
Detecting Data Races by

Analyzing Sequential Traces

David P� Helmbold

Charles E� McDowell

Jian�Zhong Wang

�����

October ��� ����

Board of Studies in Computer and Information Sciences
University of California at Santa Cruz

Santa Cruz� CA �����

abstract

One of the fundamental problems encountered when debugging a parallel pro�

gram is determining the potential race conditions in the program� A race condition

exists when multiple tasks access shared data in an unconstrained order and at

least one of the accesses is a write operation� The program�s behavior can be unpre�

dictable when race conditions are present� This paper describes techniques which

automatically detect data races in parallel programs by analyzing program traces�

We view a program execution as a partial ordering of events� and de�ne which

executions are consistent with a given trace� In general� it is not possible to

determine which of the consistent executions occurred� Therefore we introduce

the notion of �safe orderings� between events which are guaranteed to hold in every

execution which is consistent with the trace� The main result of the paper is a series

of algorithms which determine many of the �safe orderings�� An algorithm is also

presented to distinguish unordered sequential events from concurrent events�

A working trace analyzer has been implemented� The trace analyzer can report

various data races in parallel programs by �nding unordered pairs of events and

variable access con	icts�

Keywords� data race� time vector� program trace� parallel programming� debug�

ging� distributed systems



�� Introduction �

� Introduction

Writing and debugging a parallel program is� in general� more di	cult than
writing and debugging a sequential program
 A major reason for this di	culty is
the need for explicit synchronization between the tasks in a parallel program
 A
program with errors in synchronization will often be non�determinate� i
e
� generate
di�erent results even when started with exactly the same inputs
 In a parallel
program� nondeterminism often introduces unexpected program behavior� making
the debugging process extremely di	cult


Unwanted non�determinate behavior of parallel programs often starts with a data
race
 One of the fundamental problems encountered when debugging a parallel
program is locating the potential data races in the program
 A race occurs when
two or more parallel tasks access some shared variable in an unspeci
ed order� and at
least one of the accesses is a write access
 For example� one task may attempt to write
to a memory location while a second task is reading from that memory location
 The
behavior of the second task may di�er dramatically depending on whether it reads
the new value or the old one
 Notice that races include both accesses that may occur
�at the same time� and accesses that must occur sequentially but where the order is
unspeci
ed �e
g
 accesses protected by a lock�


One approach to determining potential races is based on computing all of the
reachable concurrency states of the program �McD��� Tay���
 The major disadvan�
tage of this approach is that the number of concurrency states may become pro�
hibitively large
 Another approach to determining potential races is based on analyz�
ing a trace from an execution of the program �EP��� MC��� EGP��� NM��� HMW���
HMW���
 One advantage of trace analysis is that it is much less expensive computa�
tionally than the known static structure analysis methods
 Another advantage is that
trace analysis may avoid the problem of reporting �potentially too many� spurious
data races by structure analysis� due to infeasible paths in the program
 However�
the races detectable by analysis of event histories may depend on the program input
data used to generate the trace
 Furthermore� since races introduce nondeterminism�
a data race may hide other data races from the trace analyzer �AP���
 Nevertheless�
this later approach can provide important information to help in debugging parallel
programs and is the subject of this paper


When debugging a parallel program� the 
rst step is to determine the order and
concurrency relationships among the operations performed by the program
 When
examining a trace� the problem becomes distinguishing the ordered event pairs from
the unordered� potentially concurrent� event pairs
 In order to perform the 
nal data
race analysis� it must be possible to determine from a trace what shared objects are
referenced between any two synchronization events
 This can be done by generating
an event whenever an object is accessed
 Alternatively� each synchronization event
could include the source line number of the statement generating the event
 From
the source line numbers the path between two adjacent events can be determined and
the variables referenced along the path can be computed �McD���


A trace �also called an event history� is a linear list or total ordering of the events
performed during an execution of the program
 For our purposes� the trace re�ects



� �� Description of the Model

only one of the orders in which the events could have occurred
 A more restrictive
de
nition that is di	cult to achieve in practice� would be for a trace to specify the
exact order in which the events did occur
 Since traces are only approximations of
executions� there are usually several executions that are consistent with a given trace

What we want to compute is those pairs of events that occur in the same order in
every execution which is consistent with the trace
 These must occur orderings can be
viewed as a partial order
 If the partial order contains all orderings that must occur�
then a pair of events not ordered by this �must occur� partial ordering are unordered
in some consistent execution or consistent executions exist where the two events are
executed in both possible orders


If the trace contains explicit synchronization such as rendezvous between tasks t
and t� or task t forks into tasks t�� t�� and t�� then it is easy to determine these pairs of
events that must occur in a particular order
 However� if the trace contains anonymous
synchronization �e
g
 semaphores� locks� signals� then determining whether or not two
events occur in a particular order in every consistent execution is muchmore di	cult�


Many parallel systems �e
g
 �IBM���� provide facilities for recording important
events during the execution of parallel programs
 By limiting the debugger�s activ�
ity� the probe e�ect should be reduced
 The recorded information can be analyzed
following the program�s execution


The next section contains de
nitions and description of our basic model involving
counting semaphores
 Our algorithms for this basic model are described and analyzed
in Section �
 We have implemented a version of our algorithms for the post�wait
style synchronization used in IBM�s Parallel Fortran
 Our implementation and the
necessary modi
cations to our algorithms are described in Sections � and �
 In
Section � we survey some related work
 Finally� Section � contains conclusions and a
brief summary of our results


� Description of the Model

During an execution� a parallel program initiates a 
nite set of tasks fT�� � � ��
Tng
 These tasks perform synchronization and computation operations� including
computation on shared data�
 A program trace �or event history� H is a linearly
ordered sequence of events generated by a program execution
 An event is a traced
signi
cant program step� which generally includes the synchronization operations

Each task Ti is a sequential entity characterized by a local sequence Hi of events�


�When events occur concurrently� it is impossible for a totally ordered trace to accurately re�ect
the event orderings�

�In fact� the problem of determining all �must occur� orderings between events in a counting
semaphore model has been shown to be co�NP�hard �NM	
��

�Although operations on shared data can be used for synchronization �Dij�
�� we only consider
explicit synchronization operations as capable of generating synchronization events�

�Appearance of an event indicates that the event has completed�



�� Description of the Model �

Di�erent tasks may perform operations concurrently
 We assume� for convenience�
that each task has a unique identi
er


In our basic model� programs synchronize using counting semaphores �initialized
to zero�
 Two operations� P and V� are de
ned for each semaphore
 In this paper�
we use the more mnemonic wait and signal to represent the P and V operations
respectively
 Therefore� each synchronization event is a tuple containing� the opera�
tion completed �wait or signal�� the a�ected semaphore� and the id of the task that
performed the operation


Many other kinds of synchronization operations can be simulated with counting
semaphores
 Consider� for example� the event �init task t� which creates a new task t
and the event �await task t� which blocks the running task until task t has terminated

Given a trace containing these events� we can create an equivalent trace containing
only semaphore events


In each execution every wait event �blocking event� has a corresponding signal
event �enabling event�
 We use this correspondence to de
ne a partial order repre�
senting that execution


De�nition �� An execution of a parallel program is an irre�exive partial ordering of
the events performed� This partial order� called an event history graph �EHG�� is the
transitive closure� of two types of edges� �	
 edges from each event to the next event
performed by the same task and ��
 edges from each enabling synchronization event
to its corresponding blocking synchronization event �or events
�

An EHG is a physical representation of the concept of an execution and we will
use the two synonymously
 Although other partial orderings on the events can �and
will� be de
ned� we reserve the term �EHG� for those partial orderings representing
possible executions of the program
 The relation de
ned by an EHG is called the
happened before relation and is denoted with the symbol �
 Our de
nition of
�happened before� is consistent with that of Lamport�Lam���


De�nition �� Consider an EHG and two distinct events e� e�� If e��e� and e� ��e

then events e and e� are concurrent in that EHG� and thus can happen at the same
time in the execution represented by the EHG�

De�nition �� A trace of an execution is an interleaving of the local sequences of
events Hi for � � i � n where for every pre�x of the trace and every semaphore S�
the pre�x contains at least as many signal�S
 events as wait�S
 events�

A single execution usually has many possible traces
 Similarly� most traces could
have been generated by any one of a number of executions
 �Figures �
��a� and �
��b�
show the EHGs for two di�erent executions capable of generating the same trace�


De�nition �� An EHG or execution is consistent with a trace if the local sequences
of trace events Hi for each task � � i � n is preserved by the partial ordering of the
EHG�

�Although EHGs are transitively closed� we usually omit the transitive edges when drawing them�



� �� Description of the Model

�b��a�

���

���

���

���

���

���

���

���

���

���

Task CTask B

S�

Task A

W�

W�

W�

S�

W�

S�

W�

S�

S� S�

S�

W�

S�

W�

S�

W�

W�

W�

Task A

S�

Task B Task C

���

���

���

���

���

���

���

���

���

���

�d��c�

���

���

���

���

���

���

���

���

���

���

���

���

���

W�

S�

W�

S�

S�S�

W�

W�

W�

S�

���

���

��� ���

���

���

S�

W�

W�

W�

S� S�

S�

W�

S�

W�

Figure �
�� Trace� Executions� and Time Vectors



�� Description of the Model �

This notion of consistency is very important
 Intuitively� an EHG is consistent with
every trace where the individual tasks appear to have done the same things


For example� consider the trace H � fAS�� CW�� CS�� CS�� BW�� BS�� BS��
AW�� AW�� AW�g
 Event AS� means task A performs a signal�S��� AW� means task
A performs wait�S�� etc
 Figure �
� shows the four EHGs which are consistent with
this trace


Given the sequence of events forming a trace history� we want to analyze the trace
and report every data race which can happen in an execution whose EHG is consistent
with the trace
 A race may exist if there is no way provided in the program to force
the execution order between two events
 Our tool detects concurrent or unordered
read�write and write�write accesses to the same variable data races


De�nition �� Given a trace� the symbol 
 k� is used to represent the may happen
concurrently relationship between events� Two events e and e� are concurrent with
respect to the trace �i�e� e k e�
 if they are concurrent in some EHG which is consistent
with the trace�

De�nition 	� Given a trace� the symbol 
�� is used to represent the must happen
before relationship between events� If e � e�� where e and e� are events� then event e
will happen before e� in all executions that are consistent with the given trace� Events
e and e� are ordered if e � e� or e� � e� otherwise� they are unordered�

Concurrent events are always unordered� but unordered events need not be concur�
rent
 For example� the events BW� and CW� in Figure �
� are unordered but not
concurrent


Notice that e � e� is usually di�erent from the e�e� relation for any particular
EHG
 The former relation tells us that e must happen before e� in all of the executions
consistent with the trace being analyzed� while the later says that e happened before
e� in the particular execution represented by the EHG
 If e � e� then e�e� in every
consistent EHG
 However� the fact that e�e� in some consistent EHG does not
necessarily mean that e � e�


In Figure �
�� CS� � BW� in EHG �a�
 However� in EHG �c�� BS� � CW�� and
BW� � CS� by transitivity
 Therefore� BW� and CS� are unordered
 Event AS�
happens before BW� and CW� in every EHG consistent with the trace� therefore
AS� � BW� and AS� � CW�
 There is no order relation between events CS� and
BW� in execution �a�
 Therefore� they can happen concurrently in some execution
consistent with the trace and CS� k BW�


De�nition 
� A partial ordering R on the events is a safe order relation with respect
to a trace if ei R ej � ei � ej� If R is not safe� then R is unsafe�

Given a trace� the safe order relations are subsets of the must happen before rela�
tionship for that trace
 In general� the consistent EHGs are never safe� because they
contain too much information about their particular executions




� �� Description of the Model

��� Virtual Time

Since a linearly ordered representation of time is not always adequate for debug�
ging parallel programs� we use time vectors to represent a partial order on the events

In our trace analysis� each event is assigned a vector of timestamps
 The ordered
event pairs and unordered event pairs can be easily distinguished by comparing these
time vectors


The time vectors we compute in this paper are an extension of the time vectors
of Fidge �Fid��� and Mattern �Mat���
 There� each task Ti has a clock Ci which is a
vector of length n� where n is the total number of tasks
� Each task Ti has its own
vector component Ci�i� which guarantees a strict linear ordering of events occurring
in that task
 A local event counter which is incremented each time an event occurs
in the task can be used as the local clock
 The other components get updated when
the task synchronizes with other tasks


The time vectors assigned to events represent a partial ordering of the events

Intuitively� event e� precedes another event e� in the partial order represented if
every component of e��s time vector �� is less than or equal to the corresponding
component in e��s time vector ��
 Events e� and e� are unrelated in the partial order
when both some component of �� is greater than the corresponding component of ���
and some other component of �� is greater than the corresponding component in ��


De�nition �� For any two time vectors ��� �� in Zn

	� �� � �� �� 	i����i� � ���i��

�� �� � �� �� �� � �� and �� �� ��

�� �� k �� �� 
��� � ��� and 
��� � ����

Time vector �� is earlier than time vector �� if and only if they are di�erent and every
component of �� is less than or equal to the corresponding component of ��
 For any
two distinct time vectors �� and ��� if neither �� is earlier than �� nor �� is earlier
than ��� then we de
ne �� and �� to be unordered
 Note that here we de
ne �k� for
time vectors� whereas De
nition � de
ned �k� for events
 However� when the time
vectors represent the must happen before relationships for some trace� then the two
de
nitions of �k� coincide


De�nition �� For any m time vectors ��� � � � � �m of Zn

� mink���� � � � � �m�� k � � is the vector of Zn whose ith component is the kth

smallest element of ����i�� � � � � �m�i���

� min����� � � � � �m� is the vector of Zn with zeros everywhere� and

� max���� � � � � �m� is a vector of Zn whose ith component is max����i�� � � � � �m�i���

�We use an integer valued clock in our discussion although a real number valued clock can also
be used�



�� Analyzing Traces with Anonymous Synchronization �

As an example� min����� ��� ��� ��� ��� ��� ��� ��� ��� ��� is ��� ��
 We often call mink���� � � � � �m�
the kth component�wise minimum of ��� � � � � �m� and max���� � � � � �m� the component�
wise maximum of ��� � � � � �m


The following algorithm �derived from �Mat��� Fid���� computes time vectors for
the events in an EHG
 This algorithm requires the correspondence between signal
and wait events
 The time vectors produced re�ect the happened before partial order
for that EHG


De�nition �
� For an event e � Hi� ep is the previous event performed by the same
task Ti if such an event exists�

De�nition ��� For an event e � Hi� ���e� is the time vector containing the local
event count for e in the ith component and zeros elsewhere�

Algorithm �� Given the correspondence between signal and wait events for an EHG�
each event e is assigned a time vector� � �e�� as follows�

� �e� � max�vt� vs� �
��e��

where

vt �

���
��

� �ep� if there is a previous event
performed by the same task

the � vector otherwise

vs �

���
��

� ��e� if e is a wait event and
�e is the corresponding signal

the � vector if e is not a wait event

End Algorithm ��

Now� � �e� � � �e�� i� e happened before e� in the EHG� and � �e� k � �e�� i� e and
e� are concurrent in that EHG


In Section � we consider the counting semaphore style synchronization model

The algorithms presented there take a linearly ordered trace containing counting
semaphore synchronization� and compute a partial order containing only must happen
before type orderings
 If event e� has an earlier time vector than e� in the computed
partial order� then e� must happen before e� in all executions that are consistent
with the given trace
 By comparing their 
nal time vectors� we can distinguish many
ordered events from the unordered events


� Analyzing Traces with Anonymous Synchronization

The algorithms presented in this section have three phases� �initialize�� �rewind��
and �expand�
 The partial order resulting from the initialization phase is similar to
that computed by the algorithm of �Fid���
 This partial order is a consistent EHG�
so it is likely to be an unsafe order relation
 The result of the rewind step is a partial
order that is a safe order relation
 Unfortunately� it is an overly conservative safe



� �� Analyzing Traces with Anonymous Synchronization

order relation� since many of the safe ordering edges may have been lost during the
rewinding procedure
 The expanding process is used to add additional safe ordering
edges to the partial order


Our goal is a set of time vectors which can be used to distinguish ordered events
from unordered and potentially concurrent events	
 The problem of calculating all
safe order relations has been shown to be co�NP�hard by Netzer and Miller �NM���

What we present is a good approximation of the problem
 Our methods will 
nd
many� if not all� of the safe orderings in most parallel programs


��� Initializing the Time Vectors

Before giving the algorithm for computing the initial time vectors� we de
ne a
canonical EHG that will be used to verify the �correctness� of the time vectors
 This
canonical EHG simply matches the ith wait event on semaphore S with the ith signal
event on the same semaphore


De�nition ��� Given a trace H with the total ordering of events� �H� the partial
order � corresponding to the canonical EHG is constructed by selecting and taking
the transitive closure of the following subrelation of �H �

� If ei and ej are two events from the same task and ei �H ej then ei�ej�

� If ei and ej are the kth signal and wait events respectively on the same
semaphore� then ei�ej�

Unless indicated otherwise� ��� represents the happened before relation for the
canonical EHG in the remainder of this section


Algorithm �� To compute initial time vectors� � �e�� from a trace H use algorithm �
with the following modi
cations



� The kth wait event on semaphore S �in trace order� corresponds to the kth
signal event on S


� The events are assigned time vectors in the order they appear in the trace

End Algorithm ��

For the given trace� Figure �
��a� shows the result of the initialization procedure


The time vectors computed for the canonical execution have the following properties�

Property �� If e and �e are two events in the same task Ti and e occurred before �e
in the trace� then e� �e and � �e� � � ��e��

�Given a speci�c input and trace� there may be executions on that input whose EHGs are not
consistent with the trace� however� any such execution will contain a race if and only if a race
occurred in the execution that generated the trace �AP����

�Here we assume that matching up the i
th signal with the i

th wait in the trace gives a legal
execution� If that is not the case� then the parings of any legal execution could be used� However�
determining if there are any EHGs consistent with an arbitrary list of events is an NP�complete
problem�



�� Analyzing Traces with Anonymous Synchronization �

Property �� If e and �e are the corresponding signal and wait pair �the kth signal
and the kth wait on the same semaphore S in the trace
� then e� �e and � �e� � � ��e��

Property �� At any point in the trace� the maximum value of any time vector
component is the number of events performed up to that point by the task associated
with that component�

Given the correspondence between signal and wait events in some EHG� events
can be assigned time vectors by using Algorithm �
 Mattern �Mat��� has shown that
the resulting time vectors correctly represent the relation� for that EHG
 Therefore�
the initial time vectors� � � correctly represent the happened before relation for the
canonical execution


Theorem �� For any pair of distinct events ei � Hi and e � H�

� �ei��i� � � �e��i��� ei � e�

See �Wan��� for detailed proofs of the theorems appearing in this paper


Corollary �� For any two distinct events e � Hi� �e � Hj � i �� j� if � �e��i� � � ��e��i�
and � ��e��j� � � �e��j�� then e and �e are concurrent in the canonical execution�

The initialization process creates an EHG consistent with the given trace
 Un�
fortunately� this partial order is �in general� an unsafe order relation
 The corre�
spondence between signals and waits in the canonical EHG need not hold for other
execution�s� capable of generating the trace
 Even when � �e� � � ��e� we cannot say
e must happen before �e


��� Rewinding the Time Vectors

The result of the initialize step in the previous section is an unsafe order relation

It is unsafe because we assumed that the kth signal event for a particular semaphore
was the one allowing the kth wait event to precede
 The next step is to rewind the
time vectors to account for the fact that any signal event might be the one that allowed
any wait event on the same semaphore to complete
 We use � ��e� to represent the
new time vector assigned to event e during and after the rewinding process
 Initially
� � is the same as � 


Suppose e is a wait event� and e� and e� are the only two signal events which could
have caused e to complete
 In this case� we only know that either e� or e� must have
happened before e
 The trace might be in any of the forms�

� � � � e�� � � � � e� � � � � e�� � � ��
� � � � e�� � � � � e� � � � � e�� � � ��
� � � � e�� � � � � e�� � � � � e� � � �� or
� � � � e�� � � � � e�� � � � � e� � � �


However� we can conclude that those events preceding both e� and e� must also occur
before e
 Formally if ea � e� and ea � e� then ea � e
 The rewind step de
ned below
uses this fact to obtain a safe order relation




�� �� Analyzing Traces with Anonymous Synchronization

Algorithm �� �Rewind�
Initially� 	e � H� � ��e� � � �e�


Repeat the following procedure until no further changes are possible


For all events e � H� let

� ��e� � max�� ��ep�� ���e�� vs�

where if e is a wait event on semaphore S�

vs � min�� ��es��� � � � � �
��esk��

where es� � � � e
s
k are all the signals on S�

otherwise vs is the � vector


End Algorithm ��

Observe that the only di�erence between Algorithm � and Algorithm � �used to
compute � � is that for wait events in Algorithm �� vs is the minimum of a set of time
vectors� which includes the time vector used for vs in computing � 
 Therefore the
values of � � will only get smaller as Algorithm � executes


���

���

���

���

���

���

���

Task CTask B

S�

Task A

W�

W�

W�

S�

W�

S� S�

���

S�

W�

���

���

Figure �
�� Rewinding the Time Vectors

After rewinding� we have a partial order that is a safe order relation �although
probably not an EHG�
 If event ei has an earlier time vector than e� then ei happens
before e in all executions that are consistent with the given trace


Theorem �� Algorithm � generates only safe order relations� i�e�� for any two events
e�� e� � H�

� ��e�� � � ��e��� e� � e��

The rewinding process is based on the fact that any signal event might enable
any wait event on the same semaphore
 We may have lost some safe ordering edges
during rewinding
 As an example� the � � time vectors in Figure �
� indicate that the
two W� events and the W� event in task A may happen concurrently with any of the



�� Analyzing Traces with Anonymous Synchronization ��

events in tasks B and C
 However� it is obvious that the W� in task A must follow
the two S� events in tasks B and C� and the second W� in task A has to wait until
all of the events in B and C have occurred
 The 
nal step in the algorithm restores
some of the edges lost during the rewinding procedure


��� Expanding the Safe Order Relation

The result of the rewind step is a partial order that is a safe order relation

Unfortunately� it is an overly conservative safe order relation� since some of the safe
ordering edges may have been lost during the rewinding procedure
 We now undertake
a process to add additional safe ordering edges into the partial order
 The partial
order resulting from this process will be represented by the time vectors �� �e�
 Initially�
�� �e� � � ��e�


Suppose e is a wait event on some semaphore S� and there are k other wait events
on S which must happen before e in every consistent execution
 In this case� at least
k � � signal events on S are needed in order for e to proceed
 We will show that this
fact can be used to get more safe ordering edges
 As an extreme example� given a
trace H � fAS�BW�AS�AS�BW�BWg� Figure �
��a� shows the result of rewinding

It appears that the only inter�task safe ordering is that the 
rst signal in task A must
happen before all the wait events in task B
 However� the second signal in A must
happen before the second wait in B� and the third signal must happen before the
third wait� as shown in Figure �
��b�


�b��a�

W

W

W

Task A Task B

S

S

S S

S

S

Task BTask A

W

W

W

Figure �
�� Safe Ordering

Additional safe ordering edges can be found based on the following observation

If some wait event e is known to follow a set of k other wait events� then there is a
demand for k�� signals preceding e
 If some signal used to meet this demand is itself
preceded by a wait not in the set� then this latter wait will increase the demand for
signals to k � �
 Therefore the demand satis
ed and additional demand created by
including a signal can cancel
 When this happens we say that the signal is shadowed




�� �� Analyzing Traces with Anonymous Synchronization

In the example shown in Figure �
�� the signal event CS� is preceded by a wait
event CW�
 For the second BW�� from the current time vectors� we know that there
is a wait event �the 
rst BW�� preceding it
 Therefore� at least two signal�S�� events
need to precede the second BW�
 CS� could be one of them� but if this is the case�
then at least three signal�S�� events are needed to allow the second BW� event to
precede
 In any consistent execution� the second BW� must happen after at least two
signal�S�� events other than CS�
 Similarly� the 
rst BW� must be preceded by at
least one signal�S�� which is not CS�
 We say that the signal event CS� is shadowed
by CW� with respect to the wait events performed by task B


De�nition ��� Let e � Hi be a wait event and es � Hj be a signal event on the same
semaphore S where �� �e� k �� �es�� Let H�e� es� be the subsequence of Hj containing
those events ej where ej � es and �� �ej� k �� �e�� If any su�x of H�e� es� contains more
wait events on S than signal events on S� then the signal event es is shadowed with
respect to e�

De�nition ��� Let H ��e� es� be the shortest su�x of H�e� es� which contains more
wait events than signal events on S� and let ew be the �rst event of H ��e� es�� We say
es is shadowed by event ew with respect to e�

Lemma �� Given a wait event e and a signal event es on the same semaphore S� if
es is shadowed by some event ew with respect to e then

� event ew is a wait event on semaphore S�

� the subsequence between ew and es �in the same task
 contains as many signal
events as wait events on semaphore S�

� the event ew� which shadows es with respect to e� is unique� We de�ne ew to be
the shadowing wait event corresponding to es� and

� the correspondence between shadowed signal and shadowing wait is one to one�

S�W�

S�

S�

���

���

���

���

���

Task CTask B

S�

Task A

W� W�

���

���

Figure �
�� Shadowed Signal Event

In the example shown in Figure �
�� the signal event CS� is shadowed by CW�
with respect to the two wait events performed by task B


Algorithm � is based on the following observation
 If e is a wait event on semaphore
S and k other wait events on S must happen before e� then at least k�� non�shadowed
signal events happen before e in every execution consistent with the trace




�� Analyzing Traces with Anonymous Synchronization ��

Algorithm �� Initially �� �e� � � ��e� for all events e � H


Repeat the following procedure until no more changes are possible


Pick an event e

If e is a wait event using semaphore S� let

� W �S� be the set of wait events on semaphore S�

� k be the number of wait events ew � W �S� such that ew �� e and if ew � Hi

then �� �ew��i� � �� �e��i�� and

� R�e� � f�e � �e is a signal event on S� e �� �e as indicated by the �� time vectors�
and �e is not shadowed with respect to eg

and vs � the k � �st component�wise minimum of ����e� for �e � R�e�


If e is not a wait event� let vs be the � vector


�� �e� � max����ep�� ���e�� vs�

End Algorithm ��

���

��� ���

���

���

���

���

Task CTask B

S�

Task A

W�

W�

W�

S�

W�

S� S�

���

S�

W�

���

���

Figure �
�� Expanding the Safe Order Relation

Figure �
� shows the new �� time vectors generated when Algorithm � is executed
starting with Figure �
�


Theorem �� Algorithm � generates only safe order relations� i�e�� for any two dis�
tinct events e and e� � H�

�� �e� � �� �e��� e � e�

��� Running Time Analysis

The problem of calculating all safe order relations has been shown to be intractable
�NM���
 We have presented a series of polynomial time algorithms that 
nd many of
the safe orderings that must occur in all executions that are consistent with the trace

Here we bound the execution times of these algorithms
 We use m to represent the
total number of events in the trace and n for the number of tasks executing events

Note that the sum of each time vector�s components is bounded by m




�� �� Analyzing Traces with Anonymous Synchronization

Assertion �� The time required by the initialization algorithm �Algorithm �
 is
O�nm��

Every event is assigned an initial time vector value only once
 By keeping an array
containing the last time vector assigned for each task and a queue of signal events
for each semaphore the relevant previous time vectors can be located in constant
time
 Order n steps su	ce to compute the component�wise maximum
 Therefore�
the running time of Algorithm � is O�nm�


Assertion �� The time required by the rewinding algorithm �Algorithm �
 is O�nm���

Since each iteration of Algorithm � decreases at least one component of a time
vector� there can be at most m� iterations through the m events in the trace
 By
keeping the component�wise min of the time vectors for signals on for each semaphore�
each event can be processed in O�n� time �counting an update to the component�wise
min after processing signal events�
 Therefore� the running time of Algorithm � is
O�nm��


Assertion �� The time required by the expanding algorithm �Algorithm �
 is O�nm���

As above� there are at most m� iterations
 The time for processing signal events is
dominated by the cost of processing wait events
 Finding the set R�e� for wait events
is made easier by storing a pointer to the shadowing wait event �if any� with each
signal event
 Now the set R�e�� as well as the value k� can be found with a single
pass through the trace� taking O�n� time per event for time vector comparisons
 The
k � �st component�wise minimum can be calculated in O�nm� time using a bucket
sort on each component
 Therefore� the overall time required by Algorithm � is in
O�nm��


In the above analysis of Algorithms � and �� we used a very pessimisticm� bounded
on the number of iterations required
 In practice� we expect these algorithms will
require only O�m� iterations


��� Adjusting the Time Vectors to Determine

Concurrency

The previous algorithms compute a partial order that represents a safe order
relation between the events from some trace H
 Given any two events ei � Hi and
ej � Hj� if �� �ei� � �� �ej� or �� �ej� � �� �ei� then the two events are ordered
 Otherwise�
ei and ej are two unordered events
 The unordered events need not necessarily be
concurrent events
 They may be constrained to occur sequentially� but in either order

In this case� we call them unordered sequential events
 For example� if the program has
a properly implemented lock around a critical region� then di�erent executions may
have tasks entering the critical region in di�erent orders
 In no execution� however�
do two tasks concurrently enter the critical region




�� Analyzing Traces with Anonymous Synchronization ��

To increase our understanding of a parallel program� we would like to distinguish
those pairs of events that are concurrent in some consistent execution from the pairs
of events which can happen in either order� but not concurrently
 Unfortunately� the
concurrent relation cannot be determined immediately from the time vectors
 We
cannot necessarily say ei can happen concurrently with event ej even if we know
�� �ei� k �� �ej�
 As an example� in Figure �
�� even though �� �BW�� k ���CW��� the two
W� events cannot occur at the same time
 But event ei may happen concurrently with
ej only if ���ei� k �� �ej�
 Determining whether or not two unordered events happen
concurrently in some consistent execution is an NP�complete problem


Next� we present an algorithm which detects critical regions and determines the
associated unordered sequential event pairs�
 The algorithm 
rst determines if a
pair of wait events on the same semaphore starts a pair of critical regions
 If so� the
algorithm then 
nds those unordered sequential event pairs within the critical regions
by considering the e�ect of di�erent execution orders of the two wait events


The algorithm calculates two sets
 The set Conc contains concurrent event pairs�
while the set Seq contains unordered sequential event pairs
 The event pairs in
neither Conc nor Seq are ordered
 Initially� we assume that all unordered events
are potential concurrent events
 As critical regions are detected� the algorithm moves
the appropriate unordered sequential event pairs from Conc to Seq


Algorithm �� Initially let Conc � ffe� e�g � �� �e� k �� �e��g and Seq � 



Repeat the following procedure until no more changes are possible


Pick any two unordered wait events e and e� for semaphore S where �e� e�� � Conc


Let G�e� e�� be the set of wait events for semaphore S which precede either event e
or e� �based on current time vectors �� �


Let R�e� e�� � fe�� � e�� is a signal event using S and e�� precedes e or e�g � fe�� � e��

does not follow either e or e� and e�� is not shadowed with respect to either e or e� g


Let s �j R�e� e�� j and w �j G�e� e�� j


� If s�w � � �� e k e�� i
e
� if there are enough signals for both waits to precede�
then the two waits can happen concurrently


� If s�w � � �� 
�e k e��� i
e
� there is only one signal for a wait to precede� then
we can conclude that they cannot happen concurrently
 The starting points of
critical regions have been found
 The following procedure is used to determine
unordered sequential event pairs in critical region

�
 First� assume that event e happened before e�
 Thus w � � wait events on

S happened before e�
 Use Algorithm � with k � w�� to calculate a new
time vector for event e�
 Continue with Algorithm � �with the modi
cation
that whenever the time vector for e� is calculated� event e is counted when
determining k� to obtain a set of temporary time vectors


	The algorithm may not� however� detect all of the unordered sequential event pairs� This is due
primarily to the di�culty in detecting all of the safe orderings�



�� �� Generalizing the Semaphore Model

Let Seq� be the set of event pairs which are in Conc but are ordered by the
temporary time vectors� After obtaining Seq�� the original time vectors
are restored� We can not yet move these events from Conc to Seq since
they may be concurrent in executions where e� happens before e�

�� Now assume that event e� happened before e� Thus e is the w � �nd wait
for S� As before� starting from the original time vectors� we run a modi�ed
Algorithm � 	with the adjustment when the time vector for e is calculated
�
Let Seq� be the set of event pairs which are in Conc and are ordered by
the resulting time vectors� Again� the original time vectors are restored
after determining Seq��

�� The intersection of Seq� and Seq� gives the unordered event pairs in the
critical regions� We therefore set Seq � Seq � 	Seq� � Seq�
 and Conc �
Conc � 	Seq� � Seq�
�

� s�w � 
 means neither wait event can precede� In this case� there is a deadlock�
End Algorithm ��

As an example� consider the two unordered wait events BW� and CW� in Fig�
ure ���� The two wait events cannot happen concurrently because there is only
one signal 	AS�
 available for one of them to proceed in every consistent execu�
tion� They form two critical regions� In the executions where BW� occurred be�
fore CW�� CW� becomes the second wait on semaphore S�� Using Algorithm ��
we get time vectors as shown in Figure ���	a
 where the event pairs f	BW��CW�
�
	BW��CS�
� 	BW��CS�
� 	BS��CW�
� 	BS��CS�
� 	BS��CS�
g appear ordered� Sim�
ilarly� in the executions where CW� occurred before BW�� event pairs f	BW��CW�
�
	BS��CW�
� 	BS��CW�
� 	BW��CS�
� 	BS��CS�
� 	BS��CS�
g are ordered as shown
in Figure ���	b
� At this point� we can conclude that the intersection of these two
sets contains event pairs that are not concurrent in any executions� whenever BW�
happened before CW� or CW� before BW�� Therefore� f	BW��CW�
� 	BW��CS�
�
	BS��CS�
� 	BS��CW�
g are unordered sequential event pairs in the critical region�
and can be moved from Conc to Seq�

� Generalizing the Semaphore Model

The previous section described algorithms for systematically determining order re�
lationships between events in a counting semaphore model� Here we generalize those
results to the event�based synchronization mechanismprovided by IBM Parallel FOR�
TRAN �IBM��� and describe a working tool based on these algorithms� Although the
algorithms presented in this section have the same initialize�rewind�expand top�level
structure� modi�cations are needed to handle the IBM Parallel Fortran synchroniza�
tion primitives�

An �event� in IBM Parallel Fortran is a particular programming construct� as
opposed to its common usage in reference to any signi�cant program step� Whenever
it is not clear from the surrounding context� we will use IBM�event to refer to what
IBM Parallel Fortran calls an �event�� and trace record to refer to any signi�cant
program step�



�� Generalizing the Semaphore Model ��

���

���

���

W�

S�

S�S�

W�

S�

W�

W�

W�

Task A

S�

Task B Task C

�



�



��


��


��
���

���

�
�

�
�

W�

S�

�
�

S�S�

W�

S�

W�

W�

W�

Task A

S�

Task B Task C

�



�



���

���

���

���

���

Figure ���� Detect Critical Regions

The remainder of this section is in four parts� Section ��� describes the IBM�events
and their associated operations� Section ��� presents an algorithm to compute a safe
order relation for a trace containing operations on IBM�events� Section ��� presents
an algorithm that enhances the safe order relation with additional edges� Finally�
Section ��� presents some sub�algorithms used by the algorithm in Section ����

��� Parallel Events in IBM Parallel Fortran

In this section� we describe the parallel event facilities provided by IBM Parallel
Fortran� Several subroutines are provided for the management of IBM�events� These
subroutines are called to post events� wait for events� create and delete events� and
initialize event parameters�

By using a common IBM�event� di�erent tasks may synchronize their execution
with each other� One or more tasks can signal the occurrence of an IBM�event to
other tasks by calling PEPOST� Other tasks can synchronize their execution with the
signaling task	s
 by waiting for the event to be posted�

Every IBM�event has an eventid� postcount� waitcount� and eventtype associated
with it� Eventid is an integer identi�er for the IBM�event� Postcount speci�es the
number of times the event must be posted� and waitcount speci�es the number of
times the event must be waited on in order to complete a work cycle of the IBM�
event� Eventtype can have a value of either 
 or �� If the eventtype is 
� then the
same task can post and�or wait on the event multiple times in the same cycle� A
value of � indicates that the posting and waiting tasks within the same cycle must be
unique� If a task posts a second time during the same work cycle� it will be suspended
until the next cycle� where the second post can be counted� Similarly� if a task waits
on the event for a second time in the same cycle� it will be suspended until the next
cycle if the eventtype is ��

The various combinations of these parameters provide very �exible synchro�
nization patterns between tasks� As an example� an event with postcount �



�� �� Generalizing the Semaphore Model

�� waitcount � �� and eventtype � � requires three unique tasks to signal their
completion of a piece of work� before a single waiting task can continue�

An IBM�event can be viewed as a wait request queue� a post request queue� and a
request processor� When a task makes a post or wait request� the task is suspended
and placed in the appropriate queue until its request can be processed� The task
continues execution after its request is processed�

The request processor has three processing phases� post request processing 	PRP
�
wait request processing 	WRP
� and completed request processing 	CP
� as shown in
Figure ���� When the request processor is in the PRP phase� requests are processed
from the post request queue� When a number of post requests equal to the postcount
have been processed� the processor advances to either WRP 	when waitcount � 


or CP 	when waitcount � 

 phase�

PEINIT

INIT

PEORIG� PEINIT

waitcount � 
 and

PEPOST

PEPOST� PEWAIT

PEWAIT

seen postcount posts

with pending wait or post

seen waitcount waits and

seen postcount posts
waitcount � 
 and

CP

WRPPRP

Figure ���� IBM Parallel Event

When the request processor is in the WRP phase� requests are processed from the
wait request queue� When su�cient wait requests have been processed to satisfy the
waitcount� the cycle is completed� If there are pending wait or post requests� the
request processor advances to the PRP phase� automatically starting a new cycle�

When the request processor is in the CP state� requests from both the post and
wait request queues are processed� Any tasks making subsequent wait or post requests
will not be suspended� A new cycle can be started by calling PEINIT�

When an IBM�event is created� the postcount� waitcount� and eventtype are all
set to �� These values may be changed� either between cycles or before starting the
�rst cycle� by a call to PEINIT� We view a call to subroutine PEINIT as creating a
di�erent IBM�event� When the �rst post or wait request is issued for the new event�
the request processor enters the PRP phase�



�� Generalizing the Semaphore Model ��

��� Getting Safe Order Relations for IBM Events

For IBM�events� posts enable the waits in the same cycle� and waits enable the
posts in the next cycle� In order to construct the canonical EHG for a trace containing
IBM�events� we assume that the �rst postcount posts� from the trace H� correspond
to the �rst cycle and the next postcount the second cycle� etc� Similarly for waits�
These assumptions are used to quickly compute an initial set of time vectors� and the
choice of canonical EHG does not a�ect the end results of our analysis�

The initial time vectors 	from Algorithm �
 are computed such that the partial
order represented by the time vectors is precisely the partial order represented by
the EHG� For each event e � Hi� the initial time vector value� � 	e
� is simply the
component�wise maximum of the time vectors for all of its immediate predecessors
plus one in the ith position 	i�e�� the position of the local clock for task Ti
�

Algorithm �� For all events e � H� let

� 	e
 � max	� 	ep�
� � � � � � 	e
p
k
� �

�	e



where ep�� � � � � e
p

k are all the immediate predecessors of e in the EHG�

End Algorithm ��

The time vector � correctly represents the EHG� Event e has an earlier time vector
than e� 	i�e�� � 	e
 � � 	e�

 if and only if e happened before e� in the execution speci�ed
by the EHG 	i�e� e � e�
� Similarly� two events are unordered in the EHG if and
only if their time vectors are unordered� Notice that the correspondence between post
and wait events in the initial EHG represents only one of the executions which are
consistent with the trace� It is not a safe order relation since for some events e and
e�� e� may happen before e or may be concurrent with e in a di�erent execution even
if e happened before e� in the consistent execution represented by the EHG� The next
step 	given by Algorithm �
 is to rewind the time vectors making the conservative
assumption that any set of postcount posts could be responsible for unblocking any
wait on the same IBM�event� This will result in a safe partial order� At this point we
cannot tell if the edges between post and wait events are safe� so they are deleted from
the canonical EHG��� and the result is called the safe synchronization graph� For all
remaining algorithms� the �predecessors� of a trace event refers to the predecessors
in the safe synchronization graph 	which is constant throughout the analysis
�

Algorithm �� Repeat the following procedure until no further changes are possible�

Pick an e � H�

Let time vector v be the component�wise maximum of ��	e
 together with the time
vectors for all of the immediate predecessors of e�

If e is not a wait event� then � 	e
 � v�

��In an actual EHG for IBM Parallel Fortran there will be edges in the EHG resulting from events
other than post�wait� which are not deleted �see Section ���



�
 �� Generalizing the Semaphore Model

Otherwise� e is a wait on some event� Let ep� � � � epk be all the posts on the same event
and

� 	e
 � max	v�minpostcount	� 	ep�
� � � � � � 	epk




End Algorithm ��

Algorithm � generates a partial order which is safe� i�e�� if event e has an earlier
time vector than e� 	i�e� � 	e
 � � 	e�

� then e must happen before e� in all executions
that are consistent with the given trace� Unfortunately� this safe order relation may
be overly conservative� Some of the safe ordering edges may have been lost during
the rewinding procedure� The next algorithm will add more safe ordering edges to
the partial order�

��� Expanding the Safe Order Relations

The next step is to modify the assumption of the previous section that any
postcount posts can trigger any wait on the same event� This will allow us to �nd more
safe ordering edges between events in the partial order� The key to strengthening this
assumption is reliable information as to which cycle	s
 each post and wait can belong�

De�nition ��� For any post or wait e � H� the safe cycle number for e is the earliest
IBM�event cycle containing e in a consistent EHG��� A cycle bound on e is any lower
bound on the safe cycle number for e�

In particular� if a post has a safe cycle number or cycle bound n� then at least
	n � �
 � postcount posts and 	n � �
 � waitcount waits precede that post in every
consistent execution� 	Note that the particular events preceding the post may vary
in di�erent consistent executions�
 Similarly� if a wait has a cycle bound n� then at
least n � postcount posts and 	n � �
 � waitcount waits must precede that wait in
every consistent execution�

Algorithm � assumed that any combination of the posts and waits can happen
in the �rst cycle� This is why we used minpostcount	� � �
 in Algorithm �� If we can
determine a cycle bound� e�cycle� for some wait event e� then we know that at least
postcount�e�cycle posts must precede event e� Therefore we use minpostcount�e�cycle	� � �

in Algorithm �� In addition� if e�cycle is greater than �� then wait event e cannot be
used to satisfy the waitcount in cycle ��

We next present the modi�ed time vector algorithm 	Algorithm �
 which �nds
additional safe orderings between events� This algorithm assumes that cycle bounds
e�cycle have been computed for each post and wait event in the trace� The following
subsection contains a procedure for calculating these e�cycle bounds�

De�nition ��� For an event e � H� if e is a post or wait on some event� then e�cycle
is an estimated safe cycle number of e�

��If an IBM�event has waitcount 	 
 then all posts and waits on that IBM�event are considered
to be in the �rst cycle�



�� Generalizing the Semaphore Model ��

Algorithm 	� Repeat the following procedure until no more changes are possible�

Pick an e � H�

Let time vector v be the component�wise maximum of ��	e
 and the time vectors for
all of the immediate predecessors of e �in the safe synchronization graph��

If e is neither a post nor a wait event� then � 	e
 � v�

Otherwise� e is a post or wait on some event S�

�� Simple case where waitcount � 
 for IBM�event S� After postcount posts� all
other posts and waits on S are non�blocking� and the cycle of the IBM�event
never completes�

If e is a post on some event S� then

� 	e
 � v

Otherwise� e is a wait on event S� then

� 	e
 � max	v�minpostcount	� 	ep�
� � � � � � 	epl



where ep�� � � � � epl are all the posts on S with the following restrictions�
� The posts following any wait on S �based on the current time vectors� are
not included� They are 	shadowed
�

� If eventtype � � then only the �rst post in each task is considered� Sub�
sequent posts in the same task do not contribute towards ful�lling the
postcount�

�� General case where waitcount 	� 
 for IBM�event S�

Calculate e�cycle� the earliest cycle in which e can occur using Algorithm �
�

If e is a post on event S� then � 	e
 gets

max	v�min�e�cycle����waitcount	� 	ew�
� � � � � � 	ewm



where ew�� � � � � ewm are the waits on S satisfying � 	e
 	� � 	ewi
� and
ewi�cycle � e�cycle�

Otherwise� e is a wait on event S� and � 	e
 gets

max	v�mine�cycle�postcount	� 	ep�
� � � � � � 	epl




where ep�� � � � � epl are the post events on S satisfying � 	e
 	� � 	epi
 and
epi�cycle � e�cycle�

End Algorithm 	�



�� �� Generalizing the Semaphore Model

��� Safe Cycles

In order to calculate good cycle bounds for posts and waits� we need the following
de�nition�

De�nition ��� For any trace record e which is a post or wait on some IBM�event
S� let

� W 	e
 be the set of waits on S preceding e based on the current time vectors�
i�e�� event ew is in W 	e
 if ew is a wait event on S and � 	ew
 � � 	e
� and

� P 	e
 be the set of posts on S preceding e based on the current time vectors� i�e��
event ep is in P 	e
 if ep is a post event on S and � 	ep
 � � 	e
�

If the current time vectors represent a safe partial order� then all of the events in
both W 	e
 and P 	e
 must happen before event e in every EHG consistent with the
trace� A cycle bound for event e can be computed based on the following facts�

� If e is a wait on S� then e�cycle 
 max	e��cycle
 for all e� � W 	e
 and e� � P 	e
�
This is implied by the fact that e cannot happen before e� in any execution� i�e��
it cannot appear in any earlier cycle�

� Similarly� if e is a post on S� then e�cycle
 max	e��cycle
 for all e� � P 	e
� and
e�cycle 
 max	e��cycle
� � for all e� � W 	e
� This is because the post e cannot
occur until all posts and waits in previous cycles have completed�

Furthermore� since our algorithm calculates safe order relations which hold for all
executions whose EHGs are consistent with the given trace� at some point we may �nd
that the number of posts with a particular cycle number is greater than postcount�
or the number of waits with the same cycle number is greater than waitcount 	e�g�
the rewinding procedure assumed that all posts and waits may happen in cycle �
� It
may be di�cult to �gure out which post	s
 or wait	s
 must happen in any given cycle�
however� in any cycle there are at most postcount posts from P 	e
 and waitcount
waits from W 	e
� This can be used to increase cycle bounds� resulting in more safe
orderings among events�

As an example� suppose that an IBM�event S has been initialized to need three
posts and two waits in order to �nish one cycle 	i�e�� postcount � � and waitcount �
�
� Let e be a wait on S� P 	e
 and W 	e
 be the sets calculated according to
De�nition ��� Suppose in the set P 	e
 there are four posts having cycle bounds
of �� one with a cycle bound �� three with �� �ve with �� and four posts with cycle
bounds equal to � 	see Figure ���
� Therefore� it is safe to conclude that the earliest
cycle in which e may occur is the �th cycle� However� we will see that this conclusion
is overly conservative� In every consistent execution� at least one of the four posts
which have cycle number � happens in a later cycle� since the postcount is equal to
�� The extra post	s
 can be propagated to higher cycle	s
� This means that e cannot
happen in the �th cycle and must happen later� because e must happen after all posts
in P 	e
�

Algorithm � can be used to determine a lower bound on the number of cycles
required for a set of posts or waits� Given a set W 	e
 or P 	e
� let m be the maximum
cycle bound for trace records in the set� let c�i� be the number of trace records in



�� Generalizing the Semaphore Model ��

Cycle	i
 � of events in cycle i justi�ed number
� � �
� � �
� � �
� � �
� � �

Figure ���� Post and Wait Propagation

the set having cycle bound i� for � � i � m� and let count represent waitcount if
we are considering W 	e
 or postcount otherwise� For the previous example� given
the set of posts which happen before e� m � �� the array c � ��� �� �� �� ��� and
count � postcount � �� After calling the propagate algorithm� the adjusted count
numbers are shown in Figure ����

Algorithm 
� propagate	L� count


input� L � set of trace records
�W 	e
 or P 	e
 where e is a post or wait on S��
count � � of records needed to satisfy a cycle�

output�m � the max cycle bound of records in L�
c�m� � the number of records which cannot
happen earlier than cycle m�

procedure�

Let m be the maximum cycle bound of trace records in set L� let c�i� be the number of
trace records in the set with safe cycle number i� for � � i � m�

for i �� � to m � � begin
if �c�i� � count� then begin

c�i��� � c�i��� � c�i� � count�
c�i� � count�

endif�
endfor�

End Algorithm 
�

For the previous example� we can now conclude that the wait e cannot happen
before the �th cycle� The reason is that there are six previous posts on S which
cannot happen in any cycle earlier than the �th cycle� and at least three of them
must happen in the �th cycle or later since the postcount is set to �� Because e must
happen after all these posts� the earliest cycle in which e could happen is the �th
cycle� Notice that if e is a post on S then the earliest cycle of e will be the �th cycle�



�� �� Generalizing the Semaphore Model

Based on these observations� we present the following algorithm which calculates
a bound on earliest cycle in which a post or wait event e could occur� The algorithm
does the propagation and then computes the new cycle bound based on c�m�� the
number of events propagated to the last cycle� The key to the algorithm is that the
extra events 	including those propagated to the last cycle
 must be spilled into later
cycle	s
� pushing up the safe cycle number for event e� Algorithm �
 is used in the
time vector computation given by algorithm ��

Algorithm ��� safe cycle number estimation�

input� a trace record e which is either a post or wait on some event S�
output� e�cycle� the new cycle bound for e�
procedure� Let W 	e
 and P 	e
 be the sets of previous waits and posts respectively
�De�nition ���� Based on these two sets W 	e
 and P 	e
� a wait cycle count cw and
a post cycle count cp are calculated�

�� If e is a wait on S� �rst calculate cw by calling propagate	W 	e
� waitcount
 and
let

cw � m� bc�m��waitcountc�

then call propagate	P 	e
� postcount
 and let

cp � m� b	c�m�� �
�postcountc�

�� Otherwise� e is a post on S� �rst calculate cw by calling propagate	W 	e
�
waitcount
 and let

cw � m� � � b	c�m�� �
�waitcountc�

then calculate cp by calling propagate	P 	e
� postcount

and let

cp � m� bc�m��postcountc�

Let e�cycle � max	cw� cp
�

When eventtype � �� a task cannot post twice or wait twice in the same cycle� In
this case� we have the following adjustment�

� If e is a wait and e � Hi� then

e�cycle � max	e�cycle� e��cycle� �


where e� � W 	e
 and e� � Hi�

� Otherwise e is a post and e � Hi� then

e�cycle � max	e�cycle� e��cycle� �


where e� � P 	e
 and e� � Hi�
End Algorithm ���



�� A Prototype for IBM Parallel Fortran ��

� A Prototype for IBM Parallel Fortran

In IBM Parallel FORTRAN� a task can be explicitly created� assigned work�
and waited for until the work assigned to it has been completed� A task can also
be implicitly created by parallel loops and parallel cases� Tasks can be executed
concurrently� A parallel lock can be used to prevent interference between tasks during
manipulation of critical data areas� A parallel event permits explicitly created tasks
to synchronize their execution through intertask signaling�

The IBM Parallel FORTRAN Trace Facility can automatically record important
events during the execution of a parallel program� providing useful information about
the execution� The Trace Facility produces a series of time�stamped trace records
during execution of a parallel program� At least one trace record is generated for
each of the following operations�

� Start and end of program execution�

� Origination and termination of tasks�

� Assignment and completion of task work�

� Waiting for tasks to complete work�

� Start and end of parallel loop and parallel case execution� and

� Use of parallel locks and parallel events�
In addition to the time stamp� each trace record identi�es the kind of action�

the program unit and task performing the action� the virtual FORTRAN processor
used� and the actual CPU on which the program unit was executing� Additional
information speci�c to the kind of action may also be recorded�

To build an EHG from an IBM trace we need to determine the enabling�blocking
pairings for all synchronization events�

�� For dispatching and scheduling 	enabling
 events� the corresponding task begin
is the blocking event�

�� For IBM�events� posts enable the waits in the same cycle� and waits enable the
posts in the next cycle�

�� For task completion 	enabling
 events� the corresponding event waiting for the
task completion is the blocking event�

The algorithms described in the previous section have been implemented in a trace
analyzer� and several traces have been analyzed� The trace analyzer can construct the
event history graph and calculate the time vector values for all events in the trace�
The �nal time vectors represent a safe partial order among events� By comparing
the time vectors� we can distinguish many ordered events from unordered events�
Combining this with variable reference information from START �McD���� the trace
analyzer reports those data races which can happen in any executions whose EHG is
consistent with the given trace� The trace analyzer is implemented mainly in C���
and part of the code is implemented in C�

A graphical tool� built on top of the XWindow System� has also been implemented
to assist programmers in comprehending the trace information recorded during pro�
gram execution and generated using the above algorithms� The tool allows the user



�� �� Related Work

to browse the safe partial order computed and display the detected races� Using a
pointing device the user may request that various information related to a selected
node be displayed� The types of information displayed include�

� all information known about the event from the trace�

� highlight all events that must happen before the selected event�

� highlight all events that must happen after the selected event�

� highlight all events that may happen concurrently the selected event� and

� the program source with the line generating the event highlighted�

� Related Work

Recently� much research has been directed towards determining the partial or�
dering of events in parallel and distributed systems� Previous models have assumed
point�to�point communication which makes it very easy to determine which events
were caused by which other events 	e�g� �message received by B from A� is clearly
caused by �message sent by A to B�
� Unfortunately the synchronization models
supported by several parallel programming languages allow for anonymous commu�
nication� where the partner is unknown� Examples of anonymous communication
include locks� semaphores� and monitors�

Emrath� Ghosh� and Padua �EGP��� present a method for detecting non�determinacy
in parallel programs that utilize fork�join and event style synchronization instructions
with the Post� Wait� and Clear primitives� They construct a Task Graph from the
given synchronization instructions and the sequential components of the program that
is intended to show the guaranteed orderings between events� For each Wait event
node� all Post nodes that might have triggered that Wait are identi�ed� An edge
is then added from the closest common ancestor of these Post events to the Wait

event node� Although their algorithm is simple� it may be computationally complex�
Rather than repeatedly computing the common ancestor information� we use time
vectors to calculate the guaranteed execution order�

Netzer and Miller �NM��� present a formal model of a parallel program execution�
Their model includes fork�join parallelism and synchronization using semaphores�
They distinguish between an actual data race� which is a data race exhibited by the
particular program execution generating the trace� and a feasible data race� which is
a data race that could have been exhibited due to timing variations� Their approach
and ours di�er in the amount of trust placed in the trace� They rely on the trace for
their ordering information� For example� when two tasks try to enter critical regions
protected by a binary semaphore� their algorithm will say that the critical regions are
ordered� Under their de�nitions there is neither an actual nor feasible data race even
if two tasks write to a shared variable in the critical regions� We view the ordering
relationships in the trace with suspicion� and wish to generate race reports in this
situation���

��If the critical regions contain non�commutative operations� then the race to enter the regions
can a�ect the remainder of the execution 
Wan�
��



�� Summary ��

Dinning and Schonberg �DS�
� present a method of detecting access anomalies
in parallel programs �on�the��y�� They use a mechanism� which is similar to time
vectors� to identify concurrent operations in a program execution� Some compaction
methods are used to reduce the storage needed for reader and writer sets� If a variable
is involved in multiple data races� then some of those races may not be reported�
However� at least one of the data races involving the variable will be reported by
their algorithm� They need explicit coordination between tasks in order to construct
the partial order execution graph 	POEG
� The POEG represents the order relations
between operations for just one of many possible consistent executions�

We believe that it is more helpful to analyze sets of executions rather than just
one speci�c execution based on some trace information� We feel that� in terms
of detecting data races by trace analysis� it is critical to distinguish the ordered
events from the unordered� potentially concurrent� events� In this paper we presented
a collection of algorithms that extend previous work in computing partial orders�
The algorithms presented compute a partial order containing only must occur type
orderings from a linearly ordered trace containing anonymous synchronization� The
algorithms presented in this paper make few assumptions about speci�c trace features
and can be adjusted to work with traces generated by many parallel systems�

� Summary

Debugging parallel programs is more di�cult than debugging sequential programs�
One of the fundamental problems encountered when debugging parallel programs is
detecting unintended non�determinacy in parallel programs� Tools which automati�
cally detect non�determinacy can be used to debug timing and synchronization errors
when the program is expected to be determinate� The tools we are developing help
one �nd the data races which can lead to non�determinacy� This paper presents a
method for detecting data races� which is based on analyzing a program trace from
an execution of a parallel program�

When debugging parallel programs� it is critical to �nd the order and concurrency
relationships among operations in the program� One of the most di�cult tasks in trace
analysis is determining the timing relationships between the events performed by the
parallel program� Although several parallel systems include facilities for creating a
trace of the signi�cant events� the sequential nature of the trace makes it di�cult
to determine which events could have happened in either order or in parallel� The
problem is made even more di�cult in the anonymous synchronization model� where
there is no clear correspondence between the blocking and enabling events in the trace�
The problem of calculating all safe order relations has been shown to be co�NP�hard
by Netzer and Miller �NM�
��

This paper contains a series of polynomial time algorithms for extracting useful
information from sequential traces with anonymous synchronization� The �rst algo�
rithm is very similar to the vector timestamp methods of Fidge and Mattern �Fid���
Mat���� The other algorithms systematically manipulate these vectors of timestamps



�� References

in order to discover pairs of events that must be ordered in every execution which is
consistent with the trace�

Some parallel programming environments view a parallel execution as a linear
sequence of events� We feel that this is misleading � an execution is more properly
viewed as a partial ordering on the events� Fidge and Mattern have pioneered the use
of time vectors to represent these partial orders� We have extended this approach by
using time vectors to analyze sets of executions rather than just capturing a single
execution�

A working trace analyzer has been implemented� and some experiments have been
performed� The current implementation analyzes traces generated by IBM Parallel
Fortran and includes a graphical trace browser� The trace analyzer reports various
data race conditions in parallel programs by �nding unordered�concurrent events and
variable access con�icts�

Acknowledgements

This work was supported by IBM under agreement SL ��
���

References

�AP��� T� R� Allen and D� A� Padua� Debugging fortran on a shared memory
machine� In Proc� International Conf� on Parallel Processing� pages ����
���� �����

�Dij��� E� W� Dijkstra� Solution of a problem in concurrent programming control�
Communications of the ACM� �	�
� September �����

�DS�
� A� Dinning and E� Schonberg� An empirical comparison of monitoring
algorithms for access anomaly detection� In Proceedings of Second ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming
�PPOPP�� ���
�

�EGP��� P� A� Emrath� S� Ghosh� and D� A� Padua� Event synchronization analysis
for debugging parallel programs� In Supercomputing ���� November �����
Reno� NV�

�EP��� P� A� Emrath and D� A� Padua� Automatic detection of nondeterminacy in
parallel programs� InProc�WorkshoponParallel andDistributedDebugging�
pages ������ May �����

�Fid��� C� J� Fidge� Partial orders for parallel debugging� In Proc� Workshop on
Parallel and Distributed Debugging� pages �������� May �����

�HMW�
� D� P� Helmbold� C� E� McDowell� and J� Z� Wang� Analyzing traces with
anonymous synchronization� In Proc� International Conference on Parallel
Processing� August ���
�

�HMW��� D� P� Helmbold�C� E� McDowell� and J� Z�Wang� Detecting data races from
sequential traces� In Proc� of Hawaii International Conference on System
Sciences� pages �
������ �����



References ��

�IBM��� Parallel FORTRAN language and library reference� IBM� �����

�Lam��� L� Lamport� Time� clocks� and the ordering of events in a distributed system�
CACM� ��	�
��������� July �����

�Mat��� F� Mattern� Virtual time and global states of distributed systems� In M�
Cosnard� editor� Proceedings of Parallel and Distributed Algorithms� �����

�MC��� B� P� Miller and J�D� Choi� Breakpoints and halting in distributed systems�
In Proc� Int� Conf� on Distributed Computing Systems� June �����

�McD��� C� E� McDowell� A practical algorithm for static analysis of parallel pro�
grams� Journal of Parallel and Distributed Computing� June� �����

�NM��� R� Netzer and B� P�Miller� Detecting Data Races in Parallel ProgramExecu�
tions� Technical Report ���� University of Wisconsin�Madison� November
�����

�NM�
� R� H� B� Netzer and B� P� Miller� On the complexity of event ordering for
shared�memory parallel progra m executions� In Proc� International Conf�
on Parallel Processing� pages ������ ���
�

�Tay��� R� N� Taylor� Debugging Real�Time Software in a Host�Target Environment�
Technical Report� U�C� Irvine Tech� Rep� ���� �����

�Wan�
� J�Z� Wang� Debugging Parallel Programs by Trace Analysis� Technical
Report� Masters Thesis UCSC�CRL��
���� ���
�


	ucsc-crl-90-57.part1
	ucsc-crl-90-57.part2

