle� with the speci�ed task variable as a handle�

��� The Dispatch operations

The transition from node � to node � involves a dispatch synchronization operation� As described
in Section ���
 the dispatch synchronization operation has the Modify characteristic� Both the main
task �having the enabled transition� and the dispatched task have their action
set modi�ed� In this



�� �� Extended Example

tid
action

CHG nodes
Boxes are

Task
map nodes

Circles areMB

QB
QX

QB
QX

QB

DMain

CBAA

IdleIdle
E

D� PX IdleIdleIdle

AA B C

Main D
IdleD�

PXD� IdleIdleIdle

AA B C

Main D

DMain

CBAA

IdleIdle IdleD� PB

PBD�
E DMain

CBAA

IdleIdle

�

� �

X Posted

� �

X Posted X Posted

Idle
AMain

OA
Main

� �

Z

X Posted

�� D� PX
DMain

CBAA

IdleIdle
E
Idle

X Posted

�� D�
E

CBA

D

IdleIdle
Main

�

Main C
Idle

B
Idle

A
Idle
A
IdleOC

OB
A
Idle
A
Idle

B
Idle

Main

�

Figure ���	 Task Compressed Concurrency History Graph �part ��



�� Extended Example ��

�� Idle

Z

Main
Idle Idle

D

A B C

E
D�

X Posted

Figure ���	 Task Compressed Concurrency History Graph �part ��

example there are three possible source nodes �tasks� that could be selected to be �dispatched��
However
 if we �rst apply the SplitNode transformation to the weak cluster containing the three
idle nodes then we can get the task
map shown in Figure ���� Now transformation MakeCluster can
be applied with the result that the three idle nodes form a strong cluster� Given a strong cluster
of source nodes it is only necessary to apply the task transition to one of the nodes in the cluster
�property ��� This results in node � shown in Figure ���� The transition from node � to node � is
similar to that from node � to node � except that the SplitNode is not necessary because the two
idle source nodes already form a strong cluster�

��� The Post operation and dispatched tasks going idle

The transition from node � to node � is a simple Modify type transition which results in the
event X changing to posted� The transitions from node � to node �
 from node � to node �� and
from node �� to node �� are also treated as modify type transitions because a task becoming idle is
an �event� that can be detected by other tasks � see �Constraining the task
map� in Section �����

��� Applying AddAction

The transition from node � to node � is created in two steps� The intermediate TC concurrency
state shown in Figure ��� results from subroutine P posting the event X� From this intermediate TC
concurrency state a transition is now enabled that can be handled by an AddAction transformation�
In addition
 property � applies resulting in the intermediate concurrency state being overwritten
with the one shown as node � in Figure ���� The transition from node � to node � is similar except
the �rst step is the dispatch operation which results in an intermediate TC concurrency state in
which an AddAction transformation and property � can be applied�



�� �� Extended Example

OC

OC

Main

Idle

Idle

CBAA

IdleIdle Idle

IdleIdleIdle

AA B C

Main

Figure ���	 SplitNode and MakeCluster applied to node � from Figure ����

QB
DMain

CBAA

IdleIdle
E

D� PX

X Posted

Figure ���	 Intermediate node between node � and � before applying AddAction

The transition from node � to node �� is a combination of SplitNode
 MakeCluster and AddAc

tion� First
 SplitNode and MakeCluster are applied as in the sequence for the transition from node
� to �� The AddAction transformation with property � is then applied as in the two step transition
from node � to node ��

��� Identifying task�map subgraphs

The transition from node � to node �� involves a two step process� First an intermediate node
is created �the top node in Figure ����� Then when node �� is created from the transition from
node � it is necessary to recognize that the task
map for the intermediate node is a subgraph of the
task
map for node ��� This may in general be a hard problem and work is currently underway to
answer the question of just how hard it is� For this example it can be seen that by �rst expanding
the three source nodes �other than Main� node �� can be obtained by simply adding the edges
shown as dotted lines in the node in the bottom of Figure ���� The transition from node �� to node
�� involves a similar subgraph recognition problem�



References ��

QB
QX

QB
QX

Idle
E

Idle

Main
Idle

D

A B C

D�

X Posted

DMain

CBAA

IdleIdle
E

D�

X Posted

Figure ���	 Intermediate stages between node � and ��

References

�CKS��� D� Callahan
 K� Kennedy
 and J� Subhlok� Analysis of event synchronization in a parallel
programming tool� In Proceedings of Second ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming �PPOPP�� SIGPLANNotices
 pages �����
 March
�����

�DS��� A� Dinning and E� Schonberg� An empirical comparison of monitoring algorithms for
access anomaly detection� In Proceedings of Second ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming �PPOPP�
 �����

�EGP��� P� A� Emrath
 S� Ghosh
 and D� A� Padua� Event synchronization analysis for debugging
parallel programs� In Supercomputing �
�
 November ����� Reno
 NV�

�EP��� P� A� Emrath and D� A� Padua� Automatic detection of nondeterminacy in parallel
programs� In Proc� Workshop on Parallel and Distributed Debugging
 pages �����
 May
�����

�HL��� D�Helmbold andD� Luckham� Debugging ada taskingprograms� IEEESoftware
 ����	���
��
 March �����

�HMW��� D� P� Helmbold
 C� E� McDowell
 and J� Z� Wang� Analyzing traces with anonymous
synchronization� In Proc� International Conference on Parallel Processing
 August �����



�� References

�McD��� C� E� McDowell� A practical algorithm for static analysis of parallel programs� Journal
of Parallel and Distributed Computing
 June
 �����

�NM��� R�Netzer andB�P�Miller� DetectingDataRaces inParallel ProgramExecutions� Technical
Report ���
 University of Wisconsin
Madison
 November �����

�YT��� M� Young and R� N� Taylor� Combining static concurrency analysis with symbolic
execution� IEEE Tran� on Software Engineering
 ������	���������
 October �����


	ucsc-crl-90-58.part1
	ucsc-crl-90-58.part2

