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shared by all NP problems, in particular their asymptotic probabilities obey a 0-1law ([KV87]). On the other hand, the closure of strict �11 formulae under polynomialreductions is the entire class of NP problems.6 Concluding Remarks and Open ProblemsIn this paper we investigated NP optimization problems from the standpoint of logicalde�nability and analyzed the relative expressive power of the various classes of NPoptimization problems that arise in this framework. One of our �ndings is that logicalde�nability has di�erent implications for NP maximization problems than it has forNP minimization problems. The original motivation in [PY88] for pursuing the logicalde�nability approach was to �nd syntactic classes of NP maximization problems withgood approximation properties, such as MAX �1, and to pinpoint natural completeproblems for these classes. Since the class MIN �1 contains non-approximable problems(modulo P6=NP), it would be interesting to �nd syntactic subclasses of MIN �1 thatcontain approximable problems only. Theorem 7 shows that the class MIN F�1 is a�rst step in this direction.The TRAVELING SALESMAN problem with distance 1; 2 is an important exampleof a minimization problem that is approximable, but is not known to have a polynomialtime approximation scheme. Papadimitriou and Yannakakis [PY90] have recentlyshown that every problem in the class MAX �0 is L-reducible to the TRAVELINGSALESMAN problem with distance 1,2. It is an open problem to identify a naturalclass of minimization problems for which the TRAVELING SALESMAN problem withdistances 1; 2 is complete.Papadimitriou and Yannakakis [PY88] proved that MAX 3SAT and a host of otherproblems are complete for MAX �0. Panconesi and Ranjan [PR90] introduced theproblem MAX Number of Satis�able Formulae (MAX NSF) and proved it completefor MAX �1. As mentioned earlier, it can be shown that this problem is also completefor the class MAX �2 = MAX PB. It is not known, however, if MAX �1 possessescomplete problems. On the side of minimization, we proved here that MIN 3NT iscomplete for the class MIN �0. It would be interesting to investigate the existence ofcomplete problems for the classes MIN �1 and MIN �1.Acknowledgements: We are grateful to Christos H. Papadimitriou for severaluseful telephone conversations, to Alessandro Panconesi for several interesting e-mailexchanges, and to Moshe Y. Vardi for giving us feedback in person on some of thework reported here. Thanks are also due to Phil Long and Shankar Ramamoorthy forvaluable comments on the details of the proofs.25



Notice that Vi  i is a CNF formula whose variables are of the form S(y), where yis a sequence of length m. Without loss of generality, we can assume that S occursexactly k times in each clause. Indeed, if S appears less than k times in a clause, thenwe can repeat one of its occurrences in that clause. Clauses with no occurrences ofS depend only on the structure A(I) and are true independent of S and hence canbe neglected (if such disjuncts are falsi�ed by A(I), then we do not have a feasiblesolution).Given a structure A(I) with jA(I)j = n encoding an instance I of a problem inMIN F�1(k), we construct an instance G = (V;E) of the MIN k-HYPERVERTEXCOVER problem as follows. The set V of vertices of G is the set of all m tuples fromthe universe of A(I). Moreover, if S(yi1); S(yi2); � � � ; S(yik) appear in the same clausein the CNF formula, then fyi1 ;yi2; � � � ;yikg is an edge in G.Now observe that S = fyj1 ;yj2; � � � ;yjtg is a hypervertex cover for G if and only ifby setting S(yj1); S(yj2); � � � ; S(yjt) to true we have (A(I); S) j= (8y) (y; S).It follows that Q is A-reducible to MIN k-HYPERVERTEX COVER and so MINk-HYPERVERTEX COVER is complete for MIN F�1(k). 2The approximation properties of the class MIN F�1 should be contrasted with thoseof the class RMAX introduced in [PR90]. This is a syntactic subclass of MAX �1 thatis in some sense the \dual" of MIN F�1. More formally, RMAX is the class of NPmaximization problems with optimum de�nable asoptQ(A) = maxS fjSj : A j= (8y) (y; S)gwhere S is a single predicate and  is a quanti�er-free CNF formula in which alloccurrences of S are negative. MAX CLIQUE is the canonical example of a problemin RMAX. Moreover, every problem Q in this class is self-improvable, i.e., if Q isapproximable, then it has an �-approximation scheme (cf. [PR90]).Remark 4: We now consider brie
y the e�ect of taking the A-closure of the classesMAX �n and MAX �n, i.e., all optimization problems that have an A-reduction toa problem in one of these classes. We have seen before that �ne distinctions betweenNP-maximization problems can be made by focusing on their logical de�nability. Itturns out, however, that some of the distinctions manifested in Theorem 2 disappearby passing to A-closures. Indeed, it can be shown that MAX �1 contains problems thatare complete for the class MAX �2 via A-reductions. Such an example is provided bythe MAX Number of Satis�able Formulae (MAX NSF) problem of [PR90]. It shouldbe pointed out that a similar situation holds with NP decision problems. For example,3-COLORABILITY is expressible using a strict �11 formula, i.e., an existential second-order formula whose �rst-order part has universal quanti�ers only. It is known thatNP problems de�nable by such formulae have certain special properties that are not24



denote the union of these classes.Notice that the second equation in the above de�nition shows that the class MINF�1 is a subclass of MIN �1: Notice also that the MIN VERTEX COVER problem isthe canonical example of a problem in MIN F�1(2); since its optimum is given byopt(G) = minS fjSj : G j= (8y1)(8y2)(:E(y1; y2) _ S(y1) _ S(y2))g:By generalizing the vertex cover problem to k-hypergraphs, k � 2, we can obtain theproblem MIN k-HYPERVERTEX COVER. This is a typical example of a problem inMIN F�1(k).De�nition 5.5: A k-hypergraph is a structureH = (V;E) with E � V k. A hypervertexcover is a set S � V such that for every k-tuple (v1; . . . ; vk) in E we have that S containssome vi.Notice that a 2-hypergraph can be viewed as an ordinary graph. Moreover, ahypervertex cover for a 2-hypergraph is a vertex cover in the usual sense of the term.� The MIN k-HYPERVERTEX COVER problem is to �nd the cardinality of thesmallest hypervertex cover in a k-hypergraph. Its optimal is expressed as:opt(G) = minS fjSj : G j= (8y1) � � � (8yk)(E(y1; � � � ; yk)! S(y1) _ � � � _ S(yk)):The MIN VERTEX COVER problem has a rather straightforward polynomial time1-approximation algorithm [GJ79] that is based on the idea of maximal matching.By generalizing the notion of maximal matching to hypergraphs, we can obtain apolynomial time 1-approximation algorithm for the MIN k-HYPERVERTEX COVERproblem.Theorem 7: MIN k-HYPERVERTEX COVER is complete for Min F�1(k); k � 2,under A-reductions. As a result, every problem in MIN F�1 is approximable.Proof: Let Q be a problem in MIN F�1(k), let I be an instance of it, and let A(I)be a structure encoding I. Then there is a quanti�er-free formula  in CNF satisfyingthe conditions in de�nition 5.4 such thatoptQ(A(I)) = minS fjSj : A(I) j= (8y) (y; S)g:Let fy1;y2; � � � ;yp(n)g be the set of possible values for y, where p is a polynomial andjA(I)j = n. Assume also that the arity of S is m. If we let  i be the formula  (yi; S),then optQ(A(I)) = minS fjSj : A(I) j= î  ig:23



Si(w0i), where Si is a predicate symbol from the sequence of symbols S and w0i is anappropriate projection of wi.Given an instance I ofQ, we construct an instance t1(I) of MIN 3NT. Correspondingto the output of every gate g in the circuit Bi, we have a variable g in t1(I). The othervariables of t1(I) are the input variables of the circuit. The disjuncts of t1(I) are asfollows. If g is the output of a NOT gate with input x, then we have (g ^ x) and(g ^ x) as disjuncts. If g is the output of an AND gate with inputs x1, x2, then wehave (x1 ^ x2 ^ g) and (x1 ^ x2 ^ g) as disjuncts. If g is the output of an OR gate withinputs x1; x2, then we have (x1 ^ x2 ^ g), (x1 ^ x2 ^ g), (x1 ^ x2 ^ g), and (x1 ^ x2 ^ g)as disjuncts. Finally, if g is the output of the circuit Bi, then we have a disjunct (g).Given any input to the circuit Bi, we can set the boolean values of the intermediategates such that every disjunct is falsi�ed. The disjuncts are designed such that if gis the output of the AND gate with inputs x1 and x2, then setting g to x1 ^ x2 willresult in falsifying all the disjuncts corresponding to this gate. Similarly, for disjunctscorresponding to OR and NOT gates, if we set the output to the disjunction of theinputs or the negation of the input respectively, then all the disjuncts that correspond tothe gate are falsi�ed. Thus, if a truth assignment falsi�es  (wi;S), then we can falsifyall the disjuncts corresponding to the circuit Bi. Moreover, if it satis�es  (wi;S), thenthe minimum number of disjuncts (corresponding to Bi) satis�ed is 1. Hence, optQ(I)is equal to the minimum number of satis�able disjuncts in the instance t1(I) of 3NT.In addition, it is straightforward to de�ne the mapping t2 such that, given an�-approximate truth assignment to the instance t1(I), we obtain an �-approximate so-lution to Q. Thus, Q �A MIN 3NT. 2The preceding Theorem 5 reveals that the pattern of the quanti�er pre�x doesnot impact on the approximability of minimization problems, unlike the case ofmaximization problems. As a result, we have to seek other syntactic features thatmay imply good approximation properties. We introduce below classes of minimizationproblems de�ned by imposing restrictions on the quanti�er-free part of formulae andwe show that there are natural complete problems for these classes.De�nition 5.4: Let MIN F�1(k); k � 2; (F stands for feasible) be the class of allminimization problems Q whose optimum can be expressed as:optQ(A) = minS fjSj : A j= (8y) (y; S)g= minS jfw : A j= ((8y) (y; S))! S(w)gj;where S is a single predicate,  is a quanti�er-free CNF formula in which all occurrencesof S are positive, and S occurs at most k times in each clause. We also letMIN F�1 =[k MIN F�1(k)22



De�nition 5.2: [CP89] Let Q and R be two NP optimization problems. Anapproximabilty preserving reduction (or, A-reduction) from Q to R is a triple � =(t1; t2; c) for which the following hold:� t1 and t2 are polynomially computable functions with t1 : IQ ! IR andt2 : IR �FR ! FQ:� c is a function from non-negative rationals to non-negative rationals such thatif T is an �-approximate solution for an instance t1(I) of R, then t2(I; T ) is ac(�)-approximate solution for Q.If there is an A-reduction form Q to R, then we say that Q is A-reducible to R and wewrite Q �A R,The A-reduction de�ned above is a more relaxed reducibility than the L-reductionde�ned by Papadimitriou and Yannakakis [PY88]. In the latter the optimum solutionsof the two problems Q and R are required to be within a constant factor of each other.Although this is the case with many optimization problems, a reduction may preserveapproximability (within a constant factor of the optimal) without having this property.The following propositions follow easily from the de�nitions.Proposition 1: if R is approximable and Q �A R, then Q is approximable.Proposition 2: A-reductions compose.De�nition 5.3: An NP optimization problem Q is approximation complete for a classof problems C if Q 2 C and every problem R 2 C can be A-reduced to Q.With the necessary de�nitions behind us, we can now state and prove the followingresult.Theorem 6: MIN 3NON-TAUTOLOGY is complete for MIN �0.Proof: We have shown before that MIN 3NT is in MIN �0. We now prove that everyproblem in MIN �0 is A-reducible to it. Let Q be a problem in MIN �0, let I be aninstance of it, and let A(I) be a structure encoding I. Then there is a quanti�er-freeformula  such that optQ(A(I)) = minS jfw : A(I) j=  (w;S)gj:Let fw1;w2; � � � ;wp(n)g be the domain of w, where p is a polynomial and jA(I)j = n.For every wi we consider the boolean circuit Bi, composed of gates AND, OR andNOT, that represents the formula  (wi;S). The inputs to the circuit are of the form21



De�nition 5.1: [PS82] Let Q = (IQ;FQ;fQ; opt) be an NP optimization problem andlet A be an algorithm which, given an instance I 2 IQ, returns a feasible solutionT 2 FQ. We say that A is an �-approximation algorithm for Q for some � � 0 ifjfQ(I; T ) � opt(I)jopt(I) � �for all instances I. The feasible solution T is said to be an �-approximate solution forthe instance I. An NP optimization problem is approximable if there is a polynomialtime �-approximation algorithm for it.MAX 3SAT, MAX SAT, MIN VERTEX COVER, and TRAVELING SALESMANwith �-inequality are important examples of approximable optimization problems.Papadimitriou and Yannakakis [PY88] proved that every problem in MAX �1 isapproximable. In contrast to this, we show below that MIN �0 and, a fortiori, MIN�1 contain natural problems that are non-approximable, unless P6=NP. In fact, it turnsout that an already familiar problem from the previous section has this property.Theorem 5: MIN 3NON-TAUTOLOGY is not approximable, unless P = NP .Proof: Assume that there is an �-approximation algorithm A for MIN 3NT. We showbelow that A can be used to solve in polynomial time the NON-TAUTOLOGY problemof 3DNF formulae, a problem that is known to be NP complete.Given an instance � of NON TAUTOLOGY of 3DNF formulae, we create inpolynomial time an instance � of MIN 3NT as follows: Let x be a variable not occurringin � and let x be its negated literal. The formula � is a disjunction of x _ x and of ncopies of every disjunct of �, where n > (1 + �).If � is a non-tautology, then opt3NT(�) = 1, because every truth assignment satis�esexactly one of the disjuncts x and x, and there is a truth assignment under which nodisjuncts in any copy of � are satis�ed. If � is a tautology, then there is no truthassignment that falsi�es every disjunct in �. Hence, in � at least one disjunct fromeach copy of � is satis�ed under every truth assignment. Therefore, opt3NT(�) � n+1.It follows that the formula � is a non-tautology if and only if the algorithm A oninput � returns a value less than or equal to (1 + �). Thus, we have exhibited a poly-nomial time algorithm for solving an NP-complete problem, which implies that P=NP.2 We now consider an approximation preserving reduction and in Theorem 6 we provethat MIN 3NT is a complete problem for the class MIN �0 under this reduction.Papadimitriou and Yannakakis [PY88] introduced a notion of L-reduction betweenoptimization problems. Panconesi and Ranjan [PR90] generalized this to the notion ofP -reduction. We use here a variant of these reductions introduced by Crescenzi andPanconesi [CP89]. 20



to H1. Thus, we have jAlj � k. Since y; z involve up and up 62 Hp, it must be the casethat the tuples y; z are not elements of Al. Therefore, we have that jAl�A2j � 2: Oneof the two elements in Al � A2 could be (vp; vp; � � � ; vp), but the other element, call ite, will contain both vi's and ui's. As a result, e 62 A1 and, thus, we have demonstratedan element e that is in Al � A, but not in A1 [A2. So, jAj � 2k + 1:Case b: t � k. Recall that we have chosen H1 so thatopt(H1) 6= minS jf(w; � � � ; w| {z }m ) : H1 j=  (w; � � � ; w| {z }m ;S)gj:Since jA1j = k = opt(H1); it must be the case thatA1 6= f(w; � � � ; w| {z }m ) : H1 j=  (w; � � � ; w| {z }m ;S�)g:Consequently, there exists an element uq of V2 that appears in a tuple y in A2 and hasthe property that (vq; vq; � � � ; vq) is not an element of A1. Let Hs be the subgraph of Ginduced by fu1; u2; � � � ; uq�1; vq; uq+1; � � � ; ung: Note that Hs is isomorphic to H1, henceopt(Hs) = k and jAsj � k: Note that y involves uq, but uq 62 Hs. It follows that y 62 Asand, consequently, jAs �A2j � 1: Therefore, As �A2 contains (vq; vq; � � � ; vq) or a tuplethat has ui's as some of its components. In either case As �A2 contains a tuple thatis not an element of A1 [A2. Since As � A, we conclude that jAj � 2k + 1.Since S� was an arbitrarily chosen value of S, we have thatopt(G) = minS jfw : G j=  (w;S)gj > 2k;which is a contradiction. This completes the proof that MIN VERTEX COVER is notin the class MIN �0. 2Remark 3: An examination of the proofs of Theorems 2 and 4 shows that, when aMAX (MIN) �1 problem is expressed as a MAX (MIN) �1 problem, the arity of thesequence of free variables in the resulting �1 formula is bigger than the arity of thefree variables in the original �1 formula. It should be pointed out that this increase inarity is inevitable in general. Indeed, otherwise one could express the MIN VERTEXCOVER problem in MIN �1 using a �1 formula with a single free variable. In sucha case, using arguments similar to those put forth in Part C of Theorem 4, one couldalso show that MAX CLIQUE is in the class MAX �1, which is false.5 Approximation Properties of NP Minimization ProblemsIn this section, we focus on the approximation properties of the minimization classesand contrast them with those of the maximization classes.19



We now work with this graph H1. Let H1 be (V1; E1) with V1 = fv1; v2; � � � ; vngand assume that the minimum vertex cover of H1 is of size k. We construct a graphH2 = (V2; E2) with V2 = fu1; u2; � � � ; ung; such that H2 is isomorphic to H1 and theisomorphism maps vi to ui; 1 � i � n: Using H1 and H2, we construct a graphG = (V;E) as follows:V = V1 [ V2 = fv1; v2; � � � ; vn; u1; u2; � � � ; ungE = E1 [ E2 [ ffvi; ujg : fvi; vjg 2 E1g [ ffui; vjg : fvi; vjg 2 E1g:Note that any set of n vertices of the form fw1; w2; � � � ; wng with wi 2 fvi; uig inducesa subgraph of G that is isomorphic to H1, with the isomorphism mapping wi to vi.Consequently, there are 2n such distinct isomorphic graphs and H1, H2 are two ofthem. We denote these 2n graphs by H1;H2; � � � ;H2n. Note that the minimum vertexcover of each Hj has size k, while the minimum vertex cover of G has size 2k, i.e.,opt(G) = minS jfw : G j=  (x;S)gj = 2k:Let S� be an arbitrary value for the sequence of predicate symbols S and putA = fw : G j=  (w;S�)g:We will show that jAj > 2k, thereby arriving at a contradiction. Let S�j be therestriction of S� to the vertex set of Hj and letAj = fw : Hj j=  (w;S�j )g; for 1 � j � 2n:Since the minimum vertex cover of Aj is of size k, we have jAjj � k for 1 � j � 2n:We now prove that jAj > 2k: If b is an m-tuple from Hj such that Hj j=  (b;S�j ),then G j=  (b;S�), because �0 formulae are preserved under extensions. So we have,Aj � A, for 1 � j � 2n. In particular A1 � A and A2 � A. Moreover, A1; A2 aredisjoint, as the vertex sets of H1;H2 are disjoint. Therefore, jAj � jA1j + jA2j � 2k.We assume that jA1j = jA2j = k; otherwise we have jAj > 2k.Now we construct one more tuple in A that is not in A1 [A2, which will imply thatjAj > 2k. Let t denote the number of elements of V2 that appear in tuples of A2, i.e.,t = jfu : u 2 V2 and u appears in a tuple of A2gj:We consider two cases for t, namely t < k and t � k.Case a: t < k: The k tuples in A2 are constructed from t distinct elements of V2.Hence by the pigeonhole principle, there are at least two tuples y; z in A2 that have acommon element up of V2 as a component. Now consider the subgraph of G inducedby the set fu1; u2; � � � ; up�1; vp; up+1; � � � ; ung: Let Hl be this graph, which is isomorphic18



Moreover, the sets fw : H1 j= (9y) (w;y;S�1)g and fw : H2 j= (9y) (w;y;S�2)g aredisjoint. Therefore, jfw : G j= (9y) (w;y;S�)gj � 2k;which is a contradiction. So, MIN CHROMATIC NUMBER is not in MIN �1.Part C: In the last part of the proof, we show that MIN VERTEX COVER is not inthe class MIN �0.Towards a contradiction, assume that MIN VERTEX COVER is in the classMIN �0, i.e., assume the optimum is given byopt(G) = minS jfw : G j=  (w;S)gj;where  is quanti�er-free andw = (w1; w2; � � � ; wm):We distinguish two cases and showthat in either case we arrive at a contradiction.Case 1: Assume that for every graph G the size of the minimum vertex cover isgiven by opt(G) = minS jf(w; � � � ; w| {z }m ) : G j=  (w; � � � ; w| {z }m ;S)gj:Let  0(w;S) be the formula obtained from  by replacing each occurrence of everyvariable of  by w. Notice that  0(w;S) is a quanti�er-free formula with a single freevariable w and has the property that the optimum of the MIN VERTEX COVER canbe expressed as opt(G) = minS jfw : G j=  0(w;S)gj:We now exploit the relationship between the problems MIN VERTEX COVER,MAX INDEPENDENT SET, and MAX CLIQUE to arrive at a contradiction. Recallthat a set V 0 is a vertex cover of a graph G = (V;E) if and only if V � V 0 is anindependent set in G, i.e., V � V 0 is a clique in the complement G of G. Thus, theminimum vertex cover of G is of size k if and only if its maximum independent set isof size jV j � k. In view of the above, for every graph G we have thatoptIND: SET(G) = maxS jfw : G j= : 0(w;S)gj:This implies that the MAX INDEPENDENT SET problem is in the class MAX �0,since the negation of a quanti�er-free formula is also a quanti�er-free formula. Byusing the relationship between MAX INDEPENDENT SET on a graph G and MAXCLIQUE on its complement G, we conclude that MAX CLIQUE is in the class MAX�0. This, however, contradicts one of the results in [PR90] (cf. also Theorem 2).Case 2: Assume that there is some graph, call it H1, for which the size of theminimum vertex cover satis�esopt(H1) 6= minS jf(w; � � � ; w| {z }m ) : H1 j=  (w; � � � ; w| {z }m ;S)gj:17



w, then again �(w;x�;S; R) is satis�ed. Thus, (w;x�) 2 V (R) for this x�. Therefore, ifw 2 U , then for every R there is a tuple x� such that (w;x�) 2 V (R). So, jU j � jV (R)jfor all R and, as a result, jU j � minR jV (R)j:In the second step, for each w in U let xw be a �xed witness of w and letR0 = f(w;x) : w 2 U and x = xwg:It is now easy to verify that jU j = jR0j and R0 = V (R0):It now follows that jU j = jV (R0)j and, as a result, we have that jU j = minR jV (R)j.Since S was an arbitrary sequence of predicates, we conclude thatoptQ(A) = minS jU(S)j = minS;R jV (S; R)j:This establishes that Q is in MIN �1 and, consequently, the class MIN �2 is containedin the class MIN �1.Part B: In this part of the proof we show that MIN CHROMATIC NUMBER is inMIN �1, but not in MIN �1.We have already seen that MIN CHROMATIC NUMBER is in the class MIN �2and hence, by what we proved in Part A, it is in the class MIN �1. We now show thatMIN CHROMATIC NUMBER is not in the class MIN �1. Towards a contradiction,assume that it is in the class MIN �1. Therefore, there is a quanti�er-free formula (w;y;S) such that for every graph Gopt(G) = minS jfw : G j= (9y) (w;y;S)gj:Let H1 be a graph with opt(H1) = k and let H2 be an isomorphic copy of H1. Weconstruct a graph G by taking the disjoint union of H1 and H2. Note that opt(G) = kand there is an S� such thatjfw : G j= (9y) (w;y;S�)gj = k:Let S�1 and S�2 be the restrictions of S� to the vertex sets of H1 and H2 respectively. Ifb is a tuple from Hi, i = 1; 2; such that Hi j= (9y) (b;y;S�1), then it is also the casethat G j= (9y) (b;y;S�); because existential formulae are preserved under extensions.But, jfw : Hi j= (9y) (w;y;S�i )gj � k; for i = 1; 2:16



It now follows that if G is a graph, thenopt(G) = minS jfc : G j=  (S)! (9x)S(x; c)gj:Thus, MIN CHROMATIC NUMBER is in MIN �2.The next result clari�es the exact relationship between the four classes ofminimization problems.Theorem 4: The class MIN �2 is contained in the class MIN �1: As a result,MIN �0 � MIN �1 � MIN �1 = MIN �2 = MIN PB:Moreover, these containments are strict. In particular,� MIN CHROMATIC NUMBER is in MIN �1, but not in MIN �1.� MIN VERTEX COVER is in MIN �1, but not in MIN �0.Proof: We give this proof in three parts.Part A: In this part we show that MIN �2 is a subclass of MIN �1.Let Q be a problem in MIN �2. Then there is a quanti�er-free formula  (w;x;y;S)such that for every �nite structure A that is an instance of Q we haveoptQ(A) = minS jfw : A j= (9x)(8y) (w;x;y;S)gj;Let U(S) = fw : A j= (9x)(8y) (w;x;y;S)gand V (S; R) = f(w;x�) : A j= �(w;x�;S; R)g;where � is the following �1 formula�(w;x�;S; R) � [(:R(w;x�))! (8y) (w;x�;y;S)] ^[((9x)R(w;x)) ! R(w;x�)]We prove below that jU(S)j = minR jV (S; R)j for all S. In what follows we �x thesequence of predicates S and, for simplicity, we write U for the set U(S) and V (R) forthe set V (S; R). If A j= (8y) (w;x;y;S), then we say that x is a witness of w relativeto S.We prove that jU j = minR jV (R)j in two steps. First, observe that if w 2 U , thenw has a witness. If R is such that :(9x)R(w;x), then the formula �(w;x�;S; R) issatis�ed for every witness x� of w. Thus, (w;x�) 2 V (R) for every witness x� of w. Onthe other hand, if R is such that R(w;x�) for some x�, which may not be a witness of15



By restricting the quanti�er pre�x 9�8� of �2 formulae, we obtain the classesMIN �1, MIN �1 and MIN �0. It is obvious that:MIN �1MIN �0 MIN �2 = MIN PBMIN �1We give below examples of some natural problems in these classes that will be usedin the sequel.We begin by presenting MIN 3NON-TAUTOLOGY, which is an optimizationproblem in MIN �0 that arises from the NP-complete problem NON-TAUTOLOGYof 3DNF formulae [GJ79]: Given a boolean formula in disjunctive normal form withthree literals per disjunct (3DNF), is there a truth assignment that makes this formulafalse?� MIN 3NON-TAUTOLOGY (3NT): Given a boolean formula in 3DNF, �nd theminimum number of satis�able disjuncts.We view every instance I of MIN 3NT as a �nite structure A(I) with four ternarypredicatesD0;D1;D2;D3, whereDi(w1; w2; w3) is true if and only if the set fw1; w2; w3gis a disjunct with w1; � � � ; wi appearing as negative literals and wi+1; � � � ; w3 appearingas positive literals, 0 � i � 3: The optimum of 3NT is given byopt(I) = minS jf(w1; w2; w3) : A j= �(w1; w2; w3; S)gj;where �(w1; w2; w3) is the following quanti�er-free formula:(D0(w1; w2; w3)^S(w1)^S(w2)^S(w3))_ (D1(w1; w2; w3)^:S(w1)^S(w2)^S(w3))_(D2(w1; w2; w3)^:S(w1)^:S(w2)^S(w3))_(D3(w1; w2; w3)^:S(w1)^:S(w2)^:S(w3)):� MIN VERTEX COVER problem is a natural problem in the class MIN �1. Onany graph G the optimum is given byopt(G) = minS fjSj : G j= (8y1)(8y2) [E(y1; y2)! (S(y1) _ S(y2)) ] g= minS jfx : G j= [ (8y1)(8y2)[E(y1; y2)! (S(y1) _ S(y2))] ] ! S(x)gj :� MIN CHROMATIC NUMBER is an important polynomially bounded minimiza-tion problem (cf. [GJ79]). Theorem 3 implies that MIN CHROMATIC NUMBER inthe class MIN �2. We exhibit below a �2 formula that establishes this fact directly.Consider �rst the following �2 sentence  (S) asserting that S is a coloring: (S) � (8x)(9c)S(x; c) ^ (8x)(8c1)(8c2)[S(x; c1) ^ S(x; c2)! (c1 = c2)]^ (8x)(8y)(8c1)(8c2)[E(x; y) ^ S(x; c1) ^ S(y; c2)! (c1 6= c2)]:14



4 Polynomially Bounded NP Minimization ProblemsThe logical de�nability of NP minimization problems has not been explored in theliterature so far. We undertake this investigation here and unveil a strikingly di�erentpicture from the one for NP maximization problems. The next result should becontrasted with Theorem 1 in Section 3.Theorem 3: Let � be a vocabulary and let Q be an NP minimization problem with�nite structures A over � as instances. Then Q is a polynomially bounded NPminimization problem if and only if there is a �rst order formula �(w;S) with predicatesymbols among those in � and S such that for every instance A of QoptQ(A) = minS jfw : A j= �(w;S)gj:Moreover, �(w;S) can always be taken to be a �2 formula and, consequently,MIN PB = MIN �2 = MIN �n; n > 2:Proof: Following the same arguments as in Theorem 1, we can show that if Q is apolynomially bounded NP minimization problem, then there is a �2 formula  (S�;W )such that optQ(A) = minS�;WfjW j : A j=  (S�;W )gIt follows that optQ(A) = minS�;W jfw : A j=  (S�;W )!W (w)gjLet S denote the sequence (S�;W ) and let �(w;S) be the �2 formula (S�;W )!W (w):We can now conclude thatoptQ(A) = minS jfw : A j= �(w;S)gj:2Remark 2: Notice that, unlike the case of maximization problems, ifoptQ(A) = minS�;WfjW j : A j=  (S�;W )g;then it is not true thatoptQ(A) = minS�;W jfw : A j=W (w) ^  (S�;W )gj;because the minimum cardinality of the above set is zero, which occurs when W isempty. This explains the \dual" behavior in logical de�nability between maximizationand minimization problems, viz. MAX PB = MAX �2, while MIN PB = MIN �2.13



We now de�ne a structure A = (X;C;P;N) as follows.X = n[i Xi; C = n[i Ci;P = f(xiu; xjv) : P1(x1u; x1v); 1 � u; v; i; j � ng;N = f(xiu; xjv) : N1(x1u; x1v); 1 � u; v; i; j � ng:It can be seen that A encodes an instance of MAX SAT. Also, observe thatjCj = njC1j � n(n � 1), as the structure A1 has at least one variable. Therefore,opt(A) � n(n� 1). We will arrive at a contradiction by showing that opt(A) � n2.For 1 � l � t, letS�l = f(xi1u1 ; xi2u2 ; � � � ; xi�[l]u�[l]) : S�l (x1u1 ; x1u2 ; � � � ; x1u�[l]); where1 � i1; � � � ; i�[l] � n and 1 � u1; � � � ; u�[l] � ng;and let S� denote the sequence (S�1 ;S�2 ; � � � ;S�t ). We will show that jV j � n2, whereV = f(w1; � � � ; wm) : A j=  (w1; � � � ; wm;S�)g:From the hypothesis of Case 2, we know that there is a tuple e in V1 with at leasttwo distinct components x1p and x1q. For every i; j with 1 � i; j � n; let ei;j be obtainedfrom e by replacing every occurrence of x1p by xip and every occurrence of x1q by xjq.Also let Ai;j denote the substructure of A with universefx11; � � � ; x1p�1; xip; x1p+1; � � � ; x1q�1; xjq; x1q+1; � � � ; xng:It is clear that Ai;j is isomorphic to A1. Moreover, the restriction of S� to the aboveset is a sequence of predicates isomorphic to S�, where the isomorphism maps xip tox1p, maps xiq to x1q and is the identity on the rest of the elements. Let S�i;j denote therestriction of S� to universe of Ai;j .Observe that Ai;j j=  (ei;j ;S�i;j) for 1 � i; j � n: Since �0 sentences are preservedunder extensions, it is also true that A j=  (ei;j ;S�) for 1 � i; j � n: As there are n2distinct such elements ei;j , we have that jV j � n2. It follows that opt(A) � n2, which isa contradiction. The proof that MAX SAT is not in the class MAX �0 is now complete.2Remark 1: The class MAX �2 is another collection of maximization problems thatcontains both MAX �1 and MAX �1. The proof of Theorem 2 also yields that MAX�2 = MAX �1. 12



C;P;N and S1; � � � ; St in S are amongst the following:C(w);:C(w); P (w;w);:P (w;w);N(w;w);:N (w;w);Sl(w; � � � ; w| {z }�[l] );:Sl(w; � � � ; w| {z }�[l] ); 1 � l � t;where �[l] is the arity of Sl. For every instance I encoded by a �nite structureA(I) = (X;C;P;N), it is the case that A(I) 6j= P (x; x) and A(I) 6j= N(x; x); for allx 2 X, because the �rst arguments of P;N refer to a clause, the second to a variableand the variables are di�erent from the clauses. Let  00 be the formula obtained from 0(w;S) by replacing each occurrence of P (w;w), N(w;w) by the logical constantFALSE, and each occurrence of :P (w;w), :N(w;w) by the logical constant TRUE.Then we have that for every instance Iopt(A(I)) = maxS jfw : A(I) j=  00(w;S)g:Let I1; I2 be two instances of MAX SAT, each having the same number of variablesand the same number of clauses, but di�ering in the maximum number of satis�ableclauses. Without loss of generality, we can �nd structures A(I1) = (X1; C1; P1;N1) andA(I2) = (X2; C2; P2;N2) encoding I1; I2 respectively, such that X1 = X2 and C1 = C2.Since  00(w;S) does not have any occurrences of the symbols P;N , we havefw : A(I1) j=  00(w;S)g = fw : A(I2) j=  00(w;S)g:for all values of S. Therefore, opt(A(I1)) = opt(A(I2));which is a contradiction.Case 2: Assume that there is some instance I1, such that its encoding by thestructure A(I1) = (X1; C1; P1;N1) satis�esopt(A(I1)) 6= maxS jf(w; � � � ; w| {z }m ) : A(I1) j=  (w; � � � ; w| {z }m ;S)gj:For simplicity, we write A1 for the structure A(I1).Let S� be a sequence of predicates (S�1 ; S�2; � � � ; S�t ) that realizes opt(A1), i.e.,opt(A1) = jf(w1; � � � ; wm) : A1 j=  (w1; � � � ; wm;S�)gj:Let V1 = f(w1; � � � ; wm) : A1 j=  (w1; � � � ; wm;S�)gand assume that X1 = fx11; x12; � � � ; x1ng. We now construct n� 1 additional structures,A2; � � � ;An, where Ai = (Xi; Ci; Pi;Ni) with Xi = fxi1; xi2; � � � ; xing; 2 � i � n, suchthat they are all isomorphic to A1 via the mapping xiu to x1u, for 1 � i; u � n.11



from G by deleting ai and all edges incident to it. Assume that the maximum value inthe above expression occurs at S = S�. Let S�i be the restriction of S� to the vertex setfa1; � � � ; ai�1; ai+1; � � � ; ang of Hi. Since opt(Hi) = n� i, we have thatjfw : Hi j= (8y) (w;y;S�i )gj � n� i:Since universal formulae are preserved under substructures, we have that if b is an m-tuple from Hi such that G j= (8y) (b;y;S�), then Hi j= (8y) (b;y;S�i ). Therefore,each ai occurs in at least i tuples in the set fw : G j= (8y) (w;y;S�)g. As a result,the total number of occurrences of all ai's in this set is at least (Pi=n=2i=1 i) > nm; sincen > 8m+ 1:On the other hand, since w ranges over tuples of arity m and the cardinality of theset fw : G j= (8y) (w;y;S�)g is n, the total number of occurrences of all ai's in thisset is at most nm. Thus, we have arrived at a contradiction.Part C: Panconesi and Ranjan [PR90] showed that MAX CLIQUE is in the class MAX�1, but not in the class MAX �1.Part D: We have seen before that MAX SAT is in the MAX �1. In this part of theproof we show that MAX SAT is not in the class MAX �0. Let I be an instance ofSAT and let A(I) = (X;C;P;N) be its encoding as a �nite structure. Recall thatX consists of the variables and the clauses of I, while the predicate C separates theclauses from the variables. Towards a contradiction, assume that MAX SAT is in theclass MAX �0. Therefore, there is a quanti�er-free formula  (w;S) such that for every�nite structure A(I) encoding an instance I of MAX SAT we have thatopt(A(I)) = maxS jfw : A(I) j=  (w;S)gj;where w ranges over m-tuples (w1; w2; � � � ; wm) and S = (S1; � � � ; Sl). We distinguishtwo cases and show that in either case we arrive at a contradiction.Case 1: Assume that, for every structure A(I) encoding an instance I themaximum number of clauses satis�able is given byopt(A(I)) = maxS jf(w; � � � ; w| {z }m ) : A(I) j=  (w; � � � ; w| {z }m ;S)gj:Let  0(w;S) be the formula obtained from  by replacing each occurrence of every freevariable by w. It is clear thatopt(A(I)) = maxS jfw :  0(w;S)gj:Since  is a quanti�er-free formula,  0 is also a quanti�er-free formula whose onlyvariable is w. As a result, in  0(w;S) the only occurrences of the predicate symbols10



� MAX CONNECTED COMPONENT is in MAX �2, but not in MAX �1.� MAX CLIQUE is in MAX �1, but not in MAX �1 ([PR90]).� MAX SAT is in MAX �1, but not in MAX �0.Proof: We give this proof in four parts.Part A: In this part, we prove that MAX �1 is contained in the class MAX �1. LetQ be a MAX �1 problem and A be a �nite structure that is an instance of Q. Thus,optQ(A) = maxS jfw : A j= (9x) (w;x;S)gj;where  is quanti�er-free. If A j=  (w;x�;S), then we say that x� is a witness of wrelative to S.Consider now the sets U(S) = fw : A j= (9x) (w;x;S)gand V (S; R) = f(w;x�) : A j=  (w;x�;S) ^R(w;x�)^(8x1)(8x2)((R(w;x1) ^R(w;x2))! x1 = x2)gIntuitively, a pair (w;x�) is in the set V (S; R) if x� is a witness of w relative to S andx� is the only tuple x such that the pair (w;x) is in R. It is now easy to verify thatfor every �xed sequence of relations S we have thatjU(S)j = maxR jV (S; R)jand, as a result, opt(A) = maxS jU(S)j = maxS;R jV (S; R)j:Since V (S; R) is de�ned using a �1 formula, it follows that Q 2 MAX �1 and,consequently, the class MAX �1 is a subset of the class MAX �1.Part B:We showed earlier that MCC is in the class MAX �2. In this part of the proofwe show that MCC is not in the class MAX �1.Towards a contradiction, assume that the optimum of MCC is given byopt(G) = maxS jfw : G j= (8y) (w;y;S)gj;where  is quanti�er-free and w ranges over tuples of arity m.Let G be a graph that is a path with vertices fa1; � � � ; ang, for some n > 8m + 1;and edges fai; ai+1g; 1 � i � n�1: Consider the subgraphsHi; 1 � i � bn=2c; obtained9



� MAX CLIQUE is in the class MAX �1 (cf. [PR90]). Indeed, for MAX CLIQUEwe have thatopt(G) = maxS jfw : G j= S(w) ^ (8y1)(8y2)[(S(y1) ^ S(y2) ^ (y1 6= y2))! E(y1; y2)] gj:� MAX CONNECTED COMPONENT (MCC): Given an undirected graph G; �ndthe size of the largest connected component in G.Notice that actually MCC is an optimization problem on graphs that can be solvedin polynomial time. This problem will be of particular interest to us in the sequel.Although Theorem 1 implies that MCC is in the class MAX �2, it is not obvioushow to establish this directly. In what follows we produce a �2 formula � that de�nesMCC in our framework.In addition to a binary relation symbol E for the edges of the graph, the formula �will involve the relation symbols C;E;P;�;Z. The intuition behind these is as follows:C is a unary relation symbol that represents the vertices of a connected component; �is a binary relation that will vary over total orders on the vertices of the graph; P isa ternary relation symbol; P (x; y; k) indicates that the shortest path from x to y is oflength k, where the integer k is encoded by the kth element of the total order �; �nally,Z is a unary predicate representing the smallest element of the total order � (Z forzero).Let �1(�) be a formula asserting that � is a total order and let �2(Z) be a formulaasserting that Z is a singleton set containing the smallest element of �. Let alsopred(x; y) be a formula asserting that y is the predecessor of x under the above order.We leave it to the reader to verify that �1(�) and pred(x; y) can be expressed as �1formulae, while �2(Z) can be written as a conjunction of �1 and �1 formulae. We arenow ready to demonstrate that MCC is in the class MAX �2. Indeed, its optimumvalue on a graph G is given asopt(G) = max(C;P;�;Z) jfw : C(w) ^ �1(�) ^ �2(Z)^(8x)(8y)((C(x) ^ C(y))! (9z)P (x; y; z)) ^(8x)(8y)(8v)(8v0)[(P (x; y; v) ^ :Z(v) ^ pred(v; v0))!((9z)P (x; z; v0) ^E(z; y))] ^(8x)(8y)(8v)((P (x; y; v) ^ Z(v))! (x = y)) gjThe next result clari�es the relationship between the above classes of maximizationproblems and shows that the polynomially bounded NP maximization problems forma hierarchy with exactly four distinct levels.Theorem 2: The class MAX �1 is contained in the class MAX �1. As a result,MAX �0 �MAX �1 �MAX �1 � MAX �2:Moreover, this sequence of containments is strict. In particular,8



or, equivalently, optQ(A) = maxS�;W jfw : A j=W (w) ^  (S�;W )gj:Let S denote the sequence (S�;W ) and let �(w;S) be the formula W (w) ^  (S�;W ).It follows that optQ(A) = maxS jfw : A j= �(w;S)gj:Moreover, �(w;S) can be chosen to be a �2 formula, because Fagin's characterizationof NP [Fag74] holds with a �2 formula  (w;S�). 2Theorem 1 shows that MAX �2 is the entire class MAX PB of polynomially boundedNP maximization problems. By restricting the quanti�er pre�x 8�9� of �2 formulae,we obtain the class MAX �1 of [PR90], and the classes MAX �1 = MAX NP and MAX�0 = MAX SNP of [PY88]. It is clear that we have the following containments betweenthese four classes: MAX �1MAX �0 MAX �2 = MAX PBMAX �1We now give examples of natural problems in these classes.� MAX 3SAT is a problem in the class MAX �0 (cf. [PY88]). This problem asksfor the maximum number of clauses that can be satis�ed in a given Boolean formula inconjunctive normal form (CNF) with three literals per clause. We view every instanceI of MAX 3SAT as a �nite structure A(I) with universe the variables of the formulaand with four ternary predicates C0; C1; C2; C3. Under this encoding, Ci(w1; w2; w3) istrue if and only if fw1; w2; w3g is a clause with w1; � � � ; wi appearing as negative literalsand wi+1; � � � ; w3 appearing as positive literals, 0 � i � 3: The optimum of 3SAT isgiven by opt(A(I)) = maxS jf(w1; w2; w3) : A j= �(w1; w2; w3; S)gj;where �(w1; w2; w3) is the formulaC0(w1; w2; w3)^ (S(w1)_S(w2)_S(w3)) _C1(w1; w2; w3)^ (:S(w1)_S(w2)_S(w3))_C2(w1; w2; w3)^(:S(w1)_:S(w2)_S(w3))_C3(w1; w2; w3)^(:S(w1)_:S(w2)_:S(w3)):� MAX SAT is a problem in the class MAX �1 (cf. [PY88]). Under the encodingof SATISFIABILITY given in Section 2, if A(I) is the �nite structure associated withan instance I of MAX SAT, then we haveopt(A(I)) = maxS jfw : A(I) j= (9y)[C(w) ^ ((P (w; y) ^ S(y)) _ (N(w; y) ^ :S(y)))]gj:7



have chosen to use di�erent names for MAX SNP and MAX NP here, because weare interested in having a uniform notation and terminology for all the classes ofoptimization problems obtained using �rst-order formulae. Moreover, the notation�n and �n is consistent with the notation �pn and �pn used for the polynomialhierarchy [Sto76]. The class MAX �1 was introduced by Panconesi and Ranjan [PR90].3 Polynomially Bounded NP Maximization ProblemsIn this section we investigate the relative expressive power of the classes MAX �nand MAX �n, n � 0, and establish their basic relationship to the class MAX PB ofpolynomially bounded NP maximization problems.Theorem 1: Let � be a vocabulary and let Q be a maximization problem with �nitestructures A over � as instances. Then Q is a polynomially bounded NP maximizationproblem if and only if there is a �rst-order formula �(w;S) with predicate symbolsamong those in � and S such that for every instance A of QoptQ(A) = maxS jfw : A j= �(w;S)gj:Moreover, �(w;S) can always be taken to be a �2 formula and, consequently,MAX PB = MAX �2 = MAX �n; n > 2:Proof: It is clear that if a maximization problem Q is in the class MAX �n forsome n � 0, then Q is a polynomially bounded NP maximization problem, since forany �nite structure A there are polynomially many distinct tuples from A satisfying agiven �rst-order formula.For the other direction, assume that Q is a polynomially bounded NP maximizationproblem with instances �nite structures A over the vocabulary �. Let m be a positiveinteger such that for any instance A we have that optQ(A) � jAjm, where jAj is thesize of the structure A.Consider now the following decision problem Q: Given a �nite structure A over �and am-ary relationW on the universeA of A, is there a feasible solution T for A suchthat fQ(A; T ) � jW j? Here, fQ is the objective function of Q and jW j is the cardinalityof the m-ary relation W . Since Q is an NP optimization problem, we have that Q is aproblem in NP. Moreover, Q can be viewed as an NP decision problem with instances�nite structures over the vocabulary � [ fWg. By Fagin's [Fag74] characterization ofNP in terms of de�nability in second-order logic, there is an existential second-orderformula (9S�) (S�;W ) such that a pair (A;W ) is a YES instance of Q if and only if(A;W ) j= (9S�) (S�;W ). Since the maximization problem Q is bounded by jAjm; wehave that optQ(A) = maxS�;WfjW j : A j=  (S�;W )g6



TRAVELING SALESMAN problem and INTEGER PROGRAMMING are examplesof NP optimization problems that are not polynomially bounded.Usually, NP decision problems can be represented as problems on �nite structuresover some vocabulary � consisting of predicate symbols. Indeed, in most cases eitheran NP decision problem is described directly as a problem on �nite structures or it canbe easily encoded by such a problem. For example, CLIQUE and VERTEX COVERare problems about �nite graphs, while an instance I of SATISFIABILITY can beidenti�ed with a �nite structure A(I) = (X;C;P;N), where X is the set of variablesand clauses of I, the predicate C(x) expresses that x is a clause, and P (c; v) andN(c; v)are binary predicates expressing that a variable v occurs positively or negatively in aclause c.From now on we assume that the instances of an optimization problem are given as�nite structures over some vocabulary �. We introduce next a framework for classifyingoptimization problems on �nite structures in terms of their logical de�nability.Recall that �n; n � 1, is the class of �rst-order formulae in prenex normal form thathave n alternations of quanti�ers and start with a block of existential quanti�ers. Forexample, �1 is the collection of existential formulae, while �2 is the class of existential-universal formulae. Similarly, �n, n � 1, is the class of �rst-order formulae in prenexnormal form with n alternations of quanti�ers, starting with a block of universalquanti�ers. Thus, a �1 formula has universal quanti�ers only, while �2 is the collectionof universal-existential formulae. The class of quanti�er-free formulae is denoted by �0or by �0.De�nition 2.3: Let � be a vocabulary and let Q be a maximization problem with�nite structures A over � as instances.We say that Q is in the class MAX �n, n � 0, if there is a �n formula �(w;S) withpredicate symbols among those in � and S such that for every instance A of Q we havethat optQ(A) = maxS jfw : A j= �(w;S)gj:Similarly, we say that Q is in the class MAX �n, n � 0, if its optimum is de�nable asabove using a �n formula �(w;S).The classes MIN �n and MIN �n, n � 0, of minimization problems are de�ned inan analogous way, with min in place of max. In particular, a minimization problem Qis in the class MIN �n, n � 0, if there is a �n formula �(w;S) with predicate symbolsamong those in � and S such that for every instance A of Q we have thatoptQ(A) = minS jfw : A j= �(w;S)gj:The classes MAX �0 and MAX �1 were introduced and studied by Papadimitriouand Yannakakis [PY88] under the names MAX SNP and MAX NP respectively. We5



in some sense a \dual" of the class RMAX in [PR90]. This subclass of MIN �1 containsMIN VERTEX COVER and has the property that every minimization problem in it isapproximable.2 PreliminariesThis section contains the basic de�nitions and a minimum amount of the necessarybackground material.De�nition 2.1: An NP optimization problem is a tuple Q = (IQ;FQ; fQ; opt) suchthat� IQ is the set of input instances. It is assumed that IQ can be recognized inpolynomial time.� FQ(I) is the set of feasible solutions for the input I.� fQ is a polynomial time computable function, called the objective function. Ittakes positive integer values and is de�ned on pairs (I; T ), where I is an inputinstance and T is a feasible solution of I.� opt 2 fmax; ming� The following decision problem is in NP : Given I 2 IQ and an integer k, doesthere exist a feasible solution T 2 FQ(I) such that fQ(I; T ) � k, when opt =max? (or, fQ(I; T ) � k, when opt = min)The above de�nition is due to [PR90] and is broad enough to encompass everyknown optimization problem arising in NP-completeness. We now restrict attentionto polynomially bounded NP optimization problems [BJY89,LM81]. These are NPoptimization problems in which the optimum value of the objective function on aninstance is bounded by a polynomial in the length of that instance.De�nition 2.2: An NP optimization problem Q is said to be polynomially bounded ifthere is a polynomial p such thatopt(I) � p(jIj) for all I 2 IQ:Let MAX PB (MIN PB) be the set of all polynomially bounded NP maximization(minimization) problems.Examples of polynomially bounded NP optimization problems are MAX CLIQUE,TRAVELING SALESMAN problem with weights 1 or 2, MIN COLORING, andMIN VERTEX COVER. On the other hand, the unrestricted version of the4



optimum value is less than or equal to a polynomial of the input size. We classify nextthese problems according to the quanti�er complexity of the �rst-order formulae usedand we show that they form a proper hierarchy with exactly four levels:MAX �0 �MAX �1 �MAX �1 � MAX �2;where MAX �0 = MAX SNP is obtained using quanti�er-free formulae, MAX �1= MAX NP is obtained using existential formulae, MAX �1 is obtained usinguniversal formulae, and �nally MAX �2 is obtained using universal-existential formulae.In particular, MAX �2 can capture every polynomially bounded NP-maximizationproblem on �nite structures. The above containments are strict and there are naturalmaximization problems witnessing the separation of the four classes. We prove thatMAX CONNECTED COMPONENT is in MAX �2, but not in MAX �1, while MAXSAT separates MAX �1 from MAX �0. As mentioned above, [PR90] showed that MAXCLIQUE is in MAX �1, but not in MAX �1.We focus next on the logical de�nability of NP-minimization problems. Panconesiand Ranjan [PR90] concentrated on maximization problems only, while Papadimitriouand Yannakakis [PY88] examined approximation properties of certain minimizationproblems by reducing them to maximization problems. At �rst sight, one mayexpect that results about classes of maximization problems should translate directlyto analogous results about classes of minimization problems de�nable by similarformulae. It turns out, however, that this is not the case. Actually, maximizationand minimization problems de�ned by similar �rst-order formulae may have strikinglydi�erent approximation properties.We show that the collection of polynomially bounded NP-minimization problemson �nite structures coincides with the class of minimization problems whose optimumis de�ned using an existential-universal (�2) �rst-order formula. After this we establishthat the polynomially bounded NP-minimization problems can be classi�ed into aproper hierarchy with exactly three levels:MIN �0 �MIN �1 �MIN �1 = MIN �2:The above containments are strict. In fact, we show that MIN CHROMATICNUMBER is in MIN �1, but not in MIN �1, while MIN VERTEX COVER is inMIN �1, but does not belong to MIN �0.Recall that Papadimitriou and Yannakakis [PY88] showed that every maximizationproblem in MAX �0 = MAX SNP or in MAX �1 = MAX NP is approximable.In contrast, we prove here that MIN �0 contains natural minimization problems,such as MIN 3NON-TAUTOLOGY, that are not approximable, unless P=NP. Sincethe quanti�er pattern of minimization problems does not have an impact on theapproximation properties of the problems, we seek other syntactic properties that mayhave such an impact. To this e�ect, we introduce a natural subclass of MIN �1 that is3



corresponding maximization problem in MAX NP one seeks predicates S that maximizethe number of tuples x satisfying the existential �rst-order sentence (9y) (x;y;S).MAX SAT is the canonical example of a problem in MAX NP. This problem asks forthe maximum number of clauses that can be satis�ed in a given Boolean formula.Papadimitriou and Yannakakis [PY88] showed that every optimization problem inMAX NP can be approximated within a constant factor. They also considered thesubclass MAX SNP of MAX NP consisting of those maximization problems that arede�ned by quanti�er-free formulae, i.e., the optimum of such problems can be de�nedas maxS jfx : A j=  (x;S)gj;where  is quanti�er-free. They demonstrated that MAX SNP contains several naturalmaximization problems that are complete for MAX SNP via a certain reduction thatpreserves approximability. MAX 3SAT is a typical MAX SNP-complete problem. Theseresults on the one hand reveal that the logical de�nability of an optimization problemmay impact on its approximation properties and on the other provide an explanation asto why polynomial-time approximation schemes have not been derived for MAX 3SATor for the other MAX SNP-complete problems.More recently, Panconesi and Ranjan [PR90] investigated the expressive power ofMAX NP and showed that MAX CLIQUE does not belong to this class. Moreover, theyproved that certain polynomial-time optimization problems are not in MAX NP. In anattempt to �nd a syntactic class of optimization problems containing MAX CLIQUE,they introduced the class MAX �1 of maximization problems whose optimum can bede�ned as maxS jfw : A j= (8x) (w;x;S)gj;where  is quanti�er-free. It turns out that MAX �1 contains also maximizationproblems that are not approximable within a constant, unless P=NP. In view of this,Panconesi and Ranjan [PR90] studied the class RMAX, which is a syntactic subclassof MAX �1 containing MAX CLIQUE and having the property that every problem init is self-improvable.What other classes of optimization problems can be obtained using the logicalde�nability perspective and what is the exact expressive power of this framework?We address these questions here by examining the class of all maximization problemswhose optimum is de�nable using �rst-order formulae, i.e., it is given asmaxS jfw : A j= �(w;S)gj;where �(w;S) is an arbitrary �rst-order formula. We show �rst that this classcoincides with the collection of polynomially bounded NP-maximization problems on�nite structures, namely, the NP-maximization problems on �nite structures whose2



1 Introduction and Summary of ResultsIt is well known that optimization problems had a major in
uence on the developmentof the theory of NP-completeness. As a matter of fact, many natural NP-completeproblems are decision problems that are derived from an optimization problem byimposing a bound on the objective function ([GJ79]). In spite of this close connection,NP-completeness advanced along a strikingly di�erent path than that of optimizationtheory. Non-deterministic Turing machines with polynomial-time bounds provide afairly robust computational model for decision problems. This, in turn, made it possibleto develop a rich structural complexity theory based on polynomial time reductions andto obtain various classi�cations of NP problems. There have been also several attemptsto classify optimization problems and to study their structural properties. Some notablecontributions include [OM90,Kre88,Wag86,PM81,ADP80,Joh74] (cf. also [BJY89]for a comprehensive survey of results in this area). Nevertheless, the absence ofrobust computational models for optimization problems has hindered the developmentof a structural optimization theory that is on a par with structural complexitytheory. In particular, the approximation properties of optimization problems remainas one of the most persistent puzzles of optimization theory. Although all knownnatural NP-complete problems are polynomially isomorphic [BH77], their optimizationcounterpartsmay have dramatically di�erent approximation properties, from possessingpolynomial-time approximation schemes to being non-appproximable within a constantfactor (assuming P6=NP).Papadimitriou and Yannakakis [PY88] brought a fresh perspective to approximationtheory by focusing on the logical de�nability of optimization problems. Their mainmotivation came from Fagin's [Fag74] characterization of NP in terms of de�nabilityin second-order logic on �nite structures. An existential second-order formula is anexpression of the form (9S)�(S), where S is a sequence of predicates and �(S) is a �rst-order formula. Fagin's theorem [Fag74] asserts that a collection C of �nite structuresis NP-computable if and only if it is de�nable by an existential second-order formula.Moreover, it is well known that every such formula is equivalent to one of the form(9S)(8x)(9y) (x;y;S), where  is a quanti�er-free formula. Thus, a class C of �nitestructures is NP-computable if and only if there is a formula (9S)(8x)(9y) (x;y;S),with  quanti�er-free, such that for any �nite structure A we have thatA 2 C () A j= (9S)(8x)(9y) (x;y;S):Papadimitriou and Yannakakis [PY88] introduced the class MAX NP of maximizationproblems whose optimum can be de�ned asmaxS jfx : A j= (9y) (x;y;S)gj;where  is quanti�er-free. Intuitively, in an NP decision problem one seeks predicates Switnessing some existential second-order sentence (9S)(8x)(9y) (x;y;S), while in the1
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