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shared by all NP problems, in particular their asymptotic probabilities obey a 0-1
law ([KV87]). On the other hand, the closure of strict ¥{ formulae under polynomial
reductions is the entire class of NP problems.

6 Concluding Remarks and Open Problems

In this paper we investigated NP optimization problems from the standpoint of logical
definability and analyzed the relative expressive power of the various classes of NP
optimization problems that arise in this framework. One of our findings is that logical
definability has different implications for NP maximization problems than it has for
NP minimization problems. The original motivation in [PY88] for pursuing the logical
definability approach was to find syntactic classes of NP maximization problems with
good approximation properties, such as MAX ¥, and to pinpoint natural complete
problems for these classes. Since the class MIN ¥ contains non-approximable problems
(modulo P#£NP), it would be interesting to find syntactic subclasses of MIN ¥ that
contain approximable problems only. Theorem 7 shows that the class MIN FII; is a
first step in this direction.

The TRAVELING SALESMAN problem with distance 1,2 is an important example
of a minimization problem that is approximable, but is not known to have a polynomial
time approximation scheme. Papadimitriou and Yannakakis [PY90] have recently
shown that every problem in the class MAX ¥, is L-reducible to the TRAVELING
SALESMAN problem with distance 1,2. It is an open problem to identify a natural
class of minimization problems for which the TRAVELING SALESMAN problem with

distances 1,2 is complete.

Papadimitriou and Yannakakis [PY88] proved that MAX 3SAT and a host of other
problems are complete for MAX ¥,. Panconesi and Ranjan [PR90] introduced the
problem MAX Number of Satisfiable Formulae (MAX NSF) and proved it complete
for MAX TII;. As mentioned earlier, it can be shown that this problem is also complete
for the class MAX II, = MAX PB. It is not known, however, if MAX 3; possesses
complete problems. On the side of minimization, we proved here that MIN 3NT is
complete for the class MIN ;. It would be interesting to investigate the existence of

complete problems for the classes MIN ¥; and MIN II;.

Acknowledgements: We are grateful to Christos H. Papadimitriou for several
useful telephone conversations, to Alessandro Panconesi for several interesting e-mail
exchanges, and to Moshe Y. Vardi for giving us feedback in person on some of the
work reported here. Thanks are also due to Phil Long and Shankar Ramamoorthy for
valuable comments on the details of the proofs.
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Notice that A;¢; is a CNF formula whose variables are of the form S(¥), where y
is a sequence of length m. Without loss of generality, we can assume that S occurs
exactly k times in each clause. Indeed, if S appears less than k times in a clause, then
we can repeat one of its occurrences in that clause. Clauses with no occurrences of
S depend only on the structure A(I) and are true independent of S and hence can
be neglected (if such disjuncts are falsified by A(I), then we do not have a feasible
solution).

Given a structure A(I) with |A(I)] = n encoding an instance I of a problem in
MIN FII;(k), we construct an instance G = (V, E) of the MIN k-HYPERVERTEX
COVER problem as follows. The set V' of vertices of G is the set of all m tuples from
the universe of A(I). Moreover, if S(¥; ), S(¥,,), -, S(¥;,) appear in the same clause
in the CNF formula, then {y, ,¥,,,-,¥,, } is an edge in G.

Now observe that S = {¥,,¥,,,---,¥,,} is a hypervertex cover for G if and only if
by setting S(y;,),5(¥;,), -, 5(¥;,) to true we have (A(I),S) = (Vy ) (y,S).

It follows that @ is A-reducible to MIN £E-HYPERVERTEX COVER and so MIN
E-HYPERVERTEX COVER is complete for MIN FII; (k). O

The approximation properties of the class MIN FII; should be contrasted with those
of the class RMAX introduced in [PR90]. This is a syntactic subclass of MAX II; that
is in some sense the “dual” of MIN FII;. More formally, RMAX is the class of NP

maximization problems with optimum definable as
opto(A) = max{[S|: A |= (Vy)¥(y, )}

where S is a single predicate and ¥ i1s a quantifier-free CNF formula in which all
occurrences of S are negative. MAX CLIQUE is the canonical example of a problem
in RMAX. Moreover, every problem Q in this class is self-improvable, i.e., if Q is
approximable, then it has an e-approximation scheme (cf. [PR90]).

Remark 4: We now consider briefly the effect of taking the A-closure of the classes
MAX II,, and MAX ¥, i.e., all optimization problems that have an A-reduction to
a problem in one of these classes. We have seen before that fine distinctions between
NP-maximization problems can be made by focusing on their logical definability. It
turns out, however, that some of the distinctions manifested in Theorem 2 disappear
by passing to A-closures. Indeed, it can be shown that MAX II; contains problems that
are complete for the class MAX II; via A-reductions. Such an example is provided by
the MAX Number of Satisfiable Formulae (MAX NSF) problem of [PR90]. It should
be pointed out that a similar situation holds with NP decision problems. For example,
3-COLORABILITY is expressible using a strict X1 formula, i.e., an existential second-
order formula whose first-order part has universal quantifiers only. It is known that
NP problems definable by such formulae have certain special properties that are not
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denote the union of these classes.

Notice that the second equation in the above definition shows that the class MIN
FII; is a subclass of MIN X;. Notice also that the MIN VERTEX COVER problem is

the canonical example of a problem in MIN FII;(2), since its optimum is given by
opt(G) = min{|S|: G = (Vy1)(Vy2)(~E(y1,y2) V S(y1) V S(y2))}-

By generalizing the vertex cover problem to k-hypergraphs, k¥ > 2, we can obtain the
problem MIN kE-HYPERVERTEX COVER. This is a typical example of a problem in
MIN FII; (k).

Definition 5.5: A k-hypergraph is a structure H = (V, E) with E C V*. A hyperverter
coveris a set S C V such that for every k-tuple (vy,...,v;) in E we have that S contains

some v;.

Notice that a 2-hypergraph can be viewed as an ordinary graph. Moreover, a
hypervertex cover for a 2-hypergraph is a vertex cover in the usual sense of the term.

e The MIN k-HYPERVERTEX COVER problem is to find the cardinality of the

smallest hypervertex cover in a k-hypergraph. Its optimal is expressed as:
opt(G) = min{|S]: G |= (Vy1) -~ (Vyr)(E(yr, - y) = S(yn) V- V S(yx)).

The MIN VERTEX COVER problem has a rather straightforward polynomial time
l-approximation algorithm [GJ79] that is based on the idea of maximal matching.
By generalizing the notion of maximal matching to hypergraphs, we can obtain a

polynomial time 1-approximation algorithm for the MIN k-HYPERVERTEX COVER

problem.

Theorem 7: MIN k-HYPERVERTEX COVER is complete for Min FII;(k), & > 2,

under A-reductions. As a result, every problem in MIN FII; is approximable.

Proof: Let Q be a problem in MIN FII (%), let I be an instance of it, and let A(I)
be a structure encoding I. Then there is a quantifier-free formula ¢ in CNF satisfying
the conditions in definition 5.4 such that

opto(A(I)) = min{[S|: A(I) |= (Vy)¥(y,S5)}-

Let {y1,¥2," -, ¥pn)} be the set of possible values for y, where p is a polynomial and
|A(I)| = n. Assume also that the arity of S is m. If we let +; be the formula ¢(y;, 5),
then

opto(A(D) = min{|S|: A(T) £ A i},
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S;(w!), where S; is a predicate symbol from the sequence of symbols S and w! is an
appropriate projection of w;,.

Given an instance I of Q, we construct an instance t1(I) of MIN 3NT. Corresponding
to the output of every gate ¢ in the circuit B;, we have a variable ¢ in #;(I). The other
variables of #1(I) are the input variables of the circuit. The disjuncts of t1(I) are as
follows. If ¢ is the output of a NOT gate with input x, then we have (¢ A x) and
(g A T) as disjuncts. If ¢ is the output of an AND gate with inputs a1, 2, then we
have (71 ATy A g) and (21 A 22 A7) as disjuncts. If ¢ is the output of an OR gate with
inputs 1, x2, then we have (21 A 22 AG), (Tr AxaAg), (T1 AT2Ag), and (21 AT2 A g)
as disjuncts. Finally, if ¢ is the output of the circuit B;, then we have a disjunct (g).

Given any input to the circuit B;, we can set the boolean values of the intermediate
gates such that every disjunct is falsified. The disjuncts are designed such that if ¢
is the output of the AND gate with inputs x; and x5, then setting ¢ to x; A zo will
result in falsifying all the disjuncts corresponding to this gate. Similarly, for disjuncts
corresponding to OR and NOT gates, if we set the output to the disjunction of the
inputs or the negation of the input respectively, then all the disjuncts that correspond to
the gate are falsified. Thus, if a truth assignment falsifies )(w;, S), then we can falsify
all the disjuncts corresponding to the circuit B;. Moreover, if it satisfies ¢»(w;, S), then
the minimum number of disjuncts (corresponding to B;) satisfied is 1. Hence, opto([])
is equal to the minimum number of satisfiable disjuncts in the instance ¢;(I) of 3NT.

In addition, it is straightforward to define the mapping #, such that, given an
e-approximate truth assignment to the instance #1(I), we obtain an e-approximate so-

lution to Q. Thus, @ <a MIN 3NT. O

The preceding Theorem 5 reveals that the pattern of the quantifier prefix does
not impact on the approximability of minimization problems, unlike the case of
maximization problems. As a result, we have to seek other syntactic features that
may imply good approximation properties. We introduce below classes of minimization
problems defined by imposing restrictions on the quantifier-free part of formulae and
we show that there are natural complete problems for these classes.

Definition 5.4: Let MIN FII (%), k > 2, (F stands for feasible) be the class of all

minimization problems @ whose optimum can be expressed as:
opto(A) = min{|S]: A = (Vy)i(y,S)}
= min[{w: A = ((Vy)i(y, ) = S(w)}l,

where S is a single predicate, ¢ is a quantifier-free CNF formula in which all occurrences
of § are positive, and S occurs at most k times in each clause. We also let

MIN FII, = | JMIN FII, (k)
k
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Definition 5.2: [CP89] Let Q@ and R be two NP optimization problems. An
approzimabilty preserving reduction (or, A-reduction) from Q to R is a triple 7 =

(t1,tq, ¢) for which the following hold:
e t; and ty are polynomially computable functions with ¢; : 7o — Zr and
tQ:IRXFRHFQ.

e ¢ is a function from non-negative rationals to non-negative rationals such that
if T is an e-approximate solution for an instance t1(I) of R, then t3(I,T) is a
¢(€e)-approximate solution for Q.

If there is an A-reduction form Q to R, then we say that Q is A-reducible to R and we
write @ <) R,

The A-reduction defined above is a more relaxed reducibility than the L-reduction
defined by Papadimitriou and Yannakakis [PY88]. In the latter the optimum solutions
of the two problems Q and R are required to be within a constant factor of each other.
Although this is the case with many optimization problems, a reduction may preserve
approximability (within a constant factor of the optimal) without having this property.

The following propositions follow easily from the definitions.

Proposition 1: if R is approximable and @ <, R, then Q is approximable.
Proposition 2: A-reductions compose.

Definition 5.3: An NP optimization problem @Q is approzimation complete for a class
of problems C if @ € C and every problem R € C can be A-reduced to Q.

With the necessary definitions behind us, we can now state and prove the following
result.

Theorem 6: MIN 3NON-TAUTOLOGY is complete for MIN X,.

Proof: We have shown before that MIN 3NT is in MIN ¥,. We now prove that every
problem in MIN X4 is A-reducible to it. Let @ be a problem in MIN X, let I be an
instance of it, and let A(I) be a structure encoding I. Then there is a quantifier-free
formula v such that

opto(A(I)) = min [{w : A(I) = d(w, S)}].
Let {w1, W3, -+, W,(,)} be the domain of w, where p is a polynomial and |A(I)| = n.

For every w; we consider the boolean circuit B;, composed of gates AND, OR and
NOT, that represents the formula ¢/(w;,S). The inputs to the circuit are of the form
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Definition 5.1: [PS82] Let Q = (Zo, Fo,fo,0pt) be an NP optimization problem and
let A be an algorithm which, given an instance I € Zgy, returns a feasible solution
T € Fo. We say that A is an e-approzimation algorithm for Q for some e > 0 if

[fo(Z,T) — opt(I)]
opt(I) -

for all instances I. The feasible solution T is said to be an e-approzimate solution for

€

the instance I. An NP optimization problem is approzimable if there is a polynomial
time e-approximation algorithm for it.

MAX 3SAT, MAX SAT, MIN VERTEX COVER, and TRAVELING SALESMAN
with A-inequality are important examples of approximable optimization problems.
Papadimitriou and Yannakakis [PY88] proved that every problem in MAX ¥; is
approximable. In contrast to this, we show below that MIN ¥, and, a fortiori, MIN
¥}y contain natural problems that are non-approximable, unless P#£NP. In fact, it turns
out that an already familiar problem from the previous section has this property.

Theorem 5: MIN 3NON-TAUTOLOGY is not approximable, unless P = NP .

Proof: Assume that there is an e-approximation algorithm A for MIN 3NT. We show
below that A can be used to solve in polynomial time the NON-TAUTOLOGY problem
of 3DNF formulae, a problem that is known to be NP complete.

Given an instance ¢ of NON TAUTOLOGY of 3DNF formulae, we create in
polynomial time an instance ® of MIN 3NT as follows: Let x be a variable not occurring
in ¢ and let T be its negated literal. The formula @ is a disjunction of * V7T and of n
copies of every disjunct of ¢, where n > (1 + ¢).

If ¢ is a non-tautology, then optsnt(®) = 1, because every truth assignment satisfies
exactly one of the disjuncts x and 7, and there i1s a truth assignment under which no
disjuncts in any copy of ¢ are satisfied. If ¢ is a tautology, then there is no truth
assignment that falsifies every disjunct in ¢. Hence, in ® at least one disjunct from
each copy of ¢ is satisfied under every truth assignment. Therefore, optsnt(®) > n+ 1.

It follows that the formula ¢ is a non-tautology if and only if the algorithm A on
input ® returns a value less than or equal to (1 4 €). Thus, we have exhibited a poly-

nomial time algorithm for solving an NP-complete problem, which implies that P=NP.
O

We now consider an approximation preserving reduction and in Theorem 6 we prove
that MIN 3NT is a complete problem for the class MIN ¥4 under this reduction.

Papadimitriou and Yannakakis [PY88] introduced a notion of L-reduction between
optimization problems. Panconesi and Ranjan [PR90] generalized this to the notion of
P-reduction. We use here a variant of these reductions introduced by Crescenzi and

Panconesi [CP89].
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to Hy. Thus, we have |4;] > k. Since y,z involve u, and u, ¢ H,, it must be the case
that the tuples y,z are not elements of 4;. Therefore, we have that |4; — A;| > 2. One
of the two elements in 4; — Ay could be (v,,v,, -+, v,), but the other element, call it
e, will contain both v;’s and u;’s. As a result, e ¢ A; and, thus, we have demonstrated
an element e that is in 4; C A, but not in 4; U A,. So, |[A| > 2k + 1.
Case b: t > k. Recall that we have chosen H; so that
opt(Hy) # min |[{(w,---,w) : H = ¢(w, -, w,S)}.
S —— ———

m m

Since |A;| = k = opt(H,), it must be the case that
Ay 7£ {(wv"'vw) D Hy |: ¢(w7"'7wvs*)}‘
——— ————’

Consequently, there exists an element u, of V; that appears in a tuple y in A, and has
the property that (v,, vy, -+, v,) is not an element of A;. Let H be the subgraph of G

induced by {u1,uz, -, ug_1,0,, tgg1, -+, t, }. Note that Hy is isomorphic to Hy, hence
opt(Hy) = k and |As| > k. Note that y involves u,, but u, ¢ H,. It follows that y ¢ A,
and, consequently, |A; — As| > 1. Therefore, A; — Ay contains (vy, vy, -+, v,) or a tuple

that has u;’s as some of its components. In either case A, — A, contains a tuple that
is not an element of 4; U Ay. Since Ay C A, we conclude that |A| > 2k + 1.

Since S* was an arbitrarily chosen value of S, we have that
opH(G) = min |{w : G = (. )} | > 2k,

which is a contradiction. This completes the proof that MIN VERTEX COVER is not
in the class MIN ¥,. O

Remark 3: An examination of the proofs of Theorems 2 and 4 shows that, when a
MAX (MIN) X; problem is expressed as a MAX (MIN) II; problem, the arity of the
sequence of free variables in the resulting II; formula is bigger than the arity of the
free variables in the original 3; formula. It should be pointed out that this increase in
arity is inevitable in general. Indeed, otherwise one could express the MIN VERTEX
COVER problem in MIN II; using a II; formula with a single free variable. In such
a case, using arguments similar to those put forth in Part C of Theorem 4, one could

also show that MAX CLIQUE is in the class MAX ¥, which is false.

5 Approximation Properties of NP Minimization Problems

In this section, we focus on the approximation properties of the minimization classes
and contrast them with those of the maximization classes.
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We now work with this graph Hy. Let Hy be (Vi, Ey) with Vi = {v1,v2,---,0,}
and assume that the minimum vertex cover of Hy is of size k. We construct a graph
Hy, = (Va, Ey) with Vo = {uq,uz, -+, u,}, such that Hy is isomorphic to H; and the
isomorphism maps v; to u;,1 < ¢ < n. Using H; and Hy, we construct a graph

G = (V,E) as follows:

V = ‘/IU‘/Z:{v17v27"'7vn7u17u27"'7un}
E = E,UEU{{v,u;}:{v,v;} € E1} U{{ui,v;} : {vi,v;} € Eq}.

Note that any set of n vertices of the form {wy,wsq, -+, w,} with w; € {v;,u;} induces
a subgraph of G that is isomorphic to Hy, with the isomorphism mapping w; to v;.
Consequently, there are 2" such distinct isomorphic graphs and Hy, H, are two of
them. We denote these 2" graphs by Hy, Ho,---, Hyn. Note that the minimum vertex
cover of each H; has size k, while the minimum vertex cover of G has size 2k, i.e.,

opt(G) = msin H{w: G E¢(x,9)} = 2k.

Let S* be an arbitrary value for the sequence of predicate symbols S and put
A={w:GEy(w,8)}.

We will show that |A| > 2k, thereby arriving at a contradiction. Let S% be the
restriction of S* to the vertex set of H; and let

Aj ={w: H; =(w,S})}, for 1 <j <2

Since the minimum vertex cover of A; is of size k, we have |A;| > k for 1 < j <27,

We now prove that |[A] > 2k. If b is an m-tuple from H; such that H; = (b, S7),
then G | (b, S*), because ¥ formulae are preserved under extensions. So we have,
A; € A for 1 <3 <27 In particular 4y € A4 and 4; € A. Moreover, 4y, A, are
disjoint, as the vertex sets of Hy, Hy are disjoint. Therefore, |A| > |A{| + |42| > 2k.
We assume that |A;| = |43 = k, otherwise we have |A| > 2k.

Now we construct one more tuple in A that is not in Ay U Ay, which will imply that
|A| > 2k. Let t denote the number of elements of V; that appear in tuples of A4, i.e.,

t = [{u:u €V, and u appears in a tuple of A,}|.

We consider two cases for ¢, namely t < k and t > k.

Case a: t < k. The k tuples in A, are constructed from ¢ distinct elements of V5.
Hence by the pigeonhole principle, there are at least two tuples y,z in A, that have a
common element u, of V; as a component. Now consider the subgraph of G induced
by the set {u1,uz, -+, Up_1,Vp, Upt1,- -, Uy . Let H; be this graph, which is isomorphic
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Moreover, the sets {w : H; = (Jy)(w,y,S;7)} and {w : Hy = (3y)(w,y,S5)} are
disjoint. Therefore,

{w: G = (Fy)p(w,y,S7)}| = 2k,
which is a contradiction. So, MIN CHROMATIC NUMBER is not in MIN ;.

Part C: In the last part of the proof, we show that MIN VERTEX COVER is not in
the class MIN .

Towards a contradiction, assume that MIN VERTEX COVER is in the class

MIN X, i.e., assume the optimum is given by
opH(G) = min | {w : G = v(w.S)}]|.

where 1 is quantifier-free and w = (wy, wy, - - -, w,, ). We distinguish two cases and show
that in either case we arrive at a contradiction.

Case 1: Assume that for every graph G the size of the minimum vertex cover is
given by
opt(G) = msin H{(w, -, w): GEY(w, -, w,S)}.
e e
Let ¢'(w,S) be the formula obtained from ¢ by replacing each occurrence of every
variable of ¢» by w. Notice that ¢'(w,S) is a quantifier-free formula with a single free
variable w and has the property that the optimum of the MIN VERTEX COVER can

be expressed as

opt(G) = min [{w: G = ¢/(w,S)}

We now exploit the relationship between the problems MIN VERTEX COVER,
MAX INDEPENDENT SET, and MAX CLIQUE to arrive at a contradiction. Recall
that a set V' is a vertex cover of a graph G = (V,E) if and only if V — V' is an
independent set in G, i.e., V — V' is a clique in the complement G of G. Thus, the
minimum vertex cover of G is of size k if and only if its maximum independent set is
of size |V| — k. In view of the above, for every graph G we have that

optinp. seT(G) = max Hw: G = -¢'(w,S)}.

This implies that the MAX INDEPENDENT SET problem is in the class MAX ¥,
since the negation of a quantifier-free formula is also a quantifier-free formula. By
using the relationship between MAX INDEPENDENT SET on a graph G and MAX
CLIQUE on its complement G, we conclude that MAX CLIQUE is in the class MAX
Yo. This, however, contradicts one of the results in [PR90] (cf. also Theorem 2).

Case 2: Assume that there is some graph, call it H;, for which the size of the
minimum vertex cover satisfies

Opt(Hl) 7£ mSiIlH(w, e 7w) : Hl |: ¢(w7 e ,w,S)}|.

m m
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w, then again ¢(w,x", S, R) is satisfied. Thus, (w,x*) € V(R) for this x*. Therefore, if
w € U, then for every R there is a tuple x* such that (w,x*) € V(R). So, |U| < |V(R)|
for all R and, as a result,

U] < min[V(R)|.
In the second step, for each w in U let x4 be a fixed witness of w and let
Ry={(w,x):weU and x = Xy .
It is now easy to verify that
|U| = |Ro| and Ry = V(Ry).

It now follows that |U| = |V(Ry)| and, as a result, we have that |U| = ming |V(R)|.
Since S was an arbitrary sequence of predicates, we conclude that

opto(A) = min|U(S)| = in [V (S, R)|.

This establishes that @ is in MIN II; and, consequently, the class MIN ¥, is contained
in the class MIN II;.

Part B: In this part of the proof we show that MIN CHROMATIC NUMBER is in
MIN II;, but not in MIN ;.

We have already seen that MIN CHROMATIC NUMBER is in the class MIN ¥,
and hence, by what we proved in Part A, it is in the class MIN II;. We now show that
MIN CHROMATIC NUMBER is not in the class MIN ¥;. Towards a contradiction,
assume that it is in the class MIN ¥;. Therefore, there is a quantifier-free formula
p(w,y,S) such that for every graph G

opt(G) = min [{w : G = (Iy)d(w,y, S)}|.

Let Hy be a graph with opt(H;) = k and let Hy be an isomorphic copy of H;. We
construct a graph G by taking the disjoint union of H; and H,. Note that opt(G) = k
and there is an S* such that

{w: G = QCy)y(w,y, ST} = k.

Let S7 and S} be the restrictions of S* to the vertex sets of Hy and H; respectively. If
b is a tuple from H,;, i = 1,2, such that H; = (Jy)¢(b,y, S7), then it is also the case
that G = (Jy)¢(b,y, S*), because existential formulae are preserved under extensions.

But

Y

{w: Hi = Qy)e(w.y,S)} >k, fori=12.
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It now follows that if G is a graph, then
opH(@) = min{e: G = ¥(S) — (Fa)S(z, )},

Thus, MIN CHROMATIC NUMBER is in MIN .

The next result clarifies the exact relationship between the four classes of
minimization problems.

Theorem 4: The class MIN ¥, is contained in the class MIN II;. As a result,
MIN ¥, ¢ MIN ¥; ¢ MIN II; = MIN ¥, = MIN PB.

Moreover, these containments are strict. In particular,

e MIN CHROMATIC NUMBER is in MIN II;, but not in MIN ¥.
e MIN VERTEX COVER is in MIN ¥, but not in MIN .

Proof: We give this proof in three parts.

Part A: In this part we show that MIN ¥, is a subclass of MIN II;.

Let @ be a problem in MIN ¥,. Then there is a quantifier-free formula (w, x,y, S)
such that for every finite structure A that is an instance of @ we have

opto(A) = min[{w : A |= (Ix)(Vy)o(w,x,y, S)},

Let
U(S) = {w: A |= (3x)(¥y)(w, x,y.S)}
and

V(S,R) ={(w,x"): A E ¢(w,x",S,R)},

where ¢ is the following II; formula

d(w,x*,S,R) = [(-R(w,x")) — (Vy)(w,x*,y,S)] A
[(3x)R(w,x)) — R(w,x")]

We prove below that |U(S)| = ming |V(S, R)| for all S. In what follows we fix the
sequence of predicates S and, for simplicity, we write U for the set U(S) and V(R) for
the set V(S,R). If A = (Vy)¥(w,x,y,S), then we say that x is a witness of w relative
to S.

We prove that |U] = ming |V(R)| in two steps. First, observe that if w € U, then
w has a witness. If R is such that —(3x)R(w,x), then the formula ¢(w,x*, S, R) is
satisfied for every witness x* of w. Thus, (w,x*) € V(R) for every witness x* of w. On
the other hand, if R is such that R(w,x*) for some x*, which may not be a witness of
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By restricting the quantifier prefix 3*V* of ¥, formulae, we obtain the classes

MIN II;, MIN ¥; and MIN X,. It is obvious that:

MIN 3,
MIN 3 MIN ¥, = MIN PB
MIN II;

We give below examples of some natural problems in these classes that will be used
in the sequel.

We begin by presenting MIN 3NON-TAUTOLOGY, which is an optimization
problem in MIN 3, that arises from the NP-complete problem NON-TAUTOLOGY
of 3DNF formulae [GJ79]: Given a boolean formula in disjunctive normal form with

three literals per disjunct (3DNF), is there a truth assignment that makes this formula
false?

e MIN 3NON-TAUTOLOGY (3NT): Given a boolean formula in 3DNF, find the

minimum number of satisfiable disjuncts.

We view every instance I of MIN 3NT as a finite structure A(I) with four ternary
predicates Dy, D1, Dy, D3, where D;(w1, ws, ws) is true if and only if the set {w1, wsq, w3}
is a disjunct with wy,---, w; appearing as negative literals and w;yq,-- -, w3 appearing
as positive literals, 0 < ¢ < 3. The optimum of 3NT is given by

opt(I) = min [{(wy,ws, ws) : A |= ¢(ws, ws,ws, §)},

where ¢(wr, 10y, ws) is the following quantifier-free formula:
(Do(wr, w2, w3) AS(wi) AS(w2) AS(ws))V ( Di(wi,wa, w3) A5 (wr) AS(w2) AS(ws))V
(D2 (w1, w2, w3) A= (w1 )A=S5 (w2 )AS (w3))V(Ds (w1, wa, ws)A=S (w1 ) A= (w2 )A=S(ws)).

e MIN VERTEX COVER problem is a natural problem in the class MIN ¥;. On
any graph G the optimum is given by

opt(G) = min{|S|: G = (Vy1)(Vy2) [ E(y1,42) — (S(y1) V S(y2)) ]}

= minl{z: G = [(Vy)(Ve)[E(y1,92) = (S(y1) V S(y2))]] — S(a)}]-
o MIN CHROMATIC NUMBER is an important polynomially bounded minimiza-

tion problem (cf. [GJT9]). Theorem 3 implies that MIN CHROMATIC NUMBER in
the class MIN ¥,;. We exhibit below a ¥, formula that establishes this fact directly.

Consider first the following II; sentence ¢ (S) asserting that S is a coloring:

P(S) = (Va)(Fe)S(x,¢) A (Vo )(Ver)(Ver)[S(x,e1) AS(x,e2) — (¢1 = ¢2))]
A (Ve )Vy) (Ve ) (Ve )[E(x,y) A S(x,e1) A S(y,e2) — (¢1 # ¢2))].
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4 Polynomially Bounded NP Minimization Problems

The logical definability of NP minimization problems has not been explored in the
literature so far. We undertake this investigation here and unveil a strikingly different
picture from the one for NP maximization problems. The next result should be
contrasted with Theorem 1 in Section 3.

Theorem 3: Let o be a vocabulary and let @ be an NP minimization problem with
finite structures A over o as instances. Then @ is a polynomially bounded NP
minimization problem if and only if there is a first order formula ¢(w, S) with predicate
symbols among those in ¢ and S such that for every instance A of Q

opto(A) = min|(w : A | 6(w.S))|.
Moreover, ¢(w,S) can always be taken to be a ¥y formula and, consequently,

MIN PB = MIN ¥, = MIN ¥, n > 2.

Proof: Following the same arguments as in Theorem 1, we can show that if Q is a
polynomially bounded NP minimization problem, then there is a II; formula ¢ (S5*, W)
such that

opto(A) = min{|IV]: A b (S, 1)

It follows that
optolA) = min |{w : A = ¥(S", W) = W(w))

Let S denote the sequence (S*, W) and let ¢(w,S) be the ¥, formula
Pp(S*, W) — W(w).
We can now conclude that

opto(A) = min|{w : A | 6(w,S)}|

Remark 2: Notice that, unlike the case of maximization problems, if
opta(A) = min {|IV]: A b (S7. ).
then it is not true that

opte(A) = min [{w : A = W(w) A (57, W)},

because the minimum cardinality of the above set is zero, which occurs when W is
empty. This explains the “dual” behavior in logical definability between maximization

and minimization problems, viz. MAX PB = MAX II,, while MIN PB = MIN 3.
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We now define a structure A = (X, C, P, N) as follows.
X = X, c=c,
P = {(«
N = {(

7

U

It can be seen that A encodes an instance of MAX SAT. Also, observe that
|C| = n|Cy| < n(n — 1), as the structure A; has at least one variable. Therefore,
opt(A) < n(n —1). We will arrive at a contradiction by showing that opt(A) > n?.

For 1 <1<t let

* ; ; N )1 1 1
Sl - {(x;ll ) 1’222, e 7$uo¢[l]) . Sl ($u1 ) xu27 e 7xua[l])7 where
1§i17"'7ia[l]§n and 1§u17"'7uo¢[l]§n}7

and let S* denote the sequence (S7,8;, -+, S;). We will show that |V| > n?, where
V={(wy, -, wn): A E (w0, )}

From the hypothesis of Case 2, we know that there is a tuple e in V; with at least
two distinct components :1;21) and :1;; For every 1,7 with 1 <, 5 < n, let e; ; be obtained
from e by replacing every occurrence of :1;21) by :1;; and every occurrence of :1;; by :1;{1
Also let A;; denote the substructure of A with universe

1 1 i1 1 i1
{xlv"'7xp—17xp7xp-|—17"'7xq—17xq7xq-|—17"' 7$n}‘

It is clear that A, ; is isomorphic to A;. Moreover, the restriction of §* to the above

set is a sequence of predicates isomorphic to S*, where the isomorphism maps z;, to
1
p?
restriction of $* to universe of A, ;.

X, maps :1;2 to :1;; and is the identity on the rest of the elements. Let S7; denote the

Observe that A;; [= 1(e;;,S;;) for 1 < 4,5 < n. Since Xy sentences are preserved
under extensions, it is also true that A |= (e;;,S*) for 1 < i,5 < n. As there are n?
distinct such elements e; ;, we have that |V| > n?. It follows that opt(A) > n? which is

a contradiction. The proof that MAX SAT is not in the class MAX ¥, is now complete.
O

Remark 1: The class MAX ¥, is another collection of maximization problems that
contains both MAX ¥; and MAX II;. The proof of Theorem 2 also yields that MAX
22 — MAX Hl.
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C,P, N and Sy,---,5; in S are amongst the following:
C(w), ~C(w), P(w,w), 2 P(w,w), N(w,w), 7N (w,w),
Si(w, -+, w), S (w, - w), 1 <1<t
——— ———
afl] afl]
where «[l] is the arity of S;. For every instance I encoded by a finite structure
A(I) = (X,C,P,N), it is the case that A(I) &= P(x,x) and A(I) £ N(«,x), for all
x € X, because the first arguments of P, N refer to a clause, the second to a variable
and the variables are different from the clauses. Let ¢/ be the formula obtained from
Y'(w,S) by replacing each occurrence of P(w,w), N(w,w) by the logical constant
FALSE, and each occurrence of =P(w,w), ="N(w,w) by the logical constant TRUE.

Then we have that for every instance I
opH(A(I)) = max|{w : A(T) |= 0/(u,S)}.

Let I, I, be two instances of MAX SAT, each having the same number of variables
and the same number of clauses, but differing in the maximum number of satisfiable
clauses. Without loss of generality, we can find structures A(Iy) = (X1, Cy, P, Ny) and
A(L) = (X3,C3, Py, Ny) encoding I, I, respectively, such that X; = X,y and C; = Cs.

Since ¢"(w, S) does not have any oceurrences of the symbols P, N, we have
{w: A(L) E¢"(w,8)} = {w: A(lz) E ¢"(w,S)}.
for all values of S. Therefore,
opt(A(I1)) = opt(A(l2)),

which is a contradiction.

Case 2: Assume that there is some instance [;, such that its encoding by the
structure A(L) = (X1, Cy, P1, Ny ) satisfies

Opt(A(Il)) 7£ IIlSaX H(wv T 7w) : A(Il) |: 77Z)(wv T, W, S)}|
For simplicity, we write A; for the structure A(I).
Let S* be a sequence of predicates (S5, S5,---,S;) that realizes opt(A4), i.e.,

Opt(Al) = H(wlv e 7wm) : Al |: ¢(w17 e 7wM7S*)}|'

Let
Vl = {(w17...7wm) . Al |: ¢(w17...7wm7s*)}

and assume that X; = {z], 23, -+, 2. }. We now construct n — 1 additional structures,

Ay, A, where A; = (X;,C;, P, N;) with X; = {2%,2},---,2:},2 < i < n, such

that they are all isomorphic to A; via the mapping z', to zl, for 1 <i,u < n.

11



from G by deleting a; and all edges incident to it. Assume that the maximum value in
the above expression occurs at S = S*. Let SI be the restriction of S* to the vertex set
{ai, -+, a;—1,ai41, -+, a,} of H;. Since opt(H;) = n — ¢, we have that

[{w : H, = (Fy)e(w.y, ST)}| < n .

Since universal formulae are preserved under substructures, we have that if b is an m-

tuple from H; such that G | (Vy)¢(b,y,S*), then H, | (Vy)¢(b,y,S;). Therefore,

each a; occurs in at least ¢ tuples in the set {w : G E (Vy)¥(w,y,S*)}. As a result,
the total number of occurrences of all a;’s in this set is at least (Zi?m i) > nm, since

n > 8m + 1.

On the other hand, since w ranges over tuples of arity m and the cardinality of the
set {w: G |= (Vy)y(w,y,S*)} is n, the total number of occurrences of all a;’s in this
set 1s at most nm. Thus, we have arrived at a contradiction.

Part C: Panconesi and Ranjan [PR90] showed that MAX CLIQUE is in the class MAX
IT;, but not in the class MAX ;.

Part D: We have seen before that MAX SAT is in the MAX 4. In this part of the
proof we show that MAX SAT is not in the class MAX ¥,. Let I be an instance of
SAT and let A(I) = (X,C,P,N) be its encoding as a finite structure. Recall that
X consists of the variables and the clauses of I, while the predicate C' separates the
clauses from the variables. Towards a contradiction, assume that MAX SAT is in the
class MAX Yg. Therefore, there is a quantifier-free formula ¢ (w, S) such that for every
finite structure A(I) encoding an instance I of MAX SAT we have that

opt(A(1)) = mgx [{w : A(I) [ (w, S},

where w ranges over m-tuples (wy,wy, -+, wy,) and S = (51,---,.5;). We distinguish
two cases and show that in either case we arrive at a contradiction.

Case 1: Assume that, for every structure A(I) encoding an instance I the
maximum number of clauses satisfiable is given by

opt(A(D)) = max [{(w,- - w) : AD) F ¥(w, -, w, S)}].

m m

Let ¢'(w, S) be the formula obtained from 1 by replacing each occurrence of every free
variable by w. It is clear that

opH(A(D)) = mgx [{w : ¢/(w,S)}.

Since 1 is a quantifier-free formula, v’ is also a quantifier-free formula whose only
variable is w. As a result, in ¥’(w,S) the only occurrences of the predicate symbols

10



e MAX CONNECTED COMPONENT is in MAX II,, but not in MAX II;.
e MAX CLIQUE is in MAX IIy, but not in MAX ¥; ([PR90]).
e MAX SAT is in MAX X4, but not in MAX 3.

Proof: We give this proof in four parts.

Part A: In this part, we prove that MAX ¥ is contained in the class MAX II;. Let
Q@ be a MAX ¥, problem and A be a finite structure that is an instance of Q. Thus,

opto(A) = max|(w i A = (I)0(w.x, S},

where 1 is quantifier-free. If A |= ¢ (w,x*,S), then we say that x* is a witness of w
relative to S.

Consider now the sets
U(S) = {w: A |= (Fx)i(w.x.S)}
and

V(S,R) = {(w,x"): A E ¢(w,x",S) A R(W,x")A
(Vx1)(VX2 )((R(W, X1) A R(W,X3)) = X1 = X2)}
Intuitively, a pair (w,x*) is in the set V(S, R) if x* is a witness of w relative to S and

x* is the only tuple x such that the pair (w,x) is in R. It is now easy to verify that
for every fixed sequence of relations S we have that

U(S)| = myx [V (S, B)
and, as a result,
opt(A) = max |U(S)| = max [V (S, R)|.

Since V(S,R) is defined using a II; formula, it follows that @ € MAX II; and,
consequently, the class MAX ¥ is a subset of the class MAX TII;.

Part B: We showed earlier that MCC is in the class MAX II,. In this part of the proof
we show that MCC is not in the class MAX II;.

Towards a contradiction, assume that the optimum of MCC is given by
opH(G) = max [{w : G = (W ).y, )}

where 1 is quantifier-free and w ranges over tuples of arity m.

Let G be a graph that is a path with vertices {ay,---,a,}, for some n > 8m + 1,
and edges {a;,a;11},1 < ¢ < n—1. Consider the subgraphs H,;, 1 <¢ < |n/2], obtained



e MAX CLIQUE is in the class MAX II; (cf. [PR90]). Indeed, for MAX CLIQUE

we have that
opt(G) = max [{w : G = S(w) A (Vy1)(Vy)[(S(y1) A S(y2) A (yn # y2)) — E(yr 2] H-

e MAX CONNECTED COMPONENT (MCC): Given an undirected graph G, find
the size of the largest connected component in G.

Notice that actually MCC is an optimization problem on graphs that can be solved
in polynomial time. This problem will be of particular interest to us in the sequel.

Although Theorem 1 implies that MCC is in the class MAX II,, it is not obvious
how to establish this directly. In what follows we produce a II; formula ¢ that defines
MCC in our framework.

In addition to a binary relation symbol E for the edges of the graph, the formula ¢
will involve the relation symbols C, E, P, <, Z. The intuition behind these is as follows:
(' is a unary relation symbol that represents the vertices of a connected component; <
is a binary relation that will vary over total orders on the vertices of the graph; P is
a ternary relation symbol; P(x,y, k) indicates that the shortest path from x to y is of
length k, where the integer k is encoded by the k%" element of the total order <; finally,
Z is a unary predicate representing the smallest element of the total order < (Z for
zero).

Let ¢1(<) be a formula asserting that < is a total order and let ¢,(Z) be a formula
asserting that Z is a singleton set containing the smallest element of <. Let also
pred(z,y) be a formula asserting that y is the predecessor of & under the above order.
We leave it to the reader to verify that ¢1(<) and pred(x,y) can be expressed as II;
formulae, while ¢5(Z) can be written as a conjunction of II; and ¥; formulae. We are
now ready to demonstrate that MCC is in the class MAX II;. Indeed, its optimum
value on a graph G is given as

opt(G) = R [{w: C(w) A ¢1(<) A ¢ Z2)A
(Va)(Vy)((C(z) A Cly)) — (32)P(a,y,2)) A
(V) (Vy) (Vo) (Vo) [(P(x, y,v) A =Z(v) A pred(v,v')) —
(32)P(x, 2,v") A E(z,9))] A
(Va)(Vy)(Vo)((P(z,y,v) A Z(v)) — (z =y)) }|

The next result clarifies the relationship between the above classes of maximization
problems and shows that the polynomially bounded NP maximization problems form
a hierarchy with exactly four distinct levels.

Theorem 2: The class MAX ¥ is contained in the class MAX TI;. As a result,
MAX ¥y C MAX ¥; ¢ MAX II; ¢ MAX TI,.

Moreover, this sequence of containments is strict. In particular,



or, equivalently,

opto(A) = max|{(w: A b= W(w) A w(S" W)},

Let S denote the sequence (S*, W) and let ¢(w,S) be the formula W(w) A (S*, W).
It follows that
opto(A) = max|{w : A | 6w, S)}].

Moreover, ¢(w,S) can be chosen to be a II; formula, because Fagin’s characterization

of NP [Fag74] holds with a II; formula ¢(w,S*). O

Theorem 1 shows that MAX II; is the entire class MAX PB of polynomially bounded
NP maximization problems. By restricting the quantifier prefix V*3* of II; formulae,
we obtain the class MAX II; of [PR90], and the classes MAX 3; = MAX NP and MAX
Yo = MAX SNP of [PY88]. It is clear that we have the following containments between
these four classes:

MAX ¥,
MAX ¥, MAX II, = MAX PB
MAX II,

We now give examples of natural problems in these classes.

e MAX 3SAT is a problem in the class MAX ¥, (cf. [PY88]). This problem asks
for the maximum number of clauses that can be satisfied in a given Boolean formula in
conjunctive normal form (CNF) with three literals per clause. We view every instance
I of MAX 3SAT as a finite structure A(I) with universe the variables of the formula
and with four ternary predicates Cy, Cy, Cs, C5. Under this encoding, C;(wq, wz,ws) is

true if and only if {wq, ws, w3} is a clause with wy, - - -, w; appearing as negative literals
and w;yq1,- -+, ws appearing as positive literals, 0 < ¢ < 3. The optimum of 3SAT is
given by

opt(A(I)) = max [{(w, ws,w3) : A = ¢(wr, w2, w3, 5)}],
where ¢(wy,wsy, ws) is the formula
Co(wy, wa,ws) A (S(wr)V S(wa)V S(ws)) V Cr(wy, wse,ws) A (=S (w1) V S(ws) V S(ws))V
Ca (w1, wa, ws)A(2S (w1 )V-S(w)V.S(ws))VCs(wy, wa, w3 )A(2S(w1)VS(we)V-S(ws)).

e MAX SAT is a problem in the class MAX ¥; (cf. [PY88]). Under the encoding
of SATISFIABILITY given in Section 2, if A(I) is the finite structure associated with
an instance I of MAX SAT, then we have

opt(A(I)) = max [{w : A(I) = (3y)[C(w) A ((P(w,y) AS(y) V (N(w,y) A=Sy)]}



have chosen to use different names for MAX SNP and MAX NP here, because we
are interested in having a uniform notation and terminology for all the classes of
optimization problems obtained using first-order formulae. Moreover, the notation

I, and ¥, is consistent with the notation II? and 3? used for the polynomial

hierarchy [Sto76]. The class MAX II; was introduced by Panconesi and Ranjan [PR90].

3 Polynomially Bounded NP Maximization Problems

In this section we investigate the relative expressive power of the classes MAX II,
and MAX X,. n > 0, and establish their basic relationship to the class MAX PB of

polynomially bounded NP maximization problems.

Theorem 1: Let o be a vocabulary and let @ be a maximization problem with finite
structures A over ¢ as instances. Then @ is a polynomially bounded NP maximization
problem if and only if there is a first-order formula ¢(w,S) with predicate symbols
among those in ¢ and S such that for every instance A of Q

opta(A) = max|{w : A | o(w,S)}]|.

Moreover, ¢(w,S) can always be taken to be a Il formula and, consequently,

MAX PB = MAX II, = MAX II,,, n > 2.

Proof: It is clear that if a maximization problem @ is in the class MAX II,, for
some n > 0, then Q is a polynomially bounded NP maximization problem, since for
any finite structure A there are polynomially many distinct tuples from A satisfying a
given first-order formula.

For the other direction, assume that Q is a polynomially bounded NP maximization
problem with instances finite structures A over the vocabulary o. Let m be a positive
integer such that for any instance A we have that opty(A) < |A|™, where |A| is the
size of the structure A.

Consider now the following decision problem ): Given a finite structure A over o
and a m-ary relation W on the universe A of A, is there a feasible solution T for A such
that fo(A,T) > |W|? Here, fo is the objective function of Q and |W]| is the cardinality
of the m-ary relation W. Since Q is an NP optimization problem, we have that ) is a
problem in NP. Moreover, () can be viewed as an NP decision problem with instances
finite structures over the vocabulary o U {W}. By Fagin’s [Fag74] characterization of
NP in terms of definability in second-order logic, there is an existential second-order
formula (35*)i(S*, W) such that a pair (A, W) is a YES instance of @ if and only if
(A, W) E (3S")(S*, W). Since the maximization problem Q is bounded by |A|™, we
have that

opto(A) = max{[W] : A |= 0(S". )}



TRAVELING SALESMAN problem and INTEGER PROGRAMMING are examples
of NP optimization problems that are not polynomially bounded.

Usually, NP decision problems can be represented as problems on finite structures
over some vocabulary o consisting of predicate symbols. Indeed, in most cases either
an NP decision problem is described directly as a problem on finite structures or it can
be easily encoded by such a problem. For example, CLIQUE and VERTEX COVER
are problems about finite graphs, while an instance I of SATISFIABILITY can be
identified with a finite structure A(I) = (X,C, P, N), where X is the set of variables
and clauses of I, the predicate C(x) expresses that « is a clause, and P(¢,v) and N(c¢,v)
are binary predicates expressing that a variable v occurs positively or negatively in a
clause c.

From now on we assume that the instances of an optimization problem are given as
finite structures over some vocabulary . We introduce next a framework for classifying
optimization problems on finite structures in terms of their logical definability.

Recall that 3,,,n > 1, is the class of first-order formulae in prenex normal form that
have n alternations of quantifiers and start with a block of existential quantifiers. For
example, ¥ is the collection of existential formulae, while ¥, is the class of existential-
universal formulae. Similarly, II,,, n > 1, is the class of first-order formulae in prenex
normal form with n alternations of quantifiers, starting with a block of universal
quantifiers. Thus, a II; formula has universal quantifiers only, while II; is the collection
of universal-existential formulae. The class of quantifier-free formulae is denoted by g

or by Ilj.

Definition 2.3: Let ¢ be a vocabulary and let @ be a maximization problem with
finite structures A over o as instances.

We say that Q is in the class MAX II,,, n > 0, if there is a II,, formula ¢(w, S) with
predicate symbols among those in o and S such that for every instance A of Q we have
that

opto(A) = mas|{w: A | 6(w.S))|.

Similarly, we say that Q is in the class MAX ¥, n > 0, if its optimum is definable as
above using a X, formula ¢(w, S).

The classes MIN II,, and MIN ¥, n > 0, of minimization problems are defined in
an analogous way, with min in place of max. In particular, a minimization problem Q
is in the class MIN II,,, n > 0, if there is a II,, formula ¢(w,S) with predicate symbols
among those in ¢ and S such that for every instance A of @ we have that

opto(A) = min|{w : A | 6(w,S)}|

The classes MAX ¥, and MAX ¥; were introduced and studied by Papadimitriou
and Yannakakis [PY88] under the names MAX SNP and MAX NP respectively. We



in some sense a “dual” of the class RMAX in [PR90]. This subclass of MIN ¥; contains
MIN VERTEX COVER and has the property that every minimization problem in it is
approximable.

2 Preliminaries

This section contains the basic definitions and a minimum amount of the necessary
background material.

Definition 2.1: An NP optimization problem is a tuple Q@ = (Zg,Fo, fo,opt) such
that

o 7, is the set of input instances. It is assumed that 7o can be recognized in
polynomial time.

o Fo(I) is the set of feasible solutions for the input I.

e fo is a polynomial time computable function, called the objective function. It
takes positive integer values and is defined on pairs (I,T), where I is an input
instance and T is a feasible solution of I.

e opt € {max, min}
o The following decision problem is in NP : Given I € 75 and an integer k, does

there exist a feasible solution T' € Fo(Z) such that fo(I,T) > k, when opt =
max? (or, fo(I,T) < k, when opt = min)

The above definition is due to [PR90] and is broad enough to encompass every
known optimization problem arising in NP-completeness. We now restrict attention
to polynomially bounded NP optimization problems [BJY89,LM8&1]. These are NP
optimization problems in which the optimum value of the objective function on an
instance is bounded by a polynomial in the length of that instance.

Definition 2.2: An NP optimization problem @ is said to be polynomially bounded if
there is a polynomial p such that

opt(I) < p(|I]) for all I € Zy.

Let MAX PB (MIN PB) be the set of all polynomially bounded NP maximization

(minimization) problems.

Examples of polynomially bounded NP optimization problems are MAX CLIQUE,
TRAVELING SALESMAN problem with weights 1 or 2, MIN COLORING, and
MIN VERTEX COVER. On the other hand, the unrestricted version of the



optimum value is less than or equal to a polynomial of the input size. We classify next
these problems according to the quantifier complexity of the first-order formulae used
and we show that they form a proper hierarchy with exactly four levels:

MAX ¥, ¢ MAX ¥; ¢ MAX II; ¢ MAX II,,

where MAX ¥, = MAX SNP is obtained using quantifier-free formulae, MAX ¥,
= MAX NP is obtained using existential formulae, MAX II; is obtained using
universal formulae, and finally MAX II; is obtained using universal-existential formulae.
In particular, MAX II, can capture every polynomially bounded NP-maximization
problem on finite structures. The above containments are strict and there are natural
maximization problems witnessing the separation of the four classes. We prove that
MAX CONNECTED COMPONENT is in MAX II,, but not in MAX II;, while MAX
SAT separates MAX ¥ from MAX ¥,. As mentioned above, [PR90] showed that MAX
CLIQUE is in MAX TI, but not in MAX ;.

We focus next on the logical definability of NP-minimization problems. Panconesi
and Ranjan [PR90] concentrated on maximization problems only, while Papadimitriou
and Yannakakis [PY88] examined approximation properties of certain minimization
problems by reducing them to maximization problems. At first sight, one may
expect that results about classes of maximization problems should translate directly
to analogous results about classes of minimization problems definable by similar
formulae. It turns out, however, that this is not the case. Actually, maximization
and minimization problems defined by similar first-order formulae may have strikingly
different approximation properties.

We show that the collection of polynomially bounded NP-minimization problems
on finite structures coincides with the class of minimization problems whose optimum
is defined using an existential-universal (X,) first-order formula. After this we establish
that the polynomially bounded NP-minimization problems can be classified into a
proper hierarchy with exactly three levels:

MIN Xy C MIN ¥; C MIN II; = MIN 3.

The above containments are strict. In fact, we show that MIN CHROMATIC
NUMBER is in MIN II;, but not in MIN ¥, while MIN VERTEX COVER is in
MIN ¥4, but does not belong to MIN X

Recall that Papadimitriou and Yannakakis [PY88] showed that every maximization
problem in MAX ¥, = MAX SNP or in MAX ¥; = MAX NP is approximable.
In contrast, we prove here that MIN Y, contains natural minimization problems,
such as MIN 3NON-TAUTOLOGY, that are not approximable, unless P=NP. Since
the quantifier pattern of minimization problems does not have an impact on the
approximation properties of the problems, we seek other syntactic properties that may
have such an impact. To this effect, we introduce a natural subclass of MIN ¥, that is



corresponding maximization problem in MAX NP one seeks predicates S that maximize
the number of tuples x satisfying the existential first-order sentence (Jy)¥(x,y,S).
MAX SAT is the canonical example of a problem in MAX NP. This problem asks for

the maximum number of clauses that can be satisfied in a given Boolean formula.

Papadimitriou and Yannakakis [PY88] showed that every optimization problem in
MAX NP can be approximated within a constant factor. They also considered the
subclass MAX SNP of MAX NP consisting of those maximization problems that are
defined by quantifier-free formulae, i.e., the optimum of such problems can be defined
as

max|{x : A |= $(x,S)},

where 1) 1s quantifier-free. They demonstrated that MAX SNP contains several natural
maximization problems that are complete for MAX SNP via a certain reduction that
preserves approximability. MAX 3SAT is a typical MAX SNP-complete problem. These
results on the one hand reveal that the logical definability of an optimization problem
may impact on its approximation properties and on the other provide an explanation as
to why polynomial-time approximation schemes have not been derived for MAX 3SAT
or for the other MAX SNP-complete problems.

More recently, Panconesi and Ranjan [PR90] investigated the expressive power of
MAX NP and showed that MAX CLIQUE does not belong to this class. Moreover, they
proved that certain polynomial-time optimization problems are not in MAX NP. In an
attempt to find a syntactic class of optimization problems containing MAX CLIQUE,
they introduced the class MAX II; of maximization problems whose optimum can be
defined as

mas|{w : A = (Va(w. .S}

where ) is quantifier-free. It turns out that MAX II; contains also maximization
problems that are not approximable within a constant, unless P=NP. In view of this,
Panconesi and Ranjan [PR90] studied the class RMAX, which is a syntactic subclass
of MAX II; containing MAX CLIQUE and having the property that every problem in
it is self-improvable.

What other classes of optimization problems can be obtained using the logical
definability perspective and what is the exact expressive power of this framework?

We address these questions here by examining the class of all maximization problems
whose optimum is definable using first-order formulae, 1.e., it is given as

max |[{w: A [= ¢(w, S)}],

where ¢(w,S) is an arbitrary first-order formula. We show first that this class
coincides with the collection of polynomially bounded NP-maximization problems on
finite structures, namely, the NP-maximization problems on finite structures whose



1 Introduction and Summary of Results

It is well known that optimization problems had a major influence on the development
of the theory of NP-completeness. As a matter of fact, many natural NP-complete
problems are decision problems that are derived from an optimization problem by
imposing a bound on the objective function ([GJ79]). In spite of this close connection,
NP-completeness advanced along a strikingly different path than that of optimization
theory. Non-deterministic Turing machines with polynomial-time bounds provide a
fairly robust computational model for decision problems. This, in turn, made it possible
to develop a rich structural complexity theory based on polynomial time reductions and
to obtain various classifications of NP problems. There have been also several attempts
to classify optimization problems and to study their structural properties. Some notable
contributions include [OM90,Kre88,Wag86,PM81,ADP80,Joh74] (cf. also [BJY89]
for a comprehensive survey of results in this area). Nevertheless, the absence of
robust computational models for optimization problems has hindered the development
of a structural optimization theory that is on a par with structural complexity
theory. In particular, the approximation properties of optimization problems remain
as one of the most persistent puzzles of optimization theory. Although all known
natural NP-complete problems are polynomially isomorphic [BH77], their optimization
counterparts may have dramatically different approximation properties, from possessing
polynomial-time approximation schemes to being non-appproximable within a constant

factor (assuming P#£NP).

Papadimitriou and Yannakakis [PY88] brought a fresh perspective to approximation
theory by focusing on the logical definability of optimization problems. Their main
motivation came from Fagin’s [Fag74] characterization of NP in terms of definability
in second-order logic on finite structures. An exzistential second-order formula is an
expression of the form (3S)¢(S), where S is a sequence of predicates and ¢(S) is a first-
order formula. Fagin’s theorem [Fag74] asserts that a collection C of finite structures
is NP-computable if and only if it is definable by an existential second-order formula.
Moreover, it is well known that every such formula is equivalent to one of the form
(3S)(Vx)(Fy )¢ (x,y,S), where ¢ is a quantifier-free formula. Thus, a class C' of finite
structures is NP-computable if and only if there is a formula (3S)(Vx)(Jy ) (x,y,S),
with ¢ quantifier-free, such that for any finite structure A we have that

A el <= AEES)(Vx)(Iy)(x,y,S).

Papadimitriou and Yannakakis [PY88] introduced the class MAX NP of maximization
problems whose optimum can be defined as

mSaX |{X CA |: (HY)¢(X7Y7 S)}|7

where v is quantifier-free. Intuitively, in an NP decision problem one seeks predicates S
witnessing some existential second-order sentence (3S)(Vx)(Jy)¥(x,y,S), while in the
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