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ABSTRACT

We present a replication control protocol that provides excellent data
availabilities while guaranteeing that all writes to the object are recorded
in at least two replicas. The protocol, robust dynamic voting (RDV)
accepts reads and writes as long as at least two replicas remain avail-
able. The replicated object remains inaccessible until either the two last
available replicas recover or one of the two last available replicas can col-
lect the votes of a majority of replicas.

We evaluate the read and write availabilities of replicated data
objects managed by the RDV protocol and compare them with those of
replicated objects managed by majority consensus voting, dynamic voting
and hybrid dynamic voting protocols. We show that RDV can provide
extra protection against media failures with no siginificant loss of availabil-
ity.
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1. INTRODUCTION

Many distributed systems maintain multiple copies of some data objects to protect them

against partial network failures or to improve read access times. This trend has created

a new problem as the multiple copies—or replicas—of a replicated data object must be

kept consistent. Special replication control protocols have been devised to perform that

task and to provide the users with a single consistent view of every replicated data

object.

The last five years have seen the development of very efficient replication control

protocols that require fewer replicas and yet provide higher availability than older proto-

cols such as primary copy or majority consensus voting. Some of these protocols, such

as dynamic-linear voting and all available copy protocols, allow access to the replicated

data object when only one replica remains accessible.

Allowing writes when only one replica is available has the negative side-effect of

making the replicated data object singularly vulnerable to media failures. We investigate

the feasibility of replication control protocols that guarantee that all writes and all quorum

updates are recorded into at least two replicas of the data object. We introduce a

dynamic voting protocol, robust dynamic voting (RDV) that accepts reads and writes as

long as at least two replicas remain available. Following a total failure, the replicated
hhhhhhhhhhhhhhhh
Authors’ electronic mail addresses: paris@cs.uh.edu, darrell@cis.ucsc.edu



- 2 -

object remains inaccessible until either the two last available replicas recover or one of

the two last available replicas can collect the votes of a majority of replicas. As our

analysis will show, this added protection against media failures has no significant effect

on availability.

Section 2 of this paper reviews the extant replication control protocols that are

relevant to our discussion. Section 3 introduces the RDV protocol while section 4

presents a brief analysis of replicated object availability under RDV and section 5

discusses two possible extensions to our basic protocol. Finally, section 6 presents our

conclusions.

2. RELATED RESEARCH

When network partitions are known to be impossible, the available copy (AC) protocol

[BeGo84] and its variants [CLP87, PaLo89] provide a simple means for maintaining data

consistency. The AC protocol is based on the observation that replicas that have partici-

pated in all writes necessarily hold the most recent version of the data. The write rule

for the AC protocol is extremely simple: write to all accessible replicas. Since network

partitions are specifically excluded, all available replicas receive each write. As a result,

replicated objects managed by the AC protocols can remain available so long as at least

one of their replicas remains accessible. Data can be read from any accessible replica,

which greatly reduces communication costs. Replicas recovering from a failure can

repair immediately so long as there is another replica holding the most recent version of

the data. After a failure of all replicas, the recovering sites cannot ascertain which of

them hold the most recent version of the data until the replica that failed last can be

found.

Large local-area networks often consist of several carrier-sense segments or token

rings linked by repeaters or gateways. Since repeaters and gateways may fail without

halting the operation of the entire communication network, these networks are just as

susceptible to network partitions as are long-haul point-to-point networks. Replicated

data objects having replicas on both sides of a partition could be left with two sets of
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mutually inconsistent replicas. Although various merging algorithms have been

developed to attempt to reconcile these inconsistencies when the partition is repaired,

the safest solution to the problem is to adopt a replication control protocol based on

quorum consensus.

Quorum consensus protocols, among which majority consensus voting (MCV)

[Elli77, Thom79] and weighted voting [Giff79], ensure the consistency of replicated data

objects by disallowing all read and write requests that cannot collect an appropriate

quorum of replicas. Different quorums for read and write operations can be defined and

different weights, including none, assigned to every replica [Giff79]. Consistency is

guaranteed as long as the write quorum W is high enough to disallow parallel writes on

two disjoint subsets of replicas, and the read quorum R is high enough to ensure that

read and write quorums always intersect. These conditions are simple to verify, which

accounts for the conceptual simplicity and the robustness of voting schemes. Voting

has however some disadvantages. It requires a minimum number of three copies to be

of any practical use. Even then, quorum requirements tend to disallow a relatively high

number of read and update operations. As a result, quorum consensus protocols using

static quorums provide reliability and availability figures well below those provided by

available copy protocols [CLP87, PaLo89].

Unlike MCV, the dynamic voting (DV) protocol [DaBu85] automatically adjusts its

access quorum to changes in the state of the network. Whenever some replicas of an

object become inaccessible either because of a site failure or a network partition, the DV

protocol checks if enough replicas remain available to satisfy its current quorum. If this

is the case, these replicas constitute a new majority block, and a new access quorum is

computed. To enforce mutual exclusion, recovered replicas that do not belong to the

current majority block are not allowed to participate in elections so long as they have not

been formally reintegrated by the protocol. To keep track of the status of the replicated

object, every replica maintains some state information. This information will include a

version number identifying the last write recorded by the replica and either a partition

vector [DaBu85] or both a partition set and an operation number [PaLo88] identifying the

replicas belonging to the current majority block.
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All quorum-oriented protocols encounter situations where the number of current

replicas within a group of mutually communicating replicas is equal to the number of

current replicas not in communication. The DV protocol declares then the replicated

object to be inaccessible. An extension proposed by Jajodia [Jajo87], known as

dynamic-linear voting (DLV) resolves these ties by applying a total ordering to the sites.

This simple improvement greatly enhances the availability of the replicated data.

Weighted dynamic voting (WDV) [Davc89] can achieve the same result by allocating dif-

ferent number of votes—or weights— to the replicas. Another variant, hybrid dynamic

voting (HDV)[JaMu88], operates exactly like DLV as long as the replicated object has at

least three mutually communicating replicas. If one of these three replicas becomes

unaccessible, HDV does not update the majority block and starts operating as a static

voting protocol. As a result, the replicated object will remain available as long as two of

the three replicas in the majority block are in communication. Should this be prevented

by additional failures, the replicated object will become unavailable until two replicas

from the current majority block can communicate again with each other.

3. THE NEW PROTOCOLS

To protect a replicated data object against irrecoverable failures, its replication control

should ensure that:

(1) all writes to the object are recorded into at least two replicas of the object, and

(2) the object can recover from an irrecoverable failure from either of these two repli-

cas.

Several protocols satisfy the first but not the second condition. For instance, the DV

protocol guarantees that all updates are recorded in at least two replicas of the object

but cannot recover from a failure of either of the last two operational replicas of an object

until both replicas recover.

The only two extant protocols satisfying both conditions are MCV and HDV. The

limitations of MCV have been already mentioned. Since the protocol relies on static

quorums, it disallows all requests that cannot collect the votes of a majority of the
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replicas. As a result, it requires a higher level of replication to achieve the same levels

of availability and reliability as available copy or dynamic voting protocols. Being a

dynamic protocol, HDV does not suffer from these limitations: it can indeed be viewed as

an improvement of the DV protocol providing a faster recovery from situations where

less than two current replicas remain available. While DV does not allow access to the

replicated object until its last two current replicas become available again, HDV allows

the object to recover when two of its last three current replicas are available. This condi-

tion can be satisfied if the last two current replicas of the object have recovered or one

of them plus a specially designated ‘‘third replica’’ have recovered. The role of this third

replica is to allow the replicated object to recover when only one of its last two current

replicas has recovered without risking the inconsistencies that might result if each of its

last two current replicas was allowed to lead a recovery of the replicated object indepen-

dently of the other.

We propose to improve upon the HDV protocol by replacing this third replica by an

entity that will play the same role but be more available. Our solution consists of allow-

ing the object to recover when either its last two current replicas have recovered or only

one of them has recovered but the votes of a majority of the n −2 other replicas of the

objects can be gathered. A protocol based on this recovery rule will allow a faster

recovery under most practical circumstances since it will take less time to wait for the

recovery of a majority of a given set of replicas than for the recovery of a given replicas.

The only two major exceptions to this rule are the cases when (a) the individual availabil-

ities of the replicas of a data object will be less than 1⁄2, or (b) the sites holding the failed

replicas cannot be all repaired in parallel and the replication control protocol also con-

trols the scheduling of site repairs. Condition (a) is rather pathological as replicas with

availabilities below 1⁄2 would be unaccessible most of the time. Condition (b) is rarely

met in real networks as the time actually spent servicing faulty sites is normally a rather

small part of the total site recovery time.

Replicated data objects with only two replicas constitute a special case: Since all

writes are recorded into both two replicas of the object, either of these two replicas will

always be current. We will therefore allow read access as long as one replica of the
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object remains available.

procedure READ

begin
〈R ,o,v,P〉←START(U )
Q ←{r ∈ R : or = maxs ∈ R {os }}
S ←{r ∈ R : vr = maxs ∈ R {vs }}
T ←R −Pm

q = 2
| Pm |hhhhhh

t = 2
| U −Pm |hhhhhhhhh

choose any m ∈ Q
if | Q | > q ∨ | Q | =q > 1 ∧ max(Pm )∈ Q ∨

| Q | =q =1 ∧ ( | T | > t ∨ | T | = t ∧ max(U −Pm )∈ T ) then
perform the read
COMMIT(S ,om +1,vm ,S )

else
ABORT(R )

fi
end READ

Figure 1: Read Algorithm

We will assume in our formal description of the robust dynamic voting protocol

(RDV) that each site holding a replica maintains the three sets of information needed to

implement an optimistic dynamic voting protocol. These three sets are: the partition set,

Pi , which represents the set of sites which participated in the last successful operation,

an operation number, oi incremented at every successful operation and a version

number, vi incremented at every successful write. This information is stored at each site

and is modified when an access occurs.

The algorithm for performing a read operation is simple. It first ascertains whether

the current partition is the majority partition. A message is broadcast to all n sites in U

requesting their partition set, operation number and version number; those that send

replies are considered to be in the current partition. The set of sites holding up-to-date

replicas S is found by computing the maximum version number of all of the sites. The

set of current accessible sites is called the quorum set Q. The access request is
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procedure WRITE

begin
〈R ,o,v,P〉←START(U )
Q ←{r ∈ R : or = maxs ∈ R {os }}
S ←{r ∈ R : vr = maxs ∈ R {vs }}
T ←R −Pm

q = 2
| Pm |hhhhhh

t = 2
| U −Pm |hhhhhhhhh

choose any m ∈ Q
if | Q | > q ∨ | Q | =q > 1 ∧ max(Pm )∈ Q then

perform the write
COMMIT(S ,om +1,vm +1,S )

else
ABORT(R )

fi
end WRITE

Figure 2: Write Algorithm

granted if Q represents a majority of the previous quorum Pm and Q contains at least

two replicas or if Q contains one of the two replicas of Pm and the replicas in R but not

in Pm constitute a majority of the replicas in U but not in Pm . We will refer to these repli-

cas as the excluded as they are excluded from the current partition set. If there is a tie,

that is exactly one half of the previous quorum, then a total ordering on the set of sites is

used to decide if access will be granted.

Once it has been ascertained that the current partition is the majority partition, then

access can continue. The read operation is performed and the operation number is

incremented and sent along with the set of current sites to each of current sites to serve

as their new partition sets by the COMMIT operation.

The algorithm for writing is similar to the algorithm for reading. It ascertains first if

the current partition is the majority partition and if Q contains at least two elements. If

this is successful, the write operation is performed. The operation number and the ver-

sion number are incremented and sent along with the set of current sites to all of the

current sites to serve as their new partition sets.
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procedure RECOVER

begin
repeat

let l be the recovering site
〈R ,o,v,P〉←START(U )
Q ←{r ∈ R : or = maxs ∈ R {os }}
S ←{r ∈ R : vr = maxs ∈ R {vs }}
T ←R −Pm

q = 2
| Pm |hhhhhh

t = 2
| U −Pm |hhhhhhhhh

choose any m ∈ Q
if | Q | > q ∨ | Q | =q > 1 ∧ max(Pm )∈ Q ∨

| Q | =q =1 ∧ T ≠ ∅ ∧ ( | T | > t ∨ | T | = t ∧ max(U −Pm )∈ T ) then
if vl < vm then

copy the data object from site m
fi
COMMIT(S ∪ {l },om +1,vm ,S ∪ {l })

else
ABORT(R )

fi
until successful

end RECOVER

Figure 3: Recovery Algorithm

The recovery algorithm starts by ascertaining if the recovering site is able to gather

a write quorum or find one of the last two current replicas and gather the votes of a

majority of the n −2 other replicas. It determines then whether the replica at that site is

up-to-date; if it is not, then it must be copied from one of the sites in the quorum set.

The recovering site then sends the union of the set of current sites and itself to all of the

current sites, including itself, to serve as their new partition sets.

4. AVAILABILITY ANALYSIS

In this section we present an analysis of the availability provided by the RDV protocol.

We will assume here that the availability of a replicated data object is the stationary pro-

bability of the object being in a state permitting access at at least one site. This is the
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traditional definition of the availability of a redundant system [Triv82].

Definition 3.1 A replica is said to be live if it resides on a site that has not experienced

any failure since the last time the replica was written to or repaired.

Definition 3.2 A replica is said to be dead if it resides on a site that is not operational.

Definition 3.3 A replica is said to be comatose if it resides on a site that has failed and

the replica has not been repaired yet.

Our model consists of a set of sites with independent failure modes that are con-

nected via a local-area network. When a site fails, a repair process is immediately ini-

tiated at that site. Should several sites fail, the repair process will be performed in paral-

lel on those failed sites. We assume that failures are exponentially distributed with

mean failure rate λ , and that repairs are exponentially distributed with mean repair rate

µ . The system is assumed to exist in statistical equilibrium and to be characterized by a

discrete-state Markov process. No attempt is made to model failures of LAN segments,

gateways or repeaters. We also assume that file accesses are frequent enough to

ensure that the state information stored at the sites always reflects the current state of

the system.

The assumptions that we have made are required for a steady-state analysis to be

tractable [GBS69]. These assumptions have been made in most recent probabilistic

analyses of the availability of replicated data [Pari86, LoPa88, JaMu88, PaLo89]. Purely

combinational models that do not require assumptions about failure and repair distribu-

tions have been proposed [PNP88, ReTa88] but these models cannot distinguish

between live and comatose replicas.

Like all voting protocols that make no assumptions about the topology of the net-

work, the RDV protocol requires a minimum of three replicas to improve upon the write

availability of a non-replicated object. When three replicas are present, it performs

exactly as majority consensus voting and hybrid dynamic voting.

Figure 4 describes the state transition rate diagram for a replicated object consist-

ing of four replicas managed by the RDV protocol. As in all our next state transition rate

diagrams, the numerical value of the label of every state represent the number of
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replicas that are either live or comatose when the system is in that state. The 3 non-

primed states labeled from 2 to 4 represent the 3 available states of the object. Primed

states are entered when one of the last two live replicas of the data object fails (transi-

tion from state 2 to state 1′). Transitions from primed states to unprimed states

correspond to recoveries of the replicated object. These recoveries occur when either

the live replica that failed last recovers or the last live replica can gather the votes of a

majority of the two excluded replicas of the object.
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Figure 4: RDV State Transition Diagram for Four Replicas

States marked with two primes represent the four states of the object when the last two

live replicas of the object have both failed and zero to two replicas are comatose. The

transition from state 2′′ to state 3 corresponds to the recovery of the replicated object

when one of the last two live replicas recovers while the two excluded replicas of the

object were comatose. Since ties will occur when one of the last two live replicas of the
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object while one of the other two replicas of the object is comatose, we needed to intro-

duce two states 1′′ . State 1′′ + corresponds to the state of the replicated object when the

excluded comatose replica precedes the other excluded replica in the lexicographic ord-

ering of replicas; recovery is possible as soon as one of the last two live replicas of the

object recovers. State 1′′ − corresponds to the state of the replicated object when the

excluded comatose replica follows the other excluded replica in the lexicographic order-

ing of replicas; recovery cannot complete until two additional replicas recover.
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Figure 5: RDV State Transition Diagram for Five Replicas

As one can see on figure 5, the state transition diagram for five replicas managed

by the RDV protocol offers the same three-layer organization as the diagram for four

replicas. Note that the replicated object will always have three excluded replicas when it

becomes unavailable and that ties cannot occur.

Exact algebraic expressions for the availability of replicated data objects with four

and five replicas managed by the RDV protocols were derived from these state transition

diagrams using standard algebraic techniques and the symbolic manipulation program
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MACSYMA. These two expressions are quotients of very large polynomials in λ and µ

and were not included in the paper because of their sizes.
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Figure 6: Compared Availabilities for Three Replicas

Figures 6, 7 and 8 display the availabilities achieved by the RDV protocol with

three, four and five replicas respectively. These availabilities are compared with those

provided by majority consensus voting (MCV), dynamic voting (DV), dynamic-linear vot-

ing (DLV) and hybrid dynamic voting (HDV) for the same numbers of replicas. In all

three graphs the failure rate to repair rate ρ =λ /µ varies between 0 and 0.2. Zero

corresponds to perfectly reliable replicas and 0.2 to replicas that are repaired five times

faster than they fail and have an individual availability of 5/6.

Figure 6 shows that for MCV, HDV and RDV have exactly the same availability for

three replicas while DV performs somewhat worse and DLV somewhat better. This

result is not surprising as MCV, HDV and RDV operate exactly in the same fashion

when three replicas are present. Figures 7 and 8 show almost undistinguishable
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Figure 7: Compared Availabilities for Four Replicas

availabilities for DLV, HDV and RDV while DV performs significantly worse and MCV

much worse.

A few important conclusions can be reached from this study. First protecting repli-

cated objects against irrecoverable media failures can be done at almost no cost in all

environments where network partitions are possible as the two protocols achieving this

objective perform almost as well as DLV, which is the best extant dynamic voting proto-

col. failure is not bound to have a significant impact on its overall performance. Finally

the conjecture that HDV provides the greatest data availability among all dynamic voting

protocols [JaMu87] was found not to hold when the availability of a data object was

assumed to be the probability that it is accessible by at least one site.

These conclusions need to be qualified as they rely on the hypotheses introduced

by our Markovian analysis. It was assumed that network partitions and other partial

communication failures were possible but extremely unlikely. Failures and repairs were
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Figure 8: Compared Availabilities for Five Replicas

assumed to be independent processes with exponential distributions. Simultaneous

failures of all sites holding replicas were not considered. All extant simulation studies of

the performance of replication control protocols have however concluded that these fac-

tors do not significantly alter the rankings of the protocols under study [NoAn87,

LoPa88, CaLo89].

5. POSSIBLE EXTENSIONS

Several extensions of the RDV protocol are possible and we will briefly mention two

here. First the RDV protocol could greatly benefit from combining it with regeneration as

new replicas could be generated to replace the replicas that failed and increase the like-

lyhood that at least two current replicas of the object will always remain accessible

[PNP88, LoPa89]. If the object is large and writes only affect small portions of its con-

tents, temporary write logs could be generated instead of full replicas to reduce
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regeneration costs.

Second the RDV protocol would be unduly restrictive in environments where net-

work partitions are known to be impossible. One could envision a robust available copy

protocol (RAC) tailored to these environments and guaranteeing like RDV that all writes

to the object are recorded in at least two replicas. Such protocol would differ from RDV

in two important features:

(1) the current partition set P would be required to contain a majority of the replicas in

the previous partition set; partition sets would instead be called available sets and a

new available set only required to contain one live replica from the previous avail-

able sets; and

(2) reads would be allowed as long as one live replica of the replicated object remains

accessible although writes would continue to require two live replicas.

6. CONCLUSIONS

The last five years have seen the development of very efficient replication control proto-

cols requiring much less replicas to provide the same level of data availability as older

protocols such as majority consensus voting. In this paper, we have described a replica-

tion control protocol protecting replicated data objects against irrecoverable failures by

requiring all writes to be performed on at least two replicas.

A Markov model was used to evaluate the availability of replicated data objects

managed by the RDV protocol and compare it with those of replicated objects managed

by several voting protocols. Our study indicated that protecting replicated objects

against irrecoverable media failures can be done at almost no cost in all environments

where network partitions are possible as the protocols achieving this objective perform

almost as well as the best extant dynamic voting protocol.
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Test-bed,’’ Proc. 3rd International Conference on Data Engineering (1987),
pp. 596-615.

CaLo89 J.L.Carroll and D.D.E. Long, ‘‘The Effect of Failure and Repair Distributions
on Consistency Protocols for Replicated Data Objects,’’ Proc. 22d Annual
Simulation Symposium (1989), pp. 47-60.

CLP87 J.L. Carroll, D.D.E. Long and J.-F. Pâris, ‘‘Block-Level Consistency of Repli-
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